1 /******************************************************************************
   2 
   3   Copyright (c) 2001-2013, Intel Corporation 
   4   All rights reserved.
   5   
   6   Redistribution and use in source and binary forms, with or without 
   7   modification, are permitted provided that the following conditions are met:
   8   
   9    1. Redistributions of source code must retain the above copyright notice, 
  10       this list of conditions and the following disclaimer.
  11   
  12    2. Redistributions in binary form must reproduce the above copyright 
  13       notice, this list of conditions and the following disclaimer in the 
  14       documentation and/or other materials provided with the distribution.
  15   
  16    3. Neither the name of the Intel Corporation nor the names of its 
  17       contributors may be used to endorse or promote products derived from 
  18       this software without specific prior written permission.
  19   
  20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  30   POSSIBILITY OF SUCH DAMAGE.
  31 
  32 ******************************************************************************/
  33 /*$FreeBSD$*/
  34 
  35 #include "e1000_api.h"
  36 
  37 /**
  38  *  e1000_init_mac_params - Initialize MAC function pointers
  39  *  @hw: pointer to the HW structure
  40  *
  41  *  This function initializes the function pointers for the MAC
  42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  43  **/
  44 s32 e1000_init_mac_params(struct e1000_hw *hw)
  45 {
  46         s32 ret_val = E1000_SUCCESS;
  47 
  48         if (hw->mac.ops.init_params) {
  49                 ret_val = hw->mac.ops.init_params(hw);
  50                 if (ret_val) {
  51                         DEBUGOUT("MAC Initialization Error\n");
  52                         goto out;
  53                 }
  54         } else {
  55                 DEBUGOUT("mac.init_mac_params was NULL\n");
  56                 ret_val = -E1000_ERR_CONFIG;
  57         }
  58 
  59 out:
  60         return ret_val;
  61 }
  62 
  63 /**
  64  *  e1000_init_nvm_params - Initialize NVM function pointers
  65  *  @hw: pointer to the HW structure
  66  *
  67  *  This function initializes the function pointers for the NVM
  68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  69  **/
  70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
  71 {
  72         s32 ret_val = E1000_SUCCESS;
  73 
  74         if (hw->nvm.ops.init_params) {
  75                 ret_val = hw->nvm.ops.init_params(hw);
  76                 if (ret_val) {
  77                         DEBUGOUT("NVM Initialization Error\n");
  78                         goto out;
  79                 }
  80         } else {
  81                 DEBUGOUT("nvm.init_nvm_params was NULL\n");
  82                 ret_val = -E1000_ERR_CONFIG;
  83         }
  84 
  85 out:
  86         return ret_val;
  87 }
  88 
  89 /**
  90  *  e1000_init_phy_params - Initialize PHY function pointers
  91  *  @hw: pointer to the HW structure
  92  *
  93  *  This function initializes the function pointers for the PHY
  94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  95  **/
  96 s32 e1000_init_phy_params(struct e1000_hw *hw)
  97 {
  98         s32 ret_val = E1000_SUCCESS;
  99 
 100         if (hw->phy.ops.init_params) {
 101                 ret_val = hw->phy.ops.init_params(hw);
 102                 if (ret_val) {
 103                         DEBUGOUT("PHY Initialization Error\n");
 104                         goto out;
 105                 }
 106         } else {
 107                 DEBUGOUT("phy.init_phy_params was NULL\n");
 108                 ret_val =  -E1000_ERR_CONFIG;
 109         }
 110 
 111 out:
 112         return ret_val;
 113 }
 114 
 115 /**
 116  *  e1000_init_mbx_params - Initialize mailbox function pointers
 117  *  @hw: pointer to the HW structure
 118  *
 119  *  This function initializes the function pointers for the PHY
 120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
 121  **/
 122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
 123 {
 124         s32 ret_val = E1000_SUCCESS;
 125 
 126         if (hw->mbx.ops.init_params) {
 127                 ret_val = hw->mbx.ops.init_params(hw);
 128                 if (ret_val) {
 129                         DEBUGOUT("Mailbox Initialization Error\n");
 130                         goto out;
 131                 }
 132         } else {
 133                 DEBUGOUT("mbx.init_mbx_params was NULL\n");
 134                 ret_val =  -E1000_ERR_CONFIG;
 135         }
 136 
 137 out:
 138         return ret_val;
 139 }
 140 
 141 /**
 142  *  e1000_set_mac_type - Sets MAC type
 143  *  @hw: pointer to the HW structure
 144  *
 145  *  This function sets the mac type of the adapter based on the
 146  *  device ID stored in the hw structure.
 147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
 148  *  e1000_setup_init_funcs()).
