Print this page
Add boot_hrtime to global and zone kstats.
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/os/zone.c
+++ new/usr/src/uts/common/os/zone.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2013, Joyent Inc. All rights reserved.
25 + * Copyright 2016 Garrett D'Amore
25 26 */
26 27
27 28 /*
28 29 * Zones
29 30 *
30 31 * A zone is a named collection of processes, namespace constraints,
31 32 * and other system resources which comprise a secure and manageable
32 33 * application containment facility.
33 34 *
34 35 * Zones (represented by the reference counted zone_t) are tracked in
35 36 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
36 37 * (zoneid_t) are used to track zone association. Zone IDs are
37 38 * dynamically generated when the zone is created; if a persistent
38 39 * identifier is needed (core files, accounting logs, audit trail,
39 40 * etc.), the zone name should be used.
40 41 *
41 42 *
42 43 * Global Zone:
43 44 *
44 45 * The global zone (zoneid 0) is automatically associated with all
45 46 * system resources that have not been bound to a user-created zone.
46 47 * This means that even systems where zones are not in active use
47 48 * have a global zone, and all processes, mounts, etc. are
48 49 * associated with that zone. The global zone is generally
49 50 * unconstrained in terms of privileges and access, though the usual
50 51 * credential and privilege based restrictions apply.
51 52 *
52 53 *
53 54 * Zone States:
54 55 *
55 56 * The states in which a zone may be in and the transitions are as
56 57 * follows:
57 58 *
58 59 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59 60 * initialized zone is added to the list of active zones on the system but
60 61 * isn't accessible.
61 62 *
62 63 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63 64 * not yet completed. Not possible to enter the zone, but attributes can
64 65 * be retrieved.
65 66 *
66 67 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67 68 * ready. The zone is made visible after the ZSD constructor callbacks are
68 69 * executed. A zone remains in this state until it transitions into
69 70 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70 71 *
71 72 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72 73 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73 74 * state.
74 75 *
75 76 * ZONE_IS_RUNNING: The zone is open for business: zsched has
76 77 * successfully started init. A zone remains in this state until
77 78 * zone_shutdown() is called.
78 79 *
79 80 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80 81 * killing all processes running in the zone. The zone remains
81 82 * in this state until there are no more user processes running in the zone.
82 83 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83 84 * Since zone_shutdown() is restartable, it may be called successfully
84 85 * multiple times for the same zone_t. Setting of the zone's state to
85 86 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86 87 * the zone's status without worrying about it being a moving target.
87 88 *
88 89 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89 90 * are no more user processes in the zone. The zone remains in this
90 91 * state until there are no more kernel threads associated with the
91 92 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
92 93 * fail.
93 94 *
94 95 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95 96 * have exited. zone_shutdown() returns. Henceforth it is not possible to
96 97 * join the zone or create kernel threads therein.
97 98 *
98 99 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99 100 * remains in this state until zsched exits. Calls to zone_find_by_*()
100 101 * return NULL from now on.
101 102 *
102 103 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
103 104 * processes or threads doing work on behalf of the zone. The zone is
104 105 * removed from the list of active zones. zone_destroy() returns, and
105 106 * the zone can be recreated.
106 107 *
107 108 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108 109 * callbacks are executed, and all memory associated with the zone is
109 110 * freed.
110 111 *
111 112 * Threads can wait for the zone to enter a requested state by using
112 113 * zone_status_wait() or zone_status_timedwait() with the desired
113 114 * state passed in as an argument. Zone state transitions are
114 115 * uni-directional; it is not possible to move back to an earlier state.
115 116 *
116 117 *
117 118 * Zone-Specific Data:
118 119 *
119 120 * Subsystems needing to maintain zone-specific data can store that
120 121 * data using the ZSD mechanism. This provides a zone-specific data
121 122 * store, similar to thread-specific data (see pthread_getspecific(3C)
122 123 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
123 124 * to register callbacks to be invoked when a zone is created, shut
124 125 * down, or destroyed. This can be used to initialize zone-specific
125 126 * data for new zones and to clean up when zones go away.
126 127 *
127 128 *
128 129 * Data Structures:
129 130 *
130 131 * The per-zone structure (zone_t) is reference counted, and freed
131 132 * when all references are released. zone_hold and zone_rele can be
132 133 * used to adjust the reference count. In addition, reference counts
133 134 * associated with the cred_t structure are tracked separately using
134 135 * zone_cred_hold and zone_cred_rele.
135 136 *
136 137 * Pointers to active zone_t's are stored in two hash tables; one
137 138 * for searching by id, the other for searching by name. Lookups
138 139 * can be performed on either basis, using zone_find_by_id and
139 140 * zone_find_by_name. Both return zone_t pointers with the zone
140 141 * held, so zone_rele should be called when the pointer is no longer
141 142 * needed. Zones can also be searched by path; zone_find_by_path
142 143 * returns the zone with which a path name is associated (global
143 144 * zone if the path is not within some other zone's file system
144 145 * hierarchy). This currently requires iterating through each zone,
145 146 * so it is slower than an id or name search via a hash table.
146 147 *
147 148 *
148 149 * Locking:
149 150 *
150 151 * zonehash_lock: This is a top-level global lock used to protect the
151 152 * zone hash tables and lists. Zones cannot be created or destroyed
152 153 * while this lock is held.
153 154 * zone_status_lock: This is a global lock protecting zone state.
154 155 * Zones cannot change state while this lock is held. It also
155 156 * protects the list of kernel threads associated with a zone.
156 157 * zone_lock: This is a per-zone lock used to protect several fields of
157 158 * the zone_t (see <sys/zone.h> for details). In addition, holding
158 159 * this lock means that the zone cannot go away.
159 160 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
160 161 * related to the zone.max-lwps rctl.
161 162 * zone_mem_lock: This is a per-zone lock used to protect the fields
162 163 * related to the zone.max-locked-memory and zone.max-swap rctls.
163 164 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164 165 * currently just max_lofi
165 166 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
166 167 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
167 168 * list (a list of zones in the ZONE_IS_DEAD state).
168 169 *
169 170 * Ordering requirements:
170 171 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171 172 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
172 173 *
173 174 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175 176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176 177 *
177 178 * Blocking memory allocations are permitted while holding any of the
178 179 * zone locks.
179 180 *
180 181 *
181 182 * System Call Interface:
182 183 *
183 184 * The zone subsystem can be managed and queried from user level with
184 185 * the following system calls (all subcodes of the primary "zone"
185 186 * system call):
186 187 * - zone_create: creates a zone with selected attributes (name,
187 188 * root path, privileges, resource controls, ZFS datasets)
188 189 * - zone_enter: allows the current process to enter a zone
189 190 * - zone_getattr: reports attributes of a zone
190 191 * - zone_setattr: set attributes of a zone
191 192 * - zone_boot: set 'init' running for the zone
192 193 * - zone_list: lists all zones active in the system
193 194 * - zone_lookup: looks up zone id based on name
194 195 * - zone_shutdown: initiates shutdown process (see states above)
195 196 * - zone_destroy: completes shutdown process (see states above)
196 197 *
197 198 */
198 199
199 200 #include <sys/priv_impl.h>
200 201 #include <sys/cred.h>
201 202 #include <c2/audit.h>
202 203 #include <sys/debug.h>
203 204 #include <sys/file.h>
204 205 #include <sys/kmem.h>
205 206 #include <sys/kstat.h>
206 207 #include <sys/mutex.h>
207 208 #include <sys/note.h>
208 209 #include <sys/pathname.h>
209 210 #include <sys/proc.h>
210 211 #include <sys/project.h>
211 212 #include <sys/sysevent.h>
212 213 #include <sys/task.h>
213 214 #include <sys/systm.h>
214 215 #include <sys/types.h>
215 216 #include <sys/utsname.h>
216 217 #include <sys/vnode.h>
217 218 #include <sys/vfs.h>
218 219 #include <sys/systeminfo.h>
219 220 #include <sys/policy.h>
220 221 #include <sys/cred_impl.h>
221 222 #include <sys/contract_impl.h>
222 223 #include <sys/contract/process_impl.h>
223 224 #include <sys/class.h>
224 225 #include <sys/pool.h>
225 226 #include <sys/pool_pset.h>
226 227 #include <sys/pset.h>
227 228 #include <sys/strlog.h>
228 229 #include <sys/sysmacros.h>
229 230 #include <sys/callb.h>
230 231 #include <sys/vmparam.h>
231 232 #include <sys/corectl.h>
232 233 #include <sys/ipc_impl.h>
233 234 #include <sys/klpd.h>
234 235
235 236 #include <sys/door.h>
236 237 #include <sys/cpuvar.h>
237 238 #include <sys/sdt.h>
238 239
239 240 #include <sys/uadmin.h>
240 241 #include <sys/session.h>
241 242 #include <sys/cmn_err.h>
242 243 #include <sys/modhash.h>
243 244 #include <sys/sunddi.h>
244 245 #include <sys/nvpair.h>
245 246 #include <sys/rctl.h>
246 247 #include <sys/fss.h>
247 248 #include <sys/brand.h>
248 249 #include <sys/zone.h>
249 250 #include <net/if.h>
250 251 #include <sys/cpucaps.h>
251 252 #include <vm/seg.h>
252 253 #include <sys/mac.h>
253 254
254 255 /*
255 256 * This constant specifies the number of seconds that threads waiting for
256 257 * subsystems to release a zone's general-purpose references will wait before
257 258 * they log the zone's reference counts. The constant's value shouldn't
258 259 * be so small that reference counts are unnecessarily reported for zones
259 260 * whose references are slowly released. On the other hand, it shouldn't be so
260 261 * large that users reboot their systems out of frustration over hung zones
261 262 * before the system logs the zones' reference counts.
262 263 */
263 264 #define ZONE_DESTROY_TIMEOUT_SECS 60
264 265
265 266 /* List of data link IDs which are accessible from the zone */
266 267 typedef struct zone_dl {
267 268 datalink_id_t zdl_id;
268 269 nvlist_t *zdl_net;
269 270 list_node_t zdl_linkage;
270 271 } zone_dl_t;
271 272
272 273 /*
273 274 * cv used to signal that all references to the zone have been released. This
274 275 * needs to be global since there may be multiple waiters, and the first to
275 276 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276 277 */
277 278 static kcondvar_t zone_destroy_cv;
278 279 /*
279 280 * Lock used to serialize access to zone_cv. This could have been per-zone,
280 281 * but then we'd need another lock for zone_destroy_cv, and why bother?
281 282 */
282 283 static kmutex_t zone_status_lock;
283 284
284 285 /*
285 286 * ZSD-related global variables.
286 287 */
287 288 static kmutex_t zsd_key_lock; /* protects the following two */
288 289 /*
289 290 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290 291 */
291 292 static zone_key_t zsd_keyval = 0;
292 293 /*
293 294 * Global list of registered keys. We use this when a new zone is created.
294 295 */
295 296 static list_t zsd_registered_keys;
296 297
297 298 int zone_hash_size = 256;
298 299 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 300 static kmutex_t zonehash_lock;
300 301 static uint_t zonecount;
301 302 static id_space_t *zoneid_space;
302 303
303 304 /*
304 305 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305 306 * kernel proper runs, and which manages all other zones.
306 307 *
307 308 * Although not declared as static, the variable "zone0" should not be used
308 309 * except for by code that needs to reference the global zone early on in boot,
309 310 * before it is fully initialized. All other consumers should use
310 311 * 'global_zone'.
311 312 */
312 313 zone_t zone0;
313 314 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
314 315
315 316 /*
316 317 * List of active zones, protected by zonehash_lock.
317 318 */
318 319 static list_t zone_active;
319 320
320 321 /*
321 322 * List of destroyed zones that still have outstanding cred references.
322 323 * Used for debugging. Uses a separate lock to avoid lock ordering
323 324 * problems in zone_free.
324 325 */
325 326 static list_t zone_deathrow;
326 327 static kmutex_t zone_deathrow_lock;
327 328
328 329 /* number of zones is limited by virtual interface limit in IP */
329 330 uint_t maxzones = 8192;
330 331
331 332 /* Event channel to sent zone state change notifications */
332 333 evchan_t *zone_event_chan;
333 334
334 335 /*
335 336 * This table holds the mapping from kernel zone states to
336 337 * states visible in the state notification API.
337 338 * The idea is that we only expose "obvious" states and
338 339 * do not expose states which are just implementation details.
339 340 */
340 341 const char *zone_status_table[] = {
341 342 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
342 343 ZONE_EVENT_INITIALIZED, /* initialized */
343 344 ZONE_EVENT_READY, /* ready */
344 345 ZONE_EVENT_READY, /* booting */
345 346 ZONE_EVENT_RUNNING, /* running */
346 347 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
347 348 ZONE_EVENT_SHUTTING_DOWN, /* empty */
348 349 ZONE_EVENT_SHUTTING_DOWN, /* down */
349 350 ZONE_EVENT_SHUTTING_DOWN, /* dying */
350 351 ZONE_EVENT_UNINITIALIZED, /* dead */
351 352 };
352 353
353 354 /*
354 355 * This array contains the names of the subsystems listed in zone_ref_subsys_t
355 356 * (see sys/zone.h).
356 357 */
357 358 static char *zone_ref_subsys_names[] = {
358 359 "NFS", /* ZONE_REF_NFS */
359 360 "NFSv4", /* ZONE_REF_NFSV4 */
360 361 "SMBFS", /* ZONE_REF_SMBFS */
361 362 "MNTFS", /* ZONE_REF_MNTFS */
362 363 "LOFI", /* ZONE_REF_LOFI */
363 364 "VFS", /* ZONE_REF_VFS */
364 365 "IPC" /* ZONE_REF_IPC */
365 366 };
366 367
367 368 /*
368 369 * This isn't static so lint doesn't complain.
