1 /******************************************************************************
   2 
   3   Copyright (c) 2001-2013, Intel Corporation 
   4   All rights reserved.
   5   
   6   Redistribution and use in source and binary forms, with or without 
   7   modification, are permitted provided that the following conditions are met:
   8   
   9    1. Redistributions of source code must retain the above copyright notice, 
  10       this list of conditions and the following disclaimer.
  11   
  12    2. Redistributions in binary form must reproduce the above copyright 
  13       notice, this list of conditions and the following disclaimer in the 
  14       documentation and/or other materials provided with the distribution.
  15   
  16    3. Neither the name of the Intel Corporation nor the names of its 
  17       contributors may be used to endorse or promote products derived from 
  18       this software without specific prior written permission.
  19   
  20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  30   POSSIBILITY OF SUCH DAMAGE.
  31 
  32 ******************************************************************************/
  33 /*$FreeBSD$*/
  34 
  35 #include "e1000_api.h"
  36 
  37 /**
  38  *  e1000_init_mac_params - Initialize MAC function pointers
  39  *  @hw: pointer to the HW structure
  40  *
  41  *  This function initializes the function pointers for the MAC
  42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  43  **/
  44 s32 e1000_init_mac_params(struct e1000_hw *hw)
  45 {
  46         s32 ret_val = E1000_SUCCESS;
  47 
  48         if (hw->mac.ops.init_params) {
  49                 ret_val = hw->mac.ops.init_params(hw);
  50                 if (ret_val) {
  51                         DEBUGOUT("MAC Initialization Error\n");
  52                         goto out;
  53                 }
  54         } else {
  55                 DEBUGOUT("mac.init_mac_params was NULL\n");
  56                 ret_val = -E1000_ERR_CONFIG;
  57         }
  58 
  59 out:
  60         return ret_val;
  61 }
  62 
  63 /**
  64  *  e1000_init_nvm_params - Initialize NVM function pointers
  65  *  @hw: pointer to the HW structure
  66  *
  67  *  This function initializes the function pointers for the NVM
  68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  69  **/
  70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
  71 {
  72         s32 ret_val = E1000_SUCCESS;
  73 
  74         if (hw->nvm.ops.init_params) {
  75                 ret_val = hw->nvm.ops.init_params(hw);
  76                 if (ret_val) {
  77                         DEBUGOUT("NVM Initialization Error\n");
  78                         goto out;
  79                 }
  80         } else {
  81                 DEBUGOUT("nvm.init_nvm_params was NULL\n");
  82                 ret_val = -E1000_ERR_CONFIG;
  83         }
  84 
  85 out:
  86         return ret_val;
  87 }
  88 
  89 /**
  90  *  e1000_init_phy_params - Initialize PHY function pointers
  91  *  @hw: pointer to the HW structure
  92  *
  93  *  This function initializes the function pointers for the PHY
  94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  95  **/
  96 s32 e1000_init_phy_params(struct e1000_hw *hw)
  97 {
  98         s32 ret_val = E1000_SUCCESS;
  99 
 100         if (hw->phy.ops.init_params) {
 101                 ret_val = hw->phy.ops.init_params(hw);
 102                 if (ret_val) {
 103                         DEBUGOUT("PHY Initialization Error\n");
 104                         goto out;
 105                 }
 106         } else {
 107                 DEBUGOUT("phy.init_phy_params was NULL\n");
 108                 ret_val =  -E1000_ERR_CONFIG;
 109         }
 110 
 111 out:
 112         return ret_val;
 113 }
 114 
 115 /**
 116  *  e1000_init_mbx_params - Initialize mailbox function pointers
 117  *  @hw: pointer to the HW structure
 118  *
 119  *  This function initializes the function pointers for the PHY
 120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
 121  **/
 122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
 123 {
 124         s32 ret_val = E1000_SUCCESS;
 125 
 126         if (hw->mbx.ops.init_params) {
 127                 ret_val = hw->mbx.ops.init_params(hw);
 128                 if (ret_val) {
 129                         DEBUGOUT("Mailbox Initialization Error\n");
 130                         goto out;
 131                 }
 132         } else {
 133                 DEBUGOUT("mbx.init_mbx_params was NULL\n");
 134                 ret_val =  -E1000_ERR_CONFIG;
 135         }
 136 
 137 out:
 138         return ret_val;
 139 }
 140 
 141 /**
 142  *  e1000_set_mac_type - Sets MAC type
 143  *  @hw: pointer to the HW structure
 144  *
 145  *  This function sets the mac type of the adapter based on the
 146  *  device ID stored in the hw structure.
 147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
 148  *  e1000_setup_init_funcs()).
