1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
  28  * Copyright 2013, Nexenta Systems, Inc. All rights reserved.
  29  */
  30 
  31 #include "igb_sw.h"
  32 
  33 static char ident[] = "Intel 1Gb Ethernet";
  34 static char igb_version[] = "igb 2.3.8-ish";
  35 
  36 /*
  37  * Local function protoypes
  38  */
  39 static int igb_register_mac(igb_t *);
  40 static int igb_identify_hardware(igb_t *);
  41 static int igb_regs_map(igb_t *);
  42 static void igb_init_properties(igb_t *);
  43 static int igb_init_driver_settings(igb_t *);
  44 static void igb_init_locks(igb_t *);
  45 static void igb_destroy_locks(igb_t *);
  46 static int igb_init_mac_address(igb_t *);
  47 static int igb_init(igb_t *);
  48 static int igb_init_adapter(igb_t *);
  49 static void igb_stop_adapter(igb_t *);
  50 static int igb_reset(igb_t *);
  51 static void igb_tx_clean(igb_t *);
  52 static boolean_t igb_tx_drain(igb_t *);
  53 static boolean_t igb_rx_drain(igb_t *);
  54 static int igb_alloc_rings(igb_t *);
  55 static int igb_alloc_rx_data(igb_t *);
  56 static void igb_free_rx_data(igb_t *);
  57 static void igb_free_rings(igb_t *);
  58 static void igb_setup_rings(igb_t *);
  59 static void igb_setup_rx(igb_t *);
  60 static void igb_setup_tx(igb_t *);
  61 static void igb_setup_rx_ring(igb_rx_ring_t *);
  62 static void igb_setup_tx_ring(igb_tx_ring_t *);
  63 static void igb_setup_rss(igb_t *);
  64 static void igb_setup_mac_rss_classify(igb_t *);
  65 static void igb_setup_mac_classify(igb_t *);
  66 static void igb_init_unicst(igb_t *);
  67 static void igb_setup_multicst(igb_t *);
  68 static void igb_get_phy_state(igb_t *);
  69 static void igb_param_sync(igb_t *);
  70 static void igb_get_conf(igb_t *);
  71 static int igb_get_prop(igb_t *, char *, int, int, int);
  72 static boolean_t igb_is_link_up(igb_t *);
  73 static boolean_t igb_link_check(igb_t *);
  74 static void igb_local_timer(void *);
  75 static void igb_link_timer(void *);
  76 static void igb_arm_watchdog_timer(igb_t *);
  77 static void igb_start_watchdog_timer(igb_t *);
  78 static void igb_restart_watchdog_timer(igb_t *);
  79 static void igb_stop_watchdog_timer(igb_t *);
  80 static void igb_start_link_timer(igb_t *);
  81 static void igb_stop_link_timer(igb_t *);
  82 static void igb_disable_adapter_interrupts(igb_t *);
  83 static void igb_enable_adapter_interrupts_82575(igb_t *);
  84 static void igb_enable_adapter_interrupts_82576(igb_t *);
  85 static void igb_enable_adapter_interrupts_82580(igb_t *);
  86 static boolean_t is_valid_mac_addr(uint8_t *);
  87 static boolean_t igb_stall_check(igb_t *);
  88 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
  89 static void igb_set_external_loopback(igb_t *);
  90 static void igb_set_internal_phy_loopback(igb_t *);
  91 static void igb_set_internal_serdes_loopback(igb_t *);
  92 static boolean_t igb_find_mac_address(igb_t *);
  93 static int igb_alloc_intrs(igb_t *);
  94 static int igb_alloc_intr_handles(igb_t *, int);
  95 static int igb_add_intr_handlers(igb_t *);
  96 static void igb_rem_intr_handlers(igb_t *);
  97 static void igb_rem_intrs(igb_t *);
  98 static int igb_enable_intrs(igb_t *);
  99 static int igb_disable_intrs(igb_t *);
 100 static void igb_setup_msix_82575(igb_t *);
 101 static void igb_setup_msix_82576(igb_t *);
 102 static void igb_setup_msix_82580(igb_t *);
 103 static uint_t igb_intr_legacy(void *, void *);
 104 static uint_t igb_intr_msi(void *, void *);
 105 static uint_t igb_intr_rx(void *, void *);
 106 static uint_t igb_intr_tx(void *, void *);
 107 static uint_t igb_intr_tx_other(void *, void *);
 108 static void igb_intr_rx_work(igb_rx_ring_t *);
 109 static void igb_intr_tx_work(igb_tx_ring_t *);
 110 static void igb_intr_link_work(igb_t *);
 111 static void igb_get_driver_control(struct e1000_hw *);
 112 static void igb_release_driver_control(struct e1000_hw *);
 113 
 114 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
 115 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
 116 static int igb_resume(dev_info_t *);
 117 static int igb_suspend(dev_info_t *);
 118 static int igb_quiesce(dev_info_t *);
 119 static void igb_unconfigure(dev_info_t *, igb_t *);
 120 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
 121     const void *);
 122 static void igb_fm_init(igb_t *);
 123 static void igb_fm_fini(igb_t *);
 124 static void igb_release_multicast(igb_t *);
 125 
 126 char *igb_priv_props[] = {
 127         "_eee_support",
 128         "_tx_copy_thresh",
 129         "_tx_recycle_thresh",
 130         "_tx_overload_thresh",
 131         "_tx_resched_thresh",
 132         "_rx_copy_thresh",
 133         "_rx_limit_per_intr",
 134         "_intr_throttling",
 135         "_adv_pause_cap",
 136         "_adv_asym_pause_cap",
 137         NULL
 138 };
 139 
 140 static struct cb_ops igb_cb_ops = {
 141         nulldev,                /* cb_open */
 142         nulldev,                /* cb_close */
 143         nodev,                  /* cb_strategy */
 144         nodev,                  /* cb_print */
 145         nodev,                  /* cb_dump */
 146         nodev,                  /* cb_read */
 147         nodev,                  /* cb_write */
 148         nodev,                  /* cb_ioctl */
 149         nodev,                  /* cb_devmap */
 150         nodev,                  /* cb_mmap */
 151         nodev,                  /* cb_segmap */
 152         nochpoll,               /* cb_chpoll */
 153         ddi_prop_op,            /* cb_prop_op */
 154         NULL,                   /* cb_stream */
 155         D_MP | D_HOTPLUG,       /* cb_flag */
 156         CB_REV,                 /* cb_rev */
 157         nodev,                  /* cb_aread */
 158         nodev                   /* cb_awrite */
 159 };
 160 
 161 static struct dev_ops igb_dev_ops = {
 162         DEVO_REV,               /* devo_rev */
 163         0,                      /* devo_refcnt */
 164         NULL,                   /* devo_getinfo */
 165         nulldev,                /* devo_identify */
 166         nulldev,                /* devo_probe */
 167         igb_attach,             /* devo_attach */
 168         igb_detach,             /* devo_detach */
 169         nodev,                  /* devo_reset */
 170         &igb_cb_ops,                /* devo_cb_ops */
 171         NULL,                   /* devo_bus_ops */
 172         ddi_power,              /* devo_power */
 173         igb_quiesce,    /* devo_quiesce */
 174 };
 175 
 176 static struct modldrv igb_modldrv = {
 177         &mod_driverops,             /* Type of module.  This one is a driver */
 178         ident,                  /* Discription string */
 179         &igb_dev_ops,               /* driver ops */
 180 };
 181 
 182 static struct modlinkage igb_modlinkage = {
 183         MODREV_1, &igb_modldrv, NULL
 184 };
 185 
 186 /* Access attributes for register mapping */
 187 ddi_device_acc_attr_t igb_regs_acc_attr = {
 188         DDI_DEVICE_ATTR_V1,
 189         DDI_STRUCTURE_LE_ACC,
 190         DDI_STRICTORDER_ACC,
 191         DDI_FLAGERR_ACC
 192 };
 193 
 194 #define IGB_M_CALLBACK_FLAGS \
 195         (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
 196 
 197 static mac_callbacks_t igb_m_callbacks = {
 198         IGB_M_CALLBACK_FLAGS,
 199         igb_m_stat,
 200         igb_m_start,
 201         igb_m_stop,
 202         igb_m_promisc,
 203         igb_m_multicst,
 204         NULL,
 205         NULL,
 206         NULL,
 207         igb_m_ioctl,
 208         igb_m_getcapab,
 209         NULL,
 210         NULL,
 211         igb_m_setprop,
 212         igb_m_getprop,
 213         igb_m_propinfo
 214 };
 215 
 216 /*
 217  * Initialize capabilities of each supported adapter type
 218  */
 219 static adapter_info_t igb_82575_cap = {
 220         /* limits */
 221         4,              /* maximum number of rx queues */
 222         1,              /* minimum number of rx queues */
 223         4,              /* default number of rx queues */
 224         4,              /* maximum number of tx queues */
 225         1,              /* minimum number of tx queues */
 226         4,              /* default number of tx queues */
 227         65535,          /* maximum interrupt throttle rate */
 228         0,              /* minimum interrupt throttle rate */
 229         200,            /* default interrupt throttle rate */
 230 
 231         /* function pointers */
 232         igb_enable_adapter_interrupts_82575,
 233         igb_setup_msix_82575,
 234 
 235         /* capabilities */
 236         (IGB_FLAG_HAS_DCA |     /* capability flags */
 237         IGB_FLAG_VMDQ_POOL),
 238 
 239         0xffc00000              /* mask for RXDCTL register */
 240 };
 241 
 242 static adapter_info_t igb_82576_cap = {
 243         /* limits */
 244         16,             /* maximum number of rx queues */
 245         1,              /* minimum number of rx queues */
 246         4,              /* default number of rx queues */
 247         16,             /* maximum number of tx queues */
 248         1,              /* minimum number of tx queues */
 249         4,              /* default number of tx queues */
 250         65535,          /* maximum interrupt throttle rate */
 251         0,              /* minimum interrupt throttle rate */
 252         200,            /* default interrupt throttle rate */
 253 
 254         /* function pointers */
 255         igb_enable_adapter_interrupts_82576,
 256         igb_setup_msix_82576,
 257 
 258         /* capabilities */
 259         (IGB_FLAG_HAS_DCA |     /* capability flags */
 260         IGB_FLAG_VMDQ_POOL |
 261         IGB_FLAG_NEED_CTX_IDX),
 262 
 263         0xffe00000              /* mask for RXDCTL register */
 264 };
 265 
 266 static adapter_info_t igb_82580_cap = {
 267         /* limits */
 268         8,              /* maximum number of rx queues */
 269         1,              /* minimum number of rx queues */
 270         4,              /* default number of rx queues */
 271         8,              /* maximum number of tx queues */
 272         1,              /* minimum number of tx queues */
 273         4,              /* default number of tx queues */
 274         65535,          /* maximum interrupt throttle rate */
 275         0,              /* minimum interrupt throttle rate */
 276         200,            /* default interrupt throttle rate */
 277 
 278         /* function pointers */
 279         igb_enable_adapter_interrupts_82580,
 280         igb_setup_msix_82580,
 281 
 282         /* capabilities */
 283         (IGB_FLAG_HAS_DCA |     /* capability flags */
 284         IGB_FLAG_VMDQ_POOL |
 285         IGB_FLAG_NEED_CTX_IDX),
 286 
 287         0xffe00000              /* mask for RXDCTL register */
 288 };
 289 
 290 static adapter_info_t igb_i350_cap = {
 291         /* limits */
 292         8,              /* maximum number of rx queues */
 293         1,              /* minimum number of rx queues */
 294         4,              /* default number of rx queues */
 295         8,              /* maximum number of tx queues */
 296         1,              /* minimum number of tx queues */
 297         4,              /* default number of tx queues */
 298         65535,          /* maximum interrupt throttle rate */
 299         0,              /* minimum interrupt throttle rate */
 300         200,            /* default interrupt throttle rate */
 301 
 302         /* function pointers */
 303         igb_enable_adapter_interrupts_82580,
 304         igb_setup_msix_82580,
 305 
 306         /* capabilities */
 307         (IGB_FLAG_HAS_DCA |     /* capability flags */
 308         IGB_FLAG_VMDQ_POOL |
 309         IGB_FLAG_NEED_CTX_IDX),
 310 
 311         0xffe00000              /* mask for RXDCTL register */
 312 };
 313 
 314 static adapter_info_t igb_i210_cap = {
 315         /* limits */
 316         4,              /* maximum number of rx queues */
 317         1,              /* minimum number of rx queues */
 318         4,              /* default number of rx queues */
 319         4,              /* maximum number of tx queues */
 320         1,              /* minimum number of tx queues */
 321         4,              /* default number of tx queues */
 322         65535,          /* maximum interrupt throttle rate */
 323         0,              /* minimum interrupt throttle rate */
 324         200,            /* default interrupt throttle rate */
 325 
 326         /* function pointers */
 327         igb_enable_adapter_interrupts_82580,
 328         igb_setup_msix_82580,
 329 
 330         /* capabilities */
 331         (IGB_FLAG_HAS_DCA |     /* capability flags */
 332         IGB_FLAG_VMDQ_POOL |
 333         IGB_FLAG_NEED_CTX_IDX),
 334 
 335         0xfff00000              /* mask for RXDCTL register */
 336 };
 337 
 338 static adapter_info_t igb_i354_cap = {
 339         /* limits */
 340         8,              /* maximum number of rx queues */
 341         1,              /* minimum number of rx queues */
 342         4,              /* default number of rx queues */
 343         8,              /* maximum number of tx queues */
 344         1,              /* minimum number of tx queues */
 345         4,              /* default number of tx queues */
 346         65535,          /* maximum interrupt throttle rate */
 347         0,              /* minimum interrupt throttle rate */
 348         200,            /* default interrupt throttle rate */
 349 
 350         /* function pointers */
 351         igb_enable_adapter_interrupts_82580,
 352         igb_setup_msix_82580,
 353 
 354         /* capabilities */
 355         (IGB_FLAG_HAS_DCA |     /* capability flags */
 356         IGB_FLAG_VMDQ_POOL |
 357         IGB_FLAG_NEED_CTX_IDX),
 358 
 359         0xfff00000              /* mask for RXDCTL register */
 360 };
 361 
 362 /*
 363  * Module Initialization Functions
 364  */
 365 
 366 int
 367 _init(void)
 368 {
 369         int status;
 370 
 371         mac_init_ops(&igb_dev_ops, MODULE_NAME);
 372 
 373         status = mod_install(&igb_modlinkage);
 374 
 375         if (status != DDI_SUCCESS) {
 376                 mac_fini_ops(&igb_dev_ops);
 377         }
 378 
 379         return (status);
 380 }
 381 
 382 int
 383 _fini(void)
 384 {
 385         int status;
 386 
 387         status = mod_remove(&igb_modlinkage);
 388 
 389         if (status == DDI_SUCCESS) {
 390                 mac_fini_ops(&igb_dev_ops);
 391         }
 392 
 393         return (status);
 394 
 395 }
 396 
 397 int
 398 _info(struct modinfo *modinfop)
 399 {
 400         int status;
 401 
 402         status = mod_info(&igb_modlinkage, modinfop);
 403 
 404         return (status);
 405 }
 406 
 407 /*
 408  * igb_attach - driver attach
 409  *
 410  * This function is the device specific initialization entry
 411  * point. This entry point is required and must be written.
 412  * The DDI_ATTACH command must be provided in the attach entry
 413  * point. When attach() is called with cmd set to DDI_ATTACH,
 414  * all normal kernel services (such as kmem_alloc(9F)) are
 415  * available for use by the driver.
 416  *
 417  * The attach() function will be called once for each instance
 418  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
 419  * Until attach() succeeds, the only driver entry points which
 420  * may be called are open(9E) and getinfo(9E).
 421  */
 422 static int
 423 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
 424 {
 425         igb_t *igb;
 426         struct igb_osdep *osdep;
 427         struct e1000_hw *hw;
 428         int instance;
 429 
 430         /*
 431          * Check the command and perform corresponding operations
 432          */
 433         switch (cmd) {
 434         default:
 435                 return (DDI_FAILURE);
 436 
 437         case DDI_RESUME:
 438                 return (igb_resume(devinfo));
 439 
 440         case DDI_ATTACH:
 441                 break;
 442         }
 443 
 444         /* Get the device instance */
 445         instance = ddi_get_instance(devinfo);
 446 
 447         /* Allocate memory for the instance data structure */
 448         igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
 449 
 450         igb->dip = devinfo;
 451         igb->instance = instance;
 452 
 453         hw = &igb->hw;
 454         osdep = &igb->osdep;
 455         hw->back = osdep;
 456         osdep->igb = igb;
 457 
 458         /* Attach the instance pointer to the dev_info data structure */
 459         ddi_set_driver_private(devinfo, igb);
 460 
 461 
 462         /* Initialize for fma support */
 463         igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
 464             0, 0x0f,
 465             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
 466             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
 467         igb_fm_init(igb);
 468         igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
 469 
 470         /*
 471          * Map PCI config space registers
 472          */
 473         if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
 474                 igb_error(igb, "Failed to map PCI configurations");
 475                 goto attach_fail;
 476         }
 477         igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
 478 
 479         /*
 480          * Identify the chipset family
 481          */
 482         if (igb_identify_hardware(igb) != IGB_SUCCESS) {
 483                 igb_error(igb, "Failed to identify hardware");
 484                 goto attach_fail;
 485         }
 486 
 487         /*
 488          * Map device registers
 489          */
 490         if (igb_regs_map(igb) != IGB_SUCCESS) {
 491                 igb_error(igb, "Failed to map device registers");
 492                 goto attach_fail;
 493         }
 494         igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
 495 
 496         /*
 497          * Initialize driver parameters
 498          */
 499         igb_init_properties(igb);
 500         igb->attach_progress |= ATTACH_PROGRESS_PROPS;
 501 
 502         /*
 503          * Allocate interrupts
 504          */
 505         if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
 506                 igb_error(igb, "Failed to allocate interrupts");
 507                 goto attach_fail;
 508         }
 509         igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
 510 
 511         /*
 512          * Allocate rx/tx rings based on the ring numbers.
 513          * The actual numbers of rx/tx rings are decided by the number of
 514          * allocated interrupt vectors, so we should allocate the rings after
 515          * interrupts are allocated.
 516          */
 517         if (igb_alloc_rings(igb) != IGB_SUCCESS) {
 518                 igb_error(igb, "Failed to allocate rx/tx rings or groups");
 519                 goto attach_fail;
 520         }
 521         igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
 522 
 523         /*
 524          * Add interrupt handlers
 525          */
 526         if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
 527                 igb_error(igb, "Failed to add interrupt handlers");
 528                 goto attach_fail;
 529         }
 530         igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
 531 
 532         /*
 533          * Initialize driver parameters
 534          */
 535         if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
 536                 igb_error(igb, "Failed to initialize driver settings");
 537                 goto attach_fail;
 538         }
 539 
 540         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
 541                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
 542                 goto attach_fail;
 543         }
 544 
 545         /*
 546          * Initialize mutexes for this device.
 547          * Do this before enabling the interrupt handler and
 548          * register the softint to avoid the condition where
 549          * interrupt handler can try using uninitialized mutex
 550          */
 551         igb_init_locks(igb);
 552         igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
 553 
 554         /*
 555          * Initialize the adapter
 556          */
 557         if (igb_init(igb) != IGB_SUCCESS) {
 558                 igb_error(igb, "Failed to initialize adapter");
 559                 goto attach_fail;
 560         }
 561         igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
 562 
 563         /*
 564          * Initialize statistics
 565          */
 566         if (igb_init_stats(igb) != IGB_SUCCESS) {
 567                 igb_error(igb, "Failed to initialize statistics");
 568                 goto attach_fail;
 569         }
 570         igb->attach_progress |= ATTACH_PROGRESS_STATS;
 571 
 572         /*
 573          * Register the driver to the MAC
 574          */
 575         if (igb_register_mac(igb) != IGB_SUCCESS) {
 576                 igb_error(igb, "Failed to register MAC");
 577                 goto attach_fail;
 578         }
 579         igb->attach_progress |= ATTACH_PROGRESS_MAC;
 580 
 581         /*
 582          * Now that mutex locks are initialized, and the chip is also
 583          * initialized, enable interrupts.
 584          */
 585         if (igb_enable_intrs(igb) != IGB_SUCCESS) {
 586                 igb_error(igb, "Failed to enable DDI interrupts");
 587                 goto attach_fail;
 588         }
 589         igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
 590 
 591         igb_log(igb, "%s", igb_version);
 592         atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
 593 
 594         /*
 595          * Newer models have Energy Efficient Ethernet, let's disable this by
 596          * default.