369 370 */
370 371 rctl_hndl_t rc_zone_cpu_shares;
371 372 rctl_hndl_t rc_zone_locked_mem;
372 373 rctl_hndl_t rc_zone_max_swap;
373 374 rctl_hndl_t rc_zone_max_lofi;
374 375 rctl_hndl_t rc_zone_cpu_cap;
375 376 rctl_hndl_t rc_zone_nlwps;
376 377 rctl_hndl_t rc_zone_nprocs;
377 378 rctl_hndl_t rc_zone_shmmax;
378 379 rctl_hndl_t rc_zone_shmmni;
379 380 rctl_hndl_t rc_zone_semmni;
380 381 rctl_hndl_t rc_zone_msgmni;
381 382
382 383 const char * const zone_default_initname = "/sbin/init";
383 384 static char * const zone_prefix = "/zone/";
384 385 static int zone_shutdown(zoneid_t zoneid);
385 386 static int zone_add_datalink(zoneid_t, datalink_id_t);
386 387 static int zone_remove_datalink(zoneid_t, datalink_id_t);
387 388 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
388 389 static int zone_set_network(zoneid_t, zone_net_data_t *);
389 390 static int zone_get_network(zoneid_t, zone_net_data_t *);
390 391
391 392 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
392 393
393 394 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
394 395 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
395 396 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
396 397 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
397 398 zone_key_t);
398 399 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 400 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
400 401 kmutex_t *);
401 402 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
402 403 kmutex_t *);
403 404
404 405 /*
405 406 * Bump this number when you alter the zone syscall interfaces; this is
406 407 * because we need to have support for previous API versions in libc
407 408 * to support patching; libc calls into the kernel to determine this number.
408 409 *
409 410 * Version 1 of the API is the version originally shipped with Solaris 10
410 411 * Version 2 alters the zone_create system call in order to support more
411 412 * arguments by moving the args into a structure; and to do better
412 413 * error reporting when zone_create() fails.
413 414 * Version 3 alters the zone_create system call in order to support the
414 415 * import of ZFS datasets to zones.
415 416 * Version 4 alters the zone_create system call in order to support
416 417 * Trusted Extensions.
417 418 * Version 5 alters the zone_boot system call, and converts its old
418 419 * bootargs parameter to be set by the zone_setattr API instead.
419 420 * Version 6 adds the flag argument to zone_create.
420 421 */
421 422 static const int ZONE_SYSCALL_API_VERSION = 6;
422 423
423 424 /*
424 425 * Certain filesystems (such as NFS and autofs) need to know which zone
425 426 * the mount is being placed in. Because of this, we need to be able to
426 427 * ensure that a zone isn't in the process of being created/destroyed such
427 428 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
428 429 * it gets added the list of mounted zones, it ends up on the wrong zone's
429 430 * mount list. Since a zone can't reside on an NFS file system, we don't
430 431 * have to worry about the zonepath itself.
431 432 *
432 433 * The following functions: block_mounts()/resume_mounts() and
433 434 * mount_in_progress()/mount_completed() are used by zones and the VFS
434 435 * layer (respectively) to synchronize zone state transitions and new
435 436 * mounts within a zone. This syncronization is on a per-zone basis, so
436 437 * activity for one zone will not interfere with activity for another zone.
437 438 *
438 439 * The semantics are like a reader-reader lock such that there may
439 440 * either be multiple mounts (or zone state transitions, if that weren't
440 441 * serialized by zonehash_lock) in progress at the same time, but not
441 442 * both.
442 443 *
443 444 * We use cv's so the user can ctrl-C out of the operation if it's
444 445 * taking too long.
445 446 *
446 447 * The semantics are such that there is unfair bias towards the
447 448 * "current" operation. This means that zone halt may starve if
448 449 * there is a rapid succession of new mounts coming in to the zone.
449 450 */
450 451 /*
451 452 * Prevent new mounts from progressing to the point of calling
452 453 * VFS_MOUNT(). If there are already mounts in this "region", wait for
453 454 * them to complete.
454 455 */
455 456 static int
456 457 block_mounts(zone_t *zp)
457 458 {
458 459 int retval = 0;
459 460
460 461 /*
461 462 * Since it may block for a long time, block_mounts() shouldn't be
462 463 * called with zonehash_lock held.
463 464 */
464 465 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
465 466 mutex_enter(&zp->zone_mount_lock);
466 467 while (zp->zone_mounts_in_progress > 0) {
467 468 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
468 469 goto signaled;
469 470 }
470 471 /*
471 472 * A negative value of mounts_in_progress indicates that mounts
472 473 * have been blocked by (-mounts_in_progress) different callers
473 474 * (remotely possible if two threads enter zone_shutdown at the same
474 475 * time).
475 476 */
476 477 zp->zone_mounts_in_progress--;
477 478 retval = 1;
478 479 signaled:
479 480 mutex_exit(&zp->zone_mount_lock);
480 481 return (retval);
481 482 }
482 483
483 484 /*
484 485 * The VFS layer may progress with new mounts as far as we're concerned.
485 486 * Allow them to progress if we were the last obstacle.
486 487 */
487 488 static void
488 489 resume_mounts(zone_t *zp)
489 490 {
490 491 mutex_enter(&zp->zone_mount_lock);
491 492 if (++zp->zone_mounts_in_progress == 0)
492 493 cv_broadcast(&zp->zone_mount_cv);
493 494 mutex_exit(&zp->zone_mount_lock);
494 495 }
495 496
496 497 /*
497 498 * The VFS layer is busy with a mount; this zone should wait until all
498 499 * of its mounts are completed to progress.
499 500 */
500 501 void
501 502 mount_in_progress(zone_t *zp)
502 503 {
503 504 mutex_enter(&zp->zone_mount_lock);
504 505 while (zp->zone_mounts_in_progress < 0)
505 506 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
506 507 zp->zone_mounts_in_progress++;
507 508 mutex_exit(&zp->zone_mount_lock);
508 509 }
509 510
510 511 /*
511 512 * VFS is done with one mount; wake up any waiting block_mounts()
512 513 * callers if this is the last mount.
513 514 */
514 515 void
515 516 mount_completed(zone_t *zp)
516 517 {
517 518 mutex_enter(&zp->zone_mount_lock);
518 519 if (--zp->zone_mounts_in_progress == 0)
519 520 cv_broadcast(&zp->zone_mount_cv);
520 521 mutex_exit(&zp->zone_mount_lock);
521 522 }
522 523
523 524 /*
524 525 * ZSD routines.
525 526 *
526 527 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
527 528 * defined by the pthread_key_create() and related interfaces.
528 529 *
529 530 * Kernel subsystems may register one or more data items and/or
530 531 * callbacks to be executed when a zone is created, shutdown, or
531 532 * destroyed.
532 533 *
533 534 * Unlike the thread counterpart, destructor callbacks will be executed
534 535 * even if the data pointer is NULL and/or there are no constructor
535 536 * callbacks, so it is the responsibility of such callbacks to check for
536 537 * NULL data values if necessary.
537 538 *
538 539 * The locking strategy and overall picture is as follows:
539 540 *
540 541 * When someone calls zone_key_create(), a template ZSD entry is added to the
541 542 * global list "zsd_registered_keys", protected by zsd_key_lock. While
542 543 * holding that lock all the existing zones are marked as
543 544 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
544 545 * zone_zsd list (protected by zone_lock). The global list is updated first
545 546 * (under zone_key_lock) to make sure that newly created zones use the
546 547 * most recent list of keys. Then under zonehash_lock we walk the zones
547 548 * and mark them. Similar locking is used in zone_key_delete().
548 549 *
549 550 * The actual create, shutdown, and destroy callbacks are done without
550 551 * holding any lock. And zsd_flags are used to ensure that the operations
551 552 * completed so that when zone_key_create (and zone_create) is done, as well as
552 553 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
553 554 * are completed.
554 555 *
555 556 * When new zones are created constructor callbacks for all registered ZSD
556 557 * entries will be called. That also uses the above two phases of marking
557 558 * what needs to be done, and then running the callbacks without holding
558 559 * any locks.
559 560 *
560 561 * The framework does not provide any locking around zone_getspecific() and
561 562 * zone_setspecific() apart from that needed for internal consistency, so
562 563 * callers interested in atomic "test-and-set" semantics will need to provide
563 564 * their own locking.
564 565 */
565 566
566 567 /*
567 568 * Helper function to find the zsd_entry associated with the key in the
568 569 * given list.
569 570 */
570 571 static struct zsd_entry *
571 572 zsd_find(list_t *l, zone_key_t key)
572 573 {
573 574 struct zsd_entry *zsd;
574 575
575 576 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
576 577 if (zsd->zsd_key == key) {
577 578 return (zsd);
578 579 }
579 580 }
580 581 return (NULL);
581 582 }
582 583
583 584 /*
584 585 * Helper function to find the zsd_entry associated with the key in the
585 586 * given list. Move it to the front of the list.
586 587 */
587 588 static struct zsd_entry *
588 589 zsd_find_mru(list_t *l, zone_key_t key)
589 590 {
590 591 struct zsd_entry *zsd;
591 592
592 593 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
593 594 if (zsd->zsd_key == key) {
594 595 /*
595 596 * Move to head of list to keep list in MRU order.
596 597 */
597 598 if (zsd != list_head(l)) {
598 599 list_remove(l, zsd);
599 600 list_insert_head(l, zsd);
600 601 }
601 602 return (zsd);
602 603 }
603 604 }
604 605 return (NULL);
605 606 }
606 607
607 608 void
608 609 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
609 610 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
610 611 {
611 612 struct zsd_entry *zsdp;
612 613 struct zsd_entry *t;
613 614 struct zone *zone;
614 615 zone_key_t key;
615 616
616 617 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
617 618 zsdp->zsd_data = NULL;
618 619 zsdp->zsd_create = create;
619 620 zsdp->zsd_shutdown = shutdown;
620 621 zsdp->zsd_destroy = destroy;
621 622
622 623 /*
623 624 * Insert in global list of callbacks. Makes future zone creations
624 625 * see it.
625 626 */
626 627 mutex_enter(&zsd_key_lock);
627 628 key = zsdp->zsd_key = ++zsd_keyval;
628 629 ASSERT(zsd_keyval != 0);
629 630 list_insert_tail(&zsd_registered_keys, zsdp);
630 631 mutex_exit(&zsd_key_lock);
631 632
632 633 /*
633 634 * Insert for all existing zones and mark them as needing
634 635 * a create callback.
635 636 */
636 637 mutex_enter(&zonehash_lock); /* stop the world */
637 638 for (zone = list_head(&zone_active); zone != NULL;
638 639 zone = list_next(&zone_active, zone)) {
639 640 zone_status_t status;
640 641
641 642 mutex_enter(&zone->zone_lock);
642 643
643 644 /* Skip zones that are on the way down or not yet up */
644 645 status = zone_status_get(zone);
645 646 if (status >= ZONE_IS_DOWN ||
646 647 status == ZONE_IS_UNINITIALIZED) {
647 648 mutex_exit(&zone->zone_lock);
648 649 continue;
649 650 }
650 651
651 652 t = zsd_find_mru(&zone->zone_zsd, key);
652 653 if (t != NULL) {
653 654 /*
654 655 * A zsd_configure already inserted it after
655 656 * we dropped zsd_key_lock above.
656 657 */
657 658 mutex_exit(&zone->zone_lock);
658 659 continue;
659 660 }
660 661 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
661 662 t->zsd_key = key;
662 663 t->zsd_create = create;
663 664 t->zsd_shutdown = shutdown;
664 665 t->zsd_destroy = destroy;
665 666 if (create != NULL) {
666 667 t->zsd_flags = ZSD_CREATE_NEEDED;
667 668 DTRACE_PROBE2(zsd__create__needed,
668 669 zone_t *, zone, zone_key_t, key);
669 670 }
670 671 list_insert_tail(&zone->zone_zsd, t);
671 672 mutex_exit(&zone->zone_lock);
672 673 }
673 674 mutex_exit(&zonehash_lock);
674 675
675 676 if (create != NULL) {
676 677 /* Now call the create callback for this key */
677 678 zsd_apply_all_zones(zsd_apply_create, key);
678 679 }
679 680 /*
680 681 * It is safe for consumers to use the key now, make it
681 682 * globally visible. Specifically zone_getspecific() will
682 683 * always successfully return the zone specific data associated
683 684 * with the key.
684 685 */
685 686 *keyp = key;
686 687
687 688 }
688 689
689 690 /*
690 691 * Function called when a module is being unloaded, or otherwise wishes
691 692 * to unregister its ZSD key and callbacks.
692 693 *
693 694 * Remove from the global list and determine the functions that need to
694 695 * be called under a global lock. Then call the functions without
695 696 * holding any locks. Finally free up the zone_zsd entries. (The apply
696 697 * functions need to access the zone_zsd entries to find zsd_data etc.)