 149  **/
 150 s32 e1000_set_mac_type(struct e1000_hw *hw)
 151 {
 152         struct e1000_mac_info *mac = &hw->mac;
 153         s32 ret_val = E1000_SUCCESS;
 154 
 155         DEBUGFUNC("e1000_set_mac_type");
 156 
 157         switch (hw->device_id) {
 158         case E1000_DEV_ID_82542:
 159                 mac->type = e1000_82542;
 160                 break;
 161         case E1000_DEV_ID_82543GC_FIBER:
 162         case E1000_DEV_ID_82543GC_COPPER:
 163                 mac->type = e1000_82543;
 164                 break;
 165         case E1000_DEV_ID_82544EI_COPPER:
 166         case E1000_DEV_ID_82544EI_FIBER:
 167         case E1000_DEV_ID_82544GC_COPPER:
 168         case E1000_DEV_ID_82544GC_LOM:
 169                 mac->type = e1000_82544;
 170                 break;
 171         case E1000_DEV_ID_82540EM:
 172         case E1000_DEV_ID_82540EM_LOM:
 173         case E1000_DEV_ID_82540EP:
 174         case E1000_DEV_ID_82540EP_LOM:
 175         case E1000_DEV_ID_82540EP_LP:
 176                 mac->type = e1000_82540;
 177                 break;
 178         case E1000_DEV_ID_82545EM_COPPER:
 179         case E1000_DEV_ID_82545EM_FIBER:
 180                 mac->type = e1000_82545;
 181                 break;
 182         case E1000_DEV_ID_82545GM_COPPER:
 183         case E1000_DEV_ID_82545GM_FIBER:
 184         case E1000_DEV_ID_82545GM_SERDES:
 185                 mac->type = e1000_82545_rev_3;
 186                 break;
 187         case E1000_DEV_ID_82546EB_COPPER:
 188         case E1000_DEV_ID_82546EB_FIBER:
 189         case E1000_DEV_ID_82546EB_QUAD_COPPER:
 190                 mac->type = e1000_82546;
 191                 break;
 192         case E1000_DEV_ID_82546GB_COPPER:
 193         case E1000_DEV_ID_82546GB_FIBER:
 194         case E1000_DEV_ID_82546GB_SERDES:
 195         case E1000_DEV_ID_82546GB_PCIE:
 196         case E1000_DEV_ID_82546GB_QUAD_COPPER:
 197         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 198                 mac->type = e1000_82546_rev_3;
 199                 break;
 200         case E1000_DEV_ID_82541EI:
 201         case E1000_DEV_ID_82541EI_MOBILE:
 202         case E1000_DEV_ID_82541ER_LOM:
 203                 mac->type = e1000_82541;
 204                 break;
 205         case E1000_DEV_ID_82541ER:
 206         case E1000_DEV_ID_82541GI:
 207         case E1000_DEV_ID_82541GI_LF:
 208         case E1000_DEV_ID_82541GI_MOBILE:
 209                 mac->type = e1000_82541_rev_2;
 210                 break;
 211         case E1000_DEV_ID_82547EI:
 212         case E1000_DEV_ID_82547EI_MOBILE:
 213                 mac->type = e1000_82547;
 214                 break;
 215         case E1000_DEV_ID_82547GI:
 216                 mac->type = e1000_82547_rev_2;
 217                 break;
 218         case E1000_DEV_ID_82571EB_COPPER:
 219         case E1000_DEV_ID_82571EB_FIBER:
 220         case E1000_DEV_ID_82571EB_SERDES:
 221         case E1000_DEV_ID_82571EB_SERDES_DUAL:
 222         case E1000_DEV_ID_82571EB_SERDES_QUAD:
 223         case E1000_DEV_ID_82571EB_QUAD_COPPER:
 224         case E1000_DEV_ID_82571PT_QUAD_COPPER:
 225         case E1000_DEV_ID_82571EB_QUAD_FIBER:
 226         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
 227                 mac->type = e1000_82571;
 228                 break;
 229         case E1000_DEV_ID_82572EI:
 230         case E1000_DEV_ID_82572EI_COPPER:
 231         case E1000_DEV_ID_82572EI_FIBER:
 232         case E1000_DEV_ID_82572EI_SERDES:
 233                 mac->type = e1000_82572;
 234                 break;
 235         case E1000_DEV_ID_82573E:
 236         case E1000_DEV_ID_82573E_IAMT:
 237         case E1000_DEV_ID_82573L:
 238                 mac->type = e1000_82573;
 239                 break;
 240         case E1000_DEV_ID_82574L:
 241         case E1000_DEV_ID_82574LA:
 242                 mac->type = e1000_82574;
 243                 break;
 244         case E1000_DEV_ID_82583V:
 245                 mac->type = e1000_82583;
 246                 break;
 247         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
 248         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 249         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
 250         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
 251                 mac->type = e1000_80003es2lan;
 252                 break;
 253         case E1000_DEV_ID_ICH8_IFE:
 254         case E1000_DEV_ID_ICH8_IFE_GT:
 255         case E1000_DEV_ID_ICH8_IFE_G:
 256         case E1000_DEV_ID_ICH8_IGP_M:
 257         case E1000_DEV_ID_ICH8_IGP_M_AMT:
 258         case E1000_DEV_ID_ICH8_IGP_AMT:
 259         case E1000_DEV_ID_ICH8_IGP_C:
 260         case E1000_DEV_ID_ICH8_82567V_3:
 261                 mac->type = e1000_ich8lan;
 262                 break;
 263         case E1000_DEV_ID_ICH9_IFE:
 264         case E1000_DEV_ID_ICH9_IFE_GT:
 265         case E1000_DEV_ID_ICH9_IFE_G:
 266         case E1000_DEV_ID_ICH9_IGP_M:
 267         case E1000_DEV_ID_ICH9_IGP_M_AMT:
 268         case E1000_DEV_ID_ICH9_IGP_M_V:
 269         case E1000_DEV_ID_ICH9_IGP_AMT:
 270         case E1000_DEV_ID_ICH9_BM:
 271         case E1000_DEV_ID_ICH9_IGP_C:
 272         case E1000_DEV_ID_ICH10_R_BM_LM:
 273         case E1000_DEV_ID_ICH10_R_BM_LF:
 274         case E1000_DEV_ID_ICH10_R_BM_V:
 275                 mac->type = e1000_ich9lan;
 276                 break;
 277         case E1000_DEV_ID_ICH10_D_BM_LM:
 278         case E1000_DEV_ID_ICH10_D_BM_LF:
 279         case E1000_DEV_ID_ICH10_D_BM_V:
 280                 mac->type = e1000_ich10lan;
 281                 break;
 282         case E1000_DEV_ID_PCH_D_HV_DM:
 283         case E1000_DEV_ID_PCH_D_HV_DC:
 284         case E1000_DEV_ID_PCH_M_HV_LM:
 285         case E1000_DEV_ID_PCH_M_HV_LC:
 286                 mac->type = e1000_pchlan;
 287                 break;
 288         case E1000_DEV_ID_PCH2_LV_LM:
 289         case E1000_DEV_ID_PCH2_LV_V:
 290                 mac->type = e1000_pch2lan;
 291                 break;
 292         case E1000_DEV_ID_PCH_LPT_I217_LM:
 293         case E1000_DEV_ID_PCH_LPT_I217_V:
 294         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
 295         case E1000_DEV_ID_PCH_LPTLP_I218_V:
 296                 mac->type = e1000_pch_lpt;
 297                 break;
 298         case E1000_DEV_ID_82575EB_COPPER:
 299         case E1000_DEV_ID_82575EB_FIBER_SERDES:
 300         case E1000_DEV_ID_82575GB_QUAD_COPPER:
 301                 mac->type = e1000_82575;
 302                 break;
 303         case E1000_DEV_ID_82576:
 304         case E1000_DEV_ID_82576_FIBER:
 305         case E1000_DEV_ID_82576_SERDES:
 306         case E1000_DEV_ID_82576_QUAD_COPPER:
 307         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 308         case E1000_DEV_ID_82576_NS:
 309         case E1000_DEV_ID_82576_NS_SERDES:
 310         case E1000_DEV_ID_82576_SERDES_QUAD:
 311                 mac->type = e1000_82576;
 312                 break;
 313         case E1000_DEV_ID_82580_COPPER:
 314         case E1000_DEV_ID_82580_FIBER:
 315         case E1000_DEV_ID_82580_SERDES:
 316         case E1000_DEV_ID_82580_SGMII:
 317         case E1000_DEV_ID_82580_COPPER_DUAL:
 318         case E1000_DEV_ID_82580_QUAD_FIBER:
 319         case E1000_DEV_ID_DH89XXCC_SGMII:
 320         case E1000_DEV_ID_DH89XXCC_SERDES:
 321         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 322         case E1000_DEV_ID_DH89XXCC_SFP:
 323                 mac->type = e1000_82580;
 324                 break;
 325         case E1000_DEV_ID_I350_COPPER:
 326         case E1000_DEV_ID_I350_FIBER:
 327         case E1000_DEV_ID_I350_SERDES:
 328         case E1000_DEV_ID_I350_SGMII:
 329         case E1000_DEV_ID_I350_DA4:
 330                 mac->type = e1000_i350;
 331                 break;
 332 #if defined(QV_RELEASE) && defined(SPRINGVILLE_FLASHLESS_HW)
 333         case E1000_DEV_ID_I210_NVMLESS:
 334 #endif /* QV_RELEASE && SPRINGVILLE_FLASHLESS_HW */
 335         case E1000_DEV_ID_I210_COPPER:
 336         case E1000_DEV_ID_I210_COPPER_OEM1:
 337         case E1000_DEV_ID_I210_COPPER_IT:
 338         case E1000_DEV_ID_I210_FIBER:
 339         case E1000_DEV_ID_I210_SERDES:
 340         case E1000_DEV_ID_I210_SGMII:
 341                 mac->type = e1000_i210;
 342                 break;
 343         case E1000_DEV_ID_I211_COPPER:
 344                 mac->type = e1000_i211;
 345                 break;
 346         case E1000_DEV_ID_82576_VF:
 347         case E1000_DEV_ID_82576_VF_HV:
 348                 mac->type = e1000_vfadapt;
 349                 break;
 350         case E1000_DEV_ID_I350_VF:
 351         case E1000_DEV_ID_I350_VF_HV:
 352                 mac->type = e1000_vfadapt_i350;
 353                 break;
 354         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 355         case E1000_DEV_ID_I354_SGMII:
 356         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 357                 mac->type = e1000_i354;
 358                 break;
 359 
 360         default:
 361                 /* Should never have loaded on this device */
 362                 ret_val = -E1000_ERR_MAC_INIT;
 363                 break;
 364         }
 365 
 366         return ret_val;
 367 }
 368 
 369 /**
 370  *  e1000_setup_init_funcs - Initializes function pointers
 371  *  @hw: pointer to the HW structure
 372  *  @init_device: TRUE will initialize the rest of the function pointers
 373  *                getting the device ready for use.  FALSE will only set
 374  *                MAC type and the function pointers for the other init
 375  *                functions.  Passing FALSE will not generate any hardware
 376  *                reads or writes.
 377  *
 378  *  This function must be called by a driver in order to use the rest
 379  *  of the 'shared' code files. Called by drivers only.
 380  **/
 381 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
 382 {
 383         s32 ret_val;
 384 
 385         /* Can't do much good without knowing the MAC type. */
 386         ret_val = e1000_set_mac_type(hw);
 387         if (ret_val) {
 388                 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
 389                 goto out;
 390         }
 391 
 392         if (!hw->hw_addr) {
 393                 DEBUGOUT("ERROR: Registers not mapped\n");
 394                 ret_val = -E1000_ERR_CONFIG;
 395                 goto out;
 396         }
 397 
 398         /*
 399          * Init function pointers to generic implementations. We do this first
 400          * allowing a driver module to override it afterward.
 401          */
 402         e1000_init_mac_ops_generic(hw);
 403         e1000_init_phy_ops_generic(hw);
 404         e1000_init_nvm_ops_generic(hw);
 405         e1000_init_mbx_ops_generic(hw);
 406 
 407         /*
 408          * Set up the init function pointers. These are functions within the
 409          * adapter family file that sets up function pointers for the rest of
 410          * the functions in that family.
 411          */
 412         switch (hw->mac.type) {
 413         case e1000_82542:
 414                 e1000_init_function_pointers_82542(hw);
 415                 break;
 416         case e1000_82543:
 417         case e1000_82544:
 418                 e1000_init_function_pointers_82543(hw);
 419                 break;
 420         case e1000_82540:
 421         case e1000_82545:
 422         case e1000_82545_rev_3:
 423         case e1000_82546:
 424         case e1000_82546_rev_3:
 425                 e1000_init_function_pointers_82540(hw);
 426                 break;
 427         case e1000_82541:
 428         case e1000_82541_rev_2:
 429         case e1000_82547:
 430         case e1000_82547_rev_2:
 431                 e1000_init_function_pointers_82541(hw);
 432                 break;
 433         case e1000_82571:
 434         case e1000_82572:
 435         case e1000_82573:
 436         case e1000_82574:
 437         case e1000_82583:
 438                 e1000_init_function_pointers_82571(hw);
 439                 break;
 440         case e1000_80003es2lan:
 441                 e1000_init_function_pointers_80003es2lan(hw);
 442                 break;
 443         case e1000_ich8lan:
 444         case e1000_ich9lan:
 445         case e1000_ich10lan:
 446         case e1000_pchlan:
 447         case e1000_pch2lan:
 448         case e1000_pch_lpt:
 449                 e1000_init_function_pointers_ich8lan(hw);
 450                 break;
 451         case e1000_82575:
 452         case e1000_82576:
 453         case e1000_82580:
 454         case e1000_i350:
 455         case e1000_i354:
 456                 e1000_init_function_pointers_82575(hw);
 457                 break;
 458         case e1000_i210:
 459         case e1000_i211:
 460                 e1000_init_function_pointers_i210(hw);
 461                 break;
 462         case e1000_vfadapt:
 463                 e1000_init_function_pointers_vf(hw);
 464                 break;
 465         case e1000_vfadapt_i350:
 466                 e1000_init_function_pointers_vf(hw);
 467                 break;
 468         default:
 469                 DEBUGOUT("Hardware not supported\n");
 470                 ret_val = -E1000_ERR_CONFIG;
 471                 break;
 472         }
 473 
 474         /*
 475          * Initialize the rest of the function pointers. These require some
 476          * register reads/writes in some cases.
