1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 24 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 25 */ 26 27 /* Copyright (c) 1988 AT&T */ 28 /* All Rights Reserved */ 29 /* 30 * Copyright 2014, Joyent, Inc. All rights reserved. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/sysmacros.h> 36 #include <sys/systm.h> 37 #include <sys/signal.h> 38 #include <sys/cred_impl.h> 39 #include <sys/policy.h> 40 #include <sys/user.h> 41 #include <sys/errno.h> 42 #include <sys/file.h> 43 #include <sys/vfs.h> 44 #include <sys/vnode.h> 45 #include <sys/mman.h> 46 #include <sys/acct.h> 47 #include <sys/cpuvar.h> 48 #include <sys/proc.h> 49 #include <sys/cmn_err.h> 50 #include <sys/debug.h> 51 #include <sys/pathname.h> 52 #include <sys/vm.h> 53 #include <sys/lgrp.h> 54 #include <sys/vtrace.h> 55 #include <sys/exec.h> 56 #include <sys/exechdr.h> 57 #include <sys/kmem.h> 58 #include <sys/prsystm.h> 59 #include <sys/modctl.h> 60 #include <sys/vmparam.h> 61 #include <sys/door.h> 62 #include <sys/schedctl.h> 63 #include <sys/utrap.h> 64 #include <sys/systeminfo.h> 65 #include <sys/stack.h> 66 #include <sys/rctl.h> 67 #include <sys/dtrace.h> 68 #include <sys/lwpchan_impl.h> 69 #include <sys/pool.h> 70 #include <sys/sdt.h> 71 #include <sys/brand.h> 72 #include <sys/klpd.h> 73 74 #include <c2/audit.h> 75 76 #include <vm/hat.h> 77 #include <vm/anon.h> 78 #include <vm/as.h> 79 #include <vm/seg.h> 80 #include <vm/seg_vn.h> 81 82 #define PRIV_RESET 0x01 /* needs to reset privs */ 83 #define PRIV_SETID 0x02 /* needs to change uids */ 84 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */ 85 #define PRIV_INCREASE 0x08 /* child runs with more privs */ 86 #define MAC_FLAGS 0x10 /* need to adjust MAC flags */ 87 #define PRIV_FORCED 0x20 /* has forced privileges */ 88 89 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *, 90 priv_set_t *, cred_t *, const char *); 91 static int hold_execsw(struct execsw *); 92 93 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */ 94 uint_t auxv_hwcap_2 = 0; /* AT_SUN_HWCAP2 */ 95 #if defined(_SYSCALL32_IMPL) 96 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */ 97 uint_t auxv_hwcap32_2 = 0; /* 32-bit version of auxv_hwcap2 */ 98 #endif 99 100 #define PSUIDFLAGS (SNOCD|SUGID) 101 102 #define DEVFD "/dev/fd/" 103 104 /* 105 * exece() - system call wrapper around exec_common() 106 */ 107 int 108 exece(const char *fname, const char **argp, const char **envp) 109 { 110 int error; 111 112 error = exec_common(fname, argp, envp, EBA_NONE); 113 return (error ? (set_errno(error)) : 0); 114 } 115 116 int 117 exec_common(const char *fname, const char **argp, const char **envp, 118 int brand_action) 119 { 120 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL; 121 proc_t *p = ttoproc(curthread); 122 klwp_t *lwp = ttolwp(curthread); 123 struct user *up = PTOU(p); 124 long execsz; /* temporary count of exec size */ 125 int i; 126 int error; 127 char exec_file[MAXCOMLEN+1]; 128 struct pathname pn; 129 struct pathname resolvepn; 130 struct uarg args; 131 struct execa ua; 132 k_sigset_t savedmask; 133 lwpdir_t *lwpdir = NULL; 134 tidhash_t *tidhash; 135 lwpdir_t *old_lwpdir = NULL; 136 uint_t old_lwpdir_sz; 137 tidhash_t *old_tidhash; 138 uint_t old_tidhash_sz; 139 ret_tidhash_t *ret_tidhash; 140 lwpent_t *lep; 141 boolean_t brandme = B_FALSE; 142 143 /* 144 * exec() is not supported for the /proc agent lwp. 145 */ 146 if (curthread == p->p_agenttp) 147 return (ENOTSUP); 148 149 if (brand_action != EBA_NONE) { 150 /* 151 * Brand actions are not supported for processes that are not 152 * running in a branded zone. 153 */ 154 if (!ZONE_IS_BRANDED(p->p_zone)) 155 return (ENOTSUP); 156 157 if (brand_action == EBA_NATIVE) { 158 /* Only branded processes can be unbranded */ 159 if (!PROC_IS_BRANDED(p)) 160 return (ENOTSUP); 161 } else { 162 /* Only unbranded processes can be branded */ 163 if (PROC_IS_BRANDED(p)) 164 return (ENOTSUP); 165 brandme = B_TRUE; 166 } 167 } else { 168 /* 169 * If this is a native zone, or if the process is already 170 * branded, then we don't need to do anything. If this is 171 * a native process in a branded zone, we need to brand the 172 * process as it exec()s the new binary. 173 */ 174 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p)) 175 brandme = B_TRUE; 176 } 177 178 /* 179 * Inform /proc that an exec() has started. 180 * Hold signals that are ignored by default so that we will 181 * not be interrupted by a signal that will be ignored after 182 * successful completion of gexec(). 183 */ 184 mutex_enter(&p->p_lock); 185 prexecstart(); 186 schedctl_finish_sigblock(curthread); 187 savedmask = curthread->t_hold; 188 sigorset(&curthread->t_hold, &ignoredefault); 189 mutex_exit(&p->p_lock); 190 191 /* 192 * Look up path name and remember last component for later. 193 * To help coreadm expand its %d token, we attempt to save 194 * the directory containing the executable in p_execdir. The 195 * first call to lookuppn() may fail and return EINVAL because 196 * dirvpp is non-NULL. In that case, we make a second call to 197 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL, 198 * but coreadm is allowed to expand %d to the empty string and 199 * there are other cases in which that failure may occur. 200 */ 201 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 202 goto out; 203 pn_alloc(&resolvepn); 204 205 if (strncmp(pn.pn_path, DEVFD, strlen(DEVFD)) == 0) { 206 /* looks like a /dev/fd node */ 207 char *p = pn.pn_path + strlen(DEVFD); 208 int fd = stoi(&p); 209 if ((fd < 0) || (*p != 0) || (p == pn.pn_path)) { 210 error = EBADF; 211 goto out; 212 } 213 if ((error = fgetstartvp(fd, NULL, &vp)) != 0) { 214 goto out; /* error will be EBADF */ 215 } 216 (void) pn_set(&resolvepn, pn.pn_path); 217 218 } else if ((error = 219 lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) { 220 pn_free(&resolvepn); 221 pn_free(&pn); 222 if (error != EINVAL) 223 goto out; 224 225 dir = NULL; 226 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 227 goto out; 228 pn_alloc(&resolvepn); 229 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP, 230 &vp)) != 0) { 231 pn_free(&resolvepn); 232 pn_free(&pn); 233 goto out; 234 } 235 } 236 if (vp == NULL) { 237 if (dir != NULL) 238 VN_RELE(dir); 239 error = ENOENT; 240 pn_free(&resolvepn); 241 pn_free(&pn); 242 goto out; 243 } 244 245 if ((error = secpolicy_basic_exec(CRED(), vp)) != 0) { 246 if (dir != NULL) 247 VN_RELE(dir); 248 pn_free(&resolvepn); 249 pn_free(&pn); 250 VN_RELE(vp); 251 goto out; 252 } 253 254 /* 255 * We do not allow executing files in attribute directories. 256 * We test this by determining whether the resolved path 257 * contains a "/" when we're in an attribute directory; 258 * only if the pathname does not contain a "/" the resolved path 259 * points to a file in the current working (attribute) directory. 260 */ 261 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 && 262 strchr(resolvepn.pn_path, '/') == NULL) { 263 if (dir != NULL) 264 VN_RELE(dir); 265 error = EACCES; 266 pn_free(&resolvepn); 267 pn_free(&pn); 268 VN_RELE(vp); 269 goto out; 270 } 271 272 bzero(exec_file, MAXCOMLEN+1); 273 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN); 274 bzero(&args, sizeof (args)); 275 args.pathname = resolvepn.pn_path; 276 /* don't free resolvepn until we are done with args */ 277 pn_free(&pn); 278 279 /* 280 * If we're running in a profile shell, then call pfexecd. 