 597          */
 598         if (igb->hw.mac.type == e1000_i350)
 599                 (void) e1000_set_eee_i350(&igb->hw);
 600         else if (igb->hw.mac.type == e1000_i354)
 601                 (void) e1000_set_eee_i354(&igb->hw);
 602 
 603         return (DDI_SUCCESS);
 604 
 605 attach_fail:
 606         igb_unconfigure(devinfo, igb);
 607         return (DDI_FAILURE);
 608 }
 609 
 610 /*
 611  * igb_detach - driver detach
 612  *
 613  * The detach() function is the complement of the attach routine.
 614  * If cmd is set to DDI_DETACH, detach() is used to remove  the
 615  * state  associated  with  a  given  instance of a device node
 616  * prior to the removal of that instance from the system.
 617  *
 618  * The detach() function will be called once for each  instance
 619  * of the device for which there has been a successful attach()
 620  * once there are no longer  any  opens  on  the  device.
 621  *
 622  * Interrupts routine are disabled, All memory allocated by this
 623  * driver are freed.
 624  */
 625 static int
 626 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
 627 {
 628         igb_t *igb;
 629 
 630         /*
 631          * Check detach command
 632          */
 633         switch (cmd) {
 634         default:
 635                 return (DDI_FAILURE);
 636 
 637         case DDI_SUSPEND:
 638                 return (igb_suspend(devinfo));
 639 
 640         case DDI_DETACH:
 641                 break;
 642         }
 643 
 644 
 645         /*
 646          * Get the pointer to the driver private data structure
 647          */
 648         igb = (igb_t *)ddi_get_driver_private(devinfo);
 649         if (igb == NULL)
 650                 return (DDI_FAILURE);
 651 
 652         /*
 653          * Unregister MAC. If failed, we have to fail the detach
 654          */
 655         if (mac_unregister(igb->mac_hdl) != 0) {
 656                 igb_error(igb, "Failed to unregister MAC");
 657                 return (DDI_FAILURE);
 658         }
 659         igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
 660 
 661         /*
 662          * If the device is still running, it needs to be stopped first.
 663          * This check is necessary because under some specific circumstances,
 664          * the detach routine can be called without stopping the interface
 665          * first.
 666          */
 667         mutex_enter(&igb->gen_lock);
 668         if (igb->igb_state & IGB_STARTED) {
 669                 atomic_and_32(&igb->igb_state, ~IGB_STARTED);
 670                 igb_stop(igb, B_TRUE);
 671                 mutex_exit(&igb->gen_lock);
 672                 /* Disable and stop the watchdog timer */
 673                 igb_disable_watchdog_timer(igb);
 674         } else
 675                 mutex_exit(&igb->gen_lock);
 676 
 677         /*
 678          * Check if there are still rx buffers held by the upper layer.
 679          * If so, fail the detach.
 680          */
 681         if (!igb_rx_drain(igb))
 682                 return (DDI_FAILURE);
 683 
 684         /*
 685          * Do the remaining unconfigure routines
 686          */
 687         igb_unconfigure(devinfo, igb);
 688 
 689         return (DDI_SUCCESS);
 690 }
 691 
 692 /*
 693  * quiesce(9E) entry point.
 694  *
 695  * This function is called when the system is single-threaded at high
 696  * PIL with preemption disabled. Therefore, this function must not be
 697  * blocked.
 698  *
 699  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
 700  * DDI_FAILURE indicates an error condition and should almost never happen.
 701  */
 702 static int
 703 igb_quiesce(dev_info_t *devinfo)
 704 {
 705         igb_t *igb;
 706         struct e1000_hw *hw;
 707 
 708         igb = (igb_t *)ddi_get_driver_private(devinfo);
 709 
 710         if (igb == NULL)
 711                 return (DDI_FAILURE);
 712 
 713         hw = &igb->hw;
 714 
 715         /*
 716          * Disable the adapter interrupts
 717          */
 718         igb_disable_adapter_interrupts(igb);
 719 
 720         /* Tell firmware driver is no longer in control */
 721         igb_release_driver_control(hw);
 722 
 723         /*
 724          * Reset the chipset
 725          */
 726         (void) e1000_reset_hw(hw);
 727 
 728         /*
 729          * Reset PHY if possible
 730          */
 731         if (e1000_check_reset_block(hw) == E1000_SUCCESS)
 732                 (void) e1000_phy_hw_reset(hw);
 733 
 734         return (DDI_SUCCESS);
 735 }
 736 
 737 /*
 738  * igb_unconfigure - release all resources held by this instance
 739  */
 740 static void
 741 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
 742 {
 743         /*
 744          * Disable interrupt
 745          */
 746         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
 747                 (void) igb_disable_intrs(igb);
 748         }
 749 
 750         /*
 751          * Unregister MAC
 752          */
 753         if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
 754                 (void) mac_unregister(igb->mac_hdl);
 755         }
 756 
 757         /*
 758          * Free statistics
 759          */
 760         if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
 761                 kstat_delete((kstat_t *)igb->igb_ks);
 762         }
 763 
 764         /*
 765          * Remove interrupt handlers
 766          */
 767         if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
 768                 igb_rem_intr_handlers(igb);
 769         }
 770 
 771         /*
 772          * Remove interrupts
 773          */
 774         if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
 775                 igb_rem_intrs(igb);
 776         }
 777 
 778         /*
 779          * Remove driver properties
 780          */
 781         if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
 782                 (void) ddi_prop_remove_all(devinfo);
 783         }
 784 
 785         /*
 786          * Stop the adapter
 787          */
 788         if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
 789                 mutex_enter(&igb->gen_lock);
 790                 igb_stop_adapter(igb);
 791                 mutex_exit(&igb->gen_lock);
 792                 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
 793                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
 794         }
 795 
 796         /*
 797          * Free multicast table
 798          */
 799         igb_release_multicast(igb);
 800 
 801         /*
 802          * Free register handle
 803          */
 804         if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
 805                 if (igb->osdep.reg_handle != NULL)
 806                         ddi_regs_map_free(&igb->osdep.reg_handle);
 807         }
 808 
 809         /*
 810          * Free PCI config handle
 811          */
 812         if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
 813                 if (igb->osdep.cfg_handle != NULL)
 814                         pci_config_teardown(&igb->osdep.cfg_handle);
 815         }
 816 
 817         /*
 818          * Free locks
 819          */
 820         if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
 821                 igb_destroy_locks(igb);
 822         }
 823 
 824         /*
 825          * Free the rx/tx rings
 826          */
 827         if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
 828                 igb_free_rings(igb);
 829         }
 830 
 831         /*
 832          * Remove FMA
 833          */
 834         if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
 835                 igb_fm_fini(igb);
 836         }
 837 
 838         /*
 839          * Free the driver data structure
 840          */
 841         kmem_free(igb, sizeof (igb_t));
 842 
 843         ddi_set_driver_private(devinfo, NULL);
 844 }
 845 
 846 /*
 847  * igb_register_mac - Register the driver and its function pointers with
 848  * the GLD interface
 849  */
 850 static int
 851 igb_register_mac(igb_t *igb)
 852 {
 853         struct e1000_hw *hw = &igb->hw;
 854         mac_register_t *mac;
 855         int status;
 856 
 857         if ((mac = mac_alloc(MAC_VERSION)) == NULL)
 858                 return (IGB_FAILURE);
 859 
 860         mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
 861         mac->m_driver = igb;
 862         mac->m_dip = igb->dip;
 863         mac->m_src_addr = hw->mac.addr;
 864         mac->m_callbacks = &igb_m_callbacks;
 865         mac->m_min_sdu = 0;
 866         mac->m_max_sdu = igb->max_frame_size -
 867             sizeof (struct ether_vlan_header) - ETHERFCSL;
 868         mac->m_margin = VLAN_TAGSZ;
 869         mac->m_priv_props = igb_priv_props;
 870         mac->m_v12n = MAC_VIRT_LEVEL1;
 871 
 872         status = mac_register(mac, &igb->mac_hdl);
 873 
 874         mac_free(mac);
 875 
 876         return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
 877 }
 878 
 879 /*
 880  * igb_identify_hardware - Identify the type of the chipset
 881  */
 882 static int
 883 igb_identify_hardware(igb_t *igb)
 884 {
 885         struct e1000_hw *hw = &igb->hw;
 886         struct igb_osdep *osdep = &igb->osdep;
 887 
 888         /*
 889          * Get the device id
 890          */
 891         hw->vendor_id =
 892             pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
 893         hw->device_id =
 894             pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
 895         hw->revision_id =
 896             pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
 897         hw->subsystem_device_id =
 898             pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
 899         hw->subsystem_vendor_id =
 900             pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
 901 
 902         /*
 903          * Set the mac type of the adapter based on the device id
 904          */
 905         if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
 906                 return (IGB_FAILURE);
 907         }
 908 
 909         /*
 910          * Install adapter capabilities based on mac type
 911          */
 912         switch (hw->mac.type) {
 913         case e1000_82575:
 914                 igb->capab = &igb_82575_cap;
 915                 break;
 916         case e1000_82576:
 917                 igb->capab = &igb_82576_cap;
 918                 break;
 919         case e1000_82580:
 920                 igb->capab = &igb_82580_cap;
 921                 break;
 922         case e1000_i350:
 923                 igb->capab = &igb_i350_cap;
 924                 break;
 925         case e1000_i210:
 926         case e1000_i211:
 927                 igb->capab = &igb_i210_cap;
 928                 break;
 929         case e1000_i354:
 930                 igb->capab = &igb_i354_cap;
 931                 break;
 932         default:
 933                 return (IGB_FAILURE);
 934         }
 935 
 936         return (IGB_SUCCESS);
 937 }
 938 
 939 /*
 940  * igb_regs_map - Map the device registers
 941  */
 942 static int
 943 igb_regs_map(igb_t *igb)
 944 {
 945         dev_info_t *devinfo = igb->dip;
 946         struct e1000_hw *hw = &igb->hw;
 947         struct igb_osdep *osdep = &igb->osdep;
 948         off_t mem_size;
 949 
 950         /*
 951          * First get the size of device registers to be mapped.
 952          */
 953         if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
 954             DDI_SUCCESS) {
 955                 return (IGB_FAILURE);
 956         }
 957 
 958         /*
 959          * Call ddi_regs_map_setup() to map registers
 960          */
 961         if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
 962             (caddr_t *)&hw->hw_addr, 0,
 963             mem_size, &igb_regs_acc_attr,
 964             &osdep->reg_handle)) != DDI_SUCCESS) {
 965                 return (IGB_FAILURE);
 966         }
 967 
 968         return (IGB_SUCCESS);
 969 }
 970 
 971 /*
 972  * igb_init_properties - Initialize driver properties
 973  */
 974 static void
 975 igb_init_properties(igb_t *igb)
 976 {
 977         /*
 978          * Get conf file properties, including link settings
 979          * jumbo frames, ring number, descriptor number, etc.
 980          */
 981         igb_get_conf(igb);
 982 }
 983 
 984 /*
 985  * igb_init_driver_settings - Initialize driver settings
 986  *
 987  * The settings include hardware function pointers, bus information,
 988  * rx/tx rings settings, link state, and any other parameters that
 989  * need to be setup during driver initialization.
 990  */
 991 static int
 992 igb_init_driver_settings(igb_t *igb)
 993 {
 994         struct e1000_hw *hw = &igb->hw;
 995         igb_rx_ring_t *rx_ring;
 996         igb_tx_ring_t *tx_ring;
 997         uint32_t rx_size;
 998         uint32_t tx_size;
 999         int i;
1000 
1001         /*
1002          * Initialize chipset specific hardware function pointers
1003          */
1004         if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
1005                 return (IGB_FAILURE);
1006         }
1007 
1008         /*
1009          * Get bus information
1010          */
1011         if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
1012                 return (IGB_FAILURE);
1013         }
1014 
1015         /*
1016          * Get the system page size
1017          */
1018         igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
1019 
1020         /*
1021          * Set rx buffer size
1022          * The IP header alignment room is counted in the calculation.
1023          * The rx buffer size is in unit of 1K that is required by the
1024          * chipset hardware.
1025          */
1026         rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
1027         igb->rx_buf_size = ((rx_size >> 10) +
1028             ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
1029 
1030         /*
1031          * Set tx buffer size
1032          */
1033         tx_size = igb->max_frame_size;
1034         igb->tx_buf_size = ((tx_size >> 10) +
1035             ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
1036 
1037         /*
1038          * Initialize rx/tx rings parameters
1039          */
1040         for (i = 0; i < igb->num_rx_rings; i++) {
1041                 rx_ring = &igb->rx_rings[i];
1042                 rx_ring->index = i;
1043                 rx_ring->igb = igb;
1044         }
1045 
1046         for (i = 0; i < igb->num_tx_rings; i++) {
1047                 tx_ring = &igb->tx_rings[i];
1048                 tx_ring->index = i;
1049                 tx_ring->igb = igb;
1050                 if (igb->tx_head_wb_enable)
1051                         tx_ring->tx_recycle = igb_tx_recycle_head_wb;
1052                 else
1053                         tx_ring->tx_recycle = igb_tx_recycle_legacy;
1054 
1055                 tx_ring->ring_size = igb->tx_ring_size;
1056                 tx_ring->free_list_size = igb->tx_ring_size +
1057                     (igb->tx_ring_size >> 1);
1058         }
1059 
1060         /*
1061          * Initialize values of interrupt throttling rates
1062          */
1063         for (i = 1; i < MAX_NUM_EITR; i++)
1064                 igb->intr_throttling[i] = igb->intr_throttling[0];
1065 
1066         /*
1067          * The initial link state should be "unknown"
1068          */
1069         igb->link_state = LINK_STATE_UNKNOWN;
1070 
1071         return (IGB_SUCCESS);
1072 }
1073 
1074 /*
1075  * igb_init_locks - Initialize locks
1076  */
1077 static void
1078 igb_init_locks(igb_t *igb)
1079 {
1080         igb_rx_ring_t *rx_ring;
1081         igb_tx_ring_t *tx_ring;
1082         int i;
1083 
1084         for (i = 0; i < igb->num_rx_rings; i++) {
1085                 rx_ring = &igb->rx_rings[i];
1086                 mutex_init(&rx_ring->rx_lock, NULL,
1087                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1088         }
1089 
1090         for (i = 0; i < igb->num_tx_rings; i++) {
1091                 tx_ring = &igb->tx_rings[i];
1092                 mutex_init(&tx_ring->tx_lock, NULL,
1093                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1094                 mutex_init(&tx_ring->recycle_lock, NULL,
1095                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1096                 mutex_init(&tx_ring->tcb_head_lock, NULL,
1097                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1098                 mutex_init(&tx_ring->tcb_tail_lock, NULL,
1099                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1100         }
1101 
1102         mutex_init(&igb->gen_lock, NULL,
1103             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1104 
1105         mutex_init(&igb->watchdog_lock, NULL,
1106             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1107 
1108         mutex_init(&igb->link_lock, NULL,
1109             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1110 }
1111 
1112 /*
1113  * igb_destroy_locks - Destroy locks
1114  */
1115 static void
1116 igb_destroy_locks(igb_t *igb)
1117 {
1118         igb_rx_ring_t *rx_ring;
1119         igb_tx_ring_t *tx_ring;
1120         int i;
1121 
1122         for (i = 0; i < igb->num_rx_rings; i++) {
1123                 rx_ring = &igb->rx_rings[i];
1124                 mutex_destroy(&rx_ring->rx_lock);
1125         }
1126 
1127         for (i = 0; i < igb->num_tx_rings; i++) {
1128                 tx_ring = &igb->tx_rings[i];
1129                 mutex_destroy(&tx_ring->tx_lock);
1130                 mutex_destroy(&tx_ring->recycle_lock);
1131                 mutex_destroy(&tx_ring->tcb_head_lock);
1132                 mutex_destroy(&tx_ring->tcb_tail_lock);
1133         }
1134 
1135         mutex_destroy(&igb->gen_lock);
1136         mutex_destroy(&igb->watchdog_lock);
1137         mutex_destroy(&igb->link_lock);
1138 }
1139 
1140 static int
1141 igb_resume(dev_info_t *devinfo)
1142 {
1143         igb_t *igb;
1144 
1145         igb = (igb_t *)ddi_get_driver_private(devinfo);
1146         if (igb == NULL)
1147                 return (DDI_FAILURE);
1148 
1149         mutex_enter(&igb->gen_lock);
1150 
1151         /*
1152          * Enable interrupts
1153          */
1154         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1155                 if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1156                         igb_error(igb, "Failed to enable DDI interrupts");
1157                         mutex_exit(&igb->gen_lock);
1158                         return (DDI_FAILURE);
1159                 }
1160         }
1161 
1162         if (igb->igb_state & IGB_STARTED) {
1163                 if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1164                         mutex_exit(&igb->gen_lock);
1165                         return (DDI_FAILURE);
1166                 }
1167 
1168                 /*
1169                  * Enable and start the watchdog timer
1170                  */
1171                 igb_enable_watchdog_timer(igb);
1172         }
1173 
1174         atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1175 
1176         mutex_exit(&igb->gen_lock);
1177 
1178         return (DDI_SUCCESS);
1179 }
1180 
1181 static int
1182 igb_suspend(dev_info_t *devinfo)
1183 {
1184         igb_t *igb;
1185 
1186         igb = (igb_t *)ddi_get_driver_private(devinfo);
1187         if (igb == NULL)
1188                 return (DDI_FAILURE);
1189 
1190         mutex_enter(&igb->gen_lock);
1191 
1192         atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1193 
1194         /*
1195          * Disable interrupts
1196          */
1197         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1198                 (void) igb_disable_intrs(igb);
1199         }
1200 
1201         if (!(igb->igb_state & IGB_STARTED)) {
1202                 mutex_exit(&igb->gen_lock);
1203                 return (DDI_SUCCESS);
1204         }
1205 
1206         igb_stop(igb, B_FALSE);
1207 
1208         mutex_exit(&igb->gen_lock);
1209 
1210         /*
1211          * Disable and stop the watchdog timer
1212          */
1213         igb_disable_watchdog_timer(igb);
1214 
1215         return (DDI_SUCCESS);
1216 }
1217 
1218 static int
1219 igb_init(igb_t *igb)
1220 {
1221         mutex_enter(&igb->gen_lock);
1222 
1223         /*
1224          * Initilize the adapter
1225          */
1226         if (igb_init_adapter(igb) != IGB_SUCCESS) {
1227                 mutex_exit(&igb->gen_lock);
1228                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1229                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1230                 return (IGB_FAILURE);
1231         }
1232 
1233         mutex_exit(&igb->gen_lock);
1234 
1235         return (IGB_SUCCESS);
1236 }
1237 
1238 /*
1239  * igb_init_mac_address - Initialize the default MAC address
1240  *
1241  * On success, the MAC address is entered in the igb->hw.mac.addr
1242  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1243  * address register.
1244  *
1245  * Important side effects:
1246  * 1. adapter is reset - this is required to put it in a known state.
1247  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1248  * MAC address and all default settings are stored, so a valid checksum
1249  * is required.
1250  */
1251 static int
1252 igb_init_mac_address(igb_t *igb)
1253 {
1254         struct e1000_hw *hw = &igb->hw;
1255 
1256         ASSERT(mutex_owned(&igb->gen_lock));
1257 
1258         /*
1259          * Reset chipset to put the hardware in a known state
1260          * before we try to get MAC address from NVM.
1261          */
1262         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1263                 igb_error(igb, "Adapter reset failed.");
1264                 goto init_mac_fail;
1265         }
1266 
1267         /*
1268          * NVM validation
1269          */
1270         if (((igb->hw.mac.type != e1000_i210) &&
1271             (igb->hw.mac.type != e1000_i211)) &&
1272             (e1000_validate_nvm_checksum(hw) < 0)) {
1273                 /*
1274                  * Some PCI-E parts fail the first check due to
1275                  * the link being in sleep state.  Call it again,
1276                  * if it fails a second time its a real issue.
1277                  */
1278                 if (e1000_validate_nvm_checksum(hw) < 0) {
1279                         igb_error(igb,
1280                             "Invalid NVM checksum. Please contact "
1281                             "the vendor to update the NVM.");
1282                         goto init_mac_fail;
1283                 }
1284         }
1285 
1286         /*
1287          * Get the mac address
1288          * This function should handle SPARC case correctly.
1289          */
1290         if (!igb_find_mac_address(igb)) {
1291                 igb_error(igb, "Failed to get the mac address");
1292                 goto init_mac_fail;
1293         }
1294 
1295         /* Validate mac address */
1296         if (!is_valid_mac_addr(hw->mac.addr)) {
1297                 igb_error(igb, "Invalid mac address");
1298                 goto init_mac_fail;
1299         }
1300 
1301         return (IGB_SUCCESS);
1302 
1303 init_mac_fail:
1304         return (IGB_FAILURE);
1305 }
1306 
1307 /*
1308  * igb_init_adapter - Initialize the adapter
1309  */
1310 static int
1311 igb_init_adapter(igb_t *igb)
1312 {
1313         struct e1000_hw *hw = &igb->hw;
1314         uint32_t pba;
1315         int oemid[2];
1316         uint16_t nvmword;
1317         uint32_t hwm;
1318         uint32_t default_mtu;
1319         u8 pbanum[E1000_PBANUM_LENGTH];
1320         char eepromver[5];      /* f.ff */
1321         int i;
1322 
1323         ASSERT(mutex_owned(&igb->gen_lock));
1324 
1325         /*
1326          * In order to obtain the default MAC address, this will reset the
1327          * adapter and validate the NVM that the address and many other
1328          * default settings come from.