697 698 */
698 699 int
699 700 zone_key_delete(zone_key_t key)
700 701 {
701 702 struct zsd_entry *zsdp = NULL;
702 703 zone_t *zone;
703 704
704 705 mutex_enter(&zsd_key_lock);
705 706 zsdp = zsd_find_mru(&zsd_registered_keys, key);
706 707 if (zsdp == NULL) {
707 708 mutex_exit(&zsd_key_lock);
708 709 return (-1);
709 710 }
710 711 list_remove(&zsd_registered_keys, zsdp);
711 712 mutex_exit(&zsd_key_lock);
712 713
713 714 mutex_enter(&zonehash_lock);
714 715 for (zone = list_head(&zone_active); zone != NULL;
715 716 zone = list_next(&zone_active, zone)) {
716 717 struct zsd_entry *del;
717 718
718 719 mutex_enter(&zone->zone_lock);
719 720 del = zsd_find_mru(&zone->zone_zsd, key);
720 721 if (del == NULL) {
721 722 /*
722 723 * Somebody else got here first e.g the zone going
723 724 * away.
724 725 */
725 726 mutex_exit(&zone->zone_lock);
726 727 continue;
727 728 }
728 729 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
729 730 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
730 731 if (del->zsd_shutdown != NULL &&
731 732 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
732 733 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
733 734 DTRACE_PROBE2(zsd__shutdown__needed,
734 735 zone_t *, zone, zone_key_t, key);
735 736 }
736 737 if (del->zsd_destroy != NULL &&
737 738 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
738 739 del->zsd_flags |= ZSD_DESTROY_NEEDED;
739 740 DTRACE_PROBE2(zsd__destroy__needed,
740 741 zone_t *, zone, zone_key_t, key);
741 742 }
742 743 mutex_exit(&zone->zone_lock);
743 744 }
744 745 mutex_exit(&zonehash_lock);
745 746 kmem_free(zsdp, sizeof (*zsdp));
746 747
747 748 /* Now call the shutdown and destroy callback for this key */
748 749 zsd_apply_all_zones(zsd_apply_shutdown, key);
749 750 zsd_apply_all_zones(zsd_apply_destroy, key);
750 751
751 752 /* Now we can free up the zsdp structures in each zone */
752 753 mutex_enter(&zonehash_lock);
753 754 for (zone = list_head(&zone_active); zone != NULL;
754 755 zone = list_next(&zone_active, zone)) {
755 756 struct zsd_entry *del;
756 757
757 758 mutex_enter(&zone->zone_lock);
758 759 del = zsd_find(&zone->zone_zsd, key);
759 760 if (del != NULL) {
760 761 list_remove(&zone->zone_zsd, del);
761 762 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
762 763 kmem_free(del, sizeof (*del));
763 764 }
764 765 mutex_exit(&zone->zone_lock);
765 766 }
766 767 mutex_exit(&zonehash_lock);
767 768
768 769 return (0);
769 770 }
770 771
771 772 /*
772 773 * ZSD counterpart of pthread_setspecific().
773 774 *
774 775 * Since all zsd callbacks, including those with no create function,
775 776 * have an entry in zone_zsd, if the key is registered it is part of
776 777 * the zone_zsd list.
777 778 * Return an error if the key wasn't registerd.
778 779 */
779 780 int
780 781 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
781 782 {
782 783 struct zsd_entry *t;
783 784
784 785 mutex_enter(&zone->zone_lock);
785 786 t = zsd_find_mru(&zone->zone_zsd, key);
786 787 if (t != NULL) {
787 788 /*
788 789 * Replace old value with new
789 790 */
790 791 t->zsd_data = (void *)data;
791 792 mutex_exit(&zone->zone_lock);
792 793 return (0);
793 794 }
794 795 mutex_exit(&zone->zone_lock);
795 796 return (-1);
796 797 }
797 798
798 799 /*
799 800 * ZSD counterpart of pthread_getspecific().
800 801 */
801 802 void *
802 803 zone_getspecific(zone_key_t key, zone_t *zone)
803 804 {
804 805 struct zsd_entry *t;
805 806 void *data;
806 807
807 808 mutex_enter(&zone->zone_lock);
808 809 t = zsd_find_mru(&zone->zone_zsd, key);
809 810 data = (t == NULL ? NULL : t->zsd_data);
810 811 mutex_exit(&zone->zone_lock);
811 812 return (data);
812 813 }
813 814
814 815 /*
815 816 * Function used to initialize a zone's list of ZSD callbacks and data
816 817 * when the zone is being created. The callbacks are initialized from
817 818 * the template list (zsd_registered_keys). The constructor callback is
818 819 * executed later (once the zone exists and with locks dropped).
819 820 */
820 821 static void
821 822 zone_zsd_configure(zone_t *zone)
822 823 {
823 824 struct zsd_entry *zsdp;
824 825 struct zsd_entry *t;
825 826
826 827 ASSERT(MUTEX_HELD(&zonehash_lock));
827 828 ASSERT(list_head(&zone->zone_zsd) == NULL);
828 829 mutex_enter(&zone->zone_lock);
829 830 mutex_enter(&zsd_key_lock);
830 831 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
831 832 zsdp = list_next(&zsd_registered_keys, zsdp)) {
832 833 /*
833 834 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
834 835 * should not have added anything to it.
835 836 */
836 837 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
837 838
838 839 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
839 840 t->zsd_key = zsdp->zsd_key;
840 841 t->zsd_create = zsdp->zsd_create;
841 842 t->zsd_shutdown = zsdp->zsd_shutdown;
842 843 t->zsd_destroy = zsdp->zsd_destroy;
843 844 if (zsdp->zsd_create != NULL) {
844 845 t->zsd_flags = ZSD_CREATE_NEEDED;
845 846 DTRACE_PROBE2(zsd__create__needed,
846 847 zone_t *, zone, zone_key_t, zsdp->zsd_key);
847 848 }
848 849 list_insert_tail(&zone->zone_zsd, t);
849 850 }
850 851 mutex_exit(&zsd_key_lock);
851 852 mutex_exit(&zone->zone_lock);
852 853 }
853 854
854 855 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
855 856
856 857 /*
857 858 * Helper function to execute shutdown or destructor callbacks.
858 859 */
859 860 static void
860 861 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
861 862 {
862 863 struct zsd_entry *t;
863 864
864 865 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
865 866 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
866 867 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
867 868
868 869 /*
869 870 * Run the callback solely based on what is registered for the zone
870 871 * in zone_zsd. The global list can change independently of this
871 872 * as keys are registered and unregistered and we don't register new
872 873 * callbacks for a zone that is in the process of going away.
873 874 */
874 875 mutex_enter(&zone->zone_lock);
875 876 for (t = list_head(&zone->zone_zsd); t != NULL;
876 877 t = list_next(&zone->zone_zsd, t)) {
877 878 zone_key_t key = t->zsd_key;
878 879
879 880 /* Skip if no callbacks registered */
880 881
881 882 if (ct == ZSD_SHUTDOWN) {
882 883 if (t->zsd_shutdown != NULL &&
883 884 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
884 885 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
885 886 DTRACE_PROBE2(zsd__shutdown__needed,
886 887 zone_t *, zone, zone_key_t, key);
887 888 }
888 889 } else {
889 890 if (t->zsd_destroy != NULL &&
890 891 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
891 892 t->zsd_flags |= ZSD_DESTROY_NEEDED;
892 893 DTRACE_PROBE2(zsd__destroy__needed,
893 894 zone_t *, zone, zone_key_t, key);
894 895 }
895 896 }
896 897 }
897 898 mutex_exit(&zone->zone_lock);
898 899
899 900 /* Now call the shutdown and destroy callback for this key */
900 901 zsd_apply_all_keys(zsd_apply_shutdown, zone);
901 902 zsd_apply_all_keys(zsd_apply_destroy, zone);
902 903
903 904 }
904 905
905 906 /*
906 907 * Called when the zone is going away; free ZSD-related memory, and
907 908 * destroy the zone_zsd list.
908 909 */
909 910 static void
910 911 zone_free_zsd(zone_t *zone)
911 912 {
912 913 struct zsd_entry *t, *next;
913 914
914 915 /*
915 916 * Free all the zsd_entry's we had on this zone.
916 917 */
917 918 mutex_enter(&zone->zone_lock);
918 919 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
919 920 next = list_next(&zone->zone_zsd, t);
920 921 list_remove(&zone->zone_zsd, t);
921 922 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
922 923 kmem_free(t, sizeof (*t));
923 924 }
924 925 list_destroy(&zone->zone_zsd);
925 926 mutex_exit(&zone->zone_lock);
926 927
927 928 }
928 929
929 930 /*
930 931 * Apply a function to all zones for particular key value.
931 932 *
932 933 * The applyfn has to drop zonehash_lock if it does some work, and
933 934 * then reacquire it before it returns.
934 935 * When the lock is dropped we don't follow list_next even
935 936 * if it is possible to do so without any hazards. This is
936 937 * because we want the design to allow for the list of zones
937 938 * to change in any arbitrary way during the time the
938 939 * lock was dropped.
939 940 *
940 941 * It is safe to restart the loop at list_head since the applyfn
941 942 * changes the zsd_flags as it does work, so a subsequent
942 943 * pass through will have no effect in applyfn, hence the loop will terminate
943 944 * in at worst O(N^2).
944 945 */
945 946 static void
946 947 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
947 948 {
948 949 zone_t *zone;
949 950
950 951 mutex_enter(&zonehash_lock);
951 952 zone = list_head(&zone_active);
952 953 while (zone != NULL) {
953 954 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
954 955 /* Lock dropped - restart at head */
955 956 zone = list_head(&zone_active);
956 957 } else {
957 958 zone = list_next(&zone_active, zone);
958 959 }
959 960 }
960 961 mutex_exit(&zonehash_lock);
961 962 }
962 963
963 964 /*
964 965 * Apply a function to all keys for a particular zone.
965 966 *
966 967 * The applyfn has to drop zonehash_lock if it does some work, and
967 968 * then reacquire it before it returns.
968 969 * When the lock is dropped we don't follow list_next even
969 970 * if it is possible to do so without any hazards. This is
970 971 * because we want the design to allow for the list of zsd callbacks
971 972 * to change in any arbitrary way during the time the
972 973 * lock was dropped.
973 974 *
974 975 * It is safe to restart the loop at list_head since the applyfn
975 976 * changes the zsd_flags as it does work, so a subsequent
976 977 * pass through will have no effect in applyfn, hence the loop will terminate
977 978 * in at worst O(N^2).
978 979 */
979 980 static void
980 981 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
981 982 {
982 983 struct zsd_entry *t;
983 984
984 985 mutex_enter(&zone->zone_lock);
985 986 t = list_head(&zone->zone_zsd);
986 987 while (t != NULL) {
987 988 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
988 989 /* Lock dropped - restart at head */
989 990 t = list_head(&zone->zone_zsd);
990 991 } else {
991 992 t = list_next(&zone->zone_zsd, t);
992 993 }
993 994 }
994 995 mutex_exit(&zone->zone_lock);
995 996 }
996 997
997 998 /*
998 999 * Call the create function for the zone and key if CREATE_NEEDED
999 1000 * is set.
1000 1001 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1001 1002 * we wait for that thread to complete so that we can ensure that
1002 1003 * all the callbacks are done when we've looped over all zones/keys.
1003 1004 *
1004 1005 * When we call the create function, we drop the global held by the
1005 1006 * caller, and return true to tell the caller it needs to re-evalute the
1006 1007 * state.
1007 1008 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1008 1009 * remains held on exit.
1009 1010 */
1010 1011 static boolean_t
1011 1012 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1012 1013 zone_t *zone, zone_key_t key)
1013 1014 {
1014 1015 void *result;
1015 1016 struct zsd_entry *t;
1016 1017 boolean_t dropped;
1017 1018
1018 1019 if (lockp != NULL) {
1019 1020 ASSERT(MUTEX_HELD(lockp));
1020 1021 }
1021 1022 if (zone_lock_held) {
1022 1023 ASSERT(MUTEX_HELD(&zone->zone_lock));
1023 1024 } else {
1024 1025 mutex_enter(&zone->zone_lock);
1025 1026 }
1026 1027
1027 1028 t = zsd_find(&zone->zone_zsd, key);
1028 1029 if (t == NULL) {
1029 1030 /*
1030 1031 * Somebody else got here first e.g the zone going
1031 1032 * away.
1032 1033 */
1033 1034 if (!zone_lock_held)
1034 1035 mutex_exit(&zone->zone_lock);
1035 1036 return (B_FALSE);
1036 1037 }
1037 1038 dropped = B_FALSE;
1038 1039 if (zsd_wait_for_inprogress(zone, t, lockp))
1039 1040 dropped = B_TRUE;
1040 1041
1041 1042 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1042 1043 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1043 1044 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1044 1045 DTRACE_PROBE2(zsd__create__inprogress,
1045 1046 zone_t *, zone, zone_key_t, key);
1046 1047 mutex_exit(&zone->zone_lock);
1047 1048 if (lockp != NULL)
1048 1049 mutex_exit(lockp);
1049 1050
1050 1051 dropped = B_TRUE;
1051 1052 ASSERT(t->zsd_create != NULL);
1052 1053 DTRACE_PROBE2(zsd__create__start,
1053 1054 zone_t *, zone, zone_key_t, key);
1054 1055
1055 1056 result = (*t->zsd_create)(zone->zone_id);
1056 1057
1057 1058 DTRACE_PROBE2(zsd__create__end,
1058 1059 zone_t *, zone, voidn *, result);
1059 1060
1060 1061 ASSERT(result != NULL);
1061 1062 if (lockp != NULL)
1062 1063 mutex_enter(lockp);
1063 1064 mutex_enter(&zone->zone_lock);
1064 1065 t->zsd_data = result;
1065 1066 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1066 1067 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1067 1068 cv_broadcast(&t->zsd_cv);
1068 1069 DTRACE_PROBE2(zsd__create__completed,
1069 1070 zone_t *, zone, zone_key_t, key);
1070 1071 }
1071 1072 if (!zone_lock_held)
1072 1073 mutex_exit(&zone->zone_lock);
1073 1074 return (dropped);
1074 1075 }
1075 1076
1076 1077 /*
1077 1078 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1078 1079 * is set.