281 */ 282 if ((CR_FLAGS(p->p_cred) & PRIV_PFEXEC) != 0) { 283 error = pfexec_call(p->p_cred, &resolvepn, &args.pfcred, 284 &args.scrubenv); 285 286 /* Returning errno in case we're not allowed to execute. */ 287 if (error > 0) { 288 if (dir != NULL) 289 VN_RELE(dir); 290 pn_free(&resolvepn); 291 VN_RELE(vp); 292 goto out; 293 } 294 295 /* Don't change the credentials when using old ptrace. */ 296 if (args.pfcred != NULL && 297 (p->p_proc_flag & P_PR_PTRACE) != 0) { 298 crfree(args.pfcred); 299 args.pfcred = NULL; 300 args.scrubenv = B_FALSE; 301 } 302 } 303 304 /* 305 * Specific exec handlers, or policies determined via 306 * /etc/system may override the historical default. 307 */ 308 args.stk_prot = PROT_ZFOD; 309 args.dat_prot = PROT_ZFOD; 310 311 CPU_STATS_ADD_K(sys, sysexec, 1); 312 DTRACE_PROC1(exec, char *, args.pathname); 313 314 ua.fname = fname; 315 ua.argp = argp; 316 ua.envp = envp; 317 318 /* If necessary, brand this process before we start the exec. */ 319 if (brandme) 320 brand_setbrand(p); 321 322 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz, 323 exec_file, p->p_cred, brand_action)) != 0) { 324 if (brandme) 325 brand_clearbrand(p, B_FALSE); 326 VN_RELE(vp); 327 if (dir != NULL) 328 VN_RELE(dir); 329 pn_free(&resolvepn); 330 goto fail; 331 } 332 333 /* 334 * Free floating point registers (sun4u only) 335 */ 336 ASSERT(lwp != NULL); 337 lwp_freeregs(lwp, 1); 338 339 /* 340 * Free thread and process context ops. 341 */ 342 if (curthread->t_ctx) 343 freectx(curthread, 1); 344 if (p->p_pctx) 345 freepctx(p, 1); 346 347 /* 348 * Remember file name for accounting; clear any cached DTrace predicate. 349 */ 350 up->u_acflag &= ~AFORK; 351 bcopy(exec_file, up->u_comm, MAXCOMLEN+1); 352 curthread->t_predcache = NULL; 353 354 /* 355 * Clear contract template state 356 */ 357 lwp_ctmpl_clear(lwp); 358 359 /* 360 * Save the directory in which we found the executable for expanding 361 * the %d token used in core file patterns. 362 */ 363 mutex_enter(&p->p_lock); 364 tmpvp = p->p_execdir; 365 p->p_execdir = dir; 366 if (p->p_execdir != NULL) 367 VN_HOLD(p->p_execdir); 368 mutex_exit(&p->p_lock); 369 370 if (tmpvp != NULL) 371 VN_RELE(tmpvp); 372 373 /* 374 * Reset stack state to the user stack, clear set of signals 375 * caught on the signal stack, and reset list of signals that 376 * restart system calls; the new program's environment should 377 * not be affected by detritus from the old program. Any 378 * pending held signals remain held, so don't clear t_hold. 379 */ 380 mutex_enter(&p->p_lock); 381 lwp->lwp_oldcontext = 0; 382 lwp->lwp_ustack = 0; 383 lwp->lwp_old_stk_ctl = 0; 384 sigemptyset(&up->u_signodefer); 385 sigemptyset(&up->u_sigonstack); 386 sigemptyset(&up->u_sigresethand); 387 lwp->lwp_sigaltstack.ss_sp = 0; 388 lwp->lwp_sigaltstack.ss_size = 0; 389 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 390 391 /* 392 * Make saved resource limit == current resource limit. 393 */ 394 for (i = 0; i < RLIM_NLIMITS; i++) { 395 /*CONSTCOND*/ 396 if (RLIM_SAVED(i)) { 397 (void) rctl_rlimit_get(rctlproc_legacy[i], p, 398 &up->u_saved_rlimit[i]); 399 } 400 } 401 402 /* 403 * If the action was to catch the signal, then the action 404 * must be reset to SIG_DFL. 405 */ 406 sigdefault(p); 407 p->p_flag &= ~(SNOWAIT|SJCTL); 408 p->p_flag |= (SEXECED|SMSACCT|SMSFORK); 409 up->u_signal[SIGCLD - 1] = SIG_DFL; 410 411 /* 412 * Delete the dot4 sigqueues/signotifies. 413 */ 414 sigqfree(p); 415 416 mutex_exit(&p->p_lock); 417 418 mutex_enter(&p->p_pflock); 419 p->p_prof.pr_base = NULL; 420 p->p_prof.pr_size = 0; 421 p->p_prof.pr_off = 0; 422 p->p_prof.pr_scale = 0; 423 p->p_prof.pr_samples = 0; 424 mutex_exit(&p->p_pflock); 425 426 ASSERT(curthread->t_schedctl == NULL); 427 428 #if defined(__sparc) 429 if (p->p_utraps != NULL) 430 utrap_free(p); 431 #endif /* __sparc */ 432 433 /* 434 * Close all close-on-exec files. 435 */ 436 close_exec(P_FINFO(p)); 437 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up); 438 439 /* Unbrand ourself if necessary. */ 440 if (PROC_IS_BRANDED(p) && (brand_action == EBA_NATIVE)) 441 brand_clearbrand(p, B_FALSE); 442 443 setregs(&args); 444 445 /* Mark this as an executable vnode */ 446 mutex_enter(&vp->v_lock); 447 vp->v_flag |= VVMEXEC; 448 mutex_exit(&vp->v_lock); 449 450 VN_RELE(vp); 451 if (dir != NULL) 452 VN_RELE(dir); 453 pn_free(&resolvepn); 454 455 /* 456 * Allocate a new lwp directory and lwpid hash table if necessary. 457 */ 458 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) { 459 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP); 460 lwpdir->ld_next = lwpdir + 1; 461 tidhash = kmem_zalloc(2 * sizeof (tidhash_t), KM_SLEEP); 462 if (p->p_lwpdir != NULL) 463 lep = p->p_lwpdir[curthread->t_dslot].ld_entry; 464 else 465 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 466 } 467 468 if (PROC_IS_BRANDED(p)) 469 BROP(p)->b_exec(); 470 471 mutex_enter(&p->p_lock); 472 prbarrier(p); 473 474 /* 475 * Reset lwp id to the default value of 1. 476 * This is a single-threaded process now 477 * and lwp #1 is lwp_wait()able by default. 478 * The t_unpark flag should not be inherited. 479 */ 480 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 481 curthread->t_tid = 1; 482 kpreempt_disable(); 483 ASSERT(curthread->t_lpl != NULL); 484 p->p_t1_lgrpid = curthread->t_lpl->lpl_lgrpid; 485 kpreempt_enable(); 486 if (p->p_tr_lgrpid != LGRP_NONE && p->p_tr_lgrpid != p->p_t1_lgrpid) { 487 lgrp_update_trthr_migrations(1); 488 } 489 curthread->t_unpark = 0; 490 curthread->t_proc_flag |= TP_TWAIT; 491 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */ 492 p->p_lwpdaemon = 0; /* but oh well ... */ 493 p->p_lwpid = 1; 494 495 /* 496 * Install the newly-allocated lwp directory and lwpid hash table 497 * and insert the current thread into the new hash table. 498 */ 499 if (lwpdir != NULL) { 500 old_lwpdir = p->p_lwpdir; 501 old_lwpdir_sz = p->p_lwpdir_sz; 502 old_tidhash = p->p_tidhash; 503 old_tidhash_sz = p->p_tidhash_sz; 504 p->p_lwpdir = p->p_lwpfree = lwpdir; 505 p->p_lwpdir_sz = 2; 506 lep->le_thread = curthread; 507 lep->le_lwpid = curthread->t_tid; 508 lep->le_start = curthread->t_start; 509 lwp_hash_in(p, lep, tidhash, 2, 0); 510 p->p_tidhash = tidhash; 511 p->p_tidhash_sz = 2; 512 } 513 ret_tidhash = p->p_ret_tidhash; 514 p->p_ret_tidhash = NULL; 515 516 /* 517 * Restore the saved signal mask and 518 * inform /proc that the exec() has finished. 