 477          */
 478         if (!(ret_val) && init_device) {
 479                 ret_val = e1000_init_mac_params(hw);
 480                 if (ret_val)
 481                         goto out;
 482 
 483                 ret_val = e1000_init_nvm_params(hw);
 484                 if (ret_val)
 485                         goto out;
 486 
 487                 ret_val = e1000_init_phy_params(hw);
 488                 if (ret_val)
 489                         goto out;
 490 
 491                 ret_val = e1000_init_mbx_params(hw);
 492                 if (ret_val)
 493                         goto out;
 494         }
 495 
 496 out:
 497         return ret_val;
 498 }
 499 
 500 /**
 501  *  e1000_get_bus_info - Obtain bus information for adapter
 502  *  @hw: pointer to the HW structure
 503  *
 504  *  This will obtain information about the HW bus for which the
 505  *  adapter is attached and stores it in the hw structure. This is a
 506  *  function pointer entry point called by drivers.
 507  **/
 508 s32 e1000_get_bus_info(struct e1000_hw *hw)
 509 {
 510         if (hw->mac.ops.get_bus_info)
 511                 return hw->mac.ops.get_bus_info(hw);
 512 
 513         return E1000_SUCCESS;
 514 }
 515 
 516 /**
 517  *  e1000_clear_vfta - Clear VLAN filter table
 518  *  @hw: pointer to the HW structure
 519  *
 520  *  This clears the VLAN filter table on the adapter. This is a function
 521  *  pointer entry point called by drivers.
 522  **/
 523 void e1000_clear_vfta(struct e1000_hw *hw)
 524 {
 525         if (hw->mac.ops.clear_vfta)
 526                 hw->mac.ops.clear_vfta(hw);
 527 }
 528 
 529 /**
 530  *  e1000_write_vfta - Write value to VLAN filter table
 531  *  @hw: pointer to the HW structure
 532  *  @offset: the 32-bit offset in which to write the value to.
 533  *  @value: the 32-bit value to write at location offset.
 534  *
 535  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
 536  *  table. This is a function pointer entry point called by drivers.
 537  **/
 538 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 539 {
 540         if (hw->mac.ops.write_vfta)
 541                 hw->mac.ops.write_vfta(hw, offset, value);
 542 }
 543 
 544 /**
 545  *  e1000_update_mc_addr_list - Update Multicast addresses
 546  *  @hw: pointer to the HW structure
 547  *  @mc_addr_list: array of multicast addresses to program
 548  *  @mc_addr_count: number of multicast addresses to program
 549  *
 550  *  Updates the Multicast Table Array.
 551  *  The caller must have a packed mc_addr_list of multicast addresses.
 552  **/
 553 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
 554                                u32 mc_addr_count)
 555 {
 556         if (hw->mac.ops.update_mc_addr_list)
 557                 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
 558                                                 mc_addr_count);
 559 }
 560 
 561 /**
 562  *  e1000_force_mac_fc - Force MAC flow control
 563  *  @hw: pointer to the HW structure
 564  *
 565  *  Force the MAC's flow control settings. Currently no func pointer exists
 566  *  and all implementations are handled in the generic version of this
 567  *  function.
 568  **/
 569 s32 e1000_force_mac_fc(struct e1000_hw *hw)
 570 {
 571         return e1000_force_mac_fc_generic(hw);
 572 }
 573 
 574 /**
 575  *  e1000_check_for_link - Check/Store link connection
 576  *  @hw: pointer to the HW structure
 577  *
 578  *  This checks the link condition of the adapter and stores the
 579  *  results in the hw->mac structure. This is a function pointer entry
 580  *  point called by drivers.
 581  **/
 582 s32 e1000_check_for_link(struct e1000_hw *hw)
 583 {
 584         if (hw->mac.ops.check_for_link)
 585                 return hw->mac.ops.check_for_link(hw);
 586 
 587         return -E1000_ERR_CONFIG;
 588 }
 589 
 590 /**
 591  *  e1000_check_mng_mode - Check management mode
 592  *  @hw: pointer to the HW structure
 593  *
 594  *  This checks if the adapter has manageability enabled.
 595  *  This is a function pointer entry point called by drivers.
 596  **/
 597 bool e1000_check_mng_mode(struct e1000_hw *hw)
 598 {
 599         if (hw->mac.ops.check_mng_mode)
 600                 return hw->mac.ops.check_mng_mode(hw);
 601 
 602         return FALSE;
 603 }
 604 
 605 /**
 606  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
 607  *  @hw: pointer to the HW structure
 608  *  @buffer: pointer to the host interface
 609  *  @length: size of the buffer
 610  *
 611  *  Writes the DHCP information to the host interface.
 612  **/
 613 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
 614 {
 615         return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
 616 }
 617 
 618 /**
 619  *  e1000_reset_hw - Reset hardware
 620  *  @hw: pointer to the HW structure
 621  *
 622  *  This resets the hardware into a known state. This is a function pointer
 623  *  entry point called by drivers.