1079 1080 * If some other thread gets here first and sets *_INPROGRESS, then
1080 1081 * we wait for that thread to complete so that we can ensure that
1081 1082 * all the callbacks are done when we've looped over all zones/keys.
1082 1083 *
1083 1084 * When we call the shutdown function, we drop the global held by the
1084 1085 * caller, and return true to tell the caller it needs to re-evalute the
1085 1086 * state.
1086 1087 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1087 1088 * remains held on exit.
1088 1089 */
1089 1090 static boolean_t
1090 1091 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1091 1092 zone_t *zone, zone_key_t key)
1092 1093 {
1093 1094 struct zsd_entry *t;
1094 1095 void *data;
1095 1096 boolean_t dropped;
1096 1097
1097 1098 if (lockp != NULL) {
1098 1099 ASSERT(MUTEX_HELD(lockp));
1099 1100 }
1100 1101 if (zone_lock_held) {
1101 1102 ASSERT(MUTEX_HELD(&zone->zone_lock));
1102 1103 } else {
1103 1104 mutex_enter(&zone->zone_lock);
1104 1105 }
1105 1106
1106 1107 t = zsd_find(&zone->zone_zsd, key);
1107 1108 if (t == NULL) {
1108 1109 /*
1109 1110 * Somebody else got here first e.g the zone going
1110 1111 * away.
1111 1112 */
1112 1113 if (!zone_lock_held)
1113 1114 mutex_exit(&zone->zone_lock);
1114 1115 return (B_FALSE);
1115 1116 }
1116 1117 dropped = B_FALSE;
1117 1118 if (zsd_wait_for_creator(zone, t, lockp))
1118 1119 dropped = B_TRUE;
1119 1120
1120 1121 if (zsd_wait_for_inprogress(zone, t, lockp))
1121 1122 dropped = B_TRUE;
1122 1123
1123 1124 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1124 1125 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1125 1126 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1126 1127 DTRACE_PROBE2(zsd__shutdown__inprogress,
1127 1128 zone_t *, zone, zone_key_t, key);
1128 1129 mutex_exit(&zone->zone_lock);
1129 1130 if (lockp != NULL)
1130 1131 mutex_exit(lockp);
1131 1132 dropped = B_TRUE;
1132 1133
1133 1134 ASSERT(t->zsd_shutdown != NULL);
1134 1135 data = t->zsd_data;
1135 1136
1136 1137 DTRACE_PROBE2(zsd__shutdown__start,
1137 1138 zone_t *, zone, zone_key_t, key);
1138 1139
1139 1140 (t->zsd_shutdown)(zone->zone_id, data);
1140 1141 DTRACE_PROBE2(zsd__shutdown__end,
1141 1142 zone_t *, zone, zone_key_t, key);
1142 1143
1143 1144 if (lockp != NULL)
1144 1145 mutex_enter(lockp);
1145 1146 mutex_enter(&zone->zone_lock);
1146 1147 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1147 1148 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1148 1149 cv_broadcast(&t->zsd_cv);
1149 1150 DTRACE_PROBE2(zsd__shutdown__completed,
1150 1151 zone_t *, zone, zone_key_t, key);
1151 1152 }
1152 1153 if (!zone_lock_held)
1153 1154 mutex_exit(&zone->zone_lock);
1154 1155 return (dropped);
1155 1156 }
1156 1157
1157 1158 /*
1158 1159 * Call the destroy function for the zone and key if DESTROY_NEEDED
1159 1160 * is set.
1160 1161 * If some other thread gets here first and sets *_INPROGRESS, then
1161 1162 * we wait for that thread to complete so that we can ensure that
1162 1163 * all the callbacks are done when we've looped over all zones/keys.
1163 1164 *
1164 1165 * When we call the destroy function, we drop the global held by the
1165 1166 * caller, and return true to tell the caller it needs to re-evalute the
1166 1167 * state.
1167 1168 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1168 1169 * remains held on exit.
1169 1170 */
1170 1171 static boolean_t
1171 1172 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1172 1173 zone_t *zone, zone_key_t key)
1173 1174 {
1174 1175 struct zsd_entry *t;
1175 1176 void *data;
1176 1177 boolean_t dropped;
1177 1178
1178 1179 if (lockp != NULL) {
1179 1180 ASSERT(MUTEX_HELD(lockp));
1180 1181 }
1181 1182 if (zone_lock_held) {
1182 1183 ASSERT(MUTEX_HELD(&zone->zone_lock));
1183 1184 } else {
1184 1185 mutex_enter(&zone->zone_lock);
1185 1186 }
1186 1187
1187 1188 t = zsd_find(&zone->zone_zsd, key);
1188 1189 if (t == NULL) {
1189 1190 /*
1190 1191 * Somebody else got here first e.g the zone going
1191 1192 * away.
1192 1193 */
1193 1194 if (!zone_lock_held)
1194 1195 mutex_exit(&zone->zone_lock);
1195 1196 return (B_FALSE);
1196 1197 }
1197 1198 dropped = B_FALSE;
1198 1199 if (zsd_wait_for_creator(zone, t, lockp))
1199 1200 dropped = B_TRUE;
1200 1201
1201 1202 if (zsd_wait_for_inprogress(zone, t, lockp))
1202 1203 dropped = B_TRUE;
1203 1204
1204 1205 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1205 1206 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1206 1207 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1207 1208 DTRACE_PROBE2(zsd__destroy__inprogress,
1208 1209 zone_t *, zone, zone_key_t, key);
1209 1210 mutex_exit(&zone->zone_lock);
1210 1211 if (lockp != NULL)
1211 1212 mutex_exit(lockp);
1212 1213 dropped = B_TRUE;
1213 1214
1214 1215 ASSERT(t->zsd_destroy != NULL);
1215 1216 data = t->zsd_data;
1216 1217 DTRACE_PROBE2(zsd__destroy__start,
1217 1218 zone_t *, zone, zone_key_t, key);
1218 1219
1219 1220 (t->zsd_destroy)(zone->zone_id, data);
1220 1221 DTRACE_PROBE2(zsd__destroy__end,
1221 1222 zone_t *, zone, zone_key_t, key);
1222 1223
1223 1224 if (lockp != NULL)
1224 1225 mutex_enter(lockp);
1225 1226 mutex_enter(&zone->zone_lock);
1226 1227 t->zsd_data = NULL;
1227 1228 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1228 1229 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1229 1230 cv_broadcast(&t->zsd_cv);
1230 1231 DTRACE_PROBE2(zsd__destroy__completed,
1231 1232 zone_t *, zone, zone_key_t, key);
1232 1233 }
1233 1234 if (!zone_lock_held)
1234 1235 mutex_exit(&zone->zone_lock);
1235 1236 return (dropped);
1236 1237 }
1237 1238
1238 1239 /*
1239 1240 * Wait for any CREATE_NEEDED flag to be cleared.
1240 1241 * Returns true if lockp was temporarily dropped while waiting.
1241 1242 */
1242 1243 static boolean_t
1243 1244 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1244 1245 {
1245 1246 boolean_t dropped = B_FALSE;
1246 1247
1247 1248 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1248 1249 DTRACE_PROBE2(zsd__wait__for__creator,
1249 1250 zone_t *, zone, struct zsd_entry *, t);
1250 1251 if (lockp != NULL) {
1251 1252 dropped = B_TRUE;
1252 1253 mutex_exit(lockp);
1253 1254 }
1254 1255 cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 1256 if (lockp != NULL) {
1256 1257 /* First drop zone_lock to preserve order */
1257 1258 mutex_exit(&zone->zone_lock);
1258 1259 mutex_enter(lockp);
1259 1260 mutex_enter(&zone->zone_lock);
1260 1261 }
1261 1262 }
1262 1263 return (dropped);
1263 1264 }
1264 1265
1265 1266 /*
1266 1267 * Wait for any INPROGRESS flag to be cleared.
1267 1268 * Returns true if lockp was temporarily dropped while waiting.
1268 1269 */
1269 1270 static boolean_t
1270 1271 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1271 1272 {
1272 1273 boolean_t dropped = B_FALSE;
1273 1274
1274 1275 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1275 1276 DTRACE_PROBE2(zsd__wait__for__inprogress,
1276 1277 zone_t *, zone, struct zsd_entry *, t);
1277 1278 if (lockp != NULL) {
1278 1279 dropped = B_TRUE;
1279 1280 mutex_exit(lockp);
1280 1281 }
1281 1282 cv_wait(&t->zsd_cv, &zone->zone_lock);
1282 1283 if (lockp != NULL) {
1283 1284 /* First drop zone_lock to preserve order */
1284 1285 mutex_exit(&zone->zone_lock);
1285 1286 mutex_enter(lockp);
1286 1287 mutex_enter(&zone->zone_lock);
1287 1288 }
1288 1289 }
1289 1290 return (dropped);
1290 1291 }
1291 1292
1292 1293 /*
1293 1294 * Frees memory associated with the zone dataset list.
1294 1295 */
1295 1296 static void
1296 1297 zone_free_datasets(zone_t *zone)
1297 1298 {
1298 1299 zone_dataset_t *t, *next;
1299 1300
1300 1301 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1301 1302 next = list_next(&zone->zone_datasets, t);
1302 1303 list_remove(&zone->zone_datasets, t);
1303 1304 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1304 1305 kmem_free(t, sizeof (*t));
1305 1306 }
1306 1307 list_destroy(&zone->zone_datasets);
1307 1308 }
1308 1309
1309 1310 /*
1310 1311 * zone.cpu-shares resource control support.
1311 1312 */
1312 1313 /*ARGSUSED*/
1313 1314 static rctl_qty_t
1314 1315 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1315 1316 {
1316 1317 ASSERT(MUTEX_HELD(&p->p_lock));
1317 1318 return (p->p_zone->zone_shares);
1318 1319 }
1319 1320
1320 1321 /*ARGSUSED*/
1321 1322 static int
1322 1323 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1323 1324 rctl_qty_t nv)
1324 1325 {
1325 1326 ASSERT(MUTEX_HELD(&p->p_lock));
1326 1327 ASSERT(e->rcep_t == RCENTITY_ZONE);
1327 1328 if (e->rcep_p.zone == NULL)
1328 1329 return (0);
1329 1330
1330 1331 e->rcep_p.zone->zone_shares = nv;
1331 1332 return (0);
1332 1333 }
1333 1334
1334 1335 static rctl_ops_t zone_cpu_shares_ops = {
1335 1336 rcop_no_action,
1336 1337 zone_cpu_shares_usage,
1337 1338 zone_cpu_shares_set,
1338 1339 rcop_no_test
1339 1340 };
1340 1341
1341 1342 /*
1342 1343 * zone.cpu-cap resource control support.
1343 1344 */
1344 1345 /*ARGSUSED*/
1345 1346 static rctl_qty_t
1346 1347 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1347 1348 {
1348 1349 ASSERT(MUTEX_HELD(&p->p_lock));
1349 1350 return (cpucaps_zone_get(p->p_zone));
1350 1351 }
1351 1352
1352 1353 /*ARGSUSED*/
1353 1354 static int
1354 1355 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1355 1356 rctl_qty_t nv)
1356 1357 {
1357 1358 zone_t *zone = e->rcep_p.zone;
1358 1359
1359 1360 ASSERT(MUTEX_HELD(&p->p_lock));
1360 1361 ASSERT(e->rcep_t == RCENTITY_ZONE);
1361 1362
1362 1363 if (zone == NULL)
1363 1364 return (0);
1364 1365
1365 1366 /*
1366 1367 * set cap to the new value.