 149  **/
 150 s32 e1000_set_mac_type(struct e1000_hw *hw)
 151 {
 152         struct e1000_mac_info *mac = &hw->mac;
 153         s32 ret_val = E1000_SUCCESS;
 154 
 155         DEBUGFUNC("e1000_set_mac_type");
 156 
 157         switch (hw->device_id) {
 158         case E1000_DEV_ID_82542:
 159                 mac->type = e1000_82542;
 160                 break;
 161         case E1000_DEV_ID_82543GC_FIBER:
 162         case E1000_DEV_ID_82543GC_COPPER:
 163                 mac->type = e1000_82543;
 164                 break;
 165         case E1000_DEV_ID_82544EI_COPPER:
 166         case E1000_DEV_ID_82544EI_FIBER:
 167         case E1000_DEV_ID_82544GC_COPPER:
 168         case E1000_DEV_ID_82544GC_LOM:
 169                 mac->type = e1000_82544;
 170                 break;
 171         case E1000_DEV_ID_82540EM:
 172         case E1000_DEV_ID_82540EM_LOM:
 173         case E1000_DEV_ID_82540EP:
 174         case E1000_DEV_ID_82540EP_LOM:
 175         case E1000_DEV_ID_82540EP_LP:
 176                 mac->type = e1000_82540;
 177                 break;
 178         case E1000_DEV_ID_82545EM_COPPER:
 179         case E1000_DEV_ID_82545EM_FIBER:
 180                 mac->type = e1000_82545;
 181                 break;
 182         case E1000_DEV_ID_82545GM_COPPER:
 183         case E1000_DEV_ID_82545GM_FIBER:
 184         case E1000_DEV_ID_82545GM_SERDES:
 185                 mac->type = e1000_82545_rev_3;
 186                 break;
 187         case E1000_DEV_ID_82546EB_COPPER:
 188         case E1000_DEV_ID_82546EB_FIBER:
 189         case E1000_DEV_ID_82546EB_QUAD_COPPER:
 190                 mac->type = e1000_82546;
 191                 break;
 192         case E1000_DEV_ID_82546GB_COPPER:
 193         case E1000_DEV_ID_82546GB_FIBER:
 194         case E1000_DEV_ID_82546GB_SERDES:
 195         case E1000_DEV_ID_82546GB_PCIE:
 196         case E1000_DEV_ID_82546GB_QUAD_COPPER:
 197         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 198                 mac->type = e1000_82546_rev_3;
 199                 break;
 200         case E1000_DEV_ID_82541EI:
 201         case E1000_DEV_ID_82541EI_MOBILE:
 202         case E1000_DEV_ID_82541ER_LOM:
 203                 mac->type = e1000_82541;
 204                 break;
 205         case E1000_DEV_ID_82541ER:
 206         case E1000_DEV_ID_82541GI:
 207         case E1000_DEV_ID_82541GI_LF:
 208         case E1000_DEV_ID_82541GI_MOBILE:
 209                 mac->type = e1000_82541_rev_2;
 210                 break;
 211         case E1000_DEV_ID_82547EI:
 212         case E1000_DEV_ID_82547EI_MOBILE:
 213                 mac->type = e1000_82547;
 214                 break;
 215         case E1000_DEV_ID_82547GI:
 216                 mac->type = e1000_82547_rev_2;
 217                 break;
 218         case E1000_DEV_ID_82571EB_COPPER:
 219         case E1000_DEV_ID_82571EB_FIBER:
 220         case E1000_DEV_ID_82571EB_SERDES:
 221         case E1000_DEV_ID_82571EB_SERDES_DUAL:
 222         case E1000_DEV_ID_82571EB_SERDES_QUAD:
 223         case E1000_DEV_ID_82571EB_QUAD_COPPER:
 224         case E1000_DEV_ID_82571PT_QUAD_COPPER:
 225         case E1000_DEV_ID_82571EB_QUAD_FIBER:
 226         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
 227                 mac->type = e1000_82571;
 228                 break;
 229         case E1000_DEV_ID_82572EI:
 230         case E1000_DEV_ID_82572EI_COPPER:
 231         case E1000_DEV_ID_82572EI_FIBER:
 232         case E1000_DEV_ID_82572EI_SERDES:
 233                 mac->type = e1000_82572;
 234                 break;
 235         case E1000_DEV_ID_82573E:
 236         case E1000_DEV_ID_82573E_IAMT:
 237         case E1000_DEV_ID_82573L:
 238                 mac->type = e1000_82573;
 239                 break;
 240         case E1000_DEV_ID_82574L:
 241         case E1000_DEV_ID_82574LA:
 242                 mac->type = e1000_82574;
 243                 break;
 244         case E1000_DEV_ID_82583V:
 245                 mac->type = e1000_82583;
 246                 break;
 247         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
 248         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 249         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
 250         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
 251                 mac->type = e1000_80003es2lan;
 252                 break;
 253         case E1000_DEV_ID_ICH8_IFE:
 254         case E1000_DEV_ID_ICH8_IFE_GT:
 255         case E1000_DEV_ID_ICH8_IFE_G:
 256         case E1000_DEV_ID_ICH8_IGP_M:
 257         case E1000_DEV_ID_ICH8_IGP_M_AMT:
 258         case E1000_DEV_ID_ICH8_IGP_AMT:
 259         case E1000_DEV_ID_ICH8_IGP_C:
 260         case E1000_DEV_ID_ICH8_82567V_3:
 261                 mac->type = e1000_ich8lan;
 262                 break;
 263         case E1000_DEV_ID_ICH9_IFE:
 264         case E1000_DEV_ID_ICH9_IFE_GT:
 265         case E1000_DEV_ID_ICH9_IFE_G:
 266         case E1000_DEV_ID_ICH9_IGP_M:
 267         case E1000_DEV_ID_ICH9_IGP_M_AMT:
 268         case E1000_DEV_ID_ICH9_IGP_M_V:
 269         case E1000_DEV_ID_ICH9_IGP_AMT:
 270         case E1000_DEV_ID_ICH9_BM:
 271         case E1000_DEV_ID_ICH9_IGP_C:
 272         case E1000_DEV_ID_ICH10_R_BM_LM:
 273         case E1000_DEV_ID_ICH10_R_BM_LF:
 274         case E1000_DEV_ID_ICH10_R_BM_V:
 275                 mac->type = e1000_ich9lan;
 276                 break;
 277         case E1000_DEV_ID_ICH10_D_BM_LM:
 278         case E1000_DEV_ID_ICH10_D_BM_LF:
 279         case E1000_DEV_ID_ICH10_D_BM_V:
 280                 mac->type = e1000_ich10lan;
 281                 break;
 282         case E1000_DEV_ID_PCH_D_HV_DM:
 283         case E1000_DEV_ID_PCH_D_HV_DC:
 284         case E1000_DEV_ID_PCH_M_HV_LM:
 285         case E1000_DEV_ID_PCH_M_HV_LC:
 286                 mac->type = e1000_pchlan;
 287                 break;
 288         case E1000_DEV_ID_PCH2_LV_LM:
 289         case E1000_DEV_ID_PCH2_LV_V:
 290                 mac->type = e1000_pch2lan;
 291                 break;
 292         case E1000_DEV_ID_PCH_LPT_I217_LM:
 293         case E1000_DEV_ID_PCH_LPT_I217_V:
 294         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
 295         case E1000_DEV_ID_PCH_LPTLP_I218_V:
 296                 mac->type = e1000_pch_lpt;
 297                 break;
 298         case E1000_DEV_ID_82575EB_COPPER:
 299         case E1000_DEV_ID_82575EB_FIBER_SERDES:
 300         case E1000_DEV_ID_82575GB_QUAD_COPPER:
 301                 mac->type = e1000_82575;
 302                 break;
 303         case E1000_DEV_ID_82576:
 304         case E1000_DEV_ID_82576_FIBER:
 305         case E1000_DEV_ID_82576_SERDES:
 306         case E1000_DEV_ID_82576_QUAD_COPPER:
 307         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 308         case E1000_DEV_ID_82576_NS:
 309         case E1000_DEV_ID_82576_NS_SERDES:
 310         case E1000_DEV_ID_82576_SERDES_QUAD:
 311                 mac->type = e1000_82576;
 312                 break;
 313         case E1000_DEV_ID_82580_COPPER:
 314         case E1000_DEV_ID_82580_FIBER:
 315         case E1000_DEV_ID_82580_SERDES:
 316         case E1000_DEV_ID_82580_SGMII:
 317         case E1000_DEV_ID_82580_COPPER_DUAL:
 318         case E1000_DEV_ID_82580_QUAD_FIBER:
 319         case E1000_DEV_ID_DH89XXCC_SGMII:
 320         case E1000_DEV_ID_DH89XXCC_SERDES:
 321         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 322         case E1000_DEV_ID_DH89XXCC_SFP:
 323                 mac->type = e1000_82580;
 324                 break;
 325         case E1000_DEV_ID_I350_COPPER:
 326         case E1000_DEV_ID_I350_FIBER:
 327         case E1000_DEV_ID_I350_SERDES:
 328         case E1000_DEV_ID_I350_SGMII:
 329         case E1000_DEV_ID_I350_DA4:
 330                 mac->type = e1000_i350;
 331                 break;
 332 #if defined(QV_RELEASE) && defined(SPRINGVILLE_FLASHLESS_HW)
 333         case E1000_DEV_ID_I210_NVMLESS:
 334 #endif /* QV_RELEASE && SPRINGVILLE_FLASHLESS_HW */
 335         case E1000_DEV_ID_I210_COPPER:
 336         case E1000_DEV_ID_I210_COPPER_OEM1:
 337         case E1000_DEV_ID_I210_COPPER_IT:
 338         case E1000_DEV_ID_I210_FIBER:
 339         case E1000_DEV_ID_I210_SERDES:
 340         case E1000_DEV_ID_I210_SGMII:
 341                 mac->type = e1000_i210;
 342                 break;
 343         case E1000_DEV_ID_I211_COPPER:
 344                 mac->type = e1000_i211;
 345                 break;
 346         case E1000_DEV_ID_82576_VF:
 347         case E1000_DEV_ID_82576_VF_HV:
 348                 mac->type = e1000_vfadapt;
 349                 break;
 350         case E1000_DEV_ID_I350_VF:
 351         case E1000_DEV_ID_I350_VF_HV:
 352                 mac->type = e1000_vfadapt_i350;
 353                 break;
 354 
 355         default:
 356                 /* Should never have loaded on this device */
 357                 ret_val = -E1000_ERR_MAC_INIT;
 358                 break;
 359         }
 360 
 361         return ret_val;
 362 }
 363 
 364 /**
 365  *  e1000_setup_init_funcs - Initializes function pointers
 366  *  @hw: pointer to the HW structure
 367  *  @init_device: TRUE will initialize the rest of the function pointers
 368  *                getting the device ready for use.  FALSE will only set
 369  *                MAC type and the function pointers for the other init
 370  *                functions.  Passing FALSE will not generate any hardware
 371  *                reads or writes.
 372  *
 373  *  This function must be called by a driver in order to use the rest
 374  *  of the 'shared' code files. Called by drivers only.
 375  **/
 376 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
 377 {
 378         s32 ret_val;
 379 
 380         /* Can't do much good without knowing the MAC type. */
 381         ret_val = e1000_set_mac_type(hw);
 382         if (ret_val) {
 383                 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
 384                 goto out;
 385         }
 386 
 387         if (!hw->hw_addr) {
 388                 DEBUGOUT("ERROR: Registers not mapped\n");
 389                 ret_val = -E1000_ERR_CONFIG;
 390                 goto out;
 391         }
 392 
 393         /*
 394          * Init function pointers to generic implementations. We do this first
 395          * allowing a driver module to override it afterward.
 396          */
 397         e1000_init_mac_ops_generic(hw);
 398         e1000_init_phy_ops_generic(hw);
 399         e1000_init_nvm_ops_generic(hw);
 400         e1000_init_mbx_ops_generic(hw);
 401 
 402         /*
 403          * Set up the init function pointers. These are functions within the
 404          * adapter family file that sets up function pointers for the rest of
 405          * the functions in that family.
 406          */
 407         switch (hw->mac.type) {
 408         case e1000_82542:
 409                 e1000_init_function_pointers_82542(hw);
 410                 break;
 411         case e1000_82543:
 412         case e1000_82544:
 413                 e1000_init_function_pointers_82543(hw);
 414                 break;
 415         case e1000_82540:
 416         case e1000_82545:
 417         case e1000_82545_rev_3:
 418         case e1000_82546:
 419         case e1000_82546_rev_3:
 420                 e1000_init_function_pointers_82540(hw);
 421                 break;
 422         case e1000_82541:
 423         case e1000_82541_rev_2:
 424         case e1000_82547:
 425         case e1000_82547_rev_2:
 426                 e1000_init_function_pointers_82541(hw);
 427                 break;
 428         case e1000_82571:
 429         case e1000_82572:
 430         case e1000_82573:
 431         case e1000_82574:
 432         case e1000_82583:
 433                 e1000_init_function_pointers_82571(hw);
 434                 break;
 435         case e1000_80003es2lan:
 436                 e1000_init_function_pointers_80003es2lan(hw);
 437                 break;
 438         case e1000_ich8lan:
 439         case e1000_ich9lan:
 440         case e1000_ich10lan:
 441         case e1000_pchlan:
 442         case e1000_pch2lan:
 443         case e1000_pch_lpt:
 444                 e1000_init_function_pointers_ich8lan(hw);
 445                 break;
 446         case e1000_82575:
 447         case e1000_82576:
 448         case e1000_82580:
 449         case e1000_i350:
 450                 e1000_init_function_pointers_82575(hw);
 451                 break;
 452         case e1000_i210:
 453         case e1000_i211:
 454                 e1000_init_function_pointers_i210(hw);
 455                 break;
 456         case e1000_vfadapt:
 457                 e1000_init_function_pointers_vf(hw);
 458                 break;
 459         case e1000_vfadapt_i350:
 460                 e1000_init_function_pointers_vf(hw);
 461                 break;
 462         default:
 463                 DEBUGOUT("Hardware not supported\n");
 464                 ret_val = -E1000_ERR_CONFIG;
 465                 break;
 466         }
 467 
 468         /*
 469          * Initialize the rest of the function pointers. These require some
 470          * register reads/writes in some cases.