1329          */
1330         if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1331                 igb_error(igb, "Failed to initialize MAC address");
1332                 goto init_adapter_fail;
1333         }
1334 
1335         /*
1336          * Packet Buffer Allocation (PBA)
1337          * Writing PBA sets the receive portion of the buffer
1338          * the remainder is used for the transmit buffer.
1339          */
1340         switch (hw->mac.type) {
1341         case e1000_82575:
1342                 pba = E1000_PBA_32K;
1343                 break;
1344         case e1000_82576:
1345                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1346                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1347                 break;
1348         case e1000_82580:
1349         case e1000_i350:
1350         case e1000_i354:
1351                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1352                 pba = e1000_rxpbs_adjust_82580(pba);
1353                 break;
1354         case e1000_i210:
1355         case e1000_i211:
1356                 pba = E1000_PBA_34K;
1357         default:
1358                 break;
1359         }
1360 
1361         /* Special needs in case of Jumbo frames */
1362         default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
1363             MIN_MTU, MAX_MTU, DEFAULT_MTU);
1364         if ((hw->mac.type == e1000_82575) && (default_mtu > ETHERMTU)) {
1365                 u32 tx_space, min_tx, min_rx;
1366                 pba = E1000_READ_REG(hw, E1000_PBA);
1367                 tx_space = pba >> 16;
1368                 pba &= 0xffff;
1369                 min_tx = (igb->max_frame_size +
1370                     sizeof (struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
1371                 min_tx = roundup(min_tx, 1024);
1372                 min_tx >>= 10;
1373                 min_rx = igb->max_frame_size;
1374                 min_rx = roundup(min_rx, 1024);
1375                 min_rx >>= 10;
1376                 if (tx_space < min_tx &&
1377                     ((min_tx - tx_space) < pba)) {
1378                         pba = pba - (min_tx - tx_space);
1379                         /*
1380                          * if short on rx space, rx wins
1381                          * and must trump tx adjustment
1382                          */
1383                         if (pba < min_rx)
1384                                 pba = min_rx;
1385                 }
1386                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1387         }
1388 
1389         DEBUGOUT1("igb_init: pba=%dK", pba);
1390 
1391         /*
1392          * These parameters control the automatic generation (Tx) and
1393          * response (Rx) to Ethernet PAUSE frames.
1394          * - High water mark should allow for at least two frames to be
1395          *   received after sending an XOFF.
1396          * - Low water mark works best when it is very near the high water mark.
1397          *   This allows the receiver to restart by sending XON when it has
1398          *   drained a bit.
1399          */
1400         hwm = min(((pba << 10) * 9 / 10),
1401             ((pba << 10) - 2 * igb->max_frame_size));
1402 
1403         if (hw->mac.type < e1000_82576) {
1404                 hw->fc.high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1405                 hw->fc.low_water = hw->fc.high_water - 8;
1406         } else {
1407                 hw->fc.high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1408                 hw->fc.low_water = hw->fc.high_water - 16;
1409         }
1410 
1411         hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1412         hw->fc.send_xon = B_TRUE;
1413 
1414         (void) e1000_validate_mdi_setting(hw);
1415 
1416         /*
1417          * Reset the chipset hardware the second time to put PBA settings
1418          * into effect.
1419          */
1420         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1421                 igb_error(igb, "Second reset failed");
1422                 goto init_adapter_fail;
1423         }
1424 
1425         /*
1426          * Don't wait for auto-negotiation to complete
1427          */
1428         hw->phy.autoneg_wait_to_complete = B_FALSE;
1429 
1430         /*
1431          * Copper options
1432          */
1433         if (hw->phy.media_type == e1000_media_type_copper) {
1434                 hw->phy.mdix = 0;    /* AUTO_ALL_MODES */
1435                 hw->phy.disable_polarity_correction = B_FALSE;
1436                 hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1437         }
1438 
1439         /*
1440          * Initialize link settings
1441          */
1442         (void) igb_setup_link(igb, B_FALSE);
1443 
1444         /*
1445          * Configure/Initialize hardware
1446          */
1447         if (e1000_init_hw(hw) != E1000_SUCCESS) {
1448                 igb_error(igb, "Failed to initialize hardware");
1449                 goto init_adapter_fail;
1450         }
1451 
1452         /*
1453          *  Start the link setup timer
1454          */
1455         igb_start_link_timer(igb);
1456 
1457         /*
1458          * Disable wakeup control by default
1459          */
1460         E1000_WRITE_REG(hw, E1000_WUC, 0);
1461 
1462         /*
1463          * Record phy info in hw struct
1464          */
1465         (void) e1000_get_phy_info(hw);
1466 
1467         /*
1468          * Make sure driver has control
1469          */
1470         igb_get_driver_control(hw);
1471 
1472         /*
1473          * Restore LED settings to the default from EEPROM
1474          * to meet the standard for Sun platforms.
1475          */
1476         (void) e1000_cleanup_led(hw);
1477 
1478         /*
1479          * Setup MSI-X interrupts
1480          */
1481         if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1482                 igb->capab->setup_msix(igb);
1483 
1484         /*
1485          * Initialize unicast addresses.
1486          */
1487         igb_init_unicst(igb);
1488 
1489         /*
1490          * Setup and initialize the mctable structures.
1491          */
1492         igb_setup_multicst(igb);
1493 
1494         /*
1495          * Set interrupt throttling rate
1496          */
1497         for (i = 0; i < igb->intr_cnt; i++)
1498                 E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1499 
1500         /*
1501          * Read identifying information and place in devinfo.
1502          */
1503         nvmword = 0xffff;
1504         (void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_0, 1, &nvmword);
1505         oemid[0] = (int)nvmword;
1506         (void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_1, 1, &nvmword);
1507         oemid[1] = (int)nvmword;
1508         (void) ddi_prop_update_int_array(DDI_DEV_T_NONE, igb->dip,
1509             "oem-identifier", oemid, 2);
1510 
1511         pbanum[0] = '\0';
1512         (void) e1000_read_pba_string(&igb->hw, pbanum, sizeof (pbanum));
1513         if (*pbanum != '\0') {
1514                 (void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1515                     "printed-board-assembly", (char *)pbanum);
1516         }
1517 
1518         nvmword = 0xffff;
1519         (void) e1000_read_nvm(&igb->hw, NVM_VERSION, 1, &nvmword);
1520         if ((nvmword & 0xf00) == 0) {
1521                 (void) snprintf(eepromver, sizeof (eepromver), "%x.%x",
1522                     (nvmword & 0xf000) >> 12, (nvmword & 0xff));
1523                 (void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1524                     "nvm-version", eepromver);
1525         }
1526 
1527         /*
1528          * Save the state of the phy
1529          */
1530         igb_get_phy_state(igb);
1531 
1532         igb_param_sync(igb);
1533 
1534         return (IGB_SUCCESS);
1535 
1536 init_adapter_fail:
1537         /*
1538          * Reset PHY if possible
1539          */
1540         if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1541                 (void) e1000_phy_hw_reset(hw);
1542 
1543         return (IGB_FAILURE);
1544 }
1545 
1546 /*
1547  * igb_stop_adapter - Stop the adapter
1548  */
1549 static void
1550 igb_stop_adapter(igb_t *igb)
1551 {
1552         struct e1000_hw *hw = &igb->hw;
1553 
1554         ASSERT(mutex_owned(&igb->gen_lock));
1555 
1556         /* Stop the link setup timer */
1557         igb_stop_link_timer(igb);
1558 
1559         /* Tell firmware driver is no longer in control */
1560         igb_release_driver_control(hw);
1561 
1562         /*
1563          * Reset the chipset
1564          */
1565         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1566                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1567                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1568         }
1569 
1570         /*
1571          * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1572          */
1573 }
1574 
1575 /*
1576  * igb_reset - Reset the chipset and restart the driver.
1577  *
1578  * It involves stopping and re-starting the chipset,
1579  * and re-configuring the rx/tx rings.
1580  */
1581 static int
1582 igb_reset(igb_t *igb)
1583 {
1584         int i;
1585 
1586         mutex_enter(&igb->gen_lock);
1587 
1588         ASSERT(igb->igb_state & IGB_STARTED);
1589         atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1590 
1591         /*
1592          * Disable the adapter interrupts to stop any rx/tx activities
1593          * before draining pending data and resetting hardware.
1594          */
1595         igb_disable_adapter_interrupts(igb);
1596 
1597         /*
1598          * Drain the pending transmit packets
1599          */
1600         (void) igb_tx_drain(igb);
1601 
1602         for (i = 0; i < igb->num_rx_rings; i++)
1603                 mutex_enter(&igb->rx_rings[i].rx_lock);
1604         for (i = 0; i < igb->num_tx_rings; i++)
1605                 mutex_enter(&igb->tx_rings[i].tx_lock);
1606 
1607         /*
1608          * Stop the adapter
1609          */
1610         igb_stop_adapter(igb);
1611 
1612         /*
1613          * Clean the pending tx data/resources
1614          */
1615         igb_tx_clean(igb);
1616 
1617         /*
1618          * Start the adapter
1619          */
1620         if (igb_init_adapter(igb) != IGB_SUCCESS) {
1621                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1622                 goto reset_failure;
1623         }
1624 
1625         /*
1626          * Setup the rx/tx rings
1627          */
1628         igb->tx_ring_init = B_FALSE;
1629         igb_setup_rings(igb);
1630 
1631         atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1632 
1633         /*
1634          * Enable adapter interrupts
1635          * The interrupts must be enabled after the driver state is START
1636          */
1637         igb->capab->enable_intr(igb);
1638 
1639         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1640                 goto reset_failure;
1641 
1642         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1643                 goto reset_failure;
1644 
1645         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1646                 mutex_exit(&igb->tx_rings[i].tx_lock);
1647         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1648                 mutex_exit(&igb->rx_rings[i].rx_lock);
1649 
1650         atomic_or_32(&igb->igb_state, IGB_STARTED);
1651 
1652         mutex_exit(&igb->gen_lock);
1653 
1654         return (IGB_SUCCESS);
1655 
1656 reset_failure:
1657         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1658                 mutex_exit(&igb->tx_rings[i].tx_lock);
1659         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1660                 mutex_exit(&igb->rx_rings[i].rx_lock);
1661 
1662         mutex_exit(&igb->gen_lock);
1663 
1664         ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1665 
1666         return (IGB_FAILURE);
1667 }
1668 
1669 /*
1670  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1671  */
1672 static void
1673 igb_tx_clean(igb_t *igb)
1674 {
1675         igb_tx_ring_t *tx_ring;
1676         tx_control_block_t *tcb;
1677         link_list_t pending_list;
1678         uint32_t desc_num;
1679         int i, j;
1680 
1681         LINK_LIST_INIT(&pending_list);
1682 
1683         for (i = 0; i < igb->num_tx_rings; i++) {
1684                 tx_ring = &igb->tx_rings[i];
1685 
1686                 mutex_enter(&tx_ring->recycle_lock);
1687 
1688                 /*
1689                  * Clean the pending tx data - the pending packets in the
1690                  * work_list that have no chances to be transmitted again.
1691                  *
1692                  * We must ensure the chipset is stopped or the link is down
1693                  * before cleaning the transmit packets.
1694                  */
1695                 desc_num = 0;
1696                 for (j = 0; j < tx_ring->ring_size; j++) {
1697                         tcb = tx_ring->work_list[j];
1698                         if (tcb != NULL) {
1699                                 desc_num += tcb->desc_num;
1700 
1701                                 tx_ring->work_list[j] = NULL;
1702 
1703                                 igb_free_tcb(tcb);
1704 
1705                                 LIST_PUSH_TAIL(&pending_list, &tcb->link);
1706                         }
1707                 }
1708 
1709                 if (desc_num > 0) {
1710                         atomic_add_32(&tx_ring->tbd_free, desc_num);
1711                         ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1712 
1713                         /*
1714                          * Reset the head and tail pointers of the tbd ring;
1715                          * Reset the head write-back if it is enabled.
1716                          */
1717                         tx_ring->tbd_head = 0;
1718                         tx_ring->tbd_tail = 0;
1719                         if (igb->tx_head_wb_enable)
1720                                 *tx_ring->tbd_head_wb = 0;
1721 
1722                         E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1723                         E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1724                 }
1725 
1726                 mutex_exit(&tx_ring->recycle_lock);
1727 
1728                 /*
1729                  * Add the tx control blocks in the pending list to
1730                  * the free list.
1731                  */
1732                 igb_put_free_list(tx_ring, &pending_list);
1733         }
1734 }
1735 
1736 /*
1737  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1738  */
1739 static boolean_t
1740 igb_tx_drain(igb_t *igb)
1741 {
1742         igb_tx_ring_t *tx_ring;
1743         boolean_t done;
1744         int i, j;
1745 
1746         /*
1747          * Wait for a specific time to allow pending tx packets
1748          * to be transmitted.
1749          *
1750          * Check the counter tbd_free to see if transmission is done.
1751          * No lock protection is needed here.
1752          *
1753          * Return B_TRUE if all pending packets have been transmitted;
1754          * Otherwise return B_FALSE;
1755          */
1756         for (i = 0; i < TX_DRAIN_TIME; i++) {
1757 
1758                 done = B_TRUE;
1759                 for (j = 0; j < igb->num_tx_rings; j++) {
1760                         tx_ring = &igb->tx_rings[j];
1761                         done = done &&
1762                             (tx_ring->tbd_free == tx_ring->ring_size);
1763                 }
1764 
1765                 if (done)
1766                         break;
1767 
1768                 msec_delay(1);
1769         }
1770 
1771         return (done);
1772 }
1773 
1774 /*
1775  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1776  */
1777 static boolean_t
1778 igb_rx_drain(igb_t *igb)
1779 {
1780         boolean_t done;
1781         int i;
1782 
1783         /*
1784          * Polling the rx free list to check if those rx buffers held by
1785          * the upper layer are released.
1786          *
1787          * Check the counter rcb_free to see if all pending buffers are
1788          * released. No lock protection is needed here.
1789          *
1790          * Return B_TRUE if all pending buffers have been released;
1791          * Otherwise return B_FALSE;
1792          */
1793         for (i = 0; i < RX_DRAIN_TIME; i++) {
1794                 done = (igb->rcb_pending == 0);
1795 
1796                 if (done)
1797                         break;
1798 
1799                 msec_delay(1);
1800         }
1801 
1802         return (done);
1803 }
1804 
1805 /*
1806  * igb_start - Start the driver/chipset
1807  */
1808 int
1809 igb_start(igb_t *igb, boolean_t alloc_buffer)
1810 {
1811         int i;
1812 
1813         ASSERT(mutex_owned(&igb->gen_lock));
1814 
1815         if (alloc_buffer) {
1816                 if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1817                         igb_error(igb,
1818                             "Failed to allocate software receive rings");
1819                         return (IGB_FAILURE);
1820                 }
1821 
1822                 /* Allocate buffers for all the rx/tx rings */
1823                 if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1824                         igb_error(igb, "Failed to allocate DMA resource");
1825                         return (IGB_FAILURE);
1826                 }
1827 
1828                 igb->tx_ring_init = B_TRUE;
1829         } else {
1830                 igb->tx_ring_init = B_FALSE;
1831         }
1832 
1833         for (i = 0; i < igb->num_rx_rings; i++)
1834                 mutex_enter(&igb->rx_rings[i].rx_lock);
1835         for (i = 0; i < igb->num_tx_rings; i++)
1836                 mutex_enter(&igb->tx_rings[i].tx_lock);
1837 
1838         /*
1839          * Start the adapter
1840          */
1841         if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1842                 if (igb_init_adapter(igb) != IGB_SUCCESS) {
1843                         igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1844                         goto start_failure;
1845                 }
1846                 igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1847         }
1848 
1849         /*
1850          * Setup the rx/tx rings
1851          */
1852         igb_setup_rings(igb);
1853 
1854         /*
1855          * Enable adapter interrupts
1856          * The interrupts must be enabled after the driver state is START
1857          */
1858         igb->capab->enable_intr(igb);
1859 
1860         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1861                 goto start_failure;
1862 
1863         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1864                 goto start_failure;
1865 
1866         if (igb->hw.mac.type == e1000_i350)
1867                 (void) e1000_set_eee_i350(&igb->hw);
1868         else if (igb->hw.mac.type == e1000_i354)
1869                 (void) e1000_set_eee_i354(&igb->hw);
1870 
1871         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1872                 mutex_exit(&igb->tx_rings[i].tx_lock);
1873         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1874                 mutex_exit(&igb->rx_rings[i].rx_lock);
1875 
1876         return (IGB_SUCCESS);
1877 
1878 start_failure:
1879         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1880                 mutex_exit(&igb->tx_rings[i].tx_lock);
1881         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1882                 mutex_exit(&igb->rx_rings[i].rx_lock);
1883 
1884         ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1885 
1886         return (IGB_FAILURE);
1887 }
1888 
1889 /*
1890  * igb_stop - Stop the driver/chipset
1891  */
1892 void
1893 igb_stop(igb_t *igb, boolean_t free_buffer)
1894 {
1895         int i;
1896 
1897         ASSERT(mutex_owned(&igb->gen_lock));
1898 
1899         igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1900 
1901         /*
1902          * Disable the adapter interrupts
1903          */
1904         igb_disable_adapter_interrupts(igb);
1905 
1906         /*
1907          * Drain the pending tx packets
1908          */
1909         (void) igb_tx_drain(igb);
1910 
1911         for (i = 0; i < igb->num_rx_rings; i++)
1912                 mutex_enter(&igb->rx_rings[i].rx_lock);
1913         for (i = 0; i < igb->num_tx_rings; i++)
1914                 mutex_enter(&igb->tx_rings[i].tx_lock);
1915 
1916         /*
1917          * Stop the adapter
1918          */
1919         igb_stop_adapter(igb);
1920 
1921         /*
1922          * Clean the pending tx data/resources
1923          */
1924         igb_tx_clean(igb);
1925 
1926         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1927                 mutex_exit(&igb->tx_rings[i].tx_lock);
1928         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1929                 mutex_exit(&igb->rx_rings[i].rx_lock);
1930 
1931         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1932                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1933 
1934         if (igb->link_state == LINK_STATE_UP) {
1935                 igb->link_state = LINK_STATE_UNKNOWN;
1936                 mac_link_update(igb->mac_hdl, igb->link_state);
1937         }
1938 
1939         if (free_buffer) {
1940                 /*
1941                  * Release the DMA/memory resources of rx/tx rings
1942                  */
1943                 igb_free_dma(igb);
1944                 igb_free_rx_data(igb);
1945         }
1946 }
1947 
1948 /*
1949  * igb_alloc_rings - Allocate memory space for rx/tx rings
1950  */
1951 static int
1952 igb_alloc_rings(igb_t *igb)
1953 {
1954         /*
1955          * Allocate memory space for rx rings
1956          */
1957         igb->rx_rings = kmem_zalloc(
1958             sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1959             KM_NOSLEEP);
1960 
1961         if (igb->rx_rings == NULL) {
1962                 return (IGB_FAILURE);
1963         }
1964 
1965         /*
1966          * Allocate memory space for tx rings
1967          */
1968         igb->tx_rings = kmem_zalloc(
1969             sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1970             KM_NOSLEEP);
1971 
1972         if (igb->tx_rings == NULL) {
1973                 kmem_free(igb->rx_rings,
1974                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1975                 igb->rx_rings = NULL;
1976                 return (IGB_FAILURE);
1977         }
1978 
1979         /*
1980          * Allocate memory space for rx ring groups
1981          */
1982         igb->rx_groups = kmem_zalloc(
1983             sizeof (igb_rx_group_t) * igb->num_rx_groups,
1984             KM_NOSLEEP);
1985 
1986         if (igb->rx_groups == NULL) {
1987                 kmem_free(igb->rx_rings,
1988                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1989                 kmem_free(igb->tx_rings,
1990                     sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1991                 igb->rx_rings = NULL;
1992                 igb->tx_rings = NULL;
1993                 return (IGB_FAILURE);
1994         }
1995 
1996         return (IGB_SUCCESS);
1997 }
1998 
1999 /*
2000  * igb_free_rings - Free the memory space of rx/tx rings.