1367 1368 */
1368 1369 return (cpucaps_zone_set(zone, nv));
1369 1370 }
1370 1371
1371 1372 static rctl_ops_t zone_cpu_cap_ops = {
1372 1373 rcop_no_action,
1373 1374 zone_cpu_cap_get,
1374 1375 zone_cpu_cap_set,
1375 1376 rcop_no_test
1376 1377 };
1377 1378
1378 1379 /*ARGSUSED*/
1379 1380 static rctl_qty_t
1380 1381 zone_lwps_usage(rctl_t *r, proc_t *p)
1381 1382 {
1382 1383 rctl_qty_t nlwps;
1383 1384 zone_t *zone = p->p_zone;
1384 1385
1385 1386 ASSERT(MUTEX_HELD(&p->p_lock));
1386 1387
1387 1388 mutex_enter(&zone->zone_nlwps_lock);
1388 1389 nlwps = zone->zone_nlwps;
1389 1390 mutex_exit(&zone->zone_nlwps_lock);
1390 1391
1391 1392 return (nlwps);
1392 1393 }
1393 1394
1394 1395 /*ARGSUSED*/
1395 1396 static int
1396 1397 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1397 1398 rctl_qty_t incr, uint_t flags)
1398 1399 {
1399 1400 rctl_qty_t nlwps;
1400 1401
1401 1402 ASSERT(MUTEX_HELD(&p->p_lock));
1402 1403 ASSERT(e->rcep_t == RCENTITY_ZONE);
1403 1404 if (e->rcep_p.zone == NULL)
1404 1405 return (0);
1405 1406 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1406 1407 nlwps = e->rcep_p.zone->zone_nlwps;
1407 1408
1408 1409 if (nlwps + incr > rcntl->rcv_value)
1409 1410 return (1);
1410 1411
1411 1412 return (0);
1412 1413 }
1413 1414
1414 1415 /*ARGSUSED*/
1415 1416 static int
1416 1417 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1417 1418 {
1418 1419 ASSERT(MUTEX_HELD(&p->p_lock));
1419 1420 ASSERT(e->rcep_t == RCENTITY_ZONE);
1420 1421 if (e->rcep_p.zone == NULL)
1421 1422 return (0);
1422 1423 e->rcep_p.zone->zone_nlwps_ctl = nv;
1423 1424 return (0);
1424 1425 }
1425 1426
1426 1427 static rctl_ops_t zone_lwps_ops = {
1427 1428 rcop_no_action,
1428 1429 zone_lwps_usage,
1429 1430 zone_lwps_set,
1430 1431 zone_lwps_test,
1431 1432 };
1432 1433
1433 1434 /*ARGSUSED*/
1434 1435 static rctl_qty_t
1435 1436 zone_procs_usage(rctl_t *r, proc_t *p)
1436 1437 {
1437 1438 rctl_qty_t nprocs;
1438 1439 zone_t *zone = p->p_zone;
1439 1440
1440 1441 ASSERT(MUTEX_HELD(&p->p_lock));
1441 1442
1442 1443 mutex_enter(&zone->zone_nlwps_lock);
1443 1444 nprocs = zone->zone_nprocs;
1444 1445 mutex_exit(&zone->zone_nlwps_lock);
1445 1446
1446 1447 return (nprocs);
1447 1448 }
1448 1449
1449 1450 /*ARGSUSED*/
1450 1451 static int
1451 1452 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1452 1453 rctl_qty_t incr, uint_t flags)
1453 1454 {
1454 1455 rctl_qty_t nprocs;
1455 1456
1456 1457 ASSERT(MUTEX_HELD(&p->p_lock));
1457 1458 ASSERT(e->rcep_t == RCENTITY_ZONE);
1458 1459 if (e->rcep_p.zone == NULL)
1459 1460 return (0);
1460 1461 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1461 1462 nprocs = e->rcep_p.zone->zone_nprocs;
1462 1463
1463 1464 if (nprocs + incr > rcntl->rcv_value)
1464 1465 return (1);
1465 1466
1466 1467 return (0);
1467 1468 }
1468 1469
1469 1470 /*ARGSUSED*/
1470 1471 static int
1471 1472 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1472 1473 {
1473 1474 ASSERT(MUTEX_HELD(&p->p_lock));
1474 1475 ASSERT(e->rcep_t == RCENTITY_ZONE);
1475 1476 if (e->rcep_p.zone == NULL)
1476 1477 return (0);
1477 1478 e->rcep_p.zone->zone_nprocs_ctl = nv;
1478 1479 return (0);
1479 1480 }
1480 1481
1481 1482 static rctl_ops_t zone_procs_ops = {
1482 1483 rcop_no_action,
1483 1484 zone_procs_usage,
1484 1485 zone_procs_set,
1485 1486 zone_procs_test,
1486 1487 };
1487 1488
1488 1489 /*ARGSUSED*/
1489 1490 static int
1490 1491 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1491 1492 rctl_qty_t incr, uint_t flags)
1492 1493 {
1493 1494 rctl_qty_t v;
1494 1495 ASSERT(MUTEX_HELD(&p->p_lock));
1495 1496 ASSERT(e->rcep_t == RCENTITY_ZONE);
1496 1497 v = e->rcep_p.zone->zone_shmmax + incr;
1497 1498 if (v > rval->rcv_value)
1498 1499 return (1);
1499 1500 return (0);
1500 1501 }
1501 1502
1502 1503 static rctl_ops_t zone_shmmax_ops = {
1503 1504 rcop_no_action,
1504 1505 rcop_no_usage,
1505 1506 rcop_no_set,
1506 1507 zone_shmmax_test
1507 1508 };
1508 1509
1509 1510 /*ARGSUSED*/
1510 1511 static int
1511 1512 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1512 1513 rctl_qty_t incr, uint_t flags)
1513 1514 {
1514 1515 rctl_qty_t v;
1515 1516 ASSERT(MUTEX_HELD(&p->p_lock));
1516 1517 ASSERT(e->rcep_t == RCENTITY_ZONE);
1517 1518 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1518 1519 if (v > rval->rcv_value)
1519 1520 return (1);
1520 1521 return (0);
1521 1522 }
1522 1523
1523 1524 static rctl_ops_t zone_shmmni_ops = {
1524 1525 rcop_no_action,
1525 1526 rcop_no_usage,
1526 1527 rcop_no_set,
1527 1528 zone_shmmni_test
1528 1529 };
1529 1530
1530 1531 /*ARGSUSED*/
1531 1532 static int
1532 1533 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1533 1534 rctl_qty_t incr, uint_t flags)
1534 1535 {
1535 1536 rctl_qty_t v;
1536 1537 ASSERT(MUTEX_HELD(&p->p_lock));
1537 1538 ASSERT(e->rcep_t == RCENTITY_ZONE);
1538 1539 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1539 1540 if (v > rval->rcv_value)
1540 1541 return (1);
1541 1542 return (0);
1542 1543 }
1543 1544
1544 1545 static rctl_ops_t zone_semmni_ops = {
1545 1546 rcop_no_action,
1546 1547 rcop_no_usage,
1547 1548 rcop_no_set,
1548 1549 zone_semmni_test
1549 1550 };
1550 1551
1551 1552 /*ARGSUSED*/
1552 1553 static int
1553 1554 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1554 1555 rctl_qty_t incr, uint_t flags)
1555 1556 {
1556 1557 rctl_qty_t v;
1557 1558 ASSERT(MUTEX_HELD(&p->p_lock));
1558 1559 ASSERT(e->rcep_t == RCENTITY_ZONE);
1559 1560 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1560 1561 if (v > rval->rcv_value)
1561 1562 return (1);
1562 1563 return (0);
1563 1564 }
1564 1565
1565 1566 static rctl_ops_t zone_msgmni_ops = {
1566 1567 rcop_no_action,
1567 1568 rcop_no_usage,
1568 1569 rcop_no_set,
1569 1570 zone_msgmni_test
1570 1571 };
1571 1572
1572 1573 /*ARGSUSED*/
1573 1574 static rctl_qty_t
1574 1575 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1575 1576 {
1576 1577 rctl_qty_t q;
1577 1578 ASSERT(MUTEX_HELD(&p->p_lock));
1578 1579 mutex_enter(&p->p_zone->zone_mem_lock);
1579 1580 q = p->p_zone->zone_locked_mem;
1580 1581 mutex_exit(&p->p_zone->zone_mem_lock);
1581 1582 return (q);
1582 1583 }
1583 1584
1584 1585 /*ARGSUSED*/
1585 1586 static int
1586 1587 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1587 1588 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1588 1589 {
1589 1590 rctl_qty_t q;
1590 1591 zone_t *z;
1591 1592
1592 1593 z = e->rcep_p.zone;
1593 1594 ASSERT(MUTEX_HELD(&p->p_lock));
1594 1595 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1595 1596 q = z->zone_locked_mem;
1596 1597 if (q + incr > rcntl->rcv_value)
1597 1598 return (1);
1598 1599 return (0);
1599 1600 }
1600 1601
1601 1602 /*ARGSUSED*/
1602 1603 static int
1603 1604 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1604 1605 rctl_qty_t nv)
1605 1606 {
1606 1607 ASSERT(MUTEX_HELD(&p->p_lock));
1607 1608 ASSERT(e->rcep_t == RCENTITY_ZONE);
1608 1609 if (e->rcep_p.zone == NULL)
1609 1610 return (0);
1610 1611 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1611 1612 return (0);
1612 1613 }
1613 1614
1614 1615 static rctl_ops_t zone_locked_mem_ops = {
1615 1616 rcop_no_action,
1616 1617 zone_locked_mem_usage,
1617 1618 zone_locked_mem_set,
1618 1619 zone_locked_mem_test
1619 1620 };
1620 1621
1621 1622 /*ARGSUSED*/
1622 1623 static rctl_qty_t
1623 1624 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1624 1625 {
1625 1626 rctl_qty_t q;
1626 1627 zone_t *z = p->p_zone;
1627 1628
1628 1629 ASSERT(MUTEX_HELD(&p->p_lock));
1629 1630 mutex_enter(&z->zone_mem_lock);
1630 1631 q = z->zone_max_swap;
1631 1632 mutex_exit(&z->zone_mem_lock);
1632 1633 return (q);
1633 1634 }
1634 1635
1635 1636 /*ARGSUSED*/
1636 1637 static int
1637 1638 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1638 1639 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1639 1640 {
1640 1641 rctl_qty_t q;
1641 1642 zone_t *z;
1642 1643
1643 1644 z = e->rcep_p.zone;
1644 1645 ASSERT(MUTEX_HELD(&p->p_lock));
1645 1646 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1646 1647 q = z->zone_max_swap;
1647 1648 if (q + incr > rcntl->rcv_value)
1648 1649 return (1);
1649 1650 return (0);
1650 1651 }
1651 1652
1652 1653 /*ARGSUSED*/
1653 1654 static int
1654 1655 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1655 1656 rctl_qty_t nv)
1656 1657 {
1657 1658 ASSERT(MUTEX_HELD(&p->p_lock));
1658 1659 ASSERT(e->rcep_t == RCENTITY_ZONE);
1659 1660 if (e->rcep_p.zone == NULL)
1660 1661 return (0);
1661 1662 e->rcep_p.zone->zone_max_swap_ctl = nv;
1662 1663 return (0);
1663 1664 }
1664 1665
1665 1666 static rctl_ops_t zone_max_swap_ops = {
1666 1667 rcop_no_action,
1667 1668 zone_max_swap_usage,
1668 1669 zone_max_swap_set,
1669 1670 zone_max_swap_test
1670 1671 };
1671 1672
1672 1673 /*ARGSUSED*/
1673 1674 static rctl_qty_t
1674 1675 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1675 1676 {
1676 1677 rctl_qty_t q;
1677 1678 zone_t *z = p->p_zone;
1678 1679
1679 1680 ASSERT(MUTEX_HELD(&p->p_lock));
1680 1681 mutex_enter(&z->zone_rctl_lock);
1681 1682 q = z->zone_max_lofi;
1682 1683 mutex_exit(&z->zone_rctl_lock);
1683 1684 return (q);
1684 1685 }
1685 1686
1686 1687 /*ARGSUSED*/
1687 1688 static int
1688 1689 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1689 1690 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1690 1691 {
1691 1692 rctl_qty_t q;
1692 1693 zone_t *z;
1693 1694
1694 1695 z = e->rcep_p.zone;
1695 1696 ASSERT(MUTEX_HELD(&p->p_lock));
1696 1697 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1697 1698 q = z->zone_max_lofi;
1698 1699 if (q + incr > rcntl->rcv_value)
1699 1700 return (1);
1700 1701 return (0);
1701 1702 }
1702 1703
1703 1704 /*ARGSUSED*/
1704 1705 static int
1705 1706 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1706 1707 rctl_qty_t nv)
1707 1708 {
1708 1709 ASSERT(MUTEX_HELD(&p->p_lock));
1709 1710 ASSERT(e->rcep_t == RCENTITY_ZONE);
1710 1711 if (e->rcep_p.zone == NULL)
1711 1712 return (0);
1712 1713 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1713 1714 return (0);
1714 1715 }
1715 1716
1716 1717 static rctl_ops_t zone_max_lofi_ops = {
1717 1718 rcop_no_action,
1718 1719 zone_max_lofi_usage,
1719 1720 zone_max_lofi_set,
1720 1721 zone_max_lofi_test
1721 1722 };
1722 1723
1723 1724 /*
1724 1725 * Helper function to brand the zone with a unique ID.
1725 1726 */
1726 1727 static void
1727 1728 zone_uniqid(zone_t *zone)
1728 1729 {
1729 1730 static uint64_t uniqid = 0;
1730 1731
1731 1732 ASSERT(MUTEX_HELD(&zonehash_lock));
1732 1733 zone->zone_uniqid = uniqid++;
1733 1734 }
1734 1735
1735 1736 /*
1736 1737 * Returns a held pointer to the "kcred" for the specified zone.