 471          */
 472         if (!(ret_val) && init_device) {
 473                 ret_val = e1000_init_mac_params(hw);
 474                 if (ret_val)
 475                         goto out;
 476 
 477                 ret_val = e1000_init_nvm_params(hw);
 478                 if (ret_val)
 479                         goto out;
 480 
 481                 ret_val = e1000_init_phy_params(hw);
 482                 if (ret_val)
 483                         goto out;
 484 
 485                 ret_val = e1000_init_mbx_params(hw);
 486                 if (ret_val)
 487                         goto out;
 488         }
 489 
 490 out:
 491         return ret_val;
 492 }
 493 
 494 /**
 495  *  e1000_get_bus_info - Obtain bus information for adapter
 496  *  @hw: pointer to the HW structure
 497  *
 498  *  This will obtain information about the HW bus for which the
 499  *  adapter is attached and stores it in the hw structure. This is a
 500  *  function pointer entry point called by drivers.
 501  **/
 502 s32 e1000_get_bus_info(struct e1000_hw *hw)
 503 {
 504         if (hw->mac.ops.get_bus_info)
 505                 return hw->mac.ops.get_bus_info(hw);
 506 
 507         return E1000_SUCCESS;
 508 }
 509 
 510 /**
 511  *  e1000_clear_vfta - Clear VLAN filter table
 512  *  @hw: pointer to the HW structure
 513  *
 514  *  This clears the VLAN filter table on the adapter. This is a function
 515  *  pointer entry point called by drivers.
 516  **/
 517 void e1000_clear_vfta(struct e1000_hw *hw)
 518 {
 519         if (hw->mac.ops.clear_vfta)
 520                 hw->mac.ops.clear_vfta(hw);
 521 }
 522 
 523 /**
 524  *  e1000_write_vfta - Write value to VLAN filter table
 525  *  @hw: pointer to the HW structure
 526  *  @offset: the 32-bit offset in which to write the value to.
 527  *  @value: the 32-bit value to write at location offset.
 528  *
 529  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
 530  *  table. This is a function pointer entry point called by drivers.
 531  **/
 532 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 533 {
 534         if (hw->mac.ops.write_vfta)
 535                 hw->mac.ops.write_vfta(hw, offset, value);
 536 }
 537 
 538 /**
 539  *  e1000_update_mc_addr_list - Update Multicast addresses
 540  *  @hw: pointer to the HW structure
 541  *  @mc_addr_list: array of multicast addresses to program
 542  *  @mc_addr_count: number of multicast addresses to program
 543  *
 544  *  Updates the Multicast Table Array.
 545  *  The caller must have a packed mc_addr_list of multicast addresses.
 546  **/
 547 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
 548                                u32 mc_addr_count)
 549 {
 550         if (hw->mac.ops.update_mc_addr_list)
 551                 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
 552                                                 mc_addr_count);
 553 }
 554 
 555 /**
 556  *  e1000_force_mac_fc - Force MAC flow control
 557  *  @hw: pointer to the HW structure
 558  *
 559  *  Force the MAC's flow control settings. Currently no func pointer exists
 560  *  and all implementations are handled in the generic version of this
 561  *  function.
 562  **/
 563 s32 e1000_force_mac_fc(struct e1000_hw *hw)
 564 {
 565         return e1000_force_mac_fc_generic(hw);
 566 }
 567 
 568 /**
 569  *  e1000_check_for_link - Check/Store link connection
 570  *  @hw: pointer to the HW structure
 571  *
 572  *  This checks the link condition of the adapter and stores the
 573  *  results in the hw->mac structure. This is a function pointer entry
 574  *  point called by drivers.
 575  **/
 576 s32 e1000_check_for_link(struct e1000_hw *hw)
 577 {
 578         if (hw->mac.ops.check_for_link)
 579                 return hw->mac.ops.check_for_link(hw);
 580 
 581         return -E1000_ERR_CONFIG;
 582 }
 583 
 584 /**
 585  *  e1000_check_mng_mode - Check management mode
 586  *  @hw: pointer to the HW structure
 587  *
 588  *  This checks if the adapter has manageability enabled.
 589  *  This is a function pointer entry point called by drivers.
 590  **/
 591 bool e1000_check_mng_mode(struct e1000_hw *hw)
 592 {
 593         if (hw->mac.ops.check_mng_mode)
 594                 return hw->mac.ops.check_mng_mode(hw);
 595 
 596         return FALSE;
 597 }
 598 
 599 /**
 600  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
 601  *  @hw: pointer to the HW structure
 602  *  @buffer: pointer to the host interface
 603  *  @length: size of the buffer
 604  *
 605  *  Writes the DHCP information to the host interface.
 606  **/
 607 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
 608 {
 609         return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
 610 }
 611 
 612 /**
 613  *  e1000_reset_hw - Reset hardware
 614  *  @hw: pointer to the HW structure
 615  *
 616  *  This resets the hardware into a known state. This is a function pointer
 617  *  entry point called by drivers.