 624  **/
 625 s32 e1000_reset_hw(struct e1000_hw *hw)
 626 {
 627         if (hw->mac.ops.reset_hw)
 628                 return hw->mac.ops.reset_hw(hw);
 629 
 630         return -E1000_ERR_CONFIG;
 631 }
 632 
 633 /**
 634  *  e1000_init_hw - Initialize hardware
 635  *  @hw: pointer to the HW structure
 636  *
 637  *  This inits the hardware readying it for operation. This is a function
 638  *  pointer entry point called by drivers.
 639  **/
 640 s32 e1000_init_hw(struct e1000_hw *hw)
 641 {
 642         if (hw->mac.ops.init_hw)
 643                 return hw->mac.ops.init_hw(hw);
 644 
 645         return -E1000_ERR_CONFIG;
 646 }
 647 
 648 /**
 649  *  e1000_setup_link - Configures link and flow control
 650  *  @hw: pointer to the HW structure
 651  *
 652  *  This configures link and flow control settings for the adapter. This
 653  *  is a function pointer entry point called by drivers. While modules can
 654  *  also call this, they probably call their own version of this function.
 655  **/
 656 s32 e1000_setup_link(struct e1000_hw *hw)
 657 {
 658         if (hw->mac.ops.setup_link)
 659                 return hw->mac.ops.setup_link(hw);
 660 
 661         return -E1000_ERR_CONFIG;
 662 }
 663 
 664 /**
 665  *  e1000_get_speed_and_duplex - Returns current speed and duplex
 666  *  @hw: pointer to the HW structure
 667  *  @speed: pointer to a 16-bit value to store the speed
 668  *  @duplex: pointer to a 16-bit value to store the duplex.
 669  *
 670  *  This returns the speed and duplex of the adapter in the two 'out'
 671  *  variables passed in. This is a function pointer entry point called
 672  *  by drivers.
 673  **/
 674 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
 675 {
 676         if (hw->mac.ops.get_link_up_info)
 677                 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
 678 
 679         return -E1000_ERR_CONFIG;
 680 }
 681 
 682 /**
 683  *  e1000_setup_led - Configures SW controllable LED
 684  *  @hw: pointer to the HW structure
 685  *
 686  *  This prepares the SW controllable LED for use and saves the current state
 687  *  of the LED so it can be later restored. This is a function pointer entry
 688  *  point called by drivers.
 689  **/
 690 s32 e1000_setup_led(struct e1000_hw *hw)
 691 {
 692         if (hw->mac.ops.setup_led)
 693                 return hw->mac.ops.setup_led(hw);
 694 
 695         return E1000_SUCCESS;
 696 }
 697 
 698 /**
 699  *  e1000_cleanup_led - Restores SW controllable LED
 700  *  @hw: pointer to the HW structure
 701  *
 702  *  This restores the SW controllable LED to the value saved off by
 703  *  e1000_setup_led. This is a function pointer entry point called by drivers.
 704  **/
 705 s32 e1000_cleanup_led(struct e1000_hw *hw)
 706 {
 707         if (hw->mac.ops.cleanup_led)
 708                 return hw->mac.ops.cleanup_led(hw);
 709 
 710         return E1000_SUCCESS;
 711 }
 712 
 713 /**
 714  *  e1000_blink_led - Blink SW controllable LED
 715  *  @hw: pointer to the HW structure
 716  *
 717  *  This starts the adapter LED blinking. Request the LED to be setup first
 718  *  and cleaned up after. This is a function pointer entry point called by
 719  *  drivers.
 720  **/
 721 s32 e1000_blink_led(struct e1000_hw *hw)
 722 {
 723         if (hw->mac.ops.blink_led)
 724                 return hw->mac.ops.blink_led(hw);
 725 
 726         return E1000_SUCCESS;
 727 }
 728 
 729 /**
 730  *  e1000_id_led_init - store LED configurations in SW
 731  *  @hw: pointer to the HW structure
 732  *
 733  *  Initializes the LED config in SW. This is a function pointer entry point
 734  *  called by drivers.
 735  **/
 736 s32 e1000_id_led_init(struct e1000_hw *hw)
 737 {
 738         if (hw->mac.ops.id_led_init)
 739                 return hw->mac.ops.id_led_init(hw);
 740 
 741         return E1000_SUCCESS;
 742 }
 743 
 744 /**
 745  *  e1000_led_on - Turn on SW controllable LED
 746  *  @hw: pointer to the HW structure
 747  *
 748  *  Turns the SW defined LED on. This is a function pointer entry point
 749  *  called by drivers.
 750  **/
 751 s32 e1000_led_on(struct e1000_hw *hw)
 752 {
 753         if (hw->mac.ops.led_on)
 754                 return hw->mac.ops.led_on(hw);
 755 
 756         return E1000_SUCCESS;
 757 }
 758 
 759 /**
 760  *  e1000_led_off - Turn off SW controllable LED
 761  *  @hw: pointer to the HW structure
 762  *
 763  *  Turns the SW defined LED off. This is a function pointer entry point
 764  *  called by drivers.
 765  **/
 766 s32 e1000_led_off(struct e1000_hw *hw)
 767 {
 768         if (hw->mac.ops.led_off)
 769                 return hw->mac.ops.led_off(hw);
 770 
 771         return E1000_SUCCESS;
 772 }
 773 
 774 /**
 775  *  e1000_reset_adaptive - Reset adaptive IFS
 776  *  @hw: pointer to the HW structure
 777  *
 778  *  Resets the adaptive IFS. Currently no func pointer exists and all
 779  *  implementations are handled in the generic version of this function.
 780  **/
 781 void e1000_reset_adaptive(struct e1000_hw *hw)
 782 {
 783         e1000_reset_adaptive_generic(hw);
 784 }
 785 
 786 /**
 787  *  e1000_update_adaptive - Update adaptive IFS
 788  *  @hw: pointer to the HW structure
 789  *
 790  *  Updates adapter IFS. Currently no func pointer exists and all
 791  *  implementations are handled in the generic version of this function.