1737 1738 */
1738 1739 struct cred *
1739 1740 zone_get_kcred(zoneid_t zoneid)
1740 1741 {
1741 1742 zone_t *zone;
1742 1743 cred_t *cr;
1743 1744
1744 1745 if ((zone = zone_find_by_id(zoneid)) == NULL)
1745 1746 return (NULL);
1746 1747 cr = zone->zone_kcred;
1747 1748 crhold(cr);
1748 1749 zone_rele(zone);
1749 1750 return (cr);
1750 1751 }
1751 1752
1752 1753 static int
1753 1754 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1754 1755 {
1755 1756 zone_t *zone = ksp->ks_private;
1756 1757 zone_kstat_t *zk = ksp->ks_data;
1757 1758
1758 1759 if (rw == KSTAT_WRITE)
1759 1760 return (EACCES);
1760 1761
1761 1762 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1762 1763 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1763 1764 return (0);
1764 1765 }
1765 1766
1766 1767 static int
1767 1768 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1768 1769 {
1769 1770 zone_t *zone = ksp->ks_private;
1770 1771 zone_kstat_t *zk = ksp->ks_data;
1771 1772
1772 1773 if (rw == KSTAT_WRITE)
1773 1774 return (EACCES);
1774 1775
1775 1776 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1776 1777 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1777 1778 return (0);
1778 1779 }
1779 1780
1780 1781 static int
1781 1782 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1782 1783 {
1783 1784 zone_t *zone = ksp->ks_private;
1784 1785 zone_kstat_t *zk = ksp->ks_data;
1785 1786
1786 1787 if (rw == KSTAT_WRITE)
1787 1788 return (EACCES);
1788 1789
1789 1790 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1790 1791 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1791 1792 return (0);
1792 1793 }
1793 1794
1794 1795 static kstat_t *
1795 1796 zone_kstat_create_common(zone_t *zone, char *name,
1796 1797 int (*updatefunc) (kstat_t *, int))
1797 1798 {
1798 1799 kstat_t *ksp;
1799 1800 zone_kstat_t *zk;
1800 1801
1801 1802 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1802 1803 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1803 1804 KSTAT_FLAG_VIRTUAL);
1804 1805
1805 1806 if (ksp == NULL)
1806 1807 return (NULL);
1807 1808
1808 1809 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1809 1810 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1810 1811 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1811 1812 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1812 1813 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1813 1814 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1814 1815 ksp->ks_update = updatefunc;
1815 1816 ksp->ks_private = zone;
1816 1817 kstat_install(ksp);
1817 1818 return (ksp);
1818 1819 }
1819 1820
1820 1821 static int
1821 1822 zone_misc_kstat_update(kstat_t *ksp, int rw)
1822 1823 {
1823 1824 zone_t *zone = ksp->ks_private;
1824 1825 zone_misc_kstat_t *zmp = ksp->ks_data;
1825 1826 hrtime_t tmp;
1826 1827
1827 1828 if (rw == KSTAT_WRITE)
1828 1829 return (EACCES);
1829 1830
↓ open down ↓ |
1795 lines elided |
↑ open up ↑ |
1830 1831 tmp = zone->zone_utime;
1831 1832 scalehrtime(&tmp);
1832 1833 zmp->zm_utime.value.ui64 = tmp;
1833 1834 tmp = zone->zone_stime;
1834 1835 scalehrtime(&tmp);
1835 1836 zmp->zm_stime.value.ui64 = tmp;
1836 1837 tmp = zone->zone_wtime;
1837 1838 scalehrtime(&tmp);
1838 1839 zmp->zm_wtime.value.ui64 = tmp;
1839 1840
1841 + zmp->zm_boot_hrtime.value.t = zone->zone_boot_hrtime;
1842 +
1840 1843 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1841 1844 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1842 1845 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1843 1846
1844 1847 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1845 1848 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1846 1849 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1847 1850 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1848 1851
1849 1852 return (0);
1850 1853 }
1851 1854
1852 1855 static kstat_t *
1853 1856 zone_misc_kstat_create(zone_t *zone)
1854 1857 {
1855 1858 kstat_t *ksp;
1856 1859 zone_misc_kstat_t *zmp;
1857 1860
1858 1861 if ((ksp = kstat_create_zone("zones", zone->zone_id,
1859 1862 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1860 1863 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1861 1864 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1862 1865 return (NULL);
1863 1866
1864 1867 if (zone->zone_id != GLOBAL_ZONEID)
1865 1868 kstat_zone_add(ksp, GLOBAL_ZONEID);
1866 1869
1867 1870 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1868 1871 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1869 1872 ksp->ks_lock = &zone->zone_misc_lock;
1870 1873 zone->zone_misc_stats = zmp;
1871 1874
1872 1875 /* The kstat "name" field is not large enough for a full zonename */
1873 1876 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1874 1877 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1875 1878 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1876 1879 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
↓ open down ↓ |
27 lines elided |
↑ open up ↑ |
1877 1880 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1878 1881 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1879 1882 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1880 1883 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1881 1884 KSTAT_DATA_UINT32);
1882 1885 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1883 1886 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1884 1887 KSTAT_DATA_UINT32);
1885 1888 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1886 1889 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1890 + kstat_named_init(&zmp->zm_boot_hrtime, "boot_hrtime", KSTAT_DATA_TIME);
1887 1891
1888 1892
1889 1893 ksp->ks_update = zone_misc_kstat_update;
1890 1894 ksp->ks_private = zone;
1891 1895
1892 1896 kstat_install(ksp);
1893 1897 return (ksp);
1894 1898 }
1895 1899
1896 1900 static void
1897 1901 zone_kstat_create(zone_t *zone)
1898 1902 {
1899 1903 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1900 1904 "lockedmem", zone_lockedmem_kstat_update);
1901 1905 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1902 1906 "swapresv", zone_swapresv_kstat_update);
1903 1907 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1904 1908 "nprocs", zone_nprocs_kstat_update);
1905 1909
1906 1910 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1907 1911 zone->zone_misc_stats = kmem_zalloc(
1908 1912 sizeof (zone_misc_kstat_t), KM_SLEEP);
1909 1913 }
1910 1914 }
1911 1915
1912 1916 static void
1913 1917 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1914 1918 {
1915 1919 void *data;
1916 1920
1917 1921 if (*pkstat != NULL) {
1918 1922 data = (*pkstat)->ks_data;
1919 1923 kstat_delete(*pkstat);
1920 1924 kmem_free(data, datasz);
1921 1925 *pkstat = NULL;
1922 1926 }
1923 1927 }
1924 1928
1925 1929 static void
1926 1930 zone_kstat_delete(zone_t *zone)
1927 1931 {
1928 1932 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1929 1933 sizeof (zone_kstat_t));
1930 1934 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
1931 1935 sizeof (zone_kstat_t));
1932 1936 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
1933 1937 sizeof (zone_kstat_t));
1934 1938 zone_kstat_delete_common(&zone->zone_misc_ksp,
1935 1939 sizeof (zone_misc_kstat_t));
1936 1940 }
1937 1941
1938 1942 /*
1939 1943 * Called very early on in boot to initialize the ZSD list so that
1940 1944 * zone_key_create() can be called before zone_init(). It also initializes
1941 1945 * portions of zone0 which may be used before zone_init() is called. The
1942 1946 * variable "global_zone" will be set when zone0 is fully initialized by
1943 1947 * zone_init().
1944 1948 */
1945 1949 void
1946 1950 zone_zsd_init(void)
1947 1951 {
1948 1952 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1949 1953 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1950 1954 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1951 1955 offsetof(struct zsd_entry, zsd_linkage));
1952 1956 list_create(&zone_active, sizeof (zone_t),
1953 1957 offsetof(zone_t, zone_linkage));
1954 1958 list_create(&zone_deathrow, sizeof (zone_t),
1955 1959 offsetof(zone_t, zone_linkage));
1956 1960
1957 1961 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1958 1962 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1959 1963 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1960 1964 zone0.zone_shares = 1;
1961 1965 zone0.zone_nlwps = 0;
1962 1966 zone0.zone_nlwps_ctl = INT_MAX;
1963 1967 zone0.zone_nprocs = 0;
1964 1968 zone0.zone_nprocs_ctl = INT_MAX;
1965 1969 zone0.zone_locked_mem = 0;
1966 1970 zone0.zone_locked_mem_ctl = UINT64_MAX;
1967 1971 ASSERT(zone0.zone_max_swap == 0);
1968 1972 zone0.zone_max_swap_ctl = UINT64_MAX;
1969 1973 zone0.zone_max_lofi = 0;
1970 1974 zone0.zone_max_lofi_ctl = UINT64_MAX;
1971 1975 zone0.zone_shmmax = 0;
1972 1976 zone0.zone_ipc.ipcq_shmmni = 0;
1973 1977 zone0.zone_ipc.ipcq_semmni = 0;
1974 1978 zone0.zone_ipc.ipcq_msgmni = 0;
1975 1979 zone0.zone_name = GLOBAL_ZONENAME;
1976 1980 zone0.zone_nodename = utsname.nodename;
1977 1981 zone0.zone_domain = srpc_domain;
1978 1982 zone0.zone_hostid = HW_INVALID_HOSTID;
1979 1983 zone0.zone_fs_allowed = NULL;
1980 1984 zone0.zone_ref = 1;
1981 1985 zone0.zone_id = GLOBAL_ZONEID;
1982 1986 zone0.zone_status = ZONE_IS_RUNNING;
1983 1987 zone0.zone_rootpath = "/";
1984 1988 zone0.zone_rootpathlen = 2;
1985 1989 zone0.zone_psetid = ZONE_PS_INVAL;
1986 1990 zone0.zone_ncpus = 0;
1987 1991 zone0.zone_ncpus_online = 0;
1988 1992 zone0.zone_proc_initpid = 1;
1989 1993 zone0.zone_initname = initname;
1990 1994 zone0.zone_lockedmem_kstat = NULL;
1991 1995 zone0.zone_swapresv_kstat = NULL;
1992 1996 zone0.zone_nprocs_kstat = NULL;
1993 1997
1994 1998 zone0.zone_stime = 0;
1995 1999 zone0.zone_utime = 0;
1996 2000 zone0.zone_wtime = 0;
1997 2001
1998 2002 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
1999 2003 offsetof(zone_ref_t, zref_linkage));
2000 2004 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2001 2005 offsetof(struct zsd_entry, zsd_linkage));
2002 2006 list_insert_head(&zone_active, &zone0);
2003 2007
2004 2008 /*
2005 2009 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2006 2010 * to anything meaningful. It is assigned to be 'rootdir' in
2007 2011 * vfs_mountroot().
2008 2012 */
2009 2013 zone0.zone_rootvp = NULL;
2010 2014 zone0.zone_vfslist = NULL;
2011 2015 zone0.zone_bootargs = initargs;
2012 2016 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2013 2017 /*
2014 2018 * The global zone has all privileges
2015 2019 */
2016 2020 priv_fillset(zone0.zone_privset);
2017 2021 /*
2018 2022 * Add p0 to the global zone
2019 2023 */
2020 2024 zone0.zone_zsched = &p0;
2021 2025 p0.p_zone = &zone0;
2022 2026 }
2023 2027
2024 2028 /*
2025 2029 * Compute a hash value based on the contents of the label and the DOI. The
2026 2030 * hash algorithm is somewhat arbitrary, but is based on the observation that
2027 2031 * humans will likely pick labels that differ by amounts that work out to be
2028 2032 * multiples of the number of hash chains, and thus stirring in some primes
2029 2033 * should help.
2030 2034 */
2031 2035 static uint_t
2032 2036 hash_bylabel(void *hdata, mod_hash_key_t key)
2033 2037 {
2034 2038 const ts_label_t *lab = (ts_label_t *)key;
2035 2039 const uint32_t *up, *ue;
2036 2040 uint_t hash;
2037 2041 int i;
2038 2042
2039 2043 _NOTE(ARGUNUSED(hdata));
2040 2044
2041 2045 hash = lab->tsl_doi + (lab->tsl_doi << 1);
2042 2046 /* we depend on alignment of label, but not representation */
2043 2047 up = (const uint32_t *)&lab->tsl_label;
2044 2048 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2045 2049 i = 1;
2046 2050 while (up < ue) {
2047 2051 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2048 2052 hash += *up + (*up << ((i % 16) + 1));
2049 2053 up++;
2050 2054 i++;
2051 2055 }
2052 2056 return (hash);
2053 2057 }
2054 2058
2055 2059 /*
2056 2060 * All that mod_hash cares about here is zero (equal) versus non-zero (not
2057 2061 * equal). This may need to be changed if less than / greater than is ever
2058 2062 * needed.
2059 2063 */
2060 2064 static int
2061 2065 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2062 2066 {
2063 2067 ts_label_t *lab1 = (ts_label_t *)key1;
2064 2068 ts_label_t *lab2 = (ts_label_t *)key2;
2065 2069
2066 2070 return (label_equal(lab1, lab2) ? 0 : 1);
2067 2071 }
2068 2072
2069 2073 /*
2070 2074 * Called by main() to initialize the zones framework.
2071 2075 */
2072 2076 void
2073 2077 zone_init(void)
2074 2078 {
2075 2079 rctl_dict_entry_t *rde;
2076 2080 rctl_val_t *dval;
2077 2081 rctl_set_t *set;
2078 2082 rctl_alloc_gp_t *gp;
2079 2083 rctl_entity_p_t e;
2080 2084 int res;
2081 2085
2082 2086 ASSERT(curproc == &p0);
2083 2087
2084 2088 /*
2085 2089 * Create ID space for zone IDs. ID 0 is reserved for the
2086 2090 * global zone.
2087 2091 */
2088 2092 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2089 2093
2090 2094 /*
2091 2095 * Initialize generic zone resource controls, if any.
2092 2096 */
2093 2097 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2094 2098 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2095 2099 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2096 2100 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2097 2101
2098 2102 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2099 2103 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2100 2104 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2101 2105 RCTL_GLOBAL_INFINITE,
2102 2106 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2103 2107
2104 2108 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2105 2109 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2106 2110 INT_MAX, INT_MAX, &zone_lwps_ops);
2107 2111
2108 2112 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2109 2113 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2110 2114 INT_MAX, INT_MAX, &zone_procs_ops);
2111 2115
2112 2116 /*
2113 2117 * System V IPC resource controls
2114 2118 */
2115 2119 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2116 2120 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2117 2121 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2118 2122
2119 2123 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2120 2124 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2121 2125 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2122 2126
2123 2127 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2124 2128 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2125 2129 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2126 2130
2127 2131 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2128 2132 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2129 2133 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2130 2134
2131 2135 /*
2132 2136 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2133 2137 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2134 2138 */
2135 2139 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2136 2140 bzero(dval, sizeof (rctl_val_t));
2137 2141 dval->rcv_value = 1;
2138 2142 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2139 2143 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2140 2144 dval->rcv_action_recip_pid = -1;
2141 2145
2142 2146 rde = rctl_dict_lookup("zone.cpu-shares");
2143 2147 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2144 2148
2145 2149 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2146 2150 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2147 2151 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2148 2152 &zone_locked_mem_ops);
2149 2153
2150 2154 rc_zone_max_swap = rctl_register("zone.max-swap",
2151 2155 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2152 2156 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2153 2157 &zone_max_swap_ops);
2154 2158
2155 2159 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2156 2160 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2157 2161 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2158 2162 &zone_max_lofi_ops);
2159 2163
2160 2164 /*
2161 2165 * Initialize the ``global zone''.