519 */ 520 curthread->t_hold = savedmask; 521 prexecend(); 522 mutex_exit(&p->p_lock); 523 if (old_lwpdir) { 524 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t)); 525 kmem_free(old_tidhash, old_tidhash_sz * sizeof (tidhash_t)); 526 } 527 while (ret_tidhash != NULL) { 528 ret_tidhash_t *next = ret_tidhash->rth_next; 529 kmem_free(ret_tidhash->rth_tidhash, 530 ret_tidhash->rth_tidhash_sz * sizeof (tidhash_t)); 531 kmem_free(ret_tidhash, sizeof (*ret_tidhash)); 532 ret_tidhash = next; 533 } 534 535 ASSERT(error == 0); 536 DTRACE_PROC(exec__success); 537 return (0); 538 539 fail: 540 DTRACE_PROC1(exec__failure, int, error); 541 out: /* error return */ 542 mutex_enter(&p->p_lock); 543 curthread->t_hold = savedmask; 544 prexecend(); 545 mutex_exit(&p->p_lock); 546 ASSERT(error != 0); 547 return (error); 548 } 549 550 551 /* 552 * Perform generic exec duties and switchout to object-file specific 553 * handler. 554 */ 555 int 556 gexec( 557 struct vnode **vpp, 558 struct execa *uap, 559 struct uarg *args, 560 struct intpdata *idatap, 561 int level, 562 long *execsz, 563 caddr_t exec_file, 564 struct cred *cred, 565 int brand_action) 566 { 567 struct vnode *vp, *execvp = NULL; 568 proc_t *pp = ttoproc(curthread); 569 struct execsw *eswp; 570 int error = 0; 571 int suidflags = 0; 572 ssize_t resid; 573 uid_t uid, gid; 574 struct vattr vattr; 575 char magbuf[MAGIC_BYTES]; 576 int setid; 577 cred_t *oldcred, *newcred = NULL; 578 int privflags = 0; 579 int setidfl; 580 priv_set_t fset; 581 582 /* 583 * If the SNOCD or SUGID flag is set, turn it off and remember the 584 * previous setting so we can restore it if we encounter an error. 585 */ 586 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) { 587 mutex_enter(&pp->p_lock); 588 suidflags = pp->p_flag & PSUIDFLAGS; 589 pp->p_flag &= ~PSUIDFLAGS; 590 mutex_exit(&pp->p_lock); 591 } 592 593 if ((error = execpermissions(*vpp, &vattr, args)) != 0) 594 goto bad_noclose; 595 596 /* need to open vnode for stateful file systems */ 597 if ((error = VOP_OPEN(vpp, FREAD, CRED(), NULL)) != 0) 598 goto bad_noclose; 599 vp = *vpp; 600 601 /* 602 * Note: to support binary compatibility with SunOS a.out 603 * executables, we read in the first four bytes, as the 604 * magic number is in bytes 2-3. 605 */ 606 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf), 607 (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 608 goto bad; 609 if (resid != 0) 610 goto bad; 611 612 if ((eswp = findexec_by_hdr(magbuf)) == NULL) 613 goto bad; 614 615 if (level == 0 && 616 (privflags = execsetid(vp, &vattr, &uid, &gid, &fset, 617 args->pfcred == NULL ? cred : args->pfcred, args->pathname)) != 0) { 618 619 /* Pfcred is a credential with a ref count of 1 */ 620 621 if (args->pfcred != NULL) { 622 privflags |= PRIV_INCREASE|PRIV_RESET; 623 newcred = cred = args->pfcred; 624 } else { 625 newcred = cred = crdup(cred); 626 } 627 628 /* If we can, drop the PA bit */ 629 if ((privflags & PRIV_RESET) != 0) 630 priv_adjust_PA(cred); 631 632 if (privflags & PRIV_SETID) { 633 cred->cr_uid = uid; 634 cred->cr_gid = gid; 635 cred->cr_suid = uid; 636 cred->cr_sgid = gid; 637 } 638 639 if (privflags & MAC_FLAGS) { 640 if (!(CR_FLAGS(cred) & NET_MAC_AWARE_INHERIT)) 641 CR_FLAGS(cred) &= ~NET_MAC_AWARE; 642 CR_FLAGS(cred) &= ~NET_MAC_AWARE_INHERIT; 643 } 644 645 /* 646 * Implement the privilege updates: 647 * 648 * Restrict with L: 649 * 650 * I' = I & L 651 * 652 * E' = P' = (I' + F) & A 653 * 654 * But if running under ptrace, we cap I and F with P. 655 */ 656 if ((privflags & (PRIV_RESET|PRIV_FORCED)) != 0) { 657 if ((privflags & PRIV_INCREASE) != 0 && 658 (pp->p_proc_flag & P_PR_PTRACE) != 0) { 659 priv_intersect(&CR_OPPRIV(cred), 660 &CR_IPRIV(cred)); 661 priv_intersect(&CR_OPPRIV(cred), &fset); 662 } 663 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 664 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 665 if (privflags & PRIV_FORCED) { 666 priv_set_PA(cred); 667 priv_union(&fset, &CR_EPRIV(cred)); 668 priv_union(&fset, &CR_PPRIV(cred)); 669 } 670 priv_adjust_PA(cred); 671 } 672 } else if (level == 0 && args->pfcred != NULL) { 673 newcred = cred = args->pfcred; 674 privflags |= PRIV_INCREASE; 675 /* pfcred is not forced to adhere to these settings */ 676 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 677 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 678 priv_adjust_PA(cred); 679 } 680 681 /* SunOS 4.x buy-back */ 682 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) && 683 (vattr.va_mode & (VSUID|VSGID))) { 684 char path[MAXNAMELEN]; 685 refstr_t *mntpt = NULL; 686 int ret = -1; 687 688 bzero(path, sizeof (path)); 689 zone_hold(pp->p_zone); 690 691 ret = vnodetopath(pp->p_zone->zone_rootvp, vp, path, 692 sizeof (path), cred); 693 694 /* fallback to mountpoint if a path can't be found */ 695 if ((ret != 0) || (ret == 0 && path[0] == '\0')) 696 mntpt = vfs_getmntpoint(vp->v_vfsp); 697 698 if (mntpt == NULL) 699 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 700 "!uid %d: setuid execution not allowed, " 701 "file=%s", cred->cr_uid, path); 702 else 703 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 704 "!uid %d: setuid execution not allowed, " 705 "fs=%s, file=%s", cred->cr_uid, 706 ZONE_PATH_TRANSLATE(refstr_value(mntpt), 707 pp->p_zone), exec_file); 708 709 if (!INGLOBALZONE(pp)) { 710 /* zone_rootpath always has trailing / */ 711 if (mntpt == NULL) 712 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 713 "setuid execution not allowed, file=%s%s", 714 pp->p_zone->zone_name, cred->cr_uid, 715 pp->p_zone->zone_rootpath, path + 1); 716 else 717 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 718 "setuid execution not allowed, fs=%s, " 719 "file=%s", pp->p_zone->zone_name, 720 cred->cr_uid, refstr_value(mntpt), 721 exec_file); 722 } 723 724 if (mntpt != NULL) 725 refstr_rele(mntpt); 726 727 zone_rele(pp->p_zone); 728 } 729 730 /* 731 * execsetid() told us whether or not we had to change the 732 * credentials of the process. In privflags, it told us 733 * whether we gained any privileges or executed a set-uid executable. 734 */ 735 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE|PRIV_FORCED)); 736 737 /* 738 * Use /etc/system variable to determine if the stack 739 * should be marked as executable by default. 740 */ 741 if (noexec_user_stack) 742 args->stk_prot &= ~PROT_EXEC; 743 744 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */ 745 args->ex_vp = vp; 746 747 /* 748 * Traditionally, the setid flags told the sub processes whether 749 * the file just executed was set-uid or set-gid; this caused 750 * some confusion as the 'setid' flag did not match the SUGID 751 * process flag which is only set when the uids/gids do not match. 752 * A script set-gid/set-uid to the real uid/gid would start with 753 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH. 754 * Now we flag those cases where the calling process cannot 755 * be trusted to influence the newly exec'ed process, either 756 * because it runs with more privileges or when the uids/gids 757 * do in fact not match. 758 * This also makes the runtime linker agree with the on exec 759 * values of SNOCD and SUGID. 