2001  */
2002 static void
2003 igb_free_rings(igb_t *igb)
2004 {
2005         if (igb->rx_rings != NULL) {
2006                 kmem_free(igb->rx_rings,
2007                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
2008                 igb->rx_rings = NULL;
2009         }
2010 
2011         if (igb->tx_rings != NULL) {
2012                 kmem_free(igb->tx_rings,
2013                     sizeof (igb_tx_ring_t) * igb->num_tx_rings);
2014                 igb->tx_rings = NULL;
2015         }
2016 
2017         if (igb->rx_groups != NULL) {
2018                 kmem_free(igb->rx_groups,
2019                     sizeof (igb_rx_group_t) * igb->num_rx_groups);
2020                 igb->rx_groups = NULL;
2021         }
2022 }
2023 
2024 static int
2025 igb_alloc_rx_data(igb_t *igb)
2026 {
2027         igb_rx_ring_t *rx_ring;
2028         int i;
2029 
2030         for (i = 0; i < igb->num_rx_rings; i++) {
2031                 rx_ring = &igb->rx_rings[i];
2032                 if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
2033                         goto alloc_rx_rings_failure;
2034         }
2035         return (IGB_SUCCESS);
2036 
2037 alloc_rx_rings_failure:
2038         igb_free_rx_data(igb);
2039         return (IGB_FAILURE);
2040 }
2041 
2042 static void
2043 igb_free_rx_data(igb_t *igb)
2044 {
2045         igb_rx_ring_t *rx_ring;
2046         igb_rx_data_t *rx_data;
2047         int i;
2048 
2049         for (i = 0; i < igb->num_rx_rings; i++) {
2050                 rx_ring = &igb->rx_rings[i];
2051 
2052                 mutex_enter(&igb->rx_pending_lock);
2053                 rx_data = rx_ring->rx_data;
2054 
2055                 if (rx_data != NULL) {
2056                         rx_data->flag |= IGB_RX_STOPPED;
2057 
2058                         if (rx_data->rcb_pending == 0) {
2059                                 igb_free_rx_ring_data(rx_data);
2060                                 rx_ring->rx_data = NULL;
2061                         }
2062                 }
2063 
2064                 mutex_exit(&igb->rx_pending_lock);
2065         }
2066 }
2067 
2068 /*
2069  * igb_setup_rings - Setup rx/tx rings
2070  */
2071 static void
2072 igb_setup_rings(igb_t *igb)
2073 {
2074         /*
2075          * Setup the rx/tx rings, including the following:
2076          *
2077          * 1. Setup the descriptor ring and the control block buffers;
2078          * 2. Initialize necessary registers for receive/transmit;
2079          * 3. Initialize software pointers/parameters for receive/transmit;
2080          */
2081         igb_setup_rx(igb);
2082 
2083         igb_setup_tx(igb);
2084 }
2085 
2086 static void
2087 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
2088 {
2089         igb_t *igb = rx_ring->igb;
2090         igb_rx_data_t *rx_data = rx_ring->rx_data;
2091         struct e1000_hw *hw = &igb->hw;
2092         rx_control_block_t *rcb;
2093         union e1000_adv_rx_desc *rbd;
2094         uint32_t size;
2095         uint32_t buf_low;
2096         uint32_t buf_high;
2097         uint32_t rxdctl;
2098         int i;
2099 
2100         ASSERT(mutex_owned(&rx_ring->rx_lock));
2101         ASSERT(mutex_owned(&igb->gen_lock));
2102 
2103         /*
2104          * Initialize descriptor ring with buffer addresses
2105          */
2106         for (i = 0; i < igb->rx_ring_size; i++) {
2107                 rcb = rx_data->work_list[i];
2108                 rbd = &rx_data->rbd_ring[i];
2109 
2110                 rbd->read.pkt_addr = rcb->rx_buf.dma_address;
2111                 rbd->read.hdr_addr = NULL;
2112         }
2113 
2114         /*
2115          * Initialize the base address registers
2116          */
2117         buf_low = (uint32_t)rx_data->rbd_area.dma_address;
2118         buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
2119         E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
2120         E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
2121 
2122         /*
2123          * Initialize the length register
2124          */
2125         size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
2126         E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
2127 
2128         /*
2129          * Initialize buffer size & descriptor type
2130          */
2131         E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
2132             ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
2133             E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
2134 
2135         /*
2136          * Setup the Receive Descriptor Control Register (RXDCTL)
2137          */
2138         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
2139         rxdctl &= igb->capab->rxdctl_mask;
2140         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2141         rxdctl |= 16;           /* pthresh */
2142         rxdctl |= 8 << 8; /* hthresh */
2143         rxdctl |= 1 << 16;        /* wthresh */
2144         E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
2145 
2146         rx_data->rbd_next = 0;
2147 }
2148 
2149 static void
2150 igb_setup_rx(igb_t *igb)
2151 {
2152         igb_rx_ring_t *rx_ring;
2153         igb_rx_data_t *rx_data;
2154         igb_rx_group_t *rx_group;
2155         struct e1000_hw *hw = &igb->hw;
2156         uint32_t rctl, rxcsum;
2157         uint32_t ring_per_group;
2158         int i;
2159 
2160         /*
2161          * Setup the Receive Control Register (RCTL), and enable the
2162          * receiver. The initial configuration is to: enable the receiver,
2163          * accept broadcasts, discard bad packets, accept long packets,
2164          * disable VLAN filter checking, and set receive buffer size to
2165          * 2k.  For 82575, also set the receive descriptor minimum
2166          * threshold size to 1/2 the ring.
2167          */
2168         rctl = E1000_READ_REG(hw, E1000_RCTL);
2169 
2170         /*
2171          * Clear the field used for wakeup control.  This driver doesn't do
2172          * wakeup but leave this here for completeness.
2173          */
2174         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2175         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2176 
2177         rctl |= (E1000_RCTL_EN |        /* Enable Receive Unit */
2178             E1000_RCTL_BAM |            /* Accept Broadcast Packets */
2179             E1000_RCTL_LPE |            /* Large Packet Enable */
2180                                         /* Multicast filter offset */
2181             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2182             E1000_RCTL_RDMTS_HALF |     /* rx descriptor threshold */
2183             E1000_RCTL_SECRC);          /* Strip Ethernet CRC */
2184 
2185         for (i = 0; i < igb->num_rx_groups; i++) {
2186                 rx_group = &igb->rx_groups[i];
2187                 rx_group->index = i;
2188                 rx_group->igb = igb;
2189         }
2190 
2191         /*
2192          * Set up all rx descriptor rings - must be called before receive unit
2193          * enabled.
2194          */
2195         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2196         for (i = 0; i < igb->num_rx_rings; i++) {
2197                 rx_ring = &igb->rx_rings[i];
2198                 igb_setup_rx_ring(rx_ring);
2199 
2200                 /*
2201                  * Map a ring to a group by assigning a group index
2202                  */
2203                 rx_ring->group_index = i / ring_per_group;
2204         }
2205 
2206         /*
2207          * Setup the Rx Long Packet Max Length register
2208          */
2209         E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2210 
2211         /*
2212          * Hardware checksum settings
2213          */
2214         if (igb->rx_hcksum_enable) {
2215                 rxcsum =
2216                     E1000_RXCSUM_TUOFL |        /* TCP/UDP checksum */
2217                     E1000_RXCSUM_IPOFL;         /* IP checksum */
2218 
2219                 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2220         }
2221 
2222         /*
2223          * Setup classify and RSS for multiple receive queues
2224          */
2225         switch (igb->vmdq_mode) {
2226         case E1000_VMDQ_OFF:
2227                 /*
2228                  * One ring group, only RSS is needed when more than
2229                  * one ring enabled.
2230                  */
2231                 if (igb->num_rx_rings > 1)
2232                         igb_setup_rss(igb);
2233                 break;
2234         case E1000_VMDQ_MAC:
2235                 /*
2236                  * Multiple groups, each group has one ring,
2237                  * only the MAC classification is needed.
2238                  */
2239                 igb_setup_mac_classify(igb);
2240                 break;
2241         case E1000_VMDQ_MAC_RSS:
2242                 /*
2243                  * Multiple groups and multiple rings, both
2244                  * MAC classification and RSS are needed.
2245                  */
2246                 igb_setup_mac_rss_classify(igb);
2247                 break;
2248         }
2249 
2250         /*
2251          * Enable the receive unit - must be done after all
2252          * the rx setup above.
2253          */
2254         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2255 
2256         /*
2257          * Initialize all adapter ring head & tail pointers - must
2258          * be done after receive unit is enabled
2259          */
2260         for (i = 0; i < igb->num_rx_rings; i++) {
2261                 rx_ring = &igb->rx_rings[i];
2262                 rx_data = rx_ring->rx_data;
2263                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2264                 E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2265         }
2266 
2267         /*
2268          * 82575 with manageability enabled needs a special flush to make
2269          * sure the fifos start clean.
2270          */
2271         if ((hw->mac.type == e1000_82575) &&
2272             (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2273                 e1000_rx_fifo_flush_82575(hw);
2274         }
2275 }
2276 
2277 static void
2278 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2279 {
2280         igb_t *igb = tx_ring->igb;
2281         struct e1000_hw *hw = &igb->hw;
2282         uint32_t size;
2283         uint32_t buf_low;
2284         uint32_t buf_high;
2285         uint32_t reg_val;
2286 
2287         ASSERT(mutex_owned(&tx_ring->tx_lock));
2288         ASSERT(mutex_owned(&igb->gen_lock));
2289 
2290 
2291         /*
2292          * Initialize the length register
2293          */
2294         size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2295         E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2296 
2297         /*
2298          * Initialize the base address registers
2299          */
2300         buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2301         buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2302         E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2303         E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2304 
2305         /*
2306          * Setup head & tail pointers
2307          */
2308         E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2309         E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2310 
2311         /*
2312          * Setup head write-back
2313          */
2314         if (igb->tx_head_wb_enable) {
2315                 /*
2316                  * The memory of the head write-back is allocated using
2317                  * the extra tbd beyond the tail of the tbd ring.
2318                  */
2319                 tx_ring->tbd_head_wb = (uint32_t *)
2320                     ((uintptr_t)tx_ring->tbd_area.address + size);
2321                 *tx_ring->tbd_head_wb = 0;
2322 
2323                 buf_low = (uint32_t)
2324                     (tx_ring->tbd_area.dma_address + size);
2325                 buf_high = (uint32_t)
2326                     ((tx_ring->tbd_area.dma_address + size) >> 32);
2327 
2328                 /* Set the head write-back enable bit */
2329                 buf_low |= E1000_TX_HEAD_WB_ENABLE;
2330 
2331                 E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2332                 E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2333 
2334                 /*
2335                  * Turn off relaxed ordering for head write back or it will
2336                  * cause problems with the tx recycling
2337                  */
2338                 reg_val = E1000_READ_REG(hw,
2339                     E1000_DCA_TXCTRL(tx_ring->index));
2340                 reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2341                 E1000_WRITE_REG(hw,
2342                     E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2343         } else {
2344                 tx_ring->tbd_head_wb = NULL;
2345         }
2346 
2347         tx_ring->tbd_head = 0;
2348         tx_ring->tbd_tail = 0;
2349         tx_ring->tbd_free = tx_ring->ring_size;
2350 
2351         if (igb->tx_ring_init == B_TRUE) {
2352                 tx_ring->tcb_head = 0;
2353                 tx_ring->tcb_tail = 0;
2354                 tx_ring->tcb_free = tx_ring->free_list_size;
2355         }
2356 
2357         /*
2358          * Enable TXDCTL per queue
2359          */
2360         reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2361         reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2362         E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2363 
2364         /*
2365          * Initialize hardware checksum offload settings
2366          */
2367         bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2368 }
2369 
2370 static void
2371 igb_setup_tx(igb_t *igb)
2372 {
2373         igb_tx_ring_t *tx_ring;
2374         struct e1000_hw *hw = &igb->hw;
2375         uint32_t reg_val;
2376         int i;
2377 
2378         for (i = 0; i < igb->num_tx_rings; i++) {
2379                 tx_ring = &igb->tx_rings[i];
2380                 igb_setup_tx_ring(tx_ring);
2381         }
2382 
2383         /*
2384          * Setup the Transmit Control Register (TCTL)
2385          */
2386         reg_val = E1000_READ_REG(hw, E1000_TCTL);
2387         reg_val &= ~E1000_TCTL_CT;
2388         reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2389             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2390 
2391         /* Enable transmits */
2392         reg_val |= E1000_TCTL_EN;
2393 
2394         E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2395 }
2396 
2397 /*
2398  * igb_setup_rss - Setup receive-side scaling feature
2399  */
2400 static void
2401 igb_setup_rss(igb_t *igb)
2402 {
2403         struct e1000_hw *hw = &igb->hw;
2404         uint32_t i, mrqc, rxcsum;
2405         int shift = 0;
2406         uint32_t random;
2407         union e1000_reta {
2408                 uint32_t        dword;
2409                 uint8_t         bytes[4];
2410         } reta;
2411 
2412         /* Setup the Redirection Table */
2413         if (hw->mac.type == e1000_82576) {
2414                 shift = 3;
2415         } else if (hw->mac.type == e1000_82575) {
2416                 shift = 6;
2417         }
2418         for (i = 0; i < (32 * 4); i++) {
2419                 reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2420                 if ((i & 3) == 3) {
2421                         E1000_WRITE_REG(hw,
2422                             (E1000_RETA(0) + (i & ~3)), reta.dword);
2423                 }
2424         }
2425 
2426         /* Fill out hash function seeds */
2427         for (i = 0; i < 10; i++) {
2428                 (void) random_get_pseudo_bytes((uint8_t *)&random,
2429                     sizeof (uint32_t));
2430                 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2431         }
2432 
2433         /* Setup the Multiple Receive Queue Control register */
2434         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2435         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2436             E1000_MRQC_RSS_FIELD_IPV4_TCP |
2437             E1000_MRQC_RSS_FIELD_IPV6 |
2438             E1000_MRQC_RSS_FIELD_IPV6_TCP |
2439             E1000_MRQC_RSS_FIELD_IPV4_UDP |
2440             E1000_MRQC_RSS_FIELD_IPV6_UDP |
2441             E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2442             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2443 
2444         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2445 
2446         /*
2447          * Disable Packet Checksum to enable RSS for multiple receive queues.
2448          *
2449          * The Packet Checksum is not ethernet CRC. It is another kind of
2450          * checksum offloading provided by the 82575 chipset besides the IP
2451          * header checksum offloading and the TCP/UDP checksum offloading.
2452          * The Packet Checksum is by default computed over the entire packet
2453          * from the first byte of the DA through the last byte of the CRC,
2454          * including the Ethernet and IP headers.
2455          *
2456          * It is a hardware limitation that Packet Checksum is mutually
2457          * exclusive with RSS.
2458          */
2459         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2460         rxcsum |= E1000_RXCSUM_PCSD;
2461         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2462 }
2463 
2464 /*
2465  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2466  */
2467 static void
2468 igb_setup_mac_rss_classify(igb_t *igb)
2469 {
2470         struct e1000_hw *hw = &igb->hw;
2471         uint32_t i, mrqc, vmdctl, rxcsum;
2472         uint32_t ring_per_group;
2473         int shift_group0, shift_group1;
2474         uint32_t random;
2475         union e1000_reta {
2476                 uint32_t        dword;
2477                 uint8_t         bytes[4];
2478         } reta;
2479 
2480         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2481 
2482         /* Setup the Redirection Table, it is shared between two groups */
2483         shift_group0 = 2;
2484         shift_group1 = 6;
2485         for (i = 0; i < (32 * 4); i++) {
2486                 reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2487                     ((ring_per_group + (i % ring_per_group)) << shift_group1);
2488                 if ((i & 3) == 3) {
2489                         E1000_WRITE_REG(hw,
2490                             (E1000_RETA(0) + (i & ~3)), reta.dword);
2491                 }
2492         }
2493 
2494         /* Fill out hash function seeds */
2495         for (i = 0; i < 10; i++) {
2496                 (void) random_get_pseudo_bytes((uint8_t *)&random,
2497                     sizeof (uint32_t));
2498                 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2499         }
2500 
2501         /*
2502          * Setup the Multiple Receive Queue Control register,
2503          * enable VMDq based on packet destination MAC address and RSS.
2504          */
2505         mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2506         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2507             E1000_MRQC_RSS_FIELD_IPV4_TCP |
2508             E1000_MRQC_RSS_FIELD_IPV6 |
2509             E1000_MRQC_RSS_FIELD_IPV6_TCP |
2510             E1000_MRQC_RSS_FIELD_IPV4_UDP |
2511             E1000_MRQC_RSS_FIELD_IPV6_UDP |
2512             E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2513             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2514 
2515         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2516 
2517 
2518         /* Define the default group and default queues */
2519         vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2520         E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2521 
2522         /*
2523          * Disable Packet Checksum to enable RSS for multiple receive queues.
2524          *
2525          * The Packet Checksum is not ethernet CRC. It is another kind of
2526          * checksum offloading provided by the 82575 chipset besides the IP
2527          * header checksum offloading and the TCP/UDP checksum offloading.
2528          * The Packet Checksum is by default computed over the entire packet
2529          * from the first byte of the DA through the last byte of the CRC,
2530          * including the Ethernet and IP headers.
2531          *
2532          * It is a hardware limitation that Packet Checksum is mutually
2533          * exclusive with RSS.
2534          */
2535         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2536         rxcsum |= E1000_RXCSUM_PCSD;
2537         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2538 }
2539 
2540 /*
2541  * igb_setup_mac_classify - Setup MAC classification feature
2542  */
2543 static void
2544 igb_setup_mac_classify(igb_t *igb)
2545 {
2546         struct e1000_hw *hw = &igb->hw;
2547         uint32_t mrqc, rxcsum;
2548 
2549         /*
2550          * Setup the Multiple Receive Queue Control register,
2551          * enable VMDq based on packet destination MAC address.
2552          */
2553         mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2554         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2555 
2556         /*
2557          * Disable Packet Checksum to enable RSS for multiple receive queues.
2558          *
2559          * The Packet Checksum is not ethernet CRC. It is another kind of
2560          * checksum offloading provided by the 82575 chipset besides the IP
2561          * header checksum offloading and the TCP/UDP checksum offloading.
2562          * The Packet Checksum is by default computed over the entire packet
2563          * from the first byte of the DA through the last byte of the CRC,
2564          * including the Ethernet and IP headers.
2565          *
2566          * It is a hardware limitation that Packet Checksum is mutually
2567          * exclusive with RSS.
2568          */
2569         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2570         rxcsum |= E1000_RXCSUM_PCSD;
2571         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2572 
2573 }
2574 
2575 /*
2576  * igb_init_unicst - Initialize the unicast addresses
2577  */
2578 static void
2579 igb_init_unicst(igb_t *igb)
2580 {
2581         struct e1000_hw *hw = &igb->hw;
2582         int slot;
2583 
2584         /*
2585          * Here we should consider two situations:
2586          *
2587          * 1. Chipset is initialized the first time
2588          *    Initialize the multiple unicast addresses, and
2589          *    save the default MAC address.
2590          *
2591          * 2. Chipset is reset
2592          *    Recover the multiple unicast addresses from the
2593          *    software data structure to the RAR registers.
2594          */
2595 
2596         /*
2597          * Clear the default MAC address in the RAR0 rgister,
2598          * which is loaded from EEPROM when system boot or chipreset,
2599          * this will cause the conficts with add_mac/rem_mac entry
2600          * points when VMDq is enabled. For this reason, the RAR0
2601          * must be cleared for both cases mentioned above.