 618  **/
 619 s32 e1000_reset_hw(struct e1000_hw *hw)
 620 {
 621         if (hw->mac.ops.reset_hw)
 622                 return hw->mac.ops.reset_hw(hw);
 623 
 624         return -E1000_ERR_CONFIG;
 625 }
 626 
 627 /**
 628  *  e1000_init_hw - Initialize hardware
 629  *  @hw: pointer to the HW structure
 630  *
 631  *  This inits the hardware readying it for operation. This is a function
 632  *  pointer entry point called by drivers.
 633  **/
 634 s32 e1000_init_hw(struct e1000_hw *hw)
 635 {
 636         if (hw->mac.ops.init_hw)
 637                 return hw->mac.ops.init_hw(hw);
 638 
 639         return -E1000_ERR_CONFIG;
 640 }
 641 
 642 /**
 643  *  e1000_setup_link - Configures link and flow control
 644  *  @hw: pointer to the HW structure
 645  *
 646  *  This configures link and flow control settings for the adapter. This
 647  *  is a function pointer entry point called by drivers. While modules can
 648  *  also call this, they probably call their own version of this function.
 649  **/
 650 s32 e1000_setup_link(struct e1000_hw *hw)
 651 {
 652         if (hw->mac.ops.setup_link)
 653                 return hw->mac.ops.setup_link(hw);
 654 
 655         return -E1000_ERR_CONFIG;
 656 }
 657 
 658 /**
 659  *  e1000_get_speed_and_duplex - Returns current speed and duplex
 660  *  @hw: pointer to the HW structure
 661  *  @speed: pointer to a 16-bit value to store the speed
 662  *  @duplex: pointer to a 16-bit value to store the duplex.
 663  *
 664  *  This returns the speed and duplex of the adapter in the two 'out'
 665  *  variables passed in. This is a function pointer entry point called
 666  *  by drivers.
 667  **/
 668 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
 669 {
 670         if (hw->mac.ops.get_link_up_info)
 671                 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
 672 
 673         return -E1000_ERR_CONFIG;
 674 }
 675 
 676 /**
 677  *  e1000_setup_led - Configures SW controllable LED
 678  *  @hw: pointer to the HW structure
 679  *
 680  *  This prepares the SW controllable LED for use and saves the current state
 681  *  of the LED so it can be later restored. This is a function pointer entry
 682  *  point called by drivers.
 683  **/
 684 s32 e1000_setup_led(struct e1000_hw *hw)
 685 {
 686         if (hw->mac.ops.setup_led)
 687                 return hw->mac.ops.setup_led(hw);
 688 
 689         return E1000_SUCCESS;
 690 }
 691 
 692 /**
 693  *  e1000_cleanup_led - Restores SW controllable LED
 694  *  @hw: pointer to the HW structure
 695  *
 696  *  This restores the SW controllable LED to the value saved off by
 697  *  e1000_setup_led. This is a function pointer entry point called by drivers.
 698  **/
 699 s32 e1000_cleanup_led(struct e1000_hw *hw)
 700 {
 701         if (hw->mac.ops.cleanup_led)
 702                 return hw->mac.ops.cleanup_led(hw);
 703 
 704         return E1000_SUCCESS;
 705 }
 706 
 707 /**
 708  *  e1000_blink_led - Blink SW controllable LED
 709  *  @hw: pointer to the HW structure
 710  *
 711  *  This starts the adapter LED blinking. Request the LED to be setup first
 712  *  and cleaned up after. This is a function pointer entry point called by
 713  *  drivers.
 714  **/
 715 s32 e1000_blink_led(struct e1000_hw *hw)
 716 {
 717         if (hw->mac.ops.blink_led)
 718                 return hw->mac.ops.blink_led(hw);
 719 
 720         return E1000_SUCCESS;
 721 }
 722 
 723 /**
 724  *  e1000_id_led_init - store LED configurations in SW
 725  *  @hw: pointer to the HW structure
 726  *
 727  *  Initializes the LED config in SW. This is a function pointer entry point
 728  *  called by drivers.
 729  **/
 730 s32 e1000_id_led_init(struct e1000_hw *hw)
 731 {
 732         if (hw->mac.ops.id_led_init)
 733                 return hw->mac.ops.id_led_init(hw);
 734 
 735         return E1000_SUCCESS;
 736 }
 737 
 738 /**
 739  *  e1000_led_on - Turn on SW controllable LED
 740  *  @hw: pointer to the HW structure
 741  *
 742  *  Turns the SW defined LED on. This is a function pointer entry point
 743  *  called by drivers.
 744  **/
 745 s32 e1000_led_on(struct e1000_hw *hw)
 746 {
 747         if (hw->mac.ops.led_on)
 748                 return hw->mac.ops.led_on(hw);
 749 
 750         return E1000_SUCCESS;
 751 }
 752 
 753 /**
 754  *  e1000_led_off - Turn off SW controllable LED
 755  *  @hw: pointer to the HW structure
 756  *
 757  *  Turns the SW defined LED off. This is a function pointer entry point
 758  *  called by drivers.
 759  **/
 760 s32 e1000_led_off(struct e1000_hw *hw)
 761 {
 762         if (hw->mac.ops.led_off)
 763                 return hw->mac.ops.led_off(hw);
 764 
 765         return E1000_SUCCESS;
 766 }
 767 
 768 /**
 769  *  e1000_reset_adaptive - Reset adaptive IFS
 770  *  @hw: pointer to the HW structure
 771  *
 772  *  Resets the adaptive IFS. Currently no func pointer exists and all
 773  *  implementations are handled in the generic version of this function.
 774  **/
 775 void e1000_reset_adaptive(struct e1000_hw *hw)
 776 {
 777         e1000_reset_adaptive_generic(hw);
 778 }
 779 
 780 /**
 781  *  e1000_update_adaptive - Update adaptive IFS
 782  *  @hw: pointer to the HW structure
 783  *
 784  *  Updates adapter IFS. Currently no func pointer exists and all
 785  *  implementations are handled in the generic version of this function.