760 */ 761 setidfl = 0; 762 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid && 763 !supgroupmember(cred->cr_gid, cred))) { 764 setidfl |= EXECSETID_UGIDS; 765 } 766 if (setid & PRIV_SETUGID) 767 setidfl |= EXECSETID_SETID; 768 if (setid & PRIV_FORCED) 769 setidfl |= EXECSETID_PRIVS; 770 771 execvp = pp->p_exec; 772 if (execvp) 773 VN_HOLD(execvp); 774 775 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz, 776 setidfl, exec_file, cred, brand_action); 777 rw_exit(eswp->exec_lock); 778 if (error != 0) { 779 if (execvp) 780 VN_RELE(execvp); 781 /* 782 * If this process's p_exec has been set to the vp of 783 * the executable by exec_func, we will return without 784 * calling VOP_CLOSE because proc_exit will close it 785 * on exit. 786 */ 787 if (pp->p_exec == vp) 788 goto bad_noclose; 789 else 790 goto bad; 791 } 792 793 if (level == 0) { 794 uid_t oruid; 795 796 if (execvp != NULL) { 797 /* 798 * Close the previous executable only if we are 799 * at level 0. 800 */ 801 (void) VOP_CLOSE(execvp, FREAD, 1, (offset_t)0, 802 cred, NULL); 803 } 804 805 mutex_enter(&pp->p_crlock); 806 807 oruid = pp->p_cred->cr_ruid; 808 809 if (newcred != NULL) { 810 /* 811 * Free the old credentials, and set the new ones. 812 * Do this for both the process and the (single) thread. 813 */ 814 crfree(pp->p_cred); 815 pp->p_cred = cred; /* cred already held for proc */ 816 crhold(cred); /* hold new cred for thread */ 817 /* 818 * DTrace accesses t_cred in probe context. t_cred 819 * must always be either NULL, or point to a valid, 820 * allocated cred structure. 821 */ 822 oldcred = curthread->t_cred; 823 curthread->t_cred = cred; 824 crfree(oldcred); 825 826 if (priv_basic_test >= 0 && 827 !PRIV_ISASSERT(&CR_IPRIV(newcred), 828 priv_basic_test)) { 829 pid_t pid = pp->p_pid; 830 char *fn = PTOU(pp)->u_comm; 831 832 cmn_err(CE_WARN, "%s[%d]: exec: basic_test " 833 "privilege removed from E/I", fn, pid); 834 } 835 } 836 /* 837 * On emerging from a successful exec(), the saved 838 * uid and gid equal the effective uid and gid. 839 */ 840 cred->cr_suid = cred->cr_uid; 841 cred->cr_sgid = cred->cr_gid; 842 843 /* 844 * If the real and effective ids do not match, this 845 * is a setuid process that should not dump core. 846 * The group comparison is tricky; we prevent the code 847 * from flagging SNOCD when executing with an effective gid 848 * which is a supplementary group. 849 */ 850 if (cred->cr_ruid != cred->cr_uid || 851 (cred->cr_rgid != cred->cr_gid && 852 !supgroupmember(cred->cr_gid, cred)) || 853 (privflags & PRIV_INCREASE) != 0) 854 suidflags = PSUIDFLAGS; 855 else 856 suidflags = 0; 857 858 mutex_exit(&pp->p_crlock); 859 if (newcred != NULL && oruid != newcred->cr_ruid) { 860 /* Note that the process remains in the same zone. */ 861 mutex_enter(&pidlock); 862 upcount_dec(oruid, crgetzoneid(newcred)); 863 upcount_inc(newcred->cr_ruid, crgetzoneid(newcred)); 864 mutex_exit(&pidlock); 865 } 866 if (suidflags) { 867 mutex_enter(&pp->p_lock); 868 pp->p_flag |= suidflags; 869 mutex_exit(&pp->p_lock); 870 } 871 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) { 872 /* 873 * If process is traced via /proc, arrange to 874 * invalidate the associated /proc vnode. 875 */ 876 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE)) 877 args->traceinval = 1; 878 } 879 if (pp->p_proc_flag & P_PR_PTRACE) 880 psignal(pp, SIGTRAP); 881 if (args->traceinval) 882 prinvalidate(&pp->p_user); 883 } 884 if (execvp) 885 VN_RELE(execvp); 886 return (0); 887 888 bad: 889 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, cred, NULL); 890 891 bad_noclose: 892 if (newcred != NULL) 893 crfree(newcred); 894 if (error == 0) 895 error = ENOEXEC; 896 897 if (suidflags) { 898 mutex_enter(&pp->p_lock); 899 pp->p_flag |= suidflags; 900 mutex_exit(&pp->p_lock); 901 } 902 return (error); 903 } 904 905 extern char *execswnames[]; 906 907 struct execsw * 908 allocate_execsw(char *name, char *magic, size_t magic_size) 909 { 910 int i, j; 911 char *ename; 912 char *magicp; 913 914 mutex_enter(&execsw_lock); 915 for (i = 0; i < nexectype; i++) { 916 if (execswnames[i] == NULL) { 917 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP); 918 (void) strcpy(ename, name); 919 execswnames[i] = ename; 920 /* 921 * Set the magic number last so that we 922 * don't need to hold the execsw_lock in 923 * findexectype(). 924 */ 925 magicp = kmem_alloc(magic_size, KM_SLEEP); 926 for (j = 0; j < magic_size; j++) 927 magicp[j] = magic[j]; 928 execsw[i].exec_magic = magicp; 929 mutex_exit(&execsw_lock); 930 return (&execsw[i]); 931 } 932 } 933 mutex_exit(&execsw_lock); 934 return (NULL); 935 } 936 937 /* 938 * Find the exec switch table entry with the corresponding magic string. 939 */ 940 struct execsw * 941 findexecsw(char *magic) 942 { 943 struct execsw *eswp; 944 945 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 946 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 947 if (magic && eswp->exec_maglen != 0 && 948 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) 949 return (eswp); 950 } 951 return (NULL); 952 } 953 954 /* 955 * Find the execsw[] index for the given exec header string by looking for the 956 * magic string at a specified offset and length for each kind of executable 957 * file format until one matches. If no execsw[] entry is found, try to 958 * autoload a module for this magic string. 959 */ 960 struct execsw * 961 findexec_by_hdr(char *header) 962 { 963 struct execsw *eswp; 964 965 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 966 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 967 if (header && eswp->exec_maglen != 0 && 968 bcmp(&header[eswp->exec_magoff], eswp->exec_magic, 969 eswp->exec_maglen) == 0) { 970 if (hold_execsw(eswp) != 0) 971 return (NULL); 972 return (eswp); 973 } 974 } 975 return (NULL); /* couldn't find the type */ 976 } 977 978 /* 979 * Find the execsw[] index for the given magic string. If no execsw[] entry 980 * is found, try to autoload a module for this magic string. 981 */ 982 struct execsw * 983 findexec_by_magic(char *magic) 984 { 985 struct execsw *eswp; 986 987 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 988 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 989 if (magic && eswp->exec_maglen != 0 && 990 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) { 991 if (hold_execsw(eswp) != 0) 992 return (NULL); 993 return (eswp); 994 } 995 } 996 return (NULL); /* couldn't find the type */ 997 } 998 999 static int 1000 hold_execsw(struct execsw *eswp) 1001 { 1002 char *name; 1003 1004 rw_enter(eswp->exec_lock, RW_READER); 1005 while (!LOADED_EXEC(eswp)) { 1006 rw_exit(eswp->exec_lock); 1007 name = execswnames[eswp-execsw]; 1008 ASSERT(name); 1009 if (modload("exec", name) == -1) 1010 return (-1); 1011 rw_enter(eswp->exec_lock, RW_READER); 1012 } 1013 return (0); 1014 } 1015 1016 static int 1017 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp, 1018 priv_set_t *fset, cred_t *cr, const char *pathname) 1019 { 1020 proc_t *pp = ttoproc(curthread); 1021 uid_t uid, gid; 1022 int privflags = 0; 1023 1024 /* 1025 * Remember credentials. 1026 */ 1027 uid = cr->cr_uid; 1028 gid = cr->cr_gid; 1029 1030 /* Will try to reset the PRIV_AWARE bit later. */ 1031 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE) 1032 privflags |= PRIV_RESET; 1033 1034 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) { 1035 /* 1036 * If it's a set-uid root program we perform the 1037 * forced privilege look-aside. This has three possible 1038 * outcomes: 1039 * no look aside information -> treat as before 1040 * look aside in Limit set -> apply forced privs 1041 * look aside not in Limit set -> ignore set-uid root 1042 * 1043 * Ordinary set-uid root execution only allowed if the limit 1044 * set holds all unsafe privileges. 