 792  **/
 793 void e1000_update_adaptive(struct e1000_hw *hw)
 794 {
 795         e1000_update_adaptive_generic(hw);
 796 }
 797 
 798 /**
 799  *  e1000_disable_pcie_master - Disable PCI-Express master access
 800  *  @hw: pointer to the HW structure
 801  *
 802  *  Disables PCI-Express master access and verifies there are no pending
 803  *  requests. Currently no func pointer exists and all implementations are
 804  *  handled in the generic version of this function.
 805  **/
 806 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
 807 {
 808         return e1000_disable_pcie_master_generic(hw);
 809 }
 810 
 811 /**
 812  *  e1000_config_collision_dist - Configure collision distance
 813  *  @hw: pointer to the HW structure
 814  *
 815  *  Configures the collision distance to the default value and is used
 816  *  during link setup.
 817  **/
 818 void e1000_config_collision_dist(struct e1000_hw *hw)
 819 {
 820         if (hw->mac.ops.config_collision_dist)
 821                 hw->mac.ops.config_collision_dist(hw);
 822 }
 823 
 824 /**
 825  *  e1000_rar_set - Sets a receive address register
 826  *  @hw: pointer to the HW structure
 827  *  @addr: address to set the RAR to
 828  *  @index: the RAR to set
 829  *
 830  *  Sets a Receive Address Register (RAR) to the specified address.
 831  **/
 832 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 833 {
 834         if (hw->mac.ops.rar_set)
 835                 hw->mac.ops.rar_set(hw, addr, index);
 836 }
 837 
 838 /**
 839  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
 840  *  @hw: pointer to the HW structure
 841  *
 842  *  Ensures that the MDI/MDIX SW state is valid.
 843  **/
 844 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
 845 {
 846         if (hw->mac.ops.validate_mdi_setting)
 847                 return hw->mac.ops.validate_mdi_setting(hw);
 848 
 849         return E1000_SUCCESS;
 850 }
 851 
 852 /**
 853  *  e1000_hash_mc_addr - Determines address location in multicast table
 854  *  @hw: pointer to the HW structure
 855  *  @mc_addr: Multicast address to hash.
 856  *
 857  *  This hashes an address to determine its location in the multicast
 858  *  table. Currently no func pointer exists and all implementations
 859  *  are handled in the generic version of this function.
 860  **/
 861 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 862 {
 863         return e1000_hash_mc_addr_generic(hw, mc_addr);
 864 }
 865 
 866 /**
 867  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
 868  *  @hw: pointer to the HW structure
 869  *
 870  *  Enables packet filtering on transmit packets if manageability is enabled
 871  *  and host interface is enabled.
 872  *  Currently no func pointer exists and all implementations are handled in the
 873  *  generic version of this function.
 874  **/
 875 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
 876 {
 877         return e1000_enable_tx_pkt_filtering_generic(hw);
 878 }
 879 
 880 /**
 881  *  e1000_mng_host_if_write - Writes to the manageability host interface
 882  *  @hw: pointer to the HW structure
 883  *  @buffer: pointer to the host interface buffer
 884  *  @length: size of the buffer
 885  *  @offset: location in the buffer to write to
 886  *  @sum: sum of the data (not checksum)
 887  *
 888  *  This function writes the buffer content at the offset given on the host if.
 889  *  It also does alignment considerations to do the writes in most efficient
 890  *  way.  Also fills up the sum of the buffer in *buffer parameter.
 891  **/
 892 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
 893                             u16 offset, u8 *sum)
 894 {
 895         return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
 896 }
 897 
 898 /**
 899  *  e1000_mng_write_cmd_header - Writes manageability command header
 900  *  @hw: pointer to the HW structure
 901  *  @hdr: pointer to the host interface command header
 902  *
 903  *  Writes the command header after does the checksum calculation.
 904  **/
 905 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
 906                                struct e1000_host_mng_command_header *hdr)
 907 {
 908         return e1000_mng_write_cmd_header_generic(hw, hdr);
 909 }
 910 
 911 /**
 912  *  e1000_mng_enable_host_if - Checks host interface is enabled
 913  *  @hw: pointer to the HW structure
 914  *
 915  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
 916  *
 917  *  This function checks whether the HOST IF is enabled for command operation
 918  *  and also checks whether the previous command is completed.  It busy waits
 919  *  in case of previous command is not completed.
 920  **/
 921 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
 922 {
 923         return e1000_mng_enable_host_if_generic(hw);
 924 }
 925 
 926 /**
 927  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
 928  *  @hw: pointer to the HW structure
 929  *  @itr: u32 indicating itr value
 930  *
 931  *  Set the OBFF timer based on the given interrupt rate.
 932  **/
 933 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
 934 {
 935         if (hw->mac.ops.set_obff_timer)
 936                 return hw->mac.ops.set_obff_timer(hw, itr);
 937 
 938         return E1000_SUCCESS;
 939 }
 940 
 941 /**
 942  *  e1000_check_reset_block - Verifies PHY can be reset
 943  *  @hw: pointer to the HW structure
 944  *
 945  *  Checks if the PHY is in a state that can be reset or if manageability
 946  *  has it tied up. This is a function pointer entry point called by drivers.
 947  **/
 948 s32 e1000_check_reset_block(struct e1000_hw *hw)
 949 {
 950         if (hw->phy.ops.check_reset_block)
 951                 return hw->phy.ops.check_reset_block(hw);
 952 
 953         return E1000_SUCCESS;
 954 }
 955 
 956 /**
 957  *  e1000_read_phy_reg - Reads PHY register
 958  *  @hw: pointer to the HW structure
 959  *  @offset: the register to read
 960  *  @data: the buffer to store the 16-bit read.
 961  *
 962  *  Reads the PHY register and returns the value in data.
 963  *  This is a function pointer entry point called by drivers.
 964  **/
 965 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 966 {
 967         if (hw->phy.ops.read_reg)
 968                 return hw->phy.ops.read_reg(hw, offset, data);
 969 
 970         return E1000_SUCCESS;
 971 }
 972 
 973 /**
 974  *  e1000_write_phy_reg - Writes PHY register
 975  *  @hw: pointer to the HW structure
 976  *  @offset: the register to write
 977  *  @data: the value to write.