2602          */
2603         e1000_rar_clear(hw, 0);
2604 
2605         if (!igb->unicst_init) {
2606 
2607                 /* Initialize the multiple unicast addresses */
2608                 igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2609                 igb->unicst_avail = igb->unicst_total;
2610 
2611                 for (slot = 0; slot < igb->unicst_total; slot++)
2612                         igb->unicst_addr[slot].mac.set = 0;
2613 
2614                 igb->unicst_init = B_TRUE;
2615         } else {
2616                 /* Re-configure the RAR registers */
2617                 for (slot = 0; slot < igb->unicst_total; slot++) {
2618                         e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2619                             slot, igb->vmdq_mode,
2620                             igb->unicst_addr[slot].mac.group_index);
2621                 }
2622         }
2623 }
2624 
2625 /*
2626  * igb_unicst_find - Find the slot for the specified unicast address
2627  */
2628 int
2629 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2630 {
2631         int slot;
2632 
2633         ASSERT(mutex_owned(&igb->gen_lock));
2634 
2635         for (slot = 0; slot < igb->unicst_total; slot++) {
2636                 if (bcmp(igb->unicst_addr[slot].mac.addr,
2637                     mac_addr, ETHERADDRL) == 0)
2638                         return (slot);
2639         }
2640 
2641         return (-1);
2642 }
2643 
2644 /*
2645  * igb_unicst_set - Set the unicast address to the specified slot
2646  */
2647 int
2648 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2649     int slot)
2650 {
2651         struct e1000_hw *hw = &igb->hw;
2652 
2653         ASSERT(mutex_owned(&igb->gen_lock));
2654 
2655         /*
2656          * Save the unicast address in the software data structure
2657          */
2658         bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2659 
2660         /*
2661          * Set the unicast address to the RAR register
2662          */
2663         e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2664 
2665         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2666                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2667                 return (EIO);
2668         }
2669 
2670         return (0);
2671 }
2672 
2673 /*
2674  * igb_multicst_add - Add a multicst address
2675  */
2676 int
2677 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2678 {
2679         struct ether_addr *new_table;
2680         size_t new_len;
2681         size_t old_len;
2682 
2683         ASSERT(mutex_owned(&igb->gen_lock));
2684 
2685         if ((multiaddr[0] & 01) == 0) {
2686                 igb_error(igb, "Illegal multicast address");
2687                 return (EINVAL);
2688         }
2689 
2690         if (igb->mcast_count >= igb->mcast_max_num) {
2691                 igb_error(igb, "Adapter requested more than %d mcast addresses",
2692                     igb->mcast_max_num);
2693                 return (ENOENT);
2694         }
2695 
2696         if (igb->mcast_count == igb->mcast_alloc_count) {
2697                 old_len = igb->mcast_alloc_count *
2698                     sizeof (struct ether_addr);
2699                 new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2700                     sizeof (struct ether_addr);
2701 
2702                 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2703                 if (new_table == NULL) {
2704                         igb_error(igb,
2705                             "Not enough memory to alloc mcast table");
2706                         return (ENOMEM);
2707                 }
2708 
2709                 if (igb->mcast_table != NULL) {
2710                         bcopy(igb->mcast_table, new_table, old_len);
2711                         kmem_free(igb->mcast_table, old_len);
2712                 }
2713                 igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2714                 igb->mcast_table = new_table;
2715         }
2716 
2717         bcopy(multiaddr,
2718             &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2719         igb->mcast_count++;
2720 
2721         /*
2722          * Update the multicast table in the hardware
2723          */
2724         igb_setup_multicst(igb);
2725 
2726         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2727                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2728                 return (EIO);
2729         }
2730 
2731         return (0);
2732 }
2733 
2734 /*
2735  * igb_multicst_remove - Remove a multicst address
2736  */
2737 int
2738 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2739 {
2740         struct ether_addr *new_table;
2741         size_t new_len;
2742         size_t old_len;
2743         int i;
2744 
2745         ASSERT(mutex_owned(&igb->gen_lock));
2746 
2747         for (i = 0; i < igb->mcast_count; i++) {
2748                 if (bcmp(multiaddr, &igb->mcast_table[i],
2749                     ETHERADDRL) == 0) {
2750                         for (i++; i < igb->mcast_count; i++) {
2751                                 igb->mcast_table[i - 1] =
2752                                     igb->mcast_table[i];
2753                         }
2754                         igb->mcast_count--;
2755                         break;
2756                 }
2757         }
2758 
2759         if ((igb->mcast_alloc_count - igb->mcast_count) >
2760             MCAST_ALLOC_COUNT) {
2761                 old_len = igb->mcast_alloc_count *
2762                     sizeof (struct ether_addr);
2763                 new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2764                     sizeof (struct ether_addr);
2765 
2766                 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2767                 if (new_table != NULL) {
2768                         bcopy(igb->mcast_table, new_table, new_len);
2769                         kmem_free(igb->mcast_table, old_len);
2770                         igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2771                         igb->mcast_table = new_table;
2772                 }
2773         }
2774 
2775         /*
2776          * Update the multicast table in the hardware
2777          */
2778         igb_setup_multicst(igb);
2779 
2780         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2781                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2782                 return (EIO);
2783         }
2784 
2785         return (0);
2786 }
2787 
2788 static void
2789 igb_release_multicast(igb_t *igb)
2790 {
2791         if (igb->mcast_table != NULL) {
2792                 kmem_free(igb->mcast_table,
2793                     igb->mcast_alloc_count * sizeof (struct ether_addr));
2794                 igb->mcast_table = NULL;
2795         }
2796 }
2797 
2798 /*
2799  * igb_setup_multicast - setup multicast data structures
2800  *
2801  * This routine initializes all of the multicast related structures
2802  * and save them in the hardware registers.
2803  */
2804 static void
2805 igb_setup_multicst(igb_t *igb)
2806 {
2807         uint8_t *mc_addr_list;
2808         uint32_t mc_addr_count;
2809         struct e1000_hw *hw = &igb->hw;
2810 
2811         ASSERT(mutex_owned(&igb->gen_lock));
2812         ASSERT(igb->mcast_count <= igb->mcast_max_num);
2813 
2814         mc_addr_list = (uint8_t *)igb->mcast_table;
2815         mc_addr_count = igb->mcast_count;
2816 
2817         /*
2818          * Update the multicase addresses to the MTA registers
2819          */
2820         e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2821 }
2822 
2823 /*
2824  * igb_get_conf - Get driver configurations set in driver.conf
2825  *
2826  * This routine gets user-configured values out of the configuration
2827  * file igb.conf.
2828  *
2829  * For each configurable value, there is a minimum, a maximum, and a
2830  * default.
2831  * If user does not configure a value, use the default.
2832  * If user configures below the minimum, use the minumum.
2833  * If user configures above the maximum, use the maxumum.
2834  */
2835 static void
2836 igb_get_conf(igb_t *igb)
2837 {
2838         struct e1000_hw *hw = &igb->hw;
2839         uint32_t default_mtu;
2840         uint32_t flow_control;
2841         uint32_t ring_per_group;
2842         int i;
2843 
2844         /*
2845          * igb driver supports the following user configurations:
2846          *
2847          * Link configurations:
2848          *    adv_autoneg_cap
2849          *    adv_1000fdx_cap
2850          *    adv_100fdx_cap
2851          *    adv_100hdx_cap
2852          *    adv_10fdx_cap
2853          *    adv_10hdx_cap
2854          * Note: 1000hdx is not supported.
2855          *
2856          * Jumbo frame configuration:
2857          *    default_mtu
2858          *
2859          * Ethernet flow control configuration:
2860          *    flow_control
2861          *
2862          * Multiple rings configurations:
2863          *    tx_queue_number
2864          *    tx_ring_size
2865          *    rx_queue_number
2866          *    rx_ring_size
2867          *
2868          * Call igb_get_prop() to get the value for a specific
2869          * configuration parameter.
2870          */
2871 
2872         /*
2873          * Link configurations
2874          */
2875         igb->param_adv_autoneg_cap = igb_get_prop(igb,
2876             PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2877         igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2878             PROP_ADV_1000FDX_CAP, 0, 1, 1);
2879         igb->param_adv_100fdx_cap = igb_get_prop(igb,
2880             PROP_ADV_100FDX_CAP, 0, 1, 1);
2881         igb->param_adv_100hdx_cap = igb_get_prop(igb,
2882             PROP_ADV_100HDX_CAP, 0, 1, 1);
2883         igb->param_adv_10fdx_cap = igb_get_prop(igb,
2884             PROP_ADV_10FDX_CAP, 0, 1, 1);
2885         igb->param_adv_10hdx_cap = igb_get_prop(igb,
2886             PROP_ADV_10HDX_CAP, 0, 1, 1);
2887 
2888         /*
2889          * Jumbo frame configurations
2890          */
2891         default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2892             MIN_MTU, MAX_MTU, DEFAULT_MTU);
2893 
2894         igb->max_frame_size = default_mtu +
2895             sizeof (struct ether_vlan_header) + ETHERFCSL;
2896 
2897         /*
2898          * Ethernet flow control configuration
2899          */
2900         flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2901             e1000_fc_none, 4, e1000_fc_full);
2902         if (flow_control == 4)
2903                 flow_control = e1000_fc_default;
2904 
2905         hw->fc.requested_mode = flow_control;
2906 
2907         /*
2908          * Multiple rings configurations
2909          */
2910         igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2911             MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2912         igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2913             MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2914 
2915         igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2916         igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2917             MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2918         /*
2919          * Currently we do not support VMDq for 82576 and 82580.
2920          * If it is e1000_82576, set num_rx_groups to 1.
2921          */
2922         if (hw->mac.type >= e1000_82576)
2923                 igb->num_rx_groups = 1;
2924 
2925         if (igb->mr_enable) {
2926                 igb->num_tx_rings = igb->capab->def_tx_que_num;
2927                 igb->num_rx_rings = igb->capab->def_rx_que_num;
2928         } else {
2929                 igb->num_tx_rings = 1;
2930                 igb->num_rx_rings = 1;
2931 
2932                 if (igb->num_rx_groups > 1) {
2933                         igb_error(igb,
2934                             "Invalid rx groups number. Please enable multiple "
2935                             "rings first");
2936                         igb->num_rx_groups = 1;
2937                 }
2938         }
2939 
2940         /*
2941          * Check the divisibility between rx rings and rx groups.
2942          */
2943         for (i = igb->num_rx_groups; i > 0; i--) {
2944                 if ((igb->num_rx_rings % i) == 0)
2945                         break;
2946         }
2947         if (i != igb->num_rx_groups) {
2948                 igb_error(igb,
2949                     "Invalid rx groups number. Downgrade the rx group "
2950                     "number to %d.", i);
2951                 igb->num_rx_groups = i;
2952         }
2953 
2954         /*
2955          * Get the ring number per group.
2956          */
2957         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2958 
2959         if (igb->num_rx_groups == 1) {
2960                 /*
2961                  * One rx ring group, the rx ring number is num_rx_rings.
2962                  */
2963                 igb->vmdq_mode = E1000_VMDQ_OFF;
2964         } else if (ring_per_group == 1) {
2965                 /*
2966                  * Multiple rx groups, each group has one rx ring.
2967                  */
2968                 igb->vmdq_mode = E1000_VMDQ_MAC;
2969         } else {
2970                 /*
2971                  * Multiple groups and multiple rings.
2972                  */
2973                 igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2974         }
2975 
2976         /*
2977          * Tunable used to force an interrupt type. The only use is
2978          * for testing of the lesser interrupt types.
2979          * 0 = don't force interrupt type
2980          * 1 = force interrupt type MSIX
2981          * 2 = force interrupt type MSI
2982          * 3 = force interrupt type Legacy
2983          */
2984         igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2985             IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2986 
2987         igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2988             0, 1, 1);
2989         igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2990             0, 1, 1);
2991         igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2992             0, 1, 1);
2993         igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2994             0, 1, 1);
2995 
2996         /*
2997          * igb LSO needs the tx h/w checksum support.
2998          * Here LSO will be disabled if tx h/w checksum has been disabled.
2999          */
3000         if (igb->tx_hcksum_enable == B_FALSE)
3001                 igb->lso_enable = B_FALSE;
3002 
3003         igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
3004             MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
3005             DEFAULT_TX_COPY_THRESHOLD);
3006         igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
3007             MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3008             DEFAULT_TX_RECYCLE_THRESHOLD);
3009         igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
3010             MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
3011             DEFAULT_TX_OVERLOAD_THRESHOLD);
3012         igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
3013             MIN_TX_RESCHED_THRESHOLD,
3014             MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
3015             igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
3016             DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
3017 
3018         igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
3019             MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
3020             DEFAULT_RX_COPY_THRESHOLD);
3021         igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
3022             MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
3023             DEFAULT_RX_LIMIT_PER_INTR);
3024 
3025         igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
3026             igb->capab->min_intr_throttle,
3027             igb->capab->max_intr_throttle,
3028             igb->capab->def_intr_throttle);
3029 
3030         /*
3031          * Max number of multicast addresses
3032          */
3033         igb->mcast_max_num =
3034             igb_get_prop(igb, PROP_MCAST_MAX_NUM,
3035             MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
3036 }
3037 
3038 /*
3039  * igb_get_prop - Get a property value out of the configuration file igb.conf
3040  *
3041  * Caller provides the name of the property, a default value, a minimum
3042  * value, and a maximum value.
3043  *
3044  * Return configured value of the property, with default, minimum and
3045  * maximum properly applied.
3046  */
3047 static int
3048 igb_get_prop(igb_t *igb,
3049     char *propname,     /* name of the property */
3050     int minval,         /* minimum acceptable value */
3051     int maxval,         /* maximim acceptable value */
3052     int defval)         /* default value */
3053 {
3054         int value;
3055 
3056         /*
3057          * Call ddi_prop_get_int() to read the conf settings
3058          */
3059         value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
3060             DDI_PROP_DONTPASS, propname, defval);
3061 
3062         if (value > maxval)
3063                 value = maxval;
3064 
3065         if (value < minval)
3066                 value = minval;
3067 
3068         return (value);
3069 }
3070 
3071 /*
3072  * igb_setup_link - Using the link properties to setup the link
3073  */
3074 int
3075 igb_setup_link(igb_t *igb, boolean_t setup_hw)
3076 {
3077         struct e1000_mac_info *mac;
3078         struct e1000_phy_info *phy;
3079         boolean_t invalid;
3080 
3081         mac = &igb->hw.mac;
3082         phy = &igb->hw.phy;
3083         invalid = B_FALSE;
3084 
3085         if (igb->param_adv_autoneg_cap == 1) {
3086                 mac->autoneg = B_TRUE;
3087                 phy->autoneg_advertised = 0;
3088 
3089                 /*
3090                  * 1000hdx is not supported for autonegotiation
3091                  */
3092                 if (igb->param_adv_1000fdx_cap == 1)
3093                         phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3094 
3095                 if (igb->param_adv_100fdx_cap == 1)
3096                         phy->autoneg_advertised |= ADVERTISE_100_FULL;
3097 
3098                 if (igb->param_adv_100hdx_cap == 1)
3099                         phy->autoneg_advertised |= ADVERTISE_100_HALF;
3100 
3101                 if (igb->param_adv_10fdx_cap == 1)
3102                         phy->autoneg_advertised |= ADVERTISE_10_FULL;
3103 
3104                 if (igb->param_adv_10hdx_cap == 1)
3105                         phy->autoneg_advertised |= ADVERTISE_10_HALF;
3106 
3107                 if (phy->autoneg_advertised == 0)
3108                         invalid = B_TRUE;
3109         } else {
3110                 mac->autoneg = B_FALSE;
3111 
3112                 /*
3113                  * 1000fdx and 1000hdx are not supported for forced link
3114                  */
3115                 if (igb->param_adv_100fdx_cap == 1)
3116                         mac->forced_speed_duplex = ADVERTISE_100_FULL;
3117                 else if (igb->param_adv_100hdx_cap == 1)
3118                         mac->forced_speed_duplex = ADVERTISE_100_HALF;
3119                 else if (igb->param_adv_10fdx_cap == 1)
3120                         mac->forced_speed_duplex = ADVERTISE_10_FULL;
3121                 else if (igb->param_adv_10hdx_cap == 1)
3122                         mac->forced_speed_duplex = ADVERTISE_10_HALF;
3123                 else
3124                         invalid = B_TRUE;
3125         }
3126 
3127         if (invalid) {
3128                 igb_notice(igb, "Invalid link settings. Setup link to "
3129                     "autonegotiation with full link capabilities.");
3130                 mac->autoneg = B_TRUE;
3131                 phy->autoneg_advertised = ADVERTISE_1000_FULL |
3132                     ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3133                     ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3134         }
3135 
3136         if (setup_hw) {
3137                 if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
3138                         return (IGB_FAILURE);
3139         }
3140 
3141         return (IGB_SUCCESS);
3142 }
3143 
3144 
3145 /*
3146  * igb_is_link_up - Check if the link is up
3147  */
3148 static boolean_t
3149 igb_is_link_up(igb_t *igb)
3150 {
3151         struct e1000_hw *hw = &igb->hw;
3152         boolean_t link_up = B_FALSE;
3153 
3154         ASSERT(mutex_owned(&igb->gen_lock));
3155 
3156         /*
3157          * get_link_status is set in the interrupt handler on link-status-change
3158          * or rx sequence error interrupt.  get_link_status will stay
3159          * false until the e1000_check_for_link establishes link only
3160          * for copper adapters.
3161          */
3162         switch (hw->phy.media_type) {
3163         case e1000_media_type_copper:
3164                 if (hw->mac.get_link_status) {
3165                         (void) e1000_check_for_link(hw);
3166                         link_up = !hw->mac.get_link_status;
3167                 } else {
3168                         link_up = B_TRUE;
3169                 }
3170                 break;
3171         case e1000_media_type_fiber:
3172                 (void) e1000_check_for_link(hw);
3173                 link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3174                 break;
3175         case e1000_media_type_internal_serdes:
3176                 (void) e1000_check_for_link(hw);
3177                 link_up = hw->mac.serdes_has_link;
3178                 break;
3179         }
3180 
3181         return (link_up);
3182 }
3183 
3184 /*
3185  * igb_link_check - Link status processing
3186  */
3187 static boolean_t
3188 igb_link_check(igb_t *igb)
3189 {
3190         struct e1000_hw *hw = &igb->hw;
3191         uint16_t speed = 0, duplex = 0;
3192         boolean_t link_changed = B_FALSE;
3193 
3194         ASSERT(mutex_owned(&igb->gen_lock));
3195 
3196         if (igb_is_link_up(igb)) {
3197                 /*
3198                  * The Link is up, check whether it was marked as down earlier
3199                  */
3200                 if (igb->link_state != LINK_STATE_UP) {
3201                         (void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3202                         igb->link_speed = speed;
3203                         igb->link_duplex = duplex;
3204                         igb->link_state = LINK_STATE_UP;
3205                         link_changed = B_TRUE;
3206                         if (!igb->link_complete)
3207                                 igb_stop_link_timer(igb);
3208                 }
3209         } else if (igb->link_complete) {
3210                 if (igb->link_state != LINK_STATE_DOWN) {
3211                         igb->link_speed = 0;
3212                         igb->link_duplex = 0;
3213                         igb->link_state = LINK_STATE_DOWN;
3214                         link_changed = B_TRUE;
3215                 }
3216         }
3217 
3218         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3219                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3220                 return (B_FALSE);
3221         }
3222 
3223         return (link_changed);
3224 }
3225 
3226 /*
3227  * igb_local_timer - driver watchdog function
3228  *
3229  * This function will handle the hardware stall check, link status
3230  * check and other routines.
3231  */
3232 static void
3233 igb_local_timer(void *arg)
3234 {
3235         igb_t *igb = (igb_t *)arg;
3236         boolean_t link_changed = B_FALSE;
3237 
3238         if (igb->igb_state & IGB_ERROR) {
3239                 igb->reset_count++;
3240                 if (igb_reset(igb) == IGB_SUCCESS)
3241                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3242 
3243                 igb_restart_watchdog_timer(igb);
3244                 return;
3245         }
3246 
3247         if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3248                 igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3249                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3250                 igb->reset_count++;
3251                 if (igb_reset(igb) == IGB_SUCCESS)
3252                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3253 
3254                 igb_restart_watchdog_timer(igb);
3255                 return;
3256         }
3257 
3258         mutex_enter(&igb->gen_lock);
3259         if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3260                 link_changed = igb_link_check(igb);
3261         mutex_exit(&igb->gen_lock);
3262 
3263         if (link_changed)
3264                 mac_link_update(igb->mac_hdl, igb->link_state);
3265 
3266         igb_restart_watchdog_timer(igb);
3267 }
3268 
3269 /*
3270  * igb_link_timer - link setup timer function
3271  *
3272  * It is called when the timer for link setup is expired, which indicates
3273  * the completion of the link setup. The link state will not be updated
3274  * until the link setup is completed. And the link state will not be sent
3275  * to the upper layer through mac_link_update() in this function. It will
3276  * be updated in the local timer routine or the interrupts service routine
3277  * after the interface is started (plumbed).
3278  */
3279 static void
3280 igb_link_timer(void *arg)
3281 {
3282         igb_t *igb = (igb_t *)arg;
3283 
3284         mutex_enter(&igb->link_lock);
3285         igb->link_complete = B_TRUE;
3286         igb->link_tid = 0;
3287         mutex_exit(&igb->link_lock);
3288 }
3289 /*
3290  * igb_stall_check - check for transmit stall
3291  *
3292  * This function checks if the adapter is stalled (in transmit).
3293  *
3294  * It is called each time the watchdog timeout is invoked.
3295  * If the transmit descriptor reclaim continuously fails,
3296  * the watchdog value will increment by 1. If the watchdog
3297  * value exceeds the threshold, the igb is assumed to
3298  * have stalled and need to be reset.