2162 2166 */
2163 2167 set = rctl_set_create();
2164 2168 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2165 2169 mutex_enter(&p0.p_lock);
2166 2170 e.rcep_p.zone = &zone0;
2167 2171 e.rcep_t = RCENTITY_ZONE;
2168 2172 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2169 2173 gp);
2170 2174
2171 2175 zone0.zone_nlwps = p0.p_lwpcnt;
2172 2176 zone0.zone_nprocs = 1;
2173 2177 zone0.zone_ntasks = 1;
2174 2178 mutex_exit(&p0.p_lock);
2175 2179 zone0.zone_restart_init = B_TRUE;
2176 2180 zone0.zone_brand = &native_brand;
2177 2181 rctl_prealloc_destroy(gp);
2178 2182 /*
2179 2183 * pool_default hasn't been initialized yet, so we let pool_init()
2180 2184 * take care of making sure the global zone is in the default pool.
2181 2185 */
2182 2186
2183 2187 /*
2184 2188 * Initialize global zone kstats
2185 2189 */
2186 2190 zone_kstat_create(&zone0);
2187 2191
2188 2192 /*
2189 2193 * Initialize zone label.
2190 2194 * mlp are initialized when tnzonecfg is loaded.
2191 2195 */
2192 2196 zone0.zone_slabel = l_admin_low;
2193 2197 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2194 2198 label_hold(l_admin_low);
2195 2199
2196 2200 /*
2197 2201 * Initialise the lock for the database structure used by mntfs.
2198 2202 */
2199 2203 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2200 2204
2201 2205 mutex_enter(&zonehash_lock);
2202 2206 zone_uniqid(&zone0);
2203 2207 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2204 2208
2205 2209 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2206 2210 mod_hash_null_valdtor);
2207 2211 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2208 2212 zone_hash_size, mod_hash_null_valdtor);
2209 2213 /*
2210 2214 * maintain zonehashbylabel only for labeled systems
2211 2215 */
2212 2216 if (is_system_labeled())
2213 2217 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2214 2218 zone_hash_size, mod_hash_null_keydtor,
2215 2219 mod_hash_null_valdtor, hash_bylabel, NULL,
2216 2220 hash_labelkey_cmp, KM_SLEEP);
2217 2221 zonecount = 1;
2218 2222
2219 2223 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2220 2224 (mod_hash_val_t)&zone0);
2221 2225 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2222 2226 (mod_hash_val_t)&zone0);
2223 2227 if (is_system_labeled()) {
2224 2228 zone0.zone_flags |= ZF_HASHED_LABEL;
2225 2229 (void) mod_hash_insert(zonehashbylabel,
2226 2230 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2227 2231 }
2228 2232 mutex_exit(&zonehash_lock);
2229 2233
2230 2234 /*
2231 2235 * We avoid setting zone_kcred until now, since kcred is initialized
2232 2236 * sometime after zone_zsd_init() and before zone_init().
2233 2237 */
2234 2238 zone0.zone_kcred = kcred;
2235 2239 /*
2236 2240 * The global zone is fully initialized (except for zone_rootvp which
2237 2241 * will be set when the root filesystem is mounted).
2238 2242 */
2239 2243 global_zone = &zone0;
2240 2244
2241 2245 /*
2242 2246 * Setup an event channel to send zone status change notifications on
2243 2247 */
2244 2248 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2245 2249 EVCH_CREAT);
2246 2250
2247 2251 if (res)
2248 2252 panic("Sysevent_evc_bind failed during zone setup.\n");
2249 2253
2250 2254 }
2251 2255
2252 2256 static void
2253 2257 zone_free(zone_t *zone)
2254 2258 {
2255 2259 ASSERT(zone != global_zone);
2256 2260 ASSERT(zone->zone_ntasks == 0);
2257 2261 ASSERT(zone->zone_nlwps == 0);
2258 2262 ASSERT(zone->zone_nprocs == 0);
2259 2263 ASSERT(zone->zone_cred_ref == 0);
2260 2264 ASSERT(zone->zone_kcred == NULL);
2261 2265 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2262 2266 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2263 2267 ASSERT(list_is_empty(&zone->zone_ref_list));
2264 2268
2265 2269 /*
2266 2270 * Remove any zone caps.
2267 2271 */
2268 2272 cpucaps_zone_remove(zone);
2269 2273
2270 2274 ASSERT(zone->zone_cpucap == NULL);
2271 2275
2272 2276 /* remove from deathrow list */
2273 2277 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2274 2278 ASSERT(zone->zone_ref == 0);
2275 2279 mutex_enter(&zone_deathrow_lock);
2276 2280 list_remove(&zone_deathrow, zone);
2277 2281 mutex_exit(&zone_deathrow_lock);
2278 2282 }
2279 2283
2280 2284 list_destroy(&zone->zone_ref_list);
2281 2285 zone_free_zsd(zone);
2282 2286 zone_free_datasets(zone);
2283 2287 list_destroy(&zone->zone_dl_list);
2284 2288
2285 2289 if (zone->zone_rootvp != NULL)
2286 2290 VN_RELE(zone->zone_rootvp);
2287 2291 if (zone->zone_rootpath)
2288 2292 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2289 2293 if (zone->zone_name != NULL)
2290 2294 kmem_free(zone->zone_name, ZONENAME_MAX);
2291 2295 if (zone->zone_slabel != NULL)
2292 2296 label_rele(zone->zone_slabel);
2293 2297 if (zone->zone_nodename != NULL)
2294 2298 kmem_free(zone->zone_nodename, _SYS_NMLN);
2295 2299 if (zone->zone_domain != NULL)
2296 2300 kmem_free(zone->zone_domain, _SYS_NMLN);
2297 2301 if (zone->zone_privset != NULL)
2298 2302 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2299 2303 if (zone->zone_rctls != NULL)
2300 2304 rctl_set_free(zone->zone_rctls);
2301 2305 if (zone->zone_bootargs != NULL)
2302 2306 strfree(zone->zone_bootargs);
2303 2307 if (zone->zone_initname != NULL)
2304 2308 strfree(zone->zone_initname);
2305 2309 if (zone->zone_fs_allowed != NULL)
2306 2310 strfree(zone->zone_fs_allowed);
2307 2311 if (zone->zone_pfexecd != NULL)
2308 2312 klpd_freelist(&zone->zone_pfexecd);
2309 2313 id_free(zoneid_space, zone->zone_id);
2310 2314 mutex_destroy(&zone->zone_lock);
2311 2315 cv_destroy(&zone->zone_cv);
2312 2316 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2313 2317 rw_destroy(&zone->zone_mntfs_db_lock);
2314 2318 kmem_free(zone, sizeof (zone_t));
2315 2319 }
2316 2320
2317 2321 /*
2318 2322 * See block comment at the top of this file for information about zone
2319 2323 * status values.
2320 2324 */
2321 2325 /*
2322 2326 * Convenience function for setting zone status.
2323 2327 */
2324 2328 static void
2325 2329 zone_status_set(zone_t *zone, zone_status_t status)
2326 2330 {
2327 2331
2328 2332 nvlist_t *nvl = NULL;
2329 2333 ASSERT(MUTEX_HELD(&zone_status_lock));
2330 2334 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2331 2335 status >= zone_status_get(zone));
2332 2336
2333 2337 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2334 2338 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2335 2339 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2336 2340 zone_status_table[status]) ||
2337 2341 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2338 2342 zone_status_table[zone->zone_status]) ||
2339 2343 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2340 2344 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2341 2345 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2342 2346 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2343 2347 #ifdef DEBUG
2344 2348 (void) printf(
2345 2349 "Failed to allocate and send zone state change event.\n");
2346 2350 #endif
2347 2351 }
2348 2352 nvlist_free(nvl);
2349 2353
2350 2354 zone->zone_status = status;
2351 2355
2352 2356 cv_broadcast(&zone->zone_cv);
2353 2357 }
2354 2358
2355 2359 /*
2356 2360 * Public function to retrieve the zone status. The zone status may
2357 2361 * change after it is retrieved.
2358 2362 */
2359 2363 zone_status_t
2360 2364 zone_status_get(zone_t *zone)
2361 2365 {
2362 2366 return (zone->zone_status);
2363 2367 }
2364 2368
2365 2369 static int
2366 2370 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2367 2371 {
2368 2372 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2369 2373 int err = 0;
2370 2374
2371 2375 ASSERT(zone != global_zone);
2372 2376 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2373 2377 goto done; /* EFAULT or ENAMETOOLONG */
2374 2378
2375 2379 if (zone->zone_bootargs != NULL)
2376 2380 strfree(zone->zone_bootargs);
2377 2381
2378 2382 zone->zone_bootargs = strdup(buf);
2379 2383
2380 2384 done:
2381 2385 kmem_free(buf, BOOTARGS_MAX);
2382 2386 return (err);
2383 2387 }
2384 2388
2385 2389 static int
2386 2390 zone_set_brand(zone_t *zone, const char *brand)
2387 2391 {
2388 2392 struct brand_attr *attrp;
2389 2393 brand_t *bp;
2390 2394
2391 2395 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2392 2396 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2393 2397 kmem_free(attrp, sizeof (struct brand_attr));
2394 2398 return (EFAULT);
2395 2399 }
2396 2400
2397 2401 bp = brand_register_zone(attrp);
2398 2402 kmem_free(attrp, sizeof (struct brand_attr));
2399 2403 if (bp == NULL)
2400 2404 return (EINVAL);
2401 2405
2402 2406 /*
2403 2407 * This is the only place where a zone can change it's brand.
2404 2408 * We already need to hold zone_status_lock to check the zone
2405 2409 * status, so we'll just use that lock to serialize zone
2406 2410 * branding requests as well.
2407 2411 */
2408 2412 mutex_enter(&zone_status_lock);
2409 2413
2410 2414 /* Re-Branding is not allowed and the zone can't be booted yet */
2411 2415 if ((ZONE_IS_BRANDED(zone)) ||
2412 2416 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2413 2417 mutex_exit(&zone_status_lock);
2414 2418 brand_unregister_zone(bp);
2415 2419 return (EINVAL);
2416 2420 }
2417 2421
2418 2422 /* set up the brand specific data */
2419 2423 zone->zone_brand = bp;
2420 2424 ZBROP(zone)->b_init_brand_data(zone);
2421 2425
2422 2426 mutex_exit(&zone_status_lock);
2423 2427 return (0);
2424 2428 }
2425 2429
2426 2430 static int
2427 2431 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2428 2432 {
2429 2433 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2430 2434 int err = 0;
2431 2435
2432 2436 ASSERT(zone != global_zone);
2433 2437 if ((err = copyinstr(zone_fs_allowed, buf,
2434 2438 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2435 2439 goto done;
2436 2440
2437 2441 if (zone->zone_fs_allowed != NULL)
2438 2442 strfree(zone->zone_fs_allowed);
2439 2443
2440 2444 zone->zone_fs_allowed = strdup(buf);
2441 2445
2442 2446 done:
2443 2447 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2444 2448 return (err);
2445 2449 }
2446 2450
2447 2451 static int
2448 2452 zone_set_initname(zone_t *zone, const char *zone_initname)
2449 2453 {
2450 2454 char initname[INITNAME_SZ];
2451 2455 size_t len;
2452 2456 int err = 0;
2453 2457
2454 2458 ASSERT(zone != global_zone);
2455 2459 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2456 2460 return (err); /* EFAULT or ENAMETOOLONG */
2457 2461
2458 2462 if (zone->zone_initname != NULL)
2459 2463 strfree(zone->zone_initname);
2460 2464
2461 2465 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2462 2466 (void) strcpy(zone->zone_initname, initname);
2463 2467 return (0);
2464 2468 }
2465 2469
2466 2470 static int
2467 2471 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2468 2472 {
2469 2473 uint64_t mcap;
2470 2474 int err = 0;
2471 2475
2472 2476 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2473 2477 zone->zone_phys_mcap = mcap;
2474 2478
2475 2479 return (err);
2476 2480 }
2477 2481
2478 2482 static int
2479 2483 zone_set_sched_class(zone_t *zone, const char *new_class)
2480 2484 {
2481 2485 char sched_class[PC_CLNMSZ];
2482 2486 id_t classid;
2483 2487 int err;
2484 2488
2485 2489 ASSERT(zone != global_zone);
2486 2490 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2487 2491 return (err); /* EFAULT or ENAMETOOLONG */
2488 2492
2489 2493 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2490 2494 return (set_errno(EINVAL));
2491 2495 zone->zone_defaultcid = classid;
2492 2496 ASSERT(zone->zone_defaultcid > 0 &&
2493 2497 zone->zone_defaultcid < loaded_classes);
2494 2498
2495 2499 return (0);
2496 2500 }
2497 2501
2498 2502 /*
2499 2503 * Block indefinitely waiting for (zone_status >= status)
2500 2504 */
2501 2505 void
2502 2506 zone_status_wait(zone_t *zone, zone_status_t status)
2503 2507 {
2504 2508 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2505 2509
2506 2510 mutex_enter(&zone_status_lock);
2507 2511 while (zone->zone_status < status) {
2508 2512 cv_wait(&zone->zone_cv, &zone_status_lock);
2509 2513 }
2510 2514 mutex_exit(&zone_status_lock);
2511 2515 }
2512 2516
2513 2517 /*
2514 2518 * Private CPR-safe version of zone_status_wait().