1045 */ 1046 if (vattrp->va_mode & VSUID) { 1047 if (vattrp->va_uid == 0) { 1048 int res = get_forced_privs(cr, pathname, fset); 1049 1050 switch (res) { 1051 case -1: 1052 if (priv_issubset(&priv_unsafe, 1053 &CR_LPRIV(cr))) { 1054 uid = vattrp->va_uid; 1055 privflags |= PRIV_SETUGID; 1056 } 1057 break; 1058 case 0: 1059 privflags |= PRIV_FORCED|PRIV_INCREASE; 1060 break; 1061 default: 1062 break; 1063 } 1064 } else { 1065 uid = vattrp->va_uid; 1066 privflags |= PRIV_SETUGID; 1067 } 1068 } 1069 if (vattrp->va_mode & VSGID) { 1070 gid = vattrp->va_gid; 1071 privflags |= PRIV_SETUGID; 1072 } 1073 } 1074 1075 /* 1076 * Do we need to change our credential anyway? 1077 * This is the case when E != I or P != I, as 1078 * we need to do the assignments (with F empty and A full) 1079 * Or when I is not a subset of L; in that case we need to 1080 * enforce L. 1081 * 1082 * I' = L & I 1083 * 1084 * E' = P' = (I' + F) & A 1085 * or 1086 * E' = P' = I' 1087 */ 1088 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) || 1089 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) || 1090 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr))) 1091 privflags |= PRIV_RESET; 1092 1093 /* Child has more privileges than parent */ 1094 if (!priv_issubset(&CR_IPRIV(cr), &CR_PPRIV(cr))) 1095 privflags |= PRIV_INCREASE; 1096 1097 /* If MAC-aware flag(s) are on, need to update cred to remove. */ 1098 if ((CR_FLAGS(cr) & NET_MAC_AWARE) || 1099 (CR_FLAGS(cr) & NET_MAC_AWARE_INHERIT)) 1100 privflags |= MAC_FLAGS; 1101 /* 1102 * Set setuid/setgid protections if no ptrace() compatibility. 1103 * For privileged processes, honor setuid/setgid even in 1104 * the presence of ptrace() compatibility. 1105 */ 1106 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 || 1107 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) && 1108 (cr->cr_uid != uid || 1109 cr->cr_gid != gid || 1110 cr->cr_suid != uid || 1111 cr->cr_sgid != gid)) { 1112 *uidp = uid; 1113 *gidp = gid; 1114 privflags |= PRIV_SETID; 1115 } 1116 return (privflags); 1117 } 1118 1119 int 1120 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args) 1121 { 1122 int error; 1123 proc_t *p = ttoproc(curthread); 1124 1125 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE; 1126 if (error = VOP_GETATTR(vp, vattrp, ATTR_EXEC, p->p_cred, NULL)) 1127 return (error); 1128 /* 1129 * Check the access mode. 1130 * If VPROC, ask /proc if the file is an object file. 1131 */ 1132 if ((error = VOP_ACCESS(vp, VEXEC, 0, p->p_cred, NULL)) != 0 || 1133 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) || 1134 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 || 1135 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) { 1136 if (error == 0) 1137 error = EACCES; 1138 return (error); 1139 } 1140 1141 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) && 1142 (error = VOP_ACCESS(vp, VREAD, 0, p->p_cred, NULL))) { 1143 /* 1144 * If process is under ptrace(2) compatibility, 1145 * fail the exec(2). 1146 */ 1147 if (p->p_proc_flag & P_PR_PTRACE) 1148 goto bad; 1149 /* 1150 * Process is traced via /proc. 1151 * Arrange to invalidate the /proc vnode. 1152 */ 1153 args->traceinval = 1; 1154 } 1155 return (0); 1156 bad: 1157 if (error == 0) 1158 error = ENOEXEC; 1159 return (error); 1160 } 1161 1162 /* 1163 * Map a section of an executable file into the user's 1164 * address space. 1165 */ 1166 int 1167 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 1168 off_t offset, int prot, int page, uint_t szc) 1169 { 1170 int error = 0; 1171 off_t oldoffset; 1172 caddr_t zfodbase, oldaddr; 1173 size_t end, oldlen; 1174 size_t zfoddiff; 1175 label_t ljb; 1176 proc_t *p = ttoproc(curthread); 1177 1178 oldaddr = addr; 1179 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1180 if (len) { 1181 oldlen = len; 1182 len += ((size_t)oldaddr - (size_t)addr); 1183 oldoffset = offset; 1184 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1185 if (page) { 1186 spgcnt_t prefltmem, availm, npages; 1187 int preread; 1188 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1189 1190 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1191 mflag |= MAP_TEXT; 1192 } else { 1193 mflag |= MAP_INITDATA; 1194 } 1195 1196 if (valid_usr_range(addr, len, prot, p->p_as, 1197 p->p_as->a_userlimit) != RANGE_OKAY) { 1198 error = ENOMEM; 1199 goto bad; 1200 } 1201 if (error = VOP_MAP(vp, (offset_t)offset, 1202 p->p_as, &addr, len, prot, PROT_ALL, 1203 mflag, CRED(), NULL)) 1204 goto bad; 1205 1206 /* 1207 * If the segment can fit, then we prefault 1208 * the entire segment in. This is based on the 1209 * model that says the best working set of a 1210 * small program is all of its pages. 1211 */ 1212 npages = (spgcnt_t)btopr(len); 1213 prefltmem = freemem - desfree; 1214 preread = 1215 (npages < prefltmem && len < PGTHRESH) ? 1 : 0; 1216 1217 /* 1218 * If we aren't prefaulting the segment, 1219 * increment "deficit", if necessary to ensure 1220 * that pages will become available when this 1221 * process starts executing. 1222 */ 1223 availm = freemem - lotsfree; 1224 if (preread == 0 && npages > availm && 1225 deficit < lotsfree) { 1226 deficit += MIN((pgcnt_t)(npages - availm), 1227 lotsfree - deficit); 1228 } 1229 1230 if (preread) { 1231 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD, 1232 "execmap preread:freemem %d size %lu", 1233 freemem, len); 1234 (void) as_fault(p->p_as->a_hat, p->p_as, 1235 (caddr_t)addr, len, F_INVAL, S_READ); 1236 } 1237 } else { 1238 if (valid_usr_range(addr, len, prot, p->p_as, 1239 p->p_as->a_userlimit) != RANGE_OKAY) { 1240 error = ENOMEM; 1241 goto bad; 1242 } 1243 1244 if (error = as_map(p->p_as, addr, len, 1245 segvn_create, zfod_argsp)) 1246 goto bad; 1247 /* 1248 * Read in the segment in one big chunk. 1249 */ 1250 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr, 1251 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0, 1252 (rlim64_t)0, CRED(), (ssize_t *)0)) 1253 goto bad; 1254 /* 1255 * Now set protections. 1256 */ 1257 if (prot != PROT_ZFOD) { 1258 (void) as_setprot(p->p_as, (caddr_t)addr, 1259 len, prot); 1260 } 1261 } 1262 } 1263 1264 if (zfodlen) { 1265 struct as *as = curproc->p_as; 1266 struct seg *seg; 1267 uint_t zprot = 0; 1268 1269 end = (size_t)addr + len; 1270 zfodbase = (caddr_t)roundup(end, PAGESIZE); 1271 zfoddiff = (uintptr_t)zfodbase - end; 1272 if (zfoddiff) { 1273 /* 1274 * Before we go to zero the remaining space on the last 1275 * page, make sure we have write permission. 1276 * 1277 * Normal illumos binaries don't even hit the case 1278 * where we have to change permission on the last page 1279 * since their protection is typically either 1280 * PROT_USER | PROT_WRITE | PROT_READ 1281 * or 1282 * PROT_ZFOD (same as PROT_ALL). 1283 * 1284 * We need to be careful how we zero-fill the last page 1285 * if the segment protection does not include 1286 * PROT_WRITE. Using as_setprot() can cause the VM 1287 * segment code to call segvn_vpage(), which must 1288 * allocate a page struct for each page in the segment. 