3299  */
3300 static boolean_t
3301 igb_stall_check(igb_t *igb)
3302 {
3303         igb_tx_ring_t *tx_ring;
3304         struct e1000_hw *hw = &igb->hw;
3305         boolean_t result;
3306         int i;
3307 
3308         if (igb->link_state != LINK_STATE_UP)
3309                 return (B_FALSE);
3310 
3311         /*
3312          * If any tx ring is stalled, we'll reset the chipset
3313          */
3314         result = B_FALSE;
3315         for (i = 0; i < igb->num_tx_rings; i++) {
3316                 tx_ring = &igb->tx_rings[i];
3317 
3318                 if (tx_ring->recycle_fail > 0)
3319                         tx_ring->stall_watchdog++;
3320                 else
3321                         tx_ring->stall_watchdog = 0;
3322 
3323                 if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3324                         result = B_TRUE;
3325                         if (hw->mac.type == e1000_82580) {
3326                                 hw->dev_spec._82575.global_device_reset
3327                                     = B_TRUE;
3328                         }
3329                         break;
3330                 }
3331         }
3332 
3333         if (result) {
3334                 tx_ring->stall_watchdog = 0;
3335                 tx_ring->recycle_fail = 0;
3336         }
3337 
3338         return (result);
3339 }
3340 
3341 
3342 /*
3343  * is_valid_mac_addr - Check if the mac address is valid
3344  */
3345 static boolean_t
3346 is_valid_mac_addr(uint8_t *mac_addr)
3347 {
3348         const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3349         const uint8_t addr_test2[6] =
3350             { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3351 
3352         if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3353             !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3354                 return (B_FALSE);
3355 
3356         return (B_TRUE);
3357 }
3358 
3359 static boolean_t
3360 igb_find_mac_address(igb_t *igb)
3361 {
3362         struct e1000_hw *hw = &igb->hw;
3363 #ifdef __sparc
3364         uchar_t *bytes;
3365         struct ether_addr sysaddr;
3366         uint_t nelts;
3367         int err;
3368         boolean_t found = B_FALSE;
3369 
3370         /*
3371          * The "vendor's factory-set address" may already have
3372          * been extracted from the chip, but if the property
3373          * "local-mac-address" is set we use that instead.
3374          *
3375          * We check whether it looks like an array of 6
3376          * bytes (which it should, if OBP set it).  If we can't
3377          * make sense of it this way, we'll ignore it.
3378          */
3379         err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3380             DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3381         if (err == DDI_PROP_SUCCESS) {
3382                 if (nelts == ETHERADDRL) {
3383                         while (nelts--)
3384                                 hw->mac.addr[nelts] = bytes[nelts];
3385                         found = B_TRUE;
3386                 }
3387                 ddi_prop_free(bytes);
3388         }
3389 
3390         /*
3391          * Look up the OBP property "local-mac-address?". If the user has set
3392          * 'local-mac-address? = false', use "the system address" instead.
3393          */
3394         if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3395             "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3396                 if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3397                         if (localetheraddr(NULL, &sysaddr) != 0) {
3398                                 bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3399                                 found = B_TRUE;
3400                         }
3401                 }
3402                 ddi_prop_free(bytes);
3403         }
3404 
3405         /*
3406          * Finally(!), if there's a valid "mac-address" property (created
3407          * if we netbooted from this interface), we must use this instead
3408          * of any of the above to ensure that the NFS/install server doesn't
3409          * get confused by the address changing as Solaris takes over!
3410          */
3411         err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3412             DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3413         if (err == DDI_PROP_SUCCESS) {
3414                 if (nelts == ETHERADDRL) {
3415                         while (nelts--)
3416                                 hw->mac.addr[nelts] = bytes[nelts];
3417                         found = B_TRUE;
3418                 }
3419                 ddi_prop_free(bytes);
3420         }
3421 
3422         if (found) {
3423                 bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3424                 return (B_TRUE);
3425         }
3426 #endif
3427 
3428         /*
3429          * Read the device MAC address from the EEPROM
3430          */
3431         if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3432                 return (B_FALSE);
3433 
3434         return (B_TRUE);
3435 }
3436 
3437 #pragma inline(igb_arm_watchdog_timer)
3438 
3439 static void
3440 igb_arm_watchdog_timer(igb_t *igb)
3441 {
3442         /*
3443          * Fire a watchdog timer
3444          */
3445         igb->watchdog_tid =
3446             timeout(igb_local_timer,
3447             (void *)igb, 1 * drv_usectohz(1000000));
3448 
3449 }
3450 
3451 /*
3452  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3453  */
3454 void
3455 igb_enable_watchdog_timer(igb_t *igb)
3456 {
3457         mutex_enter(&igb->watchdog_lock);
3458 
3459         if (!igb->watchdog_enable) {
3460                 igb->watchdog_enable = B_TRUE;
3461                 igb->watchdog_start = B_TRUE;
3462                 igb_arm_watchdog_timer(igb);
3463         }
3464 
3465         mutex_exit(&igb->watchdog_lock);
3466 
3467 }
3468 
3469 /*
3470  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3471  */
3472 void
3473 igb_disable_watchdog_timer(igb_t *igb)
3474 {
3475         timeout_id_t tid;
3476 
3477         mutex_enter(&igb->watchdog_lock);
3478 
3479         igb->watchdog_enable = B_FALSE;
3480         igb->watchdog_start = B_FALSE;
3481         tid = igb->watchdog_tid;
3482         igb->watchdog_tid = 0;
3483 
3484         mutex_exit(&igb->watchdog_lock);
3485 
3486         if (tid != 0)
3487                 (void) untimeout(tid);
3488 
3489 }
3490 
3491 /*
3492  * igb_start_watchdog_timer - Start the driver watchdog timer
3493  */
3494 static void
3495 igb_start_watchdog_timer(igb_t *igb)
3496 {
3497         mutex_enter(&igb->watchdog_lock);
3498 
3499         if (igb->watchdog_enable) {
3500                 if (!igb->watchdog_start) {
3501                         igb->watchdog_start = B_TRUE;
3502                         igb_arm_watchdog_timer(igb);
3503                 }
3504         }
3505 
3506         mutex_exit(&igb->watchdog_lock);
3507 }
3508 
3509 /*
3510  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3511  */
3512 static void
3513 igb_restart_watchdog_timer(igb_t *igb)
3514 {
3515         mutex_enter(&igb->watchdog_lock);
3516 
3517         if (igb->watchdog_start)
3518                 igb_arm_watchdog_timer(igb);
3519 
3520         mutex_exit(&igb->watchdog_lock);
3521 }
3522 
3523 /*
3524  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3525  */
3526 static void
3527 igb_stop_watchdog_timer(igb_t *igb)
3528 {
3529         timeout_id_t tid;
3530 
3531         mutex_enter(&igb->watchdog_lock);
3532 
3533         igb->watchdog_start = B_FALSE;
3534         tid = igb->watchdog_tid;
3535         igb->watchdog_tid = 0;
3536 
3537         mutex_exit(&igb->watchdog_lock);
3538 
3539         if (tid != 0)
3540                 (void) untimeout(tid);
3541 }
3542 
3543 /*
3544  * igb_start_link_timer - Start the link setup timer
3545  */
3546 static void
3547 igb_start_link_timer(struct igb *igb)
3548 {
3549         struct e1000_hw *hw = &igb->hw;
3550         clock_t link_timeout;
3551 
3552         if (hw->mac.autoneg)
3553                 link_timeout = PHY_AUTO_NEG_LIMIT *
3554                     drv_usectohz(100000);
3555         else
3556                 link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3557 
3558         mutex_enter(&igb->link_lock);
3559         if (hw->phy.autoneg_wait_to_complete) {
3560                 igb->link_complete = B_TRUE;
3561         } else {
3562                 igb->link_complete = B_FALSE;
3563                 igb->link_tid = timeout(igb_link_timer, (void *)igb,
3564                     link_timeout);
3565         }
3566         mutex_exit(&igb->link_lock);
3567 }
3568 
3569 /*
3570  * igb_stop_link_timer - Stop the link setup timer
3571  */
3572 static void
3573 igb_stop_link_timer(struct igb *igb)
3574 {
3575         timeout_id_t tid;
3576 
3577         mutex_enter(&igb->link_lock);
3578         igb->link_complete = B_TRUE;
3579         tid = igb->link_tid;
3580         igb->link_tid = 0;
3581         mutex_exit(&igb->link_lock);
3582 
3583         if (tid != 0)
3584                 (void) untimeout(tid);
3585 }
3586 
3587 /*
3588  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3589  */
3590 static void
3591 igb_disable_adapter_interrupts(igb_t *igb)
3592 {
3593         struct e1000_hw *hw = &igb->hw;
3594 
3595         /*
3596          * Set the IMC register to mask all the interrupts,
3597          * including the tx interrupts.
3598          */
3599         E1000_WRITE_REG(hw, E1000_IMC, ~0);
3600         E1000_WRITE_REG(hw, E1000_IAM, 0);
3601 
3602         /*
3603          * Additional disabling for MSI-X
3604          */
3605         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3606                 E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3607                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3608                 E1000_WRITE_REG(hw, E1000_EIAM, 0);
3609         }
3610 
3611         E1000_WRITE_FLUSH(hw);
3612 }
3613 
3614 /*
3615  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3616  */
3617 static void
3618 igb_enable_adapter_interrupts_82580(igb_t *igb)
3619 {
3620         struct e1000_hw *hw = &igb->hw;
3621 
3622         /* Clear any pending interrupts */
3623         (void) E1000_READ_REG(hw, E1000_ICR);
3624         igb->ims_mask |= E1000_IMS_DRSTA;
3625 
3626         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3627 
3628                 /* Interrupt enabling for MSI-X */
3629                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3630                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3631                 igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3632                 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3633         } else { /* Interrupt enabling for MSI and legacy */
3634                 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3635                 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3636                 igb->ims_mask |= E1000_IMS_DRSTA;
3637                 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3638         }
3639 
3640         /* Disable auto-mask for ICR interrupt bits */
3641         E1000_WRITE_REG(hw, E1000_IAM, 0);
3642 
3643         E1000_WRITE_FLUSH(hw);
3644 }
3645 
3646 /*
3647  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3648  */
3649 static void
3650 igb_enable_adapter_interrupts_82576(igb_t *igb)
3651 {
3652         struct e1000_hw *hw = &igb->hw;
3653 
3654         /* Clear any pending interrupts */
3655         (void) E1000_READ_REG(hw, E1000_ICR);
3656 
3657         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3658 
3659                 /* Interrupt enabling for MSI-X */
3660                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3661                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3662                 igb->ims_mask = E1000_IMS_LSC;
3663                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3664         } else {
3665                 /* Interrupt enabling for MSI and legacy */
3666                 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3667                 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3668                 E1000_WRITE_REG(hw, E1000_IMS,
3669                     (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3670         }
3671 
3672         /* Disable auto-mask for ICR interrupt bits */
3673         E1000_WRITE_REG(hw, E1000_IAM, 0);
3674 
3675         E1000_WRITE_FLUSH(hw);
3676 }
3677 
3678 /*
3679  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3680  */
3681 static void
3682 igb_enable_adapter_interrupts_82575(igb_t *igb)
3683 {
3684         struct e1000_hw *hw = &igb->hw;
3685         uint32_t reg;
3686 
3687         /* Clear any pending interrupts */
3688         (void) E1000_READ_REG(hw, E1000_ICR);
3689 
3690         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3691                 /* Interrupt enabling for MSI-X */
3692                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3693                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3694                 igb->ims_mask = E1000_IMS_LSC;
3695                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3696 
3697                 /* Enable MSI-X PBA support */
3698                 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3699                 reg |= E1000_CTRL_EXT_PBA_CLR;
3700 
3701                 /* Non-selective interrupt clear-on-read */
3702                 reg |= E1000_CTRL_EXT_IRCA;     /* Called NSICR in the EAS */
3703 
3704                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3705         } else {
3706                 /* Interrupt enabling for MSI and legacy */
3707                 igb->ims_mask = IMS_ENABLE_MASK;
3708                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3709         }
3710 
3711         E1000_WRITE_FLUSH(hw);
3712 }
3713 
3714 /*
3715  * Loopback Support
3716  */
3717 static lb_property_t lb_normal =
3718         { normal,       "normal",       IGB_LB_NONE             };
3719 static lb_property_t lb_external =
3720         { external,     "External",     IGB_LB_EXTERNAL         };
3721 static lb_property_t lb_phy =
3722         { internal,     "PHY",          IGB_LB_INTERNAL_PHY     };
3723 static lb_property_t lb_serdes =
3724         { internal,     "SerDes",       IGB_LB_INTERNAL_SERDES  };
3725 
3726 enum ioc_reply
3727 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3728 {
3729         lb_info_sz_t *lbsp;
3730         lb_property_t *lbpp;
3731         struct e1000_hw *hw;
3732         uint32_t *lbmp;
3733         uint32_t size;
3734         uint32_t value;
3735 
3736         hw = &igb->hw;
3737 
3738         if (mp->b_cont == NULL)
3739                 return (IOC_INVAL);
3740 
3741         switch (iocp->ioc_cmd) {
3742         default:
3743                 return (IOC_INVAL);
3744 
3745         case LB_GET_INFO_SIZE:
3746                 size = sizeof (lb_info_sz_t);
3747                 if (iocp->ioc_count != size)
3748                         return (IOC_INVAL);
3749 
3750                 value = sizeof (lb_normal);
3751                 if (hw->phy.media_type == e1000_media_type_copper)
3752                         value += sizeof (lb_phy);
3753                 else
3754                         value += sizeof (lb_serdes);
3755                 value += sizeof (lb_external);
3756 
3757                 lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3758                 *lbsp = value;
3759                 break;
3760 
3761         case LB_GET_INFO:
3762                 value = sizeof (lb_normal);
3763                 if (hw->phy.media_type == e1000_media_type_copper)
3764                         value += sizeof (lb_phy);
3765                 else
3766                         value += sizeof (lb_serdes);
3767                 value += sizeof (lb_external);
3768 
3769                 size = value;
3770                 if (iocp->ioc_count != size)
3771                         return (IOC_INVAL);
3772 
3773                 value = 0;
3774                 lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3775 
3776                 lbpp[value++] = lb_normal;
3777                 if (hw->phy.media_type == e1000_media_type_copper)
3778                         lbpp[value++] = lb_phy;
3779                 else
3780                         lbpp[value++] = lb_serdes;
3781                 lbpp[value++] = lb_external;
3782                 break;
3783 
3784         case LB_GET_MODE:
3785                 size = sizeof (uint32_t);
3786                 if (iocp->ioc_count != size)
3787                         return (IOC_INVAL);
3788 
3789                 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3790                 *lbmp = igb->loopback_mode;
3791                 break;
3792 
3793         case LB_SET_MODE:
3794                 size = 0;
3795                 if (iocp->ioc_count != sizeof (uint32_t))
3796                         return (IOC_INVAL);
3797 
3798                 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3799                 if (!igb_set_loopback_mode(igb, *lbmp))
3800                         return (IOC_INVAL);
3801                 break;
3802         }
3803 
3804         iocp->ioc_count = size;
3805         iocp->ioc_error = 0;
3806 
3807         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3808                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3809                 return (IOC_INVAL);
3810         }
3811 
3812         return (IOC_REPLY);
3813 }
3814 
3815 /*
3816  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3817  */
3818 static boolean_t
3819 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3820 {
3821         struct e1000_hw *hw;
3822         int i;
3823 
3824         if (mode == igb->loopback_mode)
3825                 return (B_TRUE);
3826 
3827         hw = &igb->hw;
3828 
3829         igb->loopback_mode = mode;
3830 
3831         if (mode == IGB_LB_NONE) {
3832                 /* Reset the chip */
3833                 hw->phy.autoneg_wait_to_complete = B_TRUE;
3834                 (void) igb_reset(igb);
3835                 hw->phy.autoneg_wait_to_complete = B_FALSE;
3836                 return (B_TRUE);
3837         }
3838 
3839         mutex_enter(&igb->gen_lock);
3840 
3841         switch (mode) {
3842         default:
3843                 mutex_exit(&igb->gen_lock);
3844                 return (B_FALSE);
3845 
3846         case IGB_LB_EXTERNAL:
3847                 igb_set_external_loopback(igb);
3848                 break;
3849 
3850         case IGB_LB_INTERNAL_PHY:
3851                 igb_set_internal_phy_loopback(igb);
3852                 break;
3853 
3854         case IGB_LB_INTERNAL_SERDES:
3855                 igb_set_internal_serdes_loopback(igb);
3856                 break;
3857         }
3858 
3859         mutex_exit(&igb->gen_lock);
3860 
3861         /*
3862          * When external loopback is set, wait up to 1000ms to get the link up.
3863          * According to test, 1000ms can work and it's an experimental value.
3864          */
3865         if (mode == IGB_LB_EXTERNAL) {
3866                 for (i = 0; i <= 10; i++) {
3867                         mutex_enter(&igb->gen_lock);
3868                         (void) igb_link_check(igb);
3869                         mutex_exit(&igb->gen_lock);
3870 
3871                         if (igb->link_state == LINK_STATE_UP)
3872                                 break;
3873 
3874                         msec_delay(100);
3875                 }
3876 
3877                 if (igb->link_state != LINK_STATE_UP) {
3878                         /*
3879                          * Does not support external loopback.
3880                          * Reset driver to loopback none.
3881                          */
3882                         igb->loopback_mode = IGB_LB_NONE;
3883 
3884                         /* Reset the chip */
3885                         hw->phy.autoneg_wait_to_complete = B_TRUE;
3886                         (void) igb_reset(igb);
3887                         hw->phy.autoneg_wait_to_complete = B_FALSE;
3888 
3889                         IGB_DEBUGLOG_0(igb, "Set external loopback failed, "
3890                             "reset to loopback none.");
3891 
3892                         return (B_FALSE);
3893                 }
3894         }
3895 
3896         return (B_TRUE);
3897 }
3898 
3899 /*
3900  * igb_set_external_loopback - Set the external loopback mode
3901  */
3902 static void
3903 igb_set_external_loopback(igb_t *igb)
3904 {
3905         struct e1000_hw *hw;
3906         uint32_t ctrl_ext;
3907 
3908         hw = &igb->hw;
3909 
3910         /* Set link mode to PHY (00b) in the Extended Control register */
3911         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3912         ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3913         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3914 
3915         (void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3916         (void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3917         (void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3918         (void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3919 }
3920 
3921 /*
3922  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3923  */
3924 static void
3925 igb_set_internal_phy_loopback(igb_t *igb)
3926 {
3927         struct e1000_hw *hw;
3928         uint32_t ctrl_ext;
3929         uint16_t phy_ctrl;
3930         uint16_t phy_pconf;
3931 
3932         hw = &igb->hw;
3933 
3934         /* Set link mode to PHY (00b) in the Extended Control register */
3935         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3936         ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3937         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3938 
3939         /*
3940          * Set PHY control register (0x4140):
3941          *    Set full duplex mode
3942          *    Set loopback bit
3943          *    Clear auto-neg enable bit
3944          *    Set PHY speed
3945          */
3946         phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3947         (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3948 
3949         /* Set the link disable bit in the Port Configuration register */
3950         (void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3951         phy_pconf |= (uint16_t)1 << 14;
3952         (void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3953 }
3954 
3955 /*
3956  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3957  */
3958 static void
3959 igb_set_internal_serdes_loopback(igb_t *igb)
3960 {
3961         struct e1000_hw *hw;
3962         uint32_t ctrl_ext;
3963         uint32_t ctrl;
3964         uint32_t pcs_lctl;
3965         uint32_t connsw;
3966 
3967         hw = &igb->hw;
3968 
3969         /* Set link mode to SerDes (11b) in the Extended Control register */
3970         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3971         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3972         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3973 
3974         /* Configure the SerDes to loopback */
3975         E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3976 
3977         /* Set Device Control register */
3978         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3979         ctrl |= (E1000_CTRL_FD |        /* Force full duplex */
3980             E1000_CTRL_SLU);            /* Force link up */
3981         ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */
3982             E1000_CTRL_TFCE |           /* Disable transmit flow control */
3983             E1000_CTRL_LRST);           /* Clear link reset */
3984         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3985 
3986         /* Set PCS Link Control register */
3987         pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3988         pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3989             E1000_PCS_LCTL_FSD |
3990             E1000_PCS_LCTL_FDV_FULL |
3991             E1000_PCS_LCTL_FLV_LINK_UP);
3992         pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3993         E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3994 
3995         /* Set the Copper/Fiber Switch Control - CONNSW register */
3996         connsw = E1000_READ_REG(hw, E1000_CONNSW);
3997         connsw &= ~E1000_CONNSW_ENRGSRC;
3998         E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3999 }
4000 
4001 #pragma inline(igb_intr_rx_work)
4002 /*
4003  * igb_intr_rx_work - rx processing of ISR
4004  */
4005 static void
4006 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
4007 {
4008         mblk_t *mp;
4009 
4010         mutex_enter(&rx_ring->rx_lock);
4011         mp = igb_rx(rx_ring, IGB_NO_POLL);
4012         mutex_exit(&rx_ring->rx_lock);
4013 
4014         if (mp != NULL)
4015                 mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
4016                     rx_ring->ring_gen_num);
4017 }
4018 
4019 #pragma inline(igb_intr_tx_work)
4020 /*
4021  * igb_intr_tx_work - tx processing of ISR
4022  */
4023 static void
4024 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
4025 {
4026         igb_t *igb = tx_ring->igb;
4027 
4028         /* Recycle the tx descriptors */
4029         tx_ring->tx_recycle(tx_ring);
4030 
4031         /* Schedule the re-transmit */
4032         if (tx_ring->reschedule &&
4033             (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
4034                 tx_ring->reschedule = B_FALSE;
4035                 mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
4036                 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4037         }
4038 }
4039 
4040 #pragma inline(igb_intr_link_work)
4041 /*
4042  * igb_intr_link_work - link-status-change processing of ISR
4043  */
4044 static void
4045 igb_intr_link_work(igb_t *igb)
4046 {
4047         boolean_t link_changed;
4048 
4049         igb_stop_watchdog_timer(igb);
4050 
4051         mutex_enter(&igb->gen_lock);
4052 
4053         /*
4054          * Because we got a link-status-change interrupt, force
4055          * e1000_check_for_link() to look at phy
4056          */
4057         igb->hw.mac.get_link_status = B_TRUE;
4058 
4059         /* igb_link_check takes care of link status change */
4060         link_changed = igb_link_check(igb);
4061 
4062         /* Get new phy state */
4063         igb_get_phy_state(igb);
4064 
4065         mutex_exit(&igb->gen_lock);
4066 
4067         if (link_changed)
4068                 mac_link_update(igb->mac_hdl, igb->link_state);
4069 
4070         igb_start_watchdog_timer(igb);
4071 }
4072 
4073 /*
4074  * igb_intr_legacy - Interrupt handler for legacy interrupts
4075  */
4076 static uint_t
4077 igb_intr_legacy(void *arg1, void *arg2)
4078 {
4079         igb_t *igb = (igb_t *)arg1;
4080         igb_tx_ring_t *tx_ring;
4081         uint32_t icr;
4082         mblk_t *mp;
4083         boolean_t tx_reschedule;
4084         boolean_t link_changed;
4085         uint_t result;
4086 
4087         _NOTE(ARGUNUSED(arg2));
4088 
4089         mutex_enter(&igb->gen_lock);
4090 
4091         if (igb->igb_state & IGB_SUSPENDED) {
4092                 mutex_exit(&igb->gen_lock);
4093                 return (DDI_INTR_UNCLAIMED);
4094         }
4095 
4096         mp = NULL;
4097         tx_reschedule = B_FALSE;
4098         link_changed = B_FALSE;
4099         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4100 
4101         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4102                 mutex_exit(&igb->gen_lock);
4103                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4104                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4105                 return (DDI_INTR_UNCLAIMED);
4106         }
4107 
4108         if (icr & E1000_ICR_INT_ASSERTED) {
4109                 /*
4110                  * E1000_ICR_INT_ASSERTED bit was set:
4111                  * Read(Clear) the ICR, claim this interrupt,
4112                  * look for work to do.