 786  **/
 787 void e1000_update_adaptive(struct e1000_hw *hw)
 788 {
 789         e1000_update_adaptive_generic(hw);
 790 }
 791 
 792 /**
 793  *  e1000_disable_pcie_master - Disable PCI-Express master access
 794  *  @hw: pointer to the HW structure
 795  *
 796  *  Disables PCI-Express master access and verifies there are no pending
 797  *  requests. Currently no func pointer exists and all implementations are
 798  *  handled in the generic version of this function.
 799  **/
 800 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
 801 {
 802         return e1000_disable_pcie_master_generic(hw);
 803 }
 804 
 805 /**
 806  *  e1000_config_collision_dist - Configure collision distance
 807  *  @hw: pointer to the HW structure
 808  *
 809  *  Configures the collision distance to the default value and is used
 810  *  during link setup.
 811  **/
 812 void e1000_config_collision_dist(struct e1000_hw *hw)
 813 {
 814         if (hw->mac.ops.config_collision_dist)
 815                 hw->mac.ops.config_collision_dist(hw);
 816 }
 817 
 818 /**
 819  *  e1000_rar_set - Sets a receive address register
 820  *  @hw: pointer to the HW structure
 821  *  @addr: address to set the RAR to
 822  *  @index: the RAR to set
 823  *
 824  *  Sets a Receive Address Register (RAR) to the specified address.
 825  **/
 826 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 827 {
 828         if (hw->mac.ops.rar_set)
 829                 hw->mac.ops.rar_set(hw, addr, index);
 830 }
 831 
 832 /**
 833  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
 834  *  @hw: pointer to the HW structure
 835  *
 836  *  Ensures that the MDI/MDIX SW state is valid.
 837  **/
 838 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
 839 {
 840         if (hw->mac.ops.validate_mdi_setting)
 841                 return hw->mac.ops.validate_mdi_setting(hw);
 842 
 843         return E1000_SUCCESS;
 844 }
 845 
 846 /**
 847  *  e1000_hash_mc_addr - Determines address location in multicast table
 848  *  @hw: pointer to the HW structure
 849  *  @mc_addr: Multicast address to hash.
 850  *
 851  *  This hashes an address to determine its location in the multicast
 852  *  table. Currently no func pointer exists and all implementations
 853  *  are handled in the generic version of this function.
 854  **/
 855 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 856 {
 857         return e1000_hash_mc_addr_generic(hw, mc_addr);
 858 }
 859 
 860 /**
 861  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
 862  *  @hw: pointer to the HW structure
 863  *
 864  *  Enables packet filtering on transmit packets if manageability is enabled
 865  *  and host interface is enabled.
 866  *  Currently no func pointer exists and all implementations are handled in the
 867  *  generic version of this function.
 868  **/
 869 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
 870 {
 871         return e1000_enable_tx_pkt_filtering_generic(hw);
 872 }
 873 
 874 /**
 875  *  e1000_mng_host_if_write - Writes to the manageability host interface
 876  *  @hw: pointer to the HW structure
 877  *  @buffer: pointer to the host interface buffer
 878  *  @length: size of the buffer
 879  *  @offset: location in the buffer to write to
 880  *  @sum: sum of the data (not checksum)
 881  *
 882  *  This function writes the buffer content at the offset given on the host if.
 883  *  It also does alignment considerations to do the writes in most efficient
 884  *  way.  Also fills up the sum of the buffer in *buffer parameter.
 885  **/
 886 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
 887                             u16 offset, u8 *sum)
 888 {
 889         return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
 890 }
 891 
 892 /**
 893  *  e1000_mng_write_cmd_header - Writes manageability command header
 894  *  @hw: pointer to the HW structure
 895  *  @hdr: pointer to the host interface command header
 896  *
 897  *  Writes the command header after does the checksum calculation.
 898  **/
 899 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
 900                                struct e1000_host_mng_command_header *hdr)
 901 {
 902         return e1000_mng_write_cmd_header_generic(hw, hdr);
 903 }
 904 
 905 /**
 906  *  e1000_mng_enable_host_if - Checks host interface is enabled
 907  *  @hw: pointer to the HW structure
 908  *
 909  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
 910  *
 911  *  This function checks whether the HOST IF is enabled for command operation
 912  *  and also checks whether the previous command is completed.  It busy waits
 913  *  in case of previous command is not completed.
 914  **/
 915 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
 916 {
 917         return e1000_mng_enable_host_if_generic(hw);
 918 }
 919 
 920 /**
 921  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
 922  *  @hw: pointer to the HW structure
 923  *  @itr: u32 indicating itr value
 924  *
 925  *  Set the OBFF timer based on the given interrupt rate.
 926  **/
 927 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
 928 {
 929         if (hw->mac.ops.set_obff_timer)
 930                 return hw->mac.ops.set_obff_timer(hw, itr);
 931 
 932         return E1000_SUCCESS;
 933 }
 934 
 935 /**
 936  *  e1000_check_reset_block - Verifies PHY can be reset
 937  *  @hw: pointer to the HW structure
 938  *
 939  *  Checks if the PHY is in a state that can be reset or if manageability
 940  *  has it tied up. This is a function pointer entry point called by drivers.
 941  **/
 942 s32 e1000_check_reset_block(struct e1000_hw *hw)
 943 {
 944         if (hw->phy.ops.check_reset_block)
 945                 return hw->phy.ops.check_reset_block(hw);
 946 
 947         return E1000_SUCCESS;
 948 }
 949 
 950 /**
 951  *  e1000_read_phy_reg - Reads PHY register
 952  *  @hw: pointer to the HW structure
 953  *  @offset: the register to read
 954  *  @data: the buffer to store the 16-bit read.
 955  *
 956  *  Reads the PHY register and returns the value in data.
 957  *  This is a function pointer entry point called by drivers.
 958  **/
 959 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 960 {
 961         if (hw->phy.ops.read_reg)
 962                 return hw->phy.ops.read_reg(hw, offset, data);
 963 
 964         return E1000_SUCCESS;
 965 }
 966 
 967 /**
 968  *  e1000_write_phy_reg - Writes PHY register
 969  *  @hw: pointer to the HW structure
 970  *  @offset: the register to write
 971  *  @data: the value to write.