1289 * If we have a very large segment, this may fail, so 1290 * we have to check for that, even though we ignore 1291 * other return values from as_setprot. 1292 */ 1293 1294 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1295 seg = as_segat(curproc->p_as, (caddr_t)end); 1296 if (seg != NULL) 1297 SEGOP_GETPROT(seg, (caddr_t)end, zfoddiff - 1, 1298 &zprot); 1299 AS_LOCK_EXIT(as, &as->a_lock); 1300 1301 if (seg != NULL && (zprot & PROT_WRITE) == 0) { 1302 if (as_setprot(as, (caddr_t)end, zfoddiff - 1, 1303 zprot | PROT_WRITE) == ENOMEM) { 1304 error = ENOMEM; 1305 goto bad; 1306 } 1307 } 1308 1309 if (on_fault(&ljb)) { 1310 no_fault(); 1311 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1312 (void) as_setprot(as, (caddr_t)end, 1313 zfoddiff - 1, zprot); 1314 error = EFAULT; 1315 goto bad; 1316 } 1317 uzero((void *)end, zfoddiff); 1318 no_fault(); 1319 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1320 (void) as_setprot(as, (caddr_t)end, 1321 zfoddiff - 1, zprot); 1322 } 1323 if (zfodlen > zfoddiff) { 1324 struct segvn_crargs crargs = 1325 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1326 1327 zfodlen -= zfoddiff; 1328 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as, 1329 p->p_as->a_userlimit) != RANGE_OKAY) { 1330 error = ENOMEM; 1331 goto bad; 1332 } 1333 if (szc > 0) { 1334 /* 1335 * ASSERT alignment because the mapelfexec() 1336 * caller for the szc > 0 case extended zfod 1337 * so it's end is pgsz aligned. 1338 */ 1339 size_t pgsz = page_get_pagesize(szc); 1340 ASSERT(IS_P2ALIGNED(zfodbase + zfodlen, pgsz)); 1341 1342 if (IS_P2ALIGNED(zfodbase, pgsz)) { 1343 crargs.szc = szc; 1344 } else { 1345 crargs.szc = AS_MAP_HEAP; 1346 } 1347 } else { 1348 crargs.szc = AS_MAP_NO_LPOOB; 1349 } 1350 if (error = as_map(p->p_as, (caddr_t)zfodbase, 1351 zfodlen, segvn_create, &crargs)) 1352 goto bad; 1353 if (prot != PROT_ZFOD) { 1354 (void) as_setprot(p->p_as, (caddr_t)zfodbase, 1355 zfodlen, prot); 1356 } 1357 } 1358 } 1359 return (0); 1360 bad: 1361 return (error); 1362 } 1363 1364 void 1365 setexecenv(struct execenv *ep) 1366 { 1367 proc_t *p = ttoproc(curthread); 1368 klwp_t *lwp = ttolwp(curthread); 1369 struct vnode *vp; 1370 1371 p->p_bssbase = ep->ex_bssbase; 1372 p->p_brkbase = ep->ex_brkbase; 1373 p->p_brksize = ep->ex_brksize; 1374 if (p->p_exec) 1375 VN_RELE(p->p_exec); /* out with the old */ 1376 vp = p->p_exec = ep->ex_vp; 1377 if (vp != NULL) 1378 VN_HOLD(vp); /* in with the new */ 1379 1380 lwp->lwp_sigaltstack.ss_sp = 0; 1381 lwp->lwp_sigaltstack.ss_size = 0; 1382 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 1383 } 1384 1385 int 1386 execopen(struct vnode **vpp, int *fdp) 1387 { 1388 struct vnode *vp = *vpp; 1389 file_t *fp; 1390 int error = 0; 1391 int filemode = FREAD; 1392 1393 VN_HOLD(vp); /* open reference */ 1394 if (error = falloc(NULL, filemode, &fp, fdp)) { 1395 VN_RELE(vp); 1396 *fdp = -1; /* just in case falloc changed value */ 1397 return (error); 1398 } 1399 if (error = VOP_OPEN(&vp, filemode, CRED(), NULL)) { 1400 VN_RELE(vp); 1401 setf(*fdp, NULL); 1402 unfalloc(fp); 1403 *fdp = -1; 1404 return (error); 1405 } 1406 *vpp = vp; /* vnode should not have changed */ 1407 fp->f_vnode = vp; 1408 mutex_exit(&fp->f_tlock); 1409 setf(*fdp, fp); 1410 return (0); 1411 } 1412 1413 int 1414 execclose(int fd) 1415 { 1416 return (closeandsetf(fd, NULL)); 1417 } 1418 1419 1420 /* 1421 * noexec stub function. 1422 */ 1423 /*ARGSUSED*/ 1424 int 1425 noexec( 1426 struct vnode *vp, 1427 struct execa *uap, 1428 struct uarg *args, 1429 struct intpdata *idatap, 1430 int level, 1431 long *execsz, 1432 int setid, 1433 caddr_t exec_file, 1434 struct cred *cred) 1435 { 1436 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname); 1437 return (ENOEXEC); 1438 } 1439 1440 /* 1441 * Support routines for building a user stack. 1442 * 1443 * execve(path, argv, envp) must construct a new stack with the specified 1444 * arguments and environment variables (see exec_args() for a description 1445 * of the user stack layout). To do this, we copy the arguments and 1446 * environment variables from the old user address space into the kernel, 1447 * free the old as, create the new as, and copy our buffered information 1448 * to the new stack. Our kernel buffer has the following structure: 1449 * 1450 * +-----------------------+ <--- stk_base + stk_size 1451 * | string offsets | 1452 * +-----------------------+ <--- stk_offp 1453 * | | 1454 * | STK_AVAIL() space | 1455 * | | 1456 * +-----------------------+ <--- stk_strp 1457 * | strings | 1458 * +-----------------------+ <--- stk_base 1459 * 1460 * When we add a string, we store the string's contents (including the null 1461 * terminator) at stk_strp, and we store the offset of the string relative to 1462 * stk_base at --stk_offp. At strings are added, stk_strp increases and 1463 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just 1464 * the difference between these pointers. If we run out of space, we return 1465 * an error and exec_args() starts all over again with a buffer twice as large. 1466 * When we're all done, the kernel buffer looks like this: 1467 * 1468 * +-----------------------+ <--- stk_base + stk_size 1469 * | argv[0] offset | 1470 * +-----------------------+ 1471 * | ... | 1472 * +-----------------------+ 1473 * | argv[argc-1] offset | 1474 * +-----------------------+ 1475 * | envp[0] offset | 1476 * +-----------------------+ 1477 * | ... | 1478 * +-----------------------+ 1479 * | envp[envc-1] offset | 1480 * +-----------------------+ 1481 * | AT_SUN_PLATFORM offset| 1482 * +-----------------------+ 1483 * | AT_SUN_EXECNAME offset| 1484 * +-----------------------+ <--- stk_offp 1485 * | | 1486 * | STK_AVAIL() space | 1487 * | | 1488 * +-----------------------+ <--- stk_strp 1489 * | AT_SUN_EXECNAME offset| 1490 * +-----------------------+ 1491 * | AT_SUN_PLATFORM offset| 1492 * +-----------------------+ 1493 * | envp[envc-1] string | 1494 * +-----------------------+ 1495 * | ... | 1496 * +-----------------------+ 1497 * | envp[0] string | 1498 * +-----------------------+ 1499 * | argv[argc-1] string | 1500 * +-----------------------+ 1501 * | ... | 1502 * +-----------------------+ 1503 * | argv[0] string | 1504 * +-----------------------+ <--- stk_base 1505 */ 1506 1507 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp) 1508 1509 /* 1510 * Add a string to the stack. 