4113                  */
4114                 ASSERT(igb->num_rx_rings == 1);
4115                 ASSERT(igb->num_tx_rings == 1);
4116 
4117                 /* Make sure all interrupt causes cleared */
4118                 (void) E1000_READ_REG(&igb->hw, E1000_EICR);
4119 
4120                 if (icr & E1000_ICR_RXT0) {
4121                         mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
4122                 }
4123 
4124                 if (icr & E1000_ICR_TXDW) {
4125                         tx_ring = &igb->tx_rings[0];
4126 
4127                         /* Recycle the tx descriptors */
4128                         tx_ring->tx_recycle(tx_ring);
4129 
4130                         /* Schedule the re-transmit */
4131                         tx_reschedule = (tx_ring->reschedule &&
4132                             (tx_ring->tbd_free >= igb->tx_resched_thresh));
4133                 }
4134 
4135                 if (icr & E1000_ICR_LSC) {
4136                         /*
4137                          * Because we got a link-status-change interrupt, force
4138                          * e1000_check_for_link() to look at phy
4139                          */
4140                         igb->hw.mac.get_link_status = B_TRUE;
4141 
4142                         /* igb_link_check takes care of link status change */
4143                         link_changed = igb_link_check(igb);
4144 
4145                         /* Get new phy state */
4146                         igb_get_phy_state(igb);
4147                 }
4148 
4149                 if (icr & E1000_ICR_DRSTA) {
4150                         /* 82580 Full Device Reset needed */
4151                         atomic_or_32(&igb->igb_state, IGB_STALL);
4152                 }
4153 
4154                 result = DDI_INTR_CLAIMED;
4155         } else {
4156                 /*
4157                  * E1000_ICR_INT_ASSERTED bit was not set:
4158                  * Don't claim this interrupt.
4159                  */
4160                 result = DDI_INTR_UNCLAIMED;
4161         }
4162 
4163         mutex_exit(&igb->gen_lock);
4164 
4165         /*
4166          * Do the following work outside of the gen_lock
4167          */
4168         if (mp != NULL)
4169                 mac_rx(igb->mac_hdl, NULL, mp);
4170 
4171         if (tx_reschedule)  {
4172                 tx_ring->reschedule = B_FALSE;
4173                 mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4174                 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4175         }
4176 
4177         if (link_changed)
4178                 mac_link_update(igb->mac_hdl, igb->link_state);
4179 
4180         return (result);
4181 }
4182 
4183 /*
4184  * igb_intr_msi - Interrupt handler for MSI
4185  */
4186 static uint_t
4187 igb_intr_msi(void *arg1, void *arg2)
4188 {
4189         igb_t *igb = (igb_t *)arg1;
4190         uint32_t icr;
4191 
4192         _NOTE(ARGUNUSED(arg2));
4193 
4194         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4195 
4196         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4197                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4198                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4199                 return (DDI_INTR_CLAIMED);
4200         }
4201 
4202         /* Make sure all interrupt causes cleared */
4203         (void) E1000_READ_REG(&igb->hw, E1000_EICR);
4204 
4205         /*
4206          * For MSI interrupt, we have only one vector,
4207          * so we have only one rx ring and one tx ring enabled.
4208          */
4209         ASSERT(igb->num_rx_rings == 1);
4210         ASSERT(igb->num_tx_rings == 1);
4211 
4212         if (icr & E1000_ICR_RXT0) {
4213                 igb_intr_rx_work(&igb->rx_rings[0]);
4214         }
4215 
4216         if (icr & E1000_ICR_TXDW) {
4217                 igb_intr_tx_work(&igb->tx_rings[0]);
4218         }
4219 
4220         if (icr & E1000_ICR_LSC) {
4221                 igb_intr_link_work(igb);
4222         }
4223 
4224         if (icr & E1000_ICR_DRSTA) {
4225                 /* 82580 Full Device Reset needed */
4226                 atomic_or_32(&igb->igb_state, IGB_STALL);
4227         }
4228 
4229         return (DDI_INTR_CLAIMED);
4230 }
4231 
4232 /*
4233  * igb_intr_rx - Interrupt handler for rx
4234  */
4235 static uint_t
4236 igb_intr_rx(void *arg1, void *arg2)
4237 {
4238         igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4239 
4240         _NOTE(ARGUNUSED(arg2));
4241 
4242         /*
4243          * Only used via MSI-X vector so don't check cause bits
4244          * and only clean the given ring.
4245          */
4246         igb_intr_rx_work(rx_ring);
4247 
4248         return (DDI_INTR_CLAIMED);
4249 }
4250 
4251 /*
4252  * igb_intr_tx - Interrupt handler for tx
4253  */
4254 static uint_t
4255 igb_intr_tx(void *arg1, void *arg2)
4256 {
4257         igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4258 
4259         _NOTE(ARGUNUSED(arg2));
4260 
4261         /*
4262          * Only used via MSI-X vector so don't check cause bits
4263          * and only clean the given ring.
4264          */
4265         igb_intr_tx_work(tx_ring);
4266 
4267         return (DDI_INTR_CLAIMED);
4268 }
4269 
4270 /*
4271  * igb_intr_tx_other - Interrupt handler for both tx and other
4272  *
4273  */
4274 static uint_t
4275 igb_intr_tx_other(void *arg1, void *arg2)
4276 {
4277         igb_t *igb = (igb_t *)arg1;
4278         uint32_t icr;
4279 
4280         _NOTE(ARGUNUSED(arg2));
4281 
4282         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4283 
4284         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4285                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4286                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4287                 return (DDI_INTR_CLAIMED);
4288         }
4289 
4290         /*
4291          * Look for tx reclaiming work first. Remember, in the
4292          * case of only interrupt sharing, only one tx ring is
4293          * used
4294          */
4295         igb_intr_tx_work(&igb->tx_rings[0]);
4296 
4297         /*
4298          * Check for "other" causes.
4299          */
4300         if (icr & E1000_ICR_LSC) {
4301                 igb_intr_link_work(igb);
4302         }
4303 
4304         /*
4305          * The DOUTSYNC bit indicates a tx packet dropped because
4306          * DMA engine gets "out of sync". There isn't a real fix
4307          * for this. The Intel recommendation is to count the number
4308          * of occurrences so user can detect when it is happening.
4309          * The issue is non-fatal and there's no recovery action
4310          * available.
4311          */
4312         if (icr & E1000_ICR_DOUTSYNC) {
4313                 IGB_STAT(igb->dout_sync);
4314         }
4315 
4316         if (icr & E1000_ICR_DRSTA) {
4317                 /* 82580 Full Device Reset needed */
4318                 atomic_or_32(&igb->igb_state, IGB_STALL);
4319         }
4320 
4321         return (DDI_INTR_CLAIMED);
4322 }
4323 
4324 /*
4325  * igb_alloc_intrs - Allocate interrupts for the driver
4326  *
4327  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4328  * if not successful, try Legacy.
4329  * igb->intr_force can be used to force sequence to start with
4330  * any of the 3 types.
4331  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4332  */
4333 static int
4334 igb_alloc_intrs(igb_t *igb)
4335 {
4336         dev_info_t *devinfo;
4337         int intr_types;
4338         int rc;
4339 
4340         devinfo = igb->dip;
4341 
4342         /* Get supported interrupt types */
4343         rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4344 
4345         if (rc != DDI_SUCCESS) {
4346                 igb_log(igb,
4347                     "Get supported interrupt types failed: %d", rc);
4348                 return (IGB_FAILURE);
4349         }
4350         IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4351 
4352         igb->intr_type = 0;
4353 
4354         /* Install MSI-X interrupts */
4355         if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4356             (igb->intr_force <= IGB_INTR_MSIX)) {
4357                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4358 
4359                 if (rc == IGB_SUCCESS)
4360                         return (IGB_SUCCESS);
4361 
4362                 igb_log(igb,
4363                     "Allocate MSI-X failed, trying MSI interrupts...");
4364         }
4365 
4366         /* MSI-X not used, force rings to 1 */
4367         igb->num_rx_rings = 1;
4368         igb->num_tx_rings = 1;
4369         igb_log(igb,
4370             "MSI-X not used, force rx and tx queue number to 1");
4371 
4372         /* Install MSI interrupts */
4373         if ((intr_types & DDI_INTR_TYPE_MSI) &&
4374             (igb->intr_force <= IGB_INTR_MSI)) {
4375                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4376 
4377                 if (rc == IGB_SUCCESS)
4378                         return (IGB_SUCCESS);
4379 
4380                 igb_log(igb,
4381                     "Allocate MSI failed, trying Legacy interrupts...");
4382         }
4383 
4384         /* Install legacy interrupts */
4385         if (intr_types & DDI_INTR_TYPE_FIXED) {
4386                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4387 
4388                 if (rc == IGB_SUCCESS)
4389                         return (IGB_SUCCESS);
4390 
4391                 igb_log(igb,
4392                     "Allocate Legacy interrupts failed");
4393         }
4394 
4395         /* If none of the 3 types succeeded, return failure */
4396         return (IGB_FAILURE);
4397 }
4398 
4399 /*
4400  * igb_alloc_intr_handles - Allocate interrupt handles.
4401  *
4402  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4403  * if fewer than 2 handles are available, return failure.
4404  * Upon success, this sets the number of Rx rings to a number that
4405  * matches the handles available for Rx interrupts.
4406  */
4407 static int
4408 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4409 {
4410         dev_info_t *devinfo;
4411         int orig, request, count, avail, actual;
4412         int diff, minimum;
4413         int rc;
4414 
4415         devinfo = igb->dip;
4416 
4417         switch (intr_type) {
4418         case DDI_INTR_TYPE_FIXED:
4419                 request = 1;    /* Request 1 legacy interrupt handle */
4420                 minimum = 1;
4421                 IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4422                 break;
4423 
4424         case DDI_INTR_TYPE_MSI:
4425                 request = 1;    /* Request 1 MSI interrupt handle */
4426                 minimum = 1;
4427                 IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4428                 break;
4429 
4430         case DDI_INTR_TYPE_MSIX:
4431                 /*
4432                  * Number of vectors for the adapter is
4433                  * # rx rings + # tx rings
4434                  * One of tx vectors is for tx & other
4435                  */
4436                 request = igb->num_rx_rings + igb->num_tx_rings;
4437                 orig = request;
4438                 minimum = 2;
4439                 IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4440                 break;
4441 
4442         default:
4443                 igb_log(igb,
4444                     "invalid call to igb_alloc_intr_handles(): %d\n",
4445                     intr_type);
4446                 return (IGB_FAILURE);
4447         }
4448         IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4449             request, minimum);
4450 
4451         /*
4452          * Get number of supported interrupts
4453          */
4454         rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4455         if ((rc != DDI_SUCCESS) || (count < minimum)) {
4456                 igb_log(igb,
4457                     "Get supported interrupt number failed. "
4458                     "Return: %d, count: %d", rc, count);
4459                 return (IGB_FAILURE);
4460         }
4461         IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4462 
4463         /*
4464          * Get number of available interrupts
4465          */
4466         rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4467         if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4468                 igb_log(igb,
4469                     "Get available interrupt number failed. "
4470                     "Return: %d, available: %d", rc, avail);
4471                 return (IGB_FAILURE);
4472         }
4473         IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4474 
4475         if (avail < request) {
4476                 igb_log(igb, "Request %d handles, %d available",
4477                     request, avail);
4478                 request = avail;
4479         }
4480 
4481         actual = 0;
4482         igb->intr_cnt = 0;
4483 
4484         /*
4485          * Allocate an array of interrupt handles
4486          */
4487         igb->intr_size = request * sizeof (ddi_intr_handle_t);
4488         igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4489 
4490         rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4491             request, &actual, DDI_INTR_ALLOC_NORMAL);
4492         if (rc != DDI_SUCCESS) {
4493                 igb_log(igb, "Allocate interrupts failed. "
4494                     "return: %d, request: %d, actual: %d",
4495                     rc, request, actual);
4496                 goto alloc_handle_fail;
4497         }
4498         IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4499 
4500         igb->intr_cnt = actual;
4501 
4502         if (actual < minimum) {
4503                 igb_log(igb, "Insufficient interrupt handles allocated: %d",
4504                     actual);
4505                 goto alloc_handle_fail;
4506         }
4507 
4508         /*
4509          * For MSI-X, actual might force us to reduce number of tx & rx rings
4510          */
4511         if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4512                 diff = orig - actual;
4513                 if (diff < igb->num_tx_rings) {
4514                         igb_log(igb,
4515                             "MSI-X vectors force Tx queue number to %d",
4516                             igb->num_tx_rings - diff);
4517                         igb->num_tx_rings -= diff;
4518                 } else {
4519                         igb_log(igb,
4520                             "MSI-X vectors force Tx queue number to 1");
4521                         igb->num_tx_rings = 1;
4522 
4523                         igb_log(igb,
4524                             "MSI-X vectors force Rx queue number to %d",
4525                             actual - 1);
4526                         igb->num_rx_rings = actual - 1;
4527                 }
4528         }
4529 
4530         /*
4531          * Get priority for first vector, assume remaining are all the same
4532          */
4533         rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4534         if (rc != DDI_SUCCESS) {
4535                 igb_log(igb,
4536                     "Get interrupt priority failed: %d", rc);
4537                 goto alloc_handle_fail;
4538         }
4539 
4540         rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4541         if (rc != DDI_SUCCESS) {
4542                 igb_log(igb,
4543                     "Get interrupt cap failed: %d", rc);
4544                 goto alloc_handle_fail;
4545         }
4546 
4547         igb->intr_type = intr_type;
4548 
4549         return (IGB_SUCCESS);
4550 
4551 alloc_handle_fail:
4552         igb_rem_intrs(igb);
4553 
4554         return (IGB_FAILURE);
4555 }
4556 
4557 /*
4558  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4559  *
4560  * Before adding the interrupt handlers, the interrupt vectors have
4561  * been allocated, and the rx/tx rings have also been allocated.
4562  */
4563 static int
4564 igb_add_intr_handlers(igb_t *igb)
4565 {
4566         igb_rx_ring_t *rx_ring;
4567         igb_tx_ring_t *tx_ring;
4568         int vector;
4569         int rc;
4570         int i;
4571 
4572         vector = 0;
4573 
4574         switch (igb->intr_type) {
4575         case DDI_INTR_TYPE_MSIX:
4576                 /* Add interrupt handler for tx + other */
4577                 tx_ring = &igb->tx_rings[0];
4578                 rc = ddi_intr_add_handler(igb->htable[vector],
4579                     (ddi_intr_handler_t *)igb_intr_tx_other,
4580                     (void *)igb, NULL);
4581 
4582                 if (rc != DDI_SUCCESS) {
4583                         igb_log(igb,
4584                             "Add tx/other interrupt handler failed: %d", rc);
4585                         return (IGB_FAILURE);
4586                 }
4587                 tx_ring->intr_vector = vector;
4588                 vector++;
4589 
4590                 /* Add interrupt handler for each rx ring */
4591                 for (i = 0; i < igb->num_rx_rings; i++) {
4592                         rx_ring = &igb->rx_rings[i];
4593 
4594                         rc = ddi_intr_add_handler(igb->htable[vector],
4595                             (ddi_intr_handler_t *)igb_intr_rx,
4596                             (void *)rx_ring, NULL);
4597 
4598                         if (rc != DDI_SUCCESS) {
4599                                 igb_log(igb,
4600                                     "Add rx interrupt handler failed. "
4601                                     "return: %d, rx ring: %d", rc, i);
4602                                 for (vector--; vector >= 0; vector--) {
4603                                         (void) ddi_intr_remove_handler(
4604                                             igb->htable[vector]);
4605                                 }
4606                                 return (IGB_FAILURE);
4607                         }
4608 
4609                         rx_ring->intr_vector = vector;
4610 
4611                         vector++;
4612                 }
4613 
4614                 /* Add interrupt handler for each tx ring from 2nd ring */
4615                 for (i = 1; i < igb->num_tx_rings; i++) {
4616                         tx_ring = &igb->tx_rings[i];
4617 
4618                         rc = ddi_intr_add_handler(igb->htable[vector],
4619                             (ddi_intr_handler_t *)igb_intr_tx,
4620                             (void *)tx_ring, NULL);
4621 
4622                         if (rc != DDI_SUCCESS) {
4623                                 igb_log(igb,
4624                                     "Add tx interrupt handler failed. "
4625                                     "return: %d, tx ring: %d", rc, i);
4626                                 for (vector--; vector >= 0; vector--) {
4627                                         (void) ddi_intr_remove_handler(
4628                                             igb->htable[vector]);
4629                                 }
4630                                 return (IGB_FAILURE);
4631                         }
4632 
4633                         tx_ring->intr_vector = vector;
4634 
4635                         vector++;
4636                 }
4637 
4638                 break;
4639 
4640         case DDI_INTR_TYPE_MSI:
4641                 /* Add interrupt handlers for the only vector */
4642                 rc = ddi_intr_add_handler(igb->htable[vector],
4643                     (ddi_intr_handler_t *)igb_intr_msi,
4644                     (void *)igb, NULL);
4645 
4646                 if (rc != DDI_SUCCESS) {
4647                         igb_log(igb,
4648                             "Add MSI interrupt handler failed: %d", rc);
4649                         return (IGB_FAILURE);
4650                 }
4651 
4652                 rx_ring = &igb->rx_rings[0];
4653                 rx_ring->intr_vector = vector;
4654 
4655                 vector++;
4656                 break;
4657 
4658         case DDI_INTR_TYPE_FIXED:
4659                 /* Add interrupt handlers for the only vector */
4660                 rc = ddi_intr_add_handler(igb->htable[vector],
4661                     (ddi_intr_handler_t *)igb_intr_legacy,
4662                     (void *)igb, NULL);
4663 
4664                 if (rc != DDI_SUCCESS) {
4665                         igb_log(igb,
4666                             "Add legacy interrupt handler failed: %d", rc);
4667                         return (IGB_FAILURE);
4668                 }
4669 
4670                 rx_ring = &igb->rx_rings[0];
4671                 rx_ring->intr_vector = vector;
4672 
4673                 vector++;
4674                 break;
4675 
4676         default:
4677                 return (IGB_FAILURE);
4678         }
4679 
4680         ASSERT(vector == igb->intr_cnt);
4681 
4682         return (IGB_SUCCESS);
4683 }
4684 
4685 /*
4686  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4687  *
4688  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4689  */
4690 static void
4691 igb_setup_msix_82575(igb_t *igb)
4692 {
4693         uint32_t eims = 0;
4694         int i, vector;
4695         struct e1000_hw *hw = &igb->hw;
4696 
4697         /*
4698          * Set vector for tx ring 0 and other causes.