 972  *
 973  *  Writes the PHY register at offset with the value in data.
 974  *  This is a function pointer entry point called by drivers.
 975  **/
 976 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
 977 {
 978         if (hw->phy.ops.write_reg)
 979                 return hw->phy.ops.write_reg(hw, offset, data);
 980 
 981         return E1000_SUCCESS;
 982 }
 983 
 984 /**
 985  *  e1000_release_phy - Generic release PHY
 986  *  @hw: pointer to the HW structure
 987  *
 988  *  Return if silicon family does not require a semaphore when accessing the
 989  *  PHY.
 990  **/
 991 void e1000_release_phy(struct e1000_hw *hw)
 992 {
 993         if (hw->phy.ops.release)
 994                 hw->phy.ops.release(hw);
 995 }
 996 
 997 /**
 998  *  e1000_acquire_phy - Generic acquire PHY
 999  *  @hw: pointer to the HW structure
1000  *
1001  *  Return success if silicon family does not require a semaphore when
1002  *  accessing the PHY.
1003  **/
1004 s32 e1000_acquire_phy(struct e1000_hw *hw)
1005 {
1006         if (hw->phy.ops.acquire)
1007                 return hw->phy.ops.acquire(hw);
1008 
1009         return E1000_SUCCESS;
1010 }
1011 
1012 /**
1013  *  e1000_cfg_on_link_up - Configure PHY upon link up
1014  *  @hw: pointer to the HW structure
1015  **/
1016 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1017 {
1018         if (hw->phy.ops.cfg_on_link_up)
1019                 return hw->phy.ops.cfg_on_link_up(hw);
1020 
1021         return E1000_SUCCESS;
1022 }
1023 
1024 /**
1025  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1026  *  @hw: pointer to the HW structure
1027  *  @offset: the register to read
1028  *  @data: the location to store the 16-bit value read.
1029  *
1030  *  Reads a register out of the Kumeran interface. Currently no func pointer
1031  *  exists and all implementations are handled in the generic version of
1032  *  this function.
1033  **/
1034 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1035 {
1036         return e1000_read_kmrn_reg_generic(hw, offset, data);
1037 }
1038 
1039 /**
1040  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1041  *  @hw: pointer to the HW structure
1042  *  @offset: the register to write
1043  *  @data: the value to write.
1044  *
1045  *  Writes a register to the Kumeran interface. Currently no func pointer
1046  *  exists and all implementations are handled in the generic version of
1047  *  this function.
1048  **/
1049 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1050 {
1051         return e1000_write_kmrn_reg_generic(hw, offset, data);
1052 }
1053 
1054 /**
1055  *  e1000_get_cable_length - Retrieves cable length estimation
1056  *  @hw: pointer to the HW structure
1057  *
1058  *  This function estimates the cable length and stores them in
1059  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1060  *  entry point called by drivers.
1061  **/
1062 s32 e1000_get_cable_length(struct e1000_hw *hw)
1063 {
1064         if (hw->phy.ops.get_cable_length)
1065                 return hw->phy.ops.get_cable_length(hw);
1066 
1067         return E1000_SUCCESS;
1068 }
1069 
1070 /**
1071  *  e1000_get_phy_info - Retrieves PHY information from registers
1072  *  @hw: pointer to the HW structure
1073  *
1074  *  This function gets some information from various PHY registers and
1075  *  populates hw->phy values with it. This is a function pointer entry
1076  *  point called by drivers.
1077  **/
1078 s32 e1000_get_phy_info(struct e1000_hw *hw)
1079 {
1080         if (hw->phy.ops.get_info)
1081                 return hw->phy.ops.get_info(hw);
1082 
1083         return E1000_SUCCESS;
1084 }
1085 
1086 /**
1087  *  e1000_phy_hw_reset - Hard PHY reset
1088  *  @hw: pointer to the HW structure
1089  *
1090  *  Performs a hard PHY reset. This is a function pointer entry point called
1091  *  by drivers.
1092  **/
1093 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1094 {
1095         if (hw->phy.ops.reset)
1096                 return hw->phy.ops.reset(hw);
1097 
1098         return E1000_SUCCESS;
1099 }
1100 
1101 /**
1102  *  e1000_phy_commit - Soft PHY reset
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  Performs a soft PHY reset on those that apply. This is a function pointer
1106  *  entry point called by drivers.
1107  **/
1108 s32 e1000_phy_commit(struct e1000_hw *hw)
1109 {
1110         if (hw->phy.ops.commit)
1111                 return hw->phy.ops.commit(hw);
1112 
1113         return E1000_SUCCESS;
1114 }
1115 
1116 /**
1117  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1118  *  @hw: pointer to the HW structure
1119  *  @active: boolean used to enable/disable lplu
1120  *
1121  *  Success returns 0, Failure returns 1
1122  *
1123  *  The low power link up (lplu) state is set to the power management level D0
1124  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1125  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1126  *  is used during Dx states where the power conservation is most important.
1127  *  During driver activity, SmartSpeed should be enabled so performance is
1128  *  maintained.  This is a function pointer entry point called by drivers.
1129  **/
1130 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1131 {
1132         if (hw->phy.ops.set_d0_lplu_state)
1133                 return hw->phy.ops.set_d0_lplu_state(hw, active);
1134 
1135         return E1000_SUCCESS;
1136 }
1137 
1138 /**
1139  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1140  *  @hw: pointer to the HW structure
1141  *  @active: boolean used to enable/disable lplu
1142  *
1143  *  Success returns 0, Failure returns 1
1144  *
1145  *  The low power link up (lplu) state is set to the power management level D3
1146  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1147  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1148  *  is used during Dx states where the power conservation is most important.
1149  *  During driver activity, SmartSpeed should be enabled so performance is
1150  *  maintained.  This is a function pointer entry point called by drivers.