1511 */ 1512 static int 1513 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg) 1514 { 1515 int error; 1516 size_t len; 1517 1518 if (STK_AVAIL(args) < sizeof (int)) 1519 return (E2BIG); 1520 *--args->stk_offp = args->stk_strp - args->stk_base; 1521 1522 if (segflg == UIO_USERSPACE) { 1523 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len); 1524 if (error != 0) 1525 return (error); 1526 } else { 1527 len = strlen(sp) + 1; 1528 if (len > STK_AVAIL(args)) 1529 return (E2BIG); 1530 bcopy(sp, args->stk_strp, len); 1531 } 1532 1533 args->stk_strp += len; 1534 1535 return (0); 1536 } 1537 1538 static int 1539 stk_getptr(uarg_t *args, char *src, char **dst) 1540 { 1541 int error; 1542 1543 if (args->from_model == DATAMODEL_NATIVE) { 1544 ulong_t ptr; 1545 error = fulword(src, &ptr); 1546 *dst = (caddr_t)ptr; 1547 } else { 1548 uint32_t ptr; 1549 error = fuword32(src, &ptr); 1550 *dst = (caddr_t)(uintptr_t)ptr; 1551 } 1552 return (error); 1553 } 1554 1555 static int 1556 stk_putptr(uarg_t *args, char *addr, char *value) 1557 { 1558 if (args->to_model == DATAMODEL_NATIVE) 1559 return (sulword(addr, (ulong_t)value)); 1560 else 1561 return (suword32(addr, (uint32_t)(uintptr_t)value)); 1562 } 1563 1564 static int 1565 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1566 { 1567 char *sp; 1568 int argc, error; 1569 int argv_empty = 0; 1570 size_t ptrsize = args->from_ptrsize; 1571 size_t size, pad; 1572 char *argv = (char *)uap->argp; 1573 char *envp = (char *)uap->envp; 1574 1575 /* 1576 * Copy interpreter's name and argument to argv[0] and argv[1]. 1577 */ 1578 if (intp != NULL && intp->intp_name != NULL) { 1579 if ((error = stk_add(args, intp->intp_name, UIO_SYSSPACE)) != 0) 1580 return (error); 1581 if (intp->intp_arg != NULL && 1582 (error = stk_add(args, intp->intp_arg, UIO_SYSSPACE)) != 0) 1583 return (error); 1584 if (args->fname != NULL) 1585 error = stk_add(args, args->fname, UIO_SYSSPACE); 1586 else 1587 error = stk_add(args, uap->fname, UIO_USERSPACE); 1588 if (error) 1589 return (error); 1590 1591 /* 1592 * Check for an empty argv[]. 1593 */ 1594 if (stk_getptr(args, argv, &sp)) 1595 return (EFAULT); 1596 if (sp == NULL) 1597 argv_empty = 1; 1598 1599 argv += ptrsize; /* ignore original argv[0] */ 1600 } 1601 1602 if (argv_empty == 0) { 1603 /* 1604 * Add argv[] strings to the stack. 1605 */ 1606 for (;;) { 1607 if (stk_getptr(args, argv, &sp)) 1608 return (EFAULT); 1609 if (sp == NULL) 1610 break; 1611 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1612 return (error); 1613 argv += ptrsize; 1614 } 1615 } 1616 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1617 args->arglen = args->stk_strp - args->stk_base; 1618 1619 /* 1620 * Add environ[] strings to the stack. 1621 */ 1622 if (envp != NULL) { 1623 for (;;) { 1624 char *tmp = args->stk_strp; 1625 if (stk_getptr(args, envp, &sp)) 1626 return (EFAULT); 1627 if (sp == NULL) 1628 break; 1629 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1630 return (error); 1631 if (args->scrubenv && strncmp(tmp, "LD_", 3) == 0) { 1632 /* Undo the copied string */ 1633 args->stk_strp = tmp; 1634 *(args->stk_offp++) = NULL; 1635 } 1636 envp += ptrsize; 1637 } 1638 } 1639 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1640 args->ne = args->na - argc; 1641 1642 /* 1643 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and 1644 * AT_SUN_EMULATOR strings to the stack. 1645 */ 1646 if (auxvpp != NULL && *auxvpp != NULL) { 1647 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0) 1648 return (error); 1649 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0) 1650 return (error); 1651 if (args->brandname != NULL && 1652 (error = stk_add(args, args->brandname, UIO_SYSSPACE)) != 0) 1653 return (error); 1654 if (args->emulator != NULL && 1655 (error = stk_add(args, args->emulator, UIO_SYSSPACE)) != 0) 1656 return (error); 1657 } 1658 1659 /* 1660 * Compute the size of the stack. This includes all the pointers, 1661 * the space reserved for the aux vector, and all the strings. 1662 * The total number of pointers is args->na (which is argc + envc) 1663 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL 1664 * after the last argument (i.e. argv[argc]); (3) the NULL after the 1665 * last environment variable (i.e. envp[envc]); and (4) the NULL after 1666 * all the strings, at the very top of the stack. 1667 */ 1668 size = (args->na + 4) * args->to_ptrsize + args->auxsize + 1669 (args->stk_strp - args->stk_base); 1670 1671 /* 1672 * Pad the string section with zeroes to align the stack size. 1673 */ 1674 pad = P2NPHASE(size, args->stk_align); 1675 1676 if (STK_AVAIL(args) < pad) 1677 return (E2BIG); 1678 1679 args->usrstack_size = size + pad; 1680 1681 while (pad-- != 0) 1682 *args->stk_strp++ = 0; 1683 1684 args->nc = args->stk_strp - args->stk_base; 1685 1686 return (0); 1687 } 1688 1689 static int 1690 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up) 1691 { 1692 size_t ptrsize = args->to_ptrsize; 1693 ssize_t pslen; 1694 char *kstrp = args->stk_base; 1695 char *ustrp = usrstack - args->nc - ptrsize; 1696 char *usp = usrstack - args->usrstack_size; 1697 int *offp = (int *)(args->stk_base + args->stk_size); 1698 int envc = args->ne; 1699 int argc = args->na - envc; 1700 int i; 1701 1702 /* 1703 * Record argc for /proc. 1704 */ 1705 up->u_argc = argc; 1706 1707 /* 1708 * Put argc on the stack. Note that even though it's an int, 1709 * it always consumes ptrsize bytes (for alignment). 1710 */ 1711 if (stk_putptr(args, usp, (char *)(uintptr_t)argc)) 1712 return (-1); 1713 1714 /* 1715 * Add argc space (ptrsize) to usp and record argv for /proc. 1716 */ 1717 up->u_argv = (uintptr_t)(usp += ptrsize); 1718 1719 /* 1720 * Put the argv[] pointers on the stack. 1721 */ 1722 for (i = 0; i < argc; i++, usp += ptrsize) 1723 if (stk_putptr(args, usp, &ustrp[*--offp])) 1724 return (-1); 1725 1726 /* 1727 * Copy arguments to u_psargs. 1728 */ 1729 pslen = MIN(args->arglen, PSARGSZ) - 1; 1730 for (i = 0; i < pslen; i++) 1731 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]); 1732 while (i < PSARGSZ) 1733 up->u_psargs[i++] = '\0'; 1734 1735 /* 1736 * Add space for argv[]'s NULL terminator (ptrsize) to usp and 1737 * record envp for /proc. 1738 */ 1739 up->u_envp = (uintptr_t)(usp += ptrsize); 1740 1741 /* 1742 * Put the envp[] pointers on the stack. 1743 */ 1744 for (i = 0; i < envc; i++, usp += ptrsize) 1745 if (stk_putptr(args, usp, &ustrp[*--offp])) 1746 return (-1); 1747 1748 /* 1749 * Add space for envp[]'s NULL terminator (ptrsize) to usp and 1750 * remember where the stack ends, which is also where auxv begins. 1751 */ 1752 args->stackend = usp += ptrsize; 1753 1754 /* 1755 * Put all the argv[], envp[], and auxv strings on the stack. 1756 */ 1757 if (copyout(args->stk_base, ustrp, args->nc)) 1758 return (-1); 1759 1760 /* 1761 * Fill in the aux vector now that we know the user stack addresses 1762 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and 1763 * AT_SUN_EMULATOR strings. 1764 */ 1765 if (auxvpp != NULL && *auxvpp != NULL) { 1766 if (args->to_model == DATAMODEL_NATIVE) { 1767 auxv_t **a = (auxv_t **)auxvpp; 1768 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp]) 1769 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp]) 1770 if (args->brandname != NULL) 1771 ADDAUX(*a, 1772 AT_SUN_BRANDNAME, (long)&ustrp[*--offp]) 1773 if (args->emulator != NULL) 1774 ADDAUX(*a, 1775 AT_SUN_EMULATOR, (long)&ustrp[*--offp]) 1776 } else { 1777 auxv32_t **a = (auxv32_t **)auxvpp; 1778 ADDAUX(*a, 1779 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp]) 1780 ADDAUX(*a, 1781 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp]) 1782 if (args->brandname != NULL) 1783 ADDAUX(*a, AT_SUN_BRANDNAME, 1784 (int)(uintptr_t)&ustrp[*--offp]) 1785 if (args->emulator != NULL) 1786 ADDAUX(*a, AT_SUN_EMULATOR, 1787 (int)(uintptr_t)&ustrp[*--offp]) 1788 } 1789 } 1790 1791 return (0); 1792 } 1793 1794 /* 1795 * Initialize a new user stack with the specified arguments and environment. 