4699          * NOTE assumption that it is vector 0.
4700          */
4701         vector = 0;
4702 
4703         igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4704         E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4705         vector++;
4706 
4707         for (i = 0; i < igb->num_rx_rings; i++) {
4708                 /*
4709                  * Set vector for each rx ring
4710                  */
4711                 eims = (E1000_EICR_RX_QUEUE0 << i);
4712                 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4713 
4714                 /*
4715                  * Accumulate bits to enable in
4716                  * igb_enable_adapter_interrupts_82575()
4717                  */
4718                 igb->eims_mask |= eims;
4719 
4720                 vector++;
4721         }
4722 
4723         for (i = 1; i < igb->num_tx_rings; i++) {
4724                 /*
4725                  * Set vector for each tx ring from 2nd tx ring
4726                  */
4727                 eims = (E1000_EICR_TX_QUEUE0 << i);
4728                 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4729 
4730                 /*
4731                  * Accumulate bits to enable in
4732                  * igb_enable_adapter_interrupts_82575()
4733                  */
4734                 igb->eims_mask |= eims;
4735 
4736                 vector++;
4737         }
4738 
4739         ASSERT(vector == igb->intr_cnt);
4740 
4741         /*
4742          * Disable IAM for ICR interrupt bits
4743          */
4744         E1000_WRITE_REG(hw, E1000_IAM, 0);
4745         E1000_WRITE_FLUSH(hw);
4746 }
4747 
4748 /*
4749  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4750  *
4751  * 82576 uses a table based method for assigning vectors.  Each queue has a
4752  * single entry in the table to which we write a vector number along with a
4753  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4754  * take a different position in the 4-byte register depending on whether
4755  * they are numbered above or below 8.
4756  */
4757 static void
4758 igb_setup_msix_82576(igb_t *igb)
4759 {
4760         struct e1000_hw *hw = &igb->hw;
4761         uint32_t ivar, index, vector;
4762         int i;
4763 
4764         /* must enable msi-x capability before IVAR settings */
4765         E1000_WRITE_REG(hw, E1000_GPIE,
4766             (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4767 
4768         /*
4769          * Set vector for tx ring 0 and other causes.
4770          * NOTE assumption that it is vector 0.
4771          * This is also interdependent with installation of interrupt service
4772          * routines in igb_add_intr_handlers().
4773          */
4774 
4775         /* assign "other" causes to vector 0 */
4776         vector = 0;
4777         ivar = ((vector | E1000_IVAR_VALID) << 8);
4778         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4779 
4780         /* assign tx ring 0 to vector 0 */
4781         ivar = ((vector | E1000_IVAR_VALID) << 8);
4782         E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4783 
4784         /* prepare to enable tx & other interrupt causes */
4785         igb->eims_mask = (1 << vector);
4786 
4787         vector ++;
4788         for (i = 0; i < igb->num_rx_rings; i++) {
4789                 /*
4790                  * Set vector for each rx ring
4791                  */
4792                 index = (i & 0x7);
4793                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4794 
4795                 if (i < 8) {
4796                         /* vector goes into low byte of register */
4797                         ivar = ivar & 0xFFFFFF00;
4798                         ivar |= (vector | E1000_IVAR_VALID);
4799                 } else {
4800                         /* vector goes into third byte of register */
4801                         ivar = ivar & 0xFF00FFFF;
4802                         ivar |= ((vector | E1000_IVAR_VALID) << 16);
4803                 }
4804                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4805 
4806                 /* Accumulate interrupt-cause bits to enable */
4807                 igb->eims_mask |= (1 << vector);
4808 
4809                 vector ++;
4810         }
4811 
4812         for (i = 1; i < igb->num_tx_rings; i++) {
4813                 /*
4814                  * Set vector for each tx ring from 2nd tx ring.
4815                  * Note assumption that tx vectors numericall follow rx vectors.
4816                  */
4817                 index = (i & 0x7);
4818                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4819 
4820                 if (i < 8) {
4821                         /* vector goes into second byte of register */
4822                         ivar = ivar & 0xFFFF00FF;
4823                         ivar |= ((vector | E1000_IVAR_VALID) << 8);
4824                 } else {
4825                         /* vector goes into fourth byte of register */
4826                         ivar = ivar & 0x00FFFFFF;
4827                         ivar |= (vector | E1000_IVAR_VALID) << 24;
4828                 }
4829                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4830 
4831                 /* Accumulate interrupt-cause bits to enable */
4832                 igb->eims_mask |= (1 << vector);
4833 
4834                 vector ++;
4835         }
4836 
4837         ASSERT(vector == igb->intr_cnt);
4838 }
4839 
4840 /*
4841  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4842  *
4843  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4844  * queue has a single entry in the table to which we write a vector number
4845  * along with a "valid" bit.  Vectors take a different position in the
4846  * register depending on * whether * they are numbered above or below 4.
4847  */
4848 static void
4849 igb_setup_msix_82580(igb_t *igb)
4850 {
4851         struct e1000_hw *hw = &igb->hw;
4852         uint32_t ivar, index, vector;
4853         int i;
4854 
4855         /* must enable msi-x capability before IVAR settings */
4856         E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4857             E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4858         /*
4859          * Set vector for tx ring 0 and other causes.
4860          * NOTE assumption that it is vector 0.
4861          * This is also interdependent with installation of interrupt service
4862          * routines in igb_add_intr_handlers().
4863          */
4864 
4865         /* assign "other" causes to vector 0 */
4866         vector = 0;
4867         ivar = ((vector | E1000_IVAR_VALID) << 8);
4868         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4869 
4870         /* assign tx ring 0 to vector 0 */
4871         ivar = ((vector | E1000_IVAR_VALID) << 8);
4872         E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4873 
4874         /* prepare to enable tx & other interrupt causes */
4875         igb->eims_mask = (1 << vector);
4876 
4877         vector ++;
4878 
4879         for (i = 0; i < igb->num_rx_rings; i++) {
4880                 /*
4881                  * Set vector for each rx ring
4882                  */
4883                 index = (i >> 1);
4884                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4885 
4886                 if (i & 1) {
4887                         /* vector goes into third byte of register */
4888                         ivar = ivar & 0xFF00FFFF;
4889                         ivar |= ((vector | E1000_IVAR_VALID) << 16);
4890                 } else {
4891                         /* vector goes into low byte of register */
4892                         ivar = ivar & 0xFFFFFF00;
4893                         ivar |= (vector | E1000_IVAR_VALID);
4894                 }
4895                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4896 
4897                 /* Accumulate interrupt-cause bits to enable */
4898                 igb->eims_mask |= (1 << vector);
4899 
4900                 vector ++;
4901         }
4902 
4903         for (i = 1; i < igb->num_tx_rings; i++) {
4904                 /*
4905                  * Set vector for each tx ring from 2nd tx ring.
4906                  * Note assumption that tx vectors numericall follow rx vectors.
4907                  */
4908                 index = (i >> 1);
4909                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4910 
4911                 if (i & 1) {
4912                         /* vector goes into high byte of register */
4913                         ivar = ivar & 0x00FFFFFF;
4914                         ivar |= ((vector | E1000_IVAR_VALID) << 24);
4915                 } else {
4916                         /* vector goes into second byte of register */
4917                         ivar = ivar & 0xFFFF00FF;
4918                         ivar |= (vector | E1000_IVAR_VALID) << 8;
4919                 }
4920                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4921 
4922                 /* Accumulate interrupt-cause bits to enable */
4923                 igb->eims_mask |= (1 << vector);
4924 
4925                 vector ++;
4926         }
4927         ASSERT(vector == igb->intr_cnt);
4928 }
4929 
4930 /*
4931  * igb_rem_intr_handlers - remove the interrupt handlers
4932  */
4933 static void
4934 igb_rem_intr_handlers(igb_t *igb)
4935 {
4936         int i;
4937         int rc;
4938 
4939         for (i = 0; i < igb->intr_cnt; i++) {
4940                 rc = ddi_intr_remove_handler(igb->htable[i]);
4941                 if (rc != DDI_SUCCESS) {
4942                         IGB_DEBUGLOG_1(igb,
4943                             "Remove intr handler failed: %d", rc);
4944                 }
4945         }
4946 }
4947 
4948 /*
4949  * igb_rem_intrs - remove the allocated interrupts
4950  */
4951 static void
4952 igb_rem_intrs(igb_t *igb)
4953 {
4954         int i;
4955         int rc;
4956 
4957         for (i = 0; i < igb->intr_cnt; i++) {
4958                 rc = ddi_intr_free(igb->htable[i]);
4959                 if (rc != DDI_SUCCESS) {
4960                         IGB_DEBUGLOG_1(igb,
4961                             "Free intr failed: %d", rc);
4962                 }
4963         }
4964 
4965         kmem_free(igb->htable, igb->intr_size);
4966         igb->htable = NULL;
4967 }
4968 
4969 /*
4970  * igb_enable_intrs - enable all the ddi interrupts
4971  */
4972 static int
4973 igb_enable_intrs(igb_t *igb)
4974 {
4975         int i;
4976         int rc;
4977 
4978         /* Enable interrupts */
4979         if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4980                 /* Call ddi_intr_block_enable() for MSI */
4981                 rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4982                 if (rc != DDI_SUCCESS) {
4983                         igb_log(igb,
4984                             "Enable block intr failed: %d", rc);
4985                         return (IGB_FAILURE);
4986                 }
4987         } else {
4988                 /* Call ddi_intr_enable() for Legacy/MSI non block enable */
4989                 for (i = 0; i < igb->intr_cnt; i++) {
4990                         rc = ddi_intr_enable(igb->htable[i]);
4991                         if (rc != DDI_SUCCESS) {
4992                                 igb_log(igb,
4993                                     "Enable intr failed: %d", rc);
4994                                 return (IGB_FAILURE);
4995                         }
4996                 }
4997         }
4998 
4999         return (IGB_SUCCESS);
5000 }
5001 
5002 /*
5003  * igb_disable_intrs - disable all the ddi interrupts
5004  */
5005 static int
5006 igb_disable_intrs(igb_t *igb)
5007 {
5008         int i;
5009         int rc;
5010 
5011         /* Disable all interrupts */
5012         if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
5013                 rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
5014                 if (rc != DDI_SUCCESS) {
5015                         igb_log(igb,
5016                             "Disable block intr failed: %d", rc);
5017                         return (IGB_FAILURE);
5018                 }
5019         } else {
5020                 for (i = 0; i < igb->intr_cnt; i++) {
5021                         rc = ddi_intr_disable(igb->htable[i]);
5022                         if (rc != DDI_SUCCESS) {
5023                                 igb_log(igb,
5024                                     "Disable intr failed: %d", rc);
5025                                 return (IGB_FAILURE);
5026                         }
5027                 }
5028         }
5029 
5030         return (IGB_SUCCESS);
5031 }
5032 
5033 /*
5034  * igb_get_phy_state - Get and save the parameters read from PHY registers
5035  */
5036 static void
5037 igb_get_phy_state(igb_t *igb)
5038 {
5039         struct e1000_hw *hw = &igb->hw;
5040         uint16_t phy_ctrl;
5041         uint16_t phy_status;
5042         uint16_t phy_an_adv;
5043         uint16_t phy_an_exp;
5044         uint16_t phy_ext_status;
5045         uint16_t phy_1000t_ctrl;
5046         uint16_t phy_1000t_status;
5047         uint16_t phy_lp_able;
5048 
5049         ASSERT(mutex_owned(&igb->gen_lock));
5050 
5051         if (hw->phy.media_type == e1000_media_type_copper) {
5052                 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5053                 (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
5054                 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
5055                 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
5056                 (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
5057                 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
5058                 (void) e1000_read_phy_reg(hw,
5059                     PHY_1000T_STATUS, &phy_1000t_status);
5060                 (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
5061 
5062                 igb->param_autoneg_cap =
5063                     (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5064                 igb->param_pause_cap =
5065                     (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5066                 igb->param_asym_pause_cap =
5067                     (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5068                 igb->param_1000fdx_cap =
5069                     ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5070                     (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5071                 igb->param_1000hdx_cap =
5072                     ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5073                     (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5074                 igb->param_100t4_cap =
5075                     (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5076                 igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
5077                     (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5078                 igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
5079                     (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5080                 igb->param_10fdx_cap =
5081                     (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5082                 igb->param_10hdx_cap =
5083                     (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5084                 igb->param_rem_fault =
5085                     (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
5086 
5087                 igb->param_adv_autoneg_cap = hw->mac.autoneg;
5088                 igb->param_adv_pause_cap =
5089                     (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5090                 igb->param_adv_asym_pause_cap =
5091                     (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5092                 igb->param_adv_1000hdx_cap =
5093                     (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5094                 igb->param_adv_100t4_cap =
5095                     (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5096                 igb->param_adv_rem_fault =
5097                     (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
5098                 if (igb->param_adv_autoneg_cap == 1) {
5099                         igb->param_adv_1000fdx_cap =
5100                             (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5101                         igb->param_adv_100fdx_cap =
5102                             (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5103                         igb->param_adv_100hdx_cap =
5104                             (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5105                         igb->param_adv_10fdx_cap =
5106                             (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5107                         igb->param_adv_10hdx_cap =
5108                             (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5109                 }
5110 
5111                 igb->param_lp_autoneg_cap =
5112                     (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5113                 igb->param_lp_pause_cap =
5114                     (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5115                 igb->param_lp_asym_pause_cap =
5116                     (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5117                 igb->param_lp_1000fdx_cap =
5118                     (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5119                 igb->param_lp_1000hdx_cap =
5120                     (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5121                 igb->param_lp_100t4_cap =
5122                     (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5123                 igb->param_lp_100fdx_cap =
5124                     (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5125                 igb->param_lp_100hdx_cap =
5126                     (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5127                 igb->param_lp_10fdx_cap =
5128                     (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5129                 igb->param_lp_10hdx_cap =
5130                     (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5131                 igb->param_lp_rem_fault =
5132                     (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
5133         } else {
5134                 /*
5135                  * 1Gig Fiber adapter only offers 1Gig Full Duplex.
5136                  */
5137                 igb->param_autoneg_cap = 0;
5138                 igb->param_pause_cap = 1;
5139                 igb->param_asym_pause_cap = 1;
5140                 igb->param_1000fdx_cap = 1;
5141                 igb->param_1000hdx_cap = 0;
5142                 igb->param_100t4_cap = 0;
5143                 igb->param_100fdx_cap = 0;
5144                 igb->param_100hdx_cap = 0;
5145                 igb->param_10fdx_cap = 0;
5146                 igb->param_10hdx_cap = 0;
5147 
5148                 igb->param_adv_autoneg_cap = 0;
5149                 igb->param_adv_pause_cap = 1;
5150                 igb->param_adv_asym_pause_cap = 1;
5151                 igb->param_adv_1000fdx_cap = 1;
5152                 igb->param_adv_1000hdx_cap = 0;
5153                 igb->param_adv_100t4_cap = 0;
5154                 igb->param_adv_100fdx_cap = 0;
5155                 igb->param_adv_100hdx_cap = 0;
5156                 igb->param_adv_10fdx_cap = 0;
5157                 igb->param_adv_10hdx_cap = 0;
5158 
5159                 igb->param_lp_autoneg_cap = 0;
5160                 igb->param_lp_pause_cap = 0;
5161                 igb->param_lp_asym_pause_cap = 0;
5162                 igb->param_lp_1000fdx_cap = 0;
5163                 igb->param_lp_1000hdx_cap = 0;
5164                 igb->param_lp_100t4_cap = 0;
5165                 igb->param_lp_100fdx_cap = 0;
5166                 igb->param_lp_100hdx_cap = 0;
5167                 igb->param_lp_10fdx_cap = 0;
5168                 igb->param_lp_10hdx_cap = 0;
5169                 igb->param_lp_rem_fault = 0;
5170         }
5171 }
5172 
5173 /*
5174  * synchronize the adv* and en* parameters.
5175  *
5176  * See comments in <sys/dld.h> for details of the *_en_*
5177  * parameters. The usage of ndd for setting adv parameters will
5178  * synchronize all the en parameters with the e1000g parameters,
5179  * implicitly disabling any settings made via dladm.
5180  */
5181 static void
5182 igb_param_sync(igb_t *igb)
5183 {
5184         igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5185         igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5186         igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5187         igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5188         igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5189         igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5190         igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5191 }
5192 
5193 /*
5194  * igb_get_driver_control
5195  */
5196 static void
5197 igb_get_driver_control(struct e1000_hw *hw)
5198 {
5199         uint32_t ctrl_ext;
5200 
5201         /* Notify firmware that driver is in control of device */
5202         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5203         ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5204         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5205 }
5206 
5207 /*
5208  * igb_release_driver_control
5209  */
5210 static void
5211 igb_release_driver_control(struct e1000_hw *hw)
5212 {
5213         uint32_t ctrl_ext;
5214 
5215         /* Notify firmware that driver is no longer in control of device */
5216         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5217         ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5218         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5219 }
5220 
5221 /*
5222  * igb_atomic_reserve - Atomic decrease operation
5223  */
5224 int
5225 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5226 {
5227         uint32_t oldval;
5228         uint32_t newval;
5229 
5230         /* ATOMICALLY */
5231         do {
5232                 oldval = *count_p;
5233                 if (oldval < n)
5234                         return (-1);
5235                 newval = oldval - n;
5236         } while (atomic_cas_32(count_p, oldval, newval) != oldval);
5237 
5238         return (newval);
5239 }
5240 
5241 /*
5242  * FMA support
5243  */
5244 
5245 int
5246 igb_check_acc_handle(ddi_acc_handle_t handle)
5247 {
5248         ddi_fm_error_t de;
5249 
5250         ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5251         ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5252         return (de.fme_status);
5253 }
5254 
5255 int
5256 igb_check_dma_handle(ddi_dma_handle_t handle)
5257 {
5258         ddi_fm_error_t de;
5259 
5260         ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5261         return (de.fme_status);
5262 }
5263 
5264 /*
5265  * The IO fault service error handling callback function
5266  */
5267 /*ARGSUSED*/
5268 static int
5269 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5270 {
5271         /*
5272          * as the driver can always deal with an error in any dma or
5273          * access handle, we can just return the fme_status value.
5274          */
5275         pci_ereport_post(dip, err, NULL);
5276         return (err->fme_status);
5277 }
5278 
5279 static void
5280 igb_fm_init(igb_t *igb)
5281 {
5282         ddi_iblock_cookie_t iblk;
5283         int fma_dma_flag;
5284 
5285         /* Only register with IO Fault Services if we have some capability */
5286         if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5287                 igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5288         } else {
5289                 igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5290         }
5291 
5292         if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5293                 fma_dma_flag = 1;
5294         } else {
5295                 fma_dma_flag = 0;
5296         }
5297 
5298         (void) igb_set_fma_flags(fma_dma_flag);
5299 
5300         if (igb->fm_capabilities) {
5301 
5302                 /* Register capabilities with IO Fault Services */
5303                 ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5304 
5305                 /*
5306                  * Initialize pci ereport capabilities if ereport capable
5307                  */
5308                 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5309                     DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5310                         pci_ereport_setup(igb->dip);
5311 
5312                 /*
5313                  * Register error callback if error callback capable
5314                  */
5315                 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5316                         ddi_fm_handler_register(igb->dip,
5317                             igb_fm_error_cb, (void*) igb);
5318         }
5319 }
5320 
5321 static void
5322 igb_fm_fini(igb_t *igb)
5323 {
5324         /* Only unregister FMA capabilities if we registered some */
5325         if (igb->fm_capabilities) {
5326 
5327                 /*
5328                  * Release any resources allocated by pci_ereport_setup()
5329                  */
5330                 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5331                     DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5332                         pci_ereport_teardown(igb->dip);
5333 
5334                 /*
5335                  * Un-register error callback if error callback capable
5336                  */
5337                 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5338                         ddi_fm_handler_unregister(igb->dip);
5339 
5340                 /* Unregister from IO Fault Services */
5341                 ddi_fm_fini(igb->dip);
5342         }
5343 }
5344 
5345 void
5346 igb_fm_ereport(igb_t *igb, char *detail)
5347 {
5348         uint64_t ena;
5349         char buf[FM_MAX_CLASS];
5350 
5351         (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5352         ena = fm_ena_generate(0, FM_ENA_FMT1);
5353         if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5354                 ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5355                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5356         }
5357 }