 978  *
 979  *  Writes the PHY register at offset with the value in data.
 980  *  This is a function pointer entry point called by drivers.
 981  **/
 982 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
 983 {
 984         if (hw->phy.ops.write_reg)
 985                 return hw->phy.ops.write_reg(hw, offset, data);
 986 
 987         return E1000_SUCCESS;
 988 }
 989 
 990 /**
 991  *  e1000_release_phy - Generic release PHY
 992  *  @hw: pointer to the HW structure
 993  *
 994  *  Return if silicon family does not require a semaphore when accessing the
 995  *  PHY.
 996  **/
 997 void e1000_release_phy(struct e1000_hw *hw)
 998 {
 999         if (hw->phy.ops.release)
1000                 hw->phy.ops.release(hw);
1001 }
1002 
1003 /**
1004  *  e1000_acquire_phy - Generic acquire PHY
1005  *  @hw: pointer to the HW structure
1006  *
1007  *  Return success if silicon family does not require a semaphore when
1008  *  accessing the PHY.
1009  **/
1010 s32 e1000_acquire_phy(struct e1000_hw *hw)
1011 {
1012         if (hw->phy.ops.acquire)
1013                 return hw->phy.ops.acquire(hw);
1014 
1015         return E1000_SUCCESS;
1016 }
1017 
1018 /**
1019  *  e1000_cfg_on_link_up - Configure PHY upon link up
1020  *  @hw: pointer to the HW structure
1021  **/
1022 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1023 {
1024         if (hw->phy.ops.cfg_on_link_up)
1025                 return hw->phy.ops.cfg_on_link_up(hw);
1026 
1027         return E1000_SUCCESS;
1028 }
1029 
1030 /**
1031  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1032  *  @hw: pointer to the HW structure
1033  *  @offset: the register to read
1034  *  @data: the location to store the 16-bit value read.
1035  *
1036  *  Reads a register out of the Kumeran interface. Currently no func pointer
1037  *  exists and all implementations are handled in the generic version of
1038  *  this function.
1039  **/
1040 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1041 {
1042         return e1000_read_kmrn_reg_generic(hw, offset, data);
1043 }
1044 
1045 /**
1046  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1047  *  @hw: pointer to the HW structure
1048  *  @offset: the register to write
1049  *  @data: the value to write.
1050  *
1051  *  Writes a register to the Kumeran interface. Currently no func pointer
1052  *  exists and all implementations are handled in the generic version of
1053  *  this function.
1054  **/
1055 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1056 {
1057         return e1000_write_kmrn_reg_generic(hw, offset, data);
1058 }
1059 
1060 /**
1061  *  e1000_get_cable_length - Retrieves cable length estimation
1062  *  @hw: pointer to the HW structure
1063  *
1064  *  This function estimates the cable length and stores them in
1065  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1066  *  entry point called by drivers.
1067  **/
1068 s32 e1000_get_cable_length(struct e1000_hw *hw)
1069 {
1070         if (hw->phy.ops.get_cable_length)
1071                 return hw->phy.ops.get_cable_length(hw);
1072 
1073         return E1000_SUCCESS;
1074 }
1075 
1076 /**
1077  *  e1000_get_phy_info - Retrieves PHY information from registers
1078  *  @hw: pointer to the HW structure
1079  *
1080  *  This function gets some information from various PHY registers and
1081  *  populates hw->phy values with it. This is a function pointer entry
1082  *  point called by drivers.
1083  **/
1084 s32 e1000_get_phy_info(struct e1000_hw *hw)
1085 {
1086         if (hw->phy.ops.get_info)
1087                 return hw->phy.ops.get_info(hw);
1088 
1089         return E1000_SUCCESS;
1090 }
1091 
1092 /**
1093  *  e1000_phy_hw_reset - Hard PHY reset
1094  *  @hw: pointer to the HW structure
1095  *
1096  *  Performs a hard PHY reset. This is a function pointer entry point called
1097  *  by drivers.
1098  **/
1099 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1100 {
1101         if (hw->phy.ops.reset)
1102                 return hw->phy.ops.reset(hw);
1103 
1104         return E1000_SUCCESS;
1105 }
1106 
1107 /**
1108  *  e1000_phy_commit - Soft PHY reset
1109  *  @hw: pointer to the HW structure
1110  *
1111  *  Performs a soft PHY reset on those that apply. This is a function pointer
1112  *  entry point called by drivers.
1113  **/
1114 s32 e1000_phy_commit(struct e1000_hw *hw)
1115 {
1116         if (hw->phy.ops.commit)
1117                 return hw->phy.ops.commit(hw);
1118 
1119         return E1000_SUCCESS;
1120 }
1121 
1122 /**
1123  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1124  *  @hw: pointer to the HW structure
1125  *  @active: boolean used to enable/disable lplu
1126  *
1127  *  Success returns 0, Failure returns 1
1128  *
1129  *  The low power link up (lplu) state is set to the power management level D0
1130  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1131  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1132  *  is used during Dx states where the power conservation is most important.
1133  *  During driver activity, SmartSpeed should be enabled so performance is
1134  *  maintained.  This is a function pointer entry point called by drivers.
1135  **/
1136 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1137 {
1138         if (hw->phy.ops.set_d0_lplu_state)
1139                 return hw->phy.ops.set_d0_lplu_state(hw, active);
1140 
1141         return E1000_SUCCESS;
1142 }
1143 
1144 /**
1145  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1146  *  @hw: pointer to the HW structure
1147  *  @active: boolean used to enable/disable lplu
1148  *
1149  *  Success returns 0, Failure returns 1
1150  *
1151  *  The low power link up (lplu) state is set to the power management level D3
1152  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1153  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1154  *  is used during Dx states where the power conservation is most important.
1155  *  During driver activity, SmartSpeed should be enabled so performance is
1156  *  maintained.  This is a function pointer entry point called by drivers.