1796 * The initial user stack layout is as follows: 1797 * 1798 * User Stack 1799 * +---------------+ <--- curproc->p_usrstack 1800 * | | 1801 * | slew | 1802 * | | 1803 * +---------------+ 1804 * | NULL | 1805 * +---------------+ 1806 * | | 1807 * | auxv strings | 1808 * | | 1809 * +---------------+ 1810 * | | 1811 * | envp strings | 1812 * | | 1813 * +---------------+ 1814 * | | 1815 * | argv strings | 1816 * | | 1817 * +---------------+ <--- ustrp 1818 * | | 1819 * | aux vector | 1820 * | | 1821 * +---------------+ <--- auxv 1822 * | NULL | 1823 * +---------------+ 1824 * | envp[envc-1] | 1825 * +---------------+ 1826 * | ... | 1827 * +---------------+ 1828 * | envp[0] | 1829 * +---------------+ <--- envp[] 1830 * | NULL | 1831 * +---------------+ 1832 * | argv[argc-1] | 1833 * +---------------+ 1834 * | ... | 1835 * +---------------+ 1836 * | argv[0] | 1837 * +---------------+ <--- argv[] 1838 * | argc | 1839 * +---------------+ <--- stack base 1840 */ 1841 int 1842 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1843 { 1844 size_t size; 1845 int error; 1846 proc_t *p = ttoproc(curthread); 1847 user_t *up = PTOU(p); 1848 char *usrstack; 1849 rctl_entity_p_t e; 1850 struct as *as; 1851 extern int use_stk_lpg; 1852 size_t sp_slew; 1853 1854 args->from_model = p->p_model; 1855 if (p->p_model == DATAMODEL_NATIVE) { 1856 args->from_ptrsize = sizeof (long); 1857 } else { 1858 args->from_ptrsize = sizeof (int32_t); 1859 } 1860 1861 if (args->to_model == DATAMODEL_NATIVE) { 1862 args->to_ptrsize = sizeof (long); 1863 args->ncargs = NCARGS; 1864 args->stk_align = STACK_ALIGN; 1865 if (args->addr32) 1866 usrstack = (char *)USRSTACK64_32; 1867 else 1868 usrstack = (char *)USRSTACK; 1869 } else { 1870 args->to_ptrsize = sizeof (int32_t); 1871 args->ncargs = NCARGS32; 1872 args->stk_align = STACK_ALIGN32; 1873 usrstack = (char *)USRSTACK32; 1874 } 1875 1876 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0); 1877 1878 #if defined(__sparc) 1879 /* 1880 * Make sure user register windows are empty before 1881 * attempting to make a new stack. 1882 */ 1883 (void) flush_user_windows_to_stack(NULL); 1884 #endif 1885 1886 for (size = PAGESIZE; ; size *= 2) { 1887 args->stk_size = size; 1888 args->stk_base = kmem_alloc(size, KM_SLEEP); 1889 args->stk_strp = args->stk_base; 1890 args->stk_offp = (int *)(args->stk_base + size); 1891 error = stk_copyin(uap, args, intp, auxvpp); 1892 if (error == 0) 1893 break; 1894 kmem_free(args->stk_base, size); 1895 if (error != E2BIG && error != ENAMETOOLONG) 1896 return (error); 1897 if (size >= args->ncargs) 1898 return (E2BIG); 1899 } 1900 1901 size = args->usrstack_size; 1902 1903 ASSERT(error == 0); 1904 ASSERT(P2PHASE(size, args->stk_align) == 0); 1905 ASSERT((ssize_t)STK_AVAIL(args) >= 0); 1906 1907 if (size > args->ncargs) { 1908 kmem_free(args->stk_base, args->stk_size); 1909 return (E2BIG); 1910 } 1911 1912 /* 1913 * Leave only the current lwp and force the other lwps to exit. 1914 * If another lwp beat us to the punch by calling exit(), bail out. 1915 */ 1916 if ((error = exitlwps(0)) != 0) { 1917 kmem_free(args->stk_base, args->stk_size); 1918 return (error); 1919 } 1920 1921 /* 1922 * Revoke any doors created by the process. 1923 */ 1924 if (p->p_door_list) 1925 door_exit(); 1926 1927 /* 1928 * Release schedctl data structures. 1929 */ 1930 if (p->p_pagep) 1931 schedctl_proc_cleanup(); 1932 1933 /* 1934 * Clean up any DTrace helpers for the process. 1935 */ 1936 if (p->p_dtrace_helpers != NULL) { 1937 ASSERT(dtrace_helpers_cleanup != NULL); 1938 (*dtrace_helpers_cleanup)(); 1939 } 1940 1941 mutex_enter(&p->p_lock); 1942 /* 1943 * Cleanup the DTrace provider associated with this process. 1944 */ 1945 if (p->p_dtrace_probes) { 1946 ASSERT(dtrace_fasttrap_exec_ptr != NULL); 1947 dtrace_fasttrap_exec_ptr(p); 1948 } 1949 mutex_exit(&p->p_lock); 1950 1951 /* 1952 * discard the lwpchan cache. 1953 */ 1954 if (p->p_lcp != NULL) 1955 lwpchan_destroy_cache(1); 1956 1957 /* 1958 * Delete the POSIX timers. 1959 */ 1960 if (p->p_itimer != NULL) 1961 timer_exit(); 1962 1963 /* 1964 * Delete the ITIMER_REALPROF interval timer. 1965 * The other ITIMER_* interval timers are specified 1966 * to be inherited across exec(). 1967 */ 1968 delete_itimer_realprof(); 1969 1970 if (AU_AUDITING()) 1971 audit_exec(args->stk_base, args->stk_base + args->arglen, 1972 args->na - args->ne, args->ne, args->pfcred); 1973 1974 /* 1975 * Ensure that we don't change resource associations while we 1976 * change address spaces. 1977 */ 1978 mutex_enter(&p->p_lock); 1979 pool_barrier_enter(); 1980 mutex_exit(&p->p_lock); 1981 1982 /* 1983 * Destroy the old address space and create a new one. 1984 * From here on, any errors are fatal to the exec()ing process. 1985 * On error we return -1, which means the caller must SIGKILL 1986 * the process. 1987 */ 1988 relvm(); 1989 1990 mutex_enter(&p->p_lock); 1991 pool_barrier_exit(); 1992 mutex_exit(&p->p_lock); 1993 1994 up->u_execsw = args->execswp; 1995 1996 p->p_brkbase = NULL; 1997 p->p_brksize = 0; 1998 p->p_brkpageszc = 0; 1999 p->p_stksize = 0; 2000 p->p_stkpageszc = 0; 2001 p->p_model = args->to_model; 2002 p->p_usrstack = usrstack; 2003 p->p_stkprot = args->stk_prot; 2004 p->p_datprot = args->dat_prot; 2005 2006 /* 2007 * Reset resource controls such that all controls are again active as 2008 * well as appropriate to the potentially new address model for the 2009 * process. 2010 */ 2011 e.rcep_p.proc = p; 2012 e.rcep_t = RCENTITY_PROCESS; 2013 rctl_set_reset(p->p_rctls, p, &e); 2014 2015 /* Too early to call map_pgsz for the heap */ 2016 if (use_stk_lpg) { 2017 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, p, 0, 0, 0)); 2018 } 2019 2020 mutex_enter(&p->p_lock); 2021 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */ 2022 mutex_exit(&p->p_lock); 2023 2024 /* 2025 * Some platforms may choose to randomize real stack start by adding a 2026 * small slew (not more than a few hundred bytes) to the top of the 2027 * stack. This helps avoid cache thrashing when identical processes 2028 * simultaneously share caches that don't provide enough associativity 2029 * (e.g. sun4v systems). In this case stack slewing makes the same hot 2030 * stack variables in different processes to live in different cache 2031 * sets increasing effective associativity. 2032 */ 2033 sp_slew = exec_get_spslew(); 2034 ASSERT(P2PHASE(sp_slew, args->stk_align) == 0); 2035 exec_set_sp(size + sp_slew); 2036 2037 as = as_alloc(); 2038 p->p_as = as; 2039 as->a_proc = p; 2040 if (p->p_model == DATAMODEL_ILP32 || args->addr32) 2041 as->a_userlimit = (caddr_t)USERLIMIT32; 2042 (void) hat_setup(as->a_hat, HAT_ALLOC); 2043 hat_join_srd(as->a_hat, args->ex_vp); 2044 2045 /* 2046 * Finally, write out the contents of the new stack. 2047 */ 2048 error = stk_copyout(args, usrstack - sp_slew, auxvpp, up); 2049 kmem_free(args->stk_base, args->stk_size); 2050 return (error); 2051 }