1151  **/
1152 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1153 {
1154         if (hw->phy.ops.set_d3_lplu_state)
1155                 return hw->phy.ops.set_d3_lplu_state(hw, active);
1156 
1157         return E1000_SUCCESS;
1158 }
1159 
1160 /**
1161  *  e1000_read_mac_addr - Reads MAC address
1162  *  @hw: pointer to the HW structure
1163  *
1164  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1165  *  Currently no func pointer exists and all implementations are handled in the
1166  *  generic version of this function.
1167  **/
1168 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1169 {
1170         if (hw->mac.ops.read_mac_addr)
1171                 return hw->mac.ops.read_mac_addr(hw);
1172 
1173         return e1000_read_mac_addr_generic(hw);
1174 }
1175 
1176 /**
1177  *  e1000_read_pba_string - Read device part number string
1178  *  @hw: pointer to the HW structure
1179  *  @pba_num: pointer to device part number
1180  *  @pba_num_size: size of part number buffer
1181  *
1182  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1183  *  the value in pba_num.
1184  *  Currently no func pointer exists and all implementations are handled in the
1185  *  generic version of this function.
1186  **/
1187 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1188 {
1189         return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1190 }
1191 
1192 /**
1193  *  e1000_read_pba_length - Read device part number string length
1194  *  @hw: pointer to the HW structure
1195  *  @pba_num_size: size of part number buffer
1196  *
1197  *  Reads the product board assembly (PBA) number length from the EEPROM and
1198  *  stores the value in pba_num.
1199  *  Currently no func pointer exists and all implementations are handled in the
1200  *  generic version of this function.
1201  **/
1202 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1203 {
1204         return e1000_read_pba_length_generic(hw, pba_num_size);
1205 }
1206 
1207 /**
1208  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1209  *  @hw: pointer to the HW structure
1210  *
1211  *  Validates the NVM checksum is correct. This is a function pointer entry
1212  *  point called by drivers.
1213  **/
1214 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1215 {
1216         if (hw->nvm.ops.validate)
1217                 return hw->nvm.ops.validate(hw);
1218 
1219         return -E1000_ERR_CONFIG;
1220 }
1221 
1222 /**
1223  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1224  *  @hw: pointer to the HW structure
1225  *
1226  *  Updates the NVM checksum. Currently no func pointer exists and all
1227  *  implementations are handled in the generic version of this function.
1228  **/
1229 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1230 {
1231         if (hw->nvm.ops.update)
1232                 return hw->nvm.ops.update(hw);
1233 
1234         return -E1000_ERR_CONFIG;
1235 }
1236 
1237 /**
1238  *  e1000_reload_nvm - Reloads EEPROM
1239  *  @hw: pointer to the HW structure
1240  *
1241  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1242  *  extended control register.
1243  **/
1244 void e1000_reload_nvm(struct e1000_hw *hw)
1245 {
1246         if (hw->nvm.ops.reload)
1247                 hw->nvm.ops.reload(hw);
1248 }
1249 
1250 /**
1251  *  e1000_read_nvm - Reads NVM (EEPROM)
1252  *  @hw: pointer to the HW structure
1253  *  @offset: the word offset to read
1254  *  @words: number of 16-bit words to read
1255  *  @data: pointer to the properly sized buffer for the data.
1256  *
1257  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1258  *  pointer entry point called by drivers.
1259  **/
1260 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1261 {
1262         if (hw->nvm.ops.read)
1263                 return hw->nvm.ops.read(hw, offset, words, data);
1264 
1265         return -E1000_ERR_CONFIG;
1266 }
1267 
1268 /**
1269  *  e1000_write_nvm - Writes to NVM (EEPROM)
1270  *  @hw: pointer to the HW structure
1271  *  @offset: the word offset to read
1272  *  @words: number of 16-bit words to write
1273  *  @data: pointer to the properly sized buffer for the data.
1274  *
1275  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1276  *  pointer entry point called by drivers.
1277  **/
1278 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1279 {
1280         if (hw->nvm.ops.write)
1281                 return hw->nvm.ops.write(hw, offset, words, data);
1282 
1283         return E1000_SUCCESS;
1284 }
1285 
1286 /**
1287  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1288  *  @hw: pointer to the HW structure
1289  *  @reg: 32bit register offset
1290  *  @offset: the register to write
1291  *  @data: the value to write.
1292  *
1293  *  Writes the PHY register at offset with the value in data.
1294  *  This is a function pointer entry point called by drivers.
1295  **/
1296 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1297                               u8 data)
1298 {
1299         return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1300 }
1301 
1302 /**
1303  * e1000_power_up_phy - Restores link in case of PHY power down
1304  * @hw: pointer to the HW structure
1305  *
1306  * The phy may be powered down to save power, to turn off link when the
1307  * driver is unloaded, or wake on lan is not enabled (among others).
1308  **/
1309 void e1000_power_up_phy(struct e1000_hw *hw)
1310 {
1311         if (hw->phy.ops.power_up)
1312                 hw->phy.ops.power_up(hw);
1313 
1314         e1000_setup_link(hw);
1315 }
1316 
1317 /**
1318  * e1000_power_down_phy - Power down PHY
1319  * @hw: pointer to the HW structure
1320  *
1321  * The phy may be powered down to save power, to turn off link when the
1322  * driver is unloaded, or wake on lan is not enabled (among others).
1323  **/
1324 void e1000_power_down_phy(struct e1000_hw *hw)
1325 {
1326         if (hw->phy.ops.power_down)
1327                 hw->phy.ops.power_down(hw);
1328 }
1329 
1330 /**
1331  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1332  *  @hw: pointer to the HW structure
1333  *
1334  *  Power on the optics and PCS.
1335  **/
1336 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1337 {
1338         if (hw->mac.ops.power_up_serdes)
1339                 hw->mac.ops.power_up_serdes(hw);
1340 }
1341 
1342 /**
1343  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1344  *  @hw: pointer to the HW structure
1345  *
1346  *  Shutdown the optics and PCS on driver unload.
1347  **/
1348 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1349 {
1350         if (hw->mac.ops.shutdown_serdes)
1351                 hw->mac.ops.shutdown_serdes(hw);
1352 }
1353