1157  **/
1158 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1159 {
1160         if (hw->phy.ops.set_d3_lplu_state)
1161                 return hw->phy.ops.set_d3_lplu_state(hw, active);
1162 
1163         return E1000_SUCCESS;
1164 }
1165 
1166 /**
1167  *  e1000_read_mac_addr - Reads MAC address
1168  *  @hw: pointer to the HW structure
1169  *
1170  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1171  *  Currently no func pointer exists and all implementations are handled in the
1172  *  generic version of this function.
1173  **/
1174 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1175 {
1176         if (hw->mac.ops.read_mac_addr)
1177                 return hw->mac.ops.read_mac_addr(hw);
1178 
1179         return e1000_read_mac_addr_generic(hw);
1180 }
1181 
1182 /**
1183  *  e1000_read_pba_string - Read device part number string
1184  *  @hw: pointer to the HW structure
1185  *  @pba_num: pointer to device part number
1186  *  @pba_num_size: size of part number buffer
1187  *
1188  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1189  *  the value in pba_num.
1190  *  Currently no func pointer exists and all implementations are handled in the
1191  *  generic version of this function.
1192  **/
1193 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1194 {
1195         return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1196 }
1197 
1198 /**
1199  *  e1000_read_pba_length - Read device part number string length
1200  *  @hw: pointer to the HW structure
1201  *  @pba_num_size: size of part number buffer
1202  *
1203  *  Reads the product board assembly (PBA) number length from the EEPROM and
1204  *  stores the value in pba_num.
1205  *  Currently no func pointer exists and all implementations are handled in the
1206  *  generic version of this function.
1207  **/
1208 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1209 {
1210         return e1000_read_pba_length_generic(hw, pba_num_size);
1211 }
1212 
1213 /**
1214  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1215  *  @hw: pointer to the HW structure
1216  *
1217  *  Validates the NVM checksum is correct. This is a function pointer entry
1218  *  point called by drivers.
1219  **/
1220 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1221 {
1222         if (hw->nvm.ops.validate)
1223                 return hw->nvm.ops.validate(hw);
1224 
1225         return -E1000_ERR_CONFIG;
1226 }
1227 
1228 /**
1229  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1230  *  @hw: pointer to the HW structure
1231  *
1232  *  Updates the NVM checksum. Currently no func pointer exists and all
1233  *  implementations are handled in the generic version of this function.
1234  **/
1235 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1236 {
1237         if (hw->nvm.ops.update)
1238                 return hw->nvm.ops.update(hw);
1239 
1240         return -E1000_ERR_CONFIG;
1241 }
1242 
1243 /**
1244  *  e1000_reload_nvm - Reloads EEPROM
1245  *  @hw: pointer to the HW structure
1246  *
1247  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1248  *  extended control register.
1249  **/
1250 void e1000_reload_nvm(struct e1000_hw *hw)
1251 {
1252         if (hw->nvm.ops.reload)
1253                 hw->nvm.ops.reload(hw);
1254 }
1255 
1256 /**
1257  *  e1000_read_nvm - Reads NVM (EEPROM)
1258  *  @hw: pointer to the HW structure
1259  *  @offset: the word offset to read
1260  *  @words: number of 16-bit words to read
1261  *  @data: pointer to the properly sized buffer for the data.
1262  *
1263  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1264  *  pointer entry point called by drivers.
1265  **/
1266 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1267 {
1268         if (hw->nvm.ops.read)
1269                 return hw->nvm.ops.read(hw, offset, words, data);
1270 
1271         return -E1000_ERR_CONFIG;
1272 }
1273 
1274 /**
1275  *  e1000_write_nvm - Writes to NVM (EEPROM)
1276  *  @hw: pointer to the HW structure
1277  *  @offset: the word offset to read
1278  *  @words: number of 16-bit words to write
1279  *  @data: pointer to the properly sized buffer for the data.
1280  *
1281  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1282  *  pointer entry point called by drivers.
1283  **/
1284 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1285 {
1286         if (hw->nvm.ops.write)
1287                 return hw->nvm.ops.write(hw, offset, words, data);
1288 
1289         return E1000_SUCCESS;
1290 }
1291 
1292 /**
1293  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1294  *  @hw: pointer to the HW structure
1295  *  @reg: 32bit register offset
1296  *  @offset: the register to write
1297  *  @data: the value to write.
1298  *
1299  *  Writes the PHY register at offset with the value in data.
1300  *  This is a function pointer entry point called by drivers.
1301  **/
1302 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1303                               u8 data)
1304 {
1305         return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1306 }
1307 
1308 /**
1309  * e1000_power_up_phy - Restores link in case of PHY power down
1310  * @hw: pointer to the HW structure
1311  *
1312  * The phy may be powered down to save power, to turn off link when the
1313  * driver is unloaded, or wake on lan is not enabled (among others).
1314  **/
1315 void e1000_power_up_phy(struct e1000_hw *hw)
1316 {
1317         if (hw->phy.ops.power_up)
1318                 hw->phy.ops.power_up(hw);
1319 
1320         e1000_setup_link(hw);
1321 }
1322 
1323 /**
1324  * e1000_power_down_phy - Power down PHY
1325  * @hw: pointer to the HW structure
1326  *
1327  * The phy may be powered down to save power, to turn off link when the
1328  * driver is unloaded, or wake on lan is not enabled (among others).
1329  **/
1330 void e1000_power_down_phy(struct e1000_hw *hw)
1331 {
1332         if (hw->phy.ops.power_down)
1333                 hw->phy.ops.power_down(hw);
1334 }
1335 
1336 /**
1337  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1338  *  @hw: pointer to the HW structure
1339  *
1340  *  Power on the optics and PCS.
1341  **/
1342 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1343 {
1344         if (hw->mac.ops.power_up_serdes)
1345                 hw->mac.ops.power_up_serdes(hw);
1346 }
1347 
1348 /**
1349  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1350  *  @hw: pointer to the HW structure
1351  *
1352  *  Shutdown the optics and PCS on driver unload.
1353  **/
1354 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1355 {
1356         if (hw->mac.ops.shutdown_serdes)
1357                 hw->mac.ops.shutdown_serdes(hw);
1358 }
1359