2515 2519 */
2516 2520 static void
2517 2521 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2518 2522 {
2519 2523 callb_cpr_t cprinfo;
2520 2524
2521 2525 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2522 2526
2523 2527 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2524 2528 str);
2525 2529 mutex_enter(&zone_status_lock);
2526 2530 while (zone->zone_status < status) {
2527 2531 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2528 2532 cv_wait(&zone->zone_cv, &zone_status_lock);
2529 2533 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2530 2534 }
2531 2535 /*
2532 2536 * zone_status_lock is implicitly released by the following.
2533 2537 */
2534 2538 CALLB_CPR_EXIT(&cprinfo);
2535 2539 }
2536 2540
2537 2541 /*
2538 2542 * Block until zone enters requested state or signal is received. Return (0)
2539 2543 * if signaled, non-zero otherwise.
2540 2544 */
2541 2545 int
2542 2546 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2543 2547 {
2544 2548 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2545 2549
2546 2550 mutex_enter(&zone_status_lock);
2547 2551 while (zone->zone_status < status) {
2548 2552 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2549 2553 mutex_exit(&zone_status_lock);
2550 2554 return (0);
2551 2555 }
2552 2556 }
2553 2557 mutex_exit(&zone_status_lock);
2554 2558 return (1);
2555 2559 }
2556 2560
2557 2561 /*
2558 2562 * Block until the zone enters the requested state or the timeout expires,
2559 2563 * whichever happens first. Return (-1) if operation timed out, time remaining
2560 2564 * otherwise.
2561 2565 */
2562 2566 clock_t
2563 2567 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2564 2568 {
2565 2569 clock_t timeleft = 0;
2566 2570
2567 2571 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2568 2572
2569 2573 mutex_enter(&zone_status_lock);
2570 2574 while (zone->zone_status < status && timeleft != -1) {
2571 2575 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2572 2576 }
2573 2577 mutex_exit(&zone_status_lock);
2574 2578 return (timeleft);
2575 2579 }
2576 2580
2577 2581 /*
2578 2582 * Block until the zone enters the requested state, the current process is
2579 2583 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2580 2584 * operation timed out, 0 if signaled, time remaining otherwise.
2581 2585 */
2582 2586 clock_t
2583 2587 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2584 2588 {
2585 2589 clock_t timeleft = tim - ddi_get_lbolt();
2586 2590
2587 2591 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2588 2592
2589 2593 mutex_enter(&zone_status_lock);
2590 2594 while (zone->zone_status < status) {
2591 2595 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2592 2596 tim);
2593 2597 if (timeleft <= 0)
2594 2598 break;
2595 2599 }
2596 2600 mutex_exit(&zone_status_lock);
2597 2601 return (timeleft);
2598 2602 }
2599 2603
2600 2604 /*
2601 2605 * Zones have two reference counts: one for references from credential
2602 2606 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2603 2607 * This is so we can allow a zone to be rebooted while there are still
2604 2608 * outstanding cred references, since certain drivers cache dblks (which
2605 2609 * implicitly results in cached creds). We wait for zone_ref to drop to
2606 2610 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2607 2611 * later freed when the zone_cred_ref drops to 0, though nothing other
2608 2612 * than the zone id and privilege set should be accessed once the zone
2609 2613 * is "dead".
2610 2614 *
2611 2615 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2612 2616 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2613 2617 * to 0. This can be useful to flush out other sources of cached creds
2614 2618 * that may be less innocuous than the driver case.
2615 2619 *
2616 2620 * Zones also provide a tracked reference counting mechanism in which zone
2617 2621 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2618 2622 * debuggers determine the sources of leaked zone references. See
2619 2623 * zone_hold_ref() and zone_rele_ref() below for more information.
2620 2624 */
2621 2625
2622 2626 int zone_wait_for_cred = 0;
2623 2627
2624 2628 static void
2625 2629 zone_hold_locked(zone_t *z)
2626 2630 {
2627 2631 ASSERT(MUTEX_HELD(&z->zone_lock));
2628 2632 z->zone_ref++;
2629 2633 ASSERT(z->zone_ref != 0);
2630 2634 }
2631 2635
2632 2636 /*
2633 2637 * Increment the specified zone's reference count. The zone's zone_t structure
2634 2638 * will not be freed as long as the zone's reference count is nonzero.
2635 2639 * Decrement the zone's reference count via zone_rele().
2636 2640 *
2637 2641 * NOTE: This function should only be used to hold zones for short periods of
2638 2642 * time. Use zone_hold_ref() if the zone must be held for a long time.
2639 2643 */
2640 2644 void
2641 2645 zone_hold(zone_t *z)
2642 2646 {
2643 2647 mutex_enter(&z->zone_lock);
2644 2648 zone_hold_locked(z);
2645 2649 mutex_exit(&z->zone_lock);
2646 2650 }
2647 2651
2648 2652 /*
2649 2653 * If the non-cred ref count drops to 1 and either the cred ref count
2650 2654 * is 0 or we aren't waiting for cred references, the zone is ready to
2651 2655 * be destroyed.
2652 2656 */
2653 2657 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2654 2658 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2655 2659
2656 2660 /*
2657 2661 * Common zone reference release function invoked by zone_rele() and
2658 2662 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2659 2663 * zone's subsystem-specific reference counters are not affected by the
2660 2664 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2661 2665 * removed from the specified zone's reference list. ref must be non-NULL iff
2662 2666 * subsys is not ZONE_REF_NUM_SUBSYS.
2663 2667 */
2664 2668 static void
2665 2669 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2666 2670 {
2667 2671 boolean_t wakeup;
2668 2672
2669 2673 mutex_enter(&z->zone_lock);
2670 2674 ASSERT(z->zone_ref != 0);
2671 2675 z->zone_ref--;
2672 2676 if (subsys != ZONE_REF_NUM_SUBSYS) {
2673 2677 ASSERT(z->zone_subsys_ref[subsys] != 0);
2674 2678 z->zone_subsys_ref[subsys]--;
2675 2679 list_remove(&z->zone_ref_list, ref);
2676 2680 }
2677 2681 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2678 2682 /* no more refs, free the structure */
2679 2683 mutex_exit(&z->zone_lock);
2680 2684 zone_free(z);
2681 2685 return;
2682 2686 }
2683 2687 /* signal zone_destroy so the zone can finish halting */
2684 2688 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2685 2689 mutex_exit(&z->zone_lock);
2686 2690
2687 2691 if (wakeup) {
2688 2692 /*
2689 2693 * Grabbing zonehash_lock here effectively synchronizes with
2690 2694 * zone_destroy() to avoid missed signals.
2691 2695 */
2692 2696 mutex_enter(&zonehash_lock);
2693 2697 cv_broadcast(&zone_destroy_cv);
2694 2698 mutex_exit(&zonehash_lock);
2695 2699 }
2696 2700 }
2697 2701
2698 2702 /*
2699 2703 * Decrement the specified zone's reference count. The specified zone will
2700 2704 * cease to exist after this function returns if the reference count drops to
2701 2705 * zero. This function should be paired with zone_hold().
2702 2706 */
2703 2707 void
2704 2708 zone_rele(zone_t *z)
2705 2709 {
2706 2710 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2707 2711 }
2708 2712
2709 2713 /*
2710 2714 * Initialize a zone reference structure. This function must be invoked for
2711 2715 * a reference structure before the structure is passed to zone_hold_ref().
2712 2716 */
2713 2717 void
2714 2718 zone_init_ref(zone_ref_t *ref)
2715 2719 {
2716 2720 ref->zref_zone = NULL;
2717 2721 list_link_init(&ref->zref_linkage);
2718 2722 }
2719 2723
2720 2724 /*
2721 2725 * Acquire a reference to zone z. The caller must specify the
2722 2726 * zone_ref_subsys_t constant associated with its subsystem. The specified
2723 2727 * zone_ref_t structure will represent a reference to the specified zone. Use
2724 2728 * zone_rele_ref() to release the reference.
2725 2729 *
2726 2730 * The referenced zone_t structure will not be freed as long as the zone_t's
2727 2731 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2728 2732 * references.
2729 2733 *
2730 2734 * NOTE: The zone_ref_t structure must be initialized before it is used.
2731 2735 * See zone_init_ref() above.
2732 2736 */
2733 2737 void
2734 2738 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2735 2739 {
2736 2740 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2737 2741
2738 2742 /*
2739 2743 * Prevent consumers from reusing a reference structure before
2740 2744 * releasing it.
2741 2745 */
2742 2746 VERIFY(ref->zref_zone == NULL);
2743 2747
2744 2748 ref->zref_zone = z;
2745 2749 mutex_enter(&z->zone_lock);
2746 2750 zone_hold_locked(z);
2747 2751 z->zone_subsys_ref[subsys]++;
2748 2752 ASSERT(z->zone_subsys_ref[subsys] != 0);
2749 2753 list_insert_head(&z->zone_ref_list, ref);
2750 2754 mutex_exit(&z->zone_lock);
2751 2755 }
2752 2756
2753 2757 /*
2754 2758 * Release the zone reference represented by the specified zone_ref_t.
2755 2759 * The reference is invalid after it's released; however, the zone_ref_t
2756 2760 * structure can be reused without having to invoke zone_init_ref().
2757 2761 * subsys should be the same value that was passed to zone_hold_ref()
2758 2762 * when the reference was acquired.
2759 2763 */
2760 2764 void
2761 2765 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2762 2766 {
2763 2767 zone_rele_common(ref->zref_zone, ref, subsys);
2764 2768
2765 2769 /*
2766 2770 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2767 2771 * when consumers dereference the reference. This helps us catch
2768 2772 * consumers who use released references. Furthermore, this lets
2769 2773 * consumers reuse the zone_ref_t structure without having to
2770 2774 * invoke zone_init_ref().
2771 2775 */
2772 2776 ref->zref_zone = NULL;
2773 2777 }
2774 2778
2775 2779 void
2776 2780 zone_cred_hold(zone_t *z)
2777 2781 {
2778 2782 mutex_enter(&z->zone_lock);
2779 2783 z->zone_cred_ref++;
2780 2784 ASSERT(z->zone_cred_ref != 0);
2781 2785 mutex_exit(&z->zone_lock);
2782 2786 }
2783 2787
2784 2788 void
2785 2789 zone_cred_rele(zone_t *z)
2786 2790 {
2787 2791 boolean_t wakeup;
2788 2792
2789 2793 mutex_enter(&z->zone_lock);
2790 2794 ASSERT(z->zone_cred_ref != 0);
2791 2795 z->zone_cred_ref--;
2792 2796 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2793 2797 /* no more refs, free the structure */
2794 2798 mutex_exit(&z->zone_lock);
2795 2799 zone_free(z);
2796 2800 return;
2797 2801 }
2798 2802 /*
2799 2803 * If zone_destroy is waiting for the cred references to drain
2800 2804 * out, and they have, signal it.
2801 2805 */
2802 2806 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2803 2807 zone_status_get(z) >= ZONE_IS_DEAD);
2804 2808 mutex_exit(&z->zone_lock);
2805 2809
2806 2810 if (wakeup) {
2807 2811 /*
2808 2812 * Grabbing zonehash_lock here effectively synchronizes with
2809 2813 * zone_destroy() to avoid missed signals.
2810 2814 */
2811 2815 mutex_enter(&zonehash_lock);
2812 2816 cv_broadcast(&zone_destroy_cv);
2813 2817 mutex_exit(&zonehash_lock);
2814 2818 }
2815 2819 }
2816 2820
2817 2821 void
2818 2822 zone_task_hold(zone_t *z)
2819 2823 {
2820 2824 mutex_enter(&z->zone_lock);
2821 2825 z->zone_ntasks++;
2822 2826 ASSERT(z->zone_ntasks != 0);
2823 2827 mutex_exit(&z->zone_lock);
2824 2828 }
2825 2829
2826 2830 void
2827 2831 zone_task_rele(zone_t *zone)
2828 2832 {
2829 2833 uint_t refcnt;
2830 2834
2831 2835 mutex_enter(&zone->zone_lock);
2832 2836 ASSERT(zone->zone_ntasks != 0);
2833 2837 refcnt = --zone->zone_ntasks;
2834 2838 if (refcnt > 1) { /* Common case */
2835 2839 mutex_exit(&zone->zone_lock);
2836 2840 return;
2837 2841 }
2838 2842 zone_hold_locked(zone); /* so we can use the zone_t later */
2839 2843 mutex_exit(&zone->zone_lock);
2840 2844 if (refcnt == 1) {
2841 2845 /*
2842 2846 * See if the zone is shutting down.
2843 2847 */
2844 2848 mutex_enter(&zone_status_lock);
2845 2849 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2846 2850 goto out;
2847 2851 }
2848 2852
2849 2853 /*
2850 2854 * Make sure the ntasks didn't change since we
2851 2855 * dropped zone_lock.
2852 2856 */
2853 2857 mutex_enter(&zone->zone_lock);
2854 2858 if (refcnt != zone->zone_ntasks) {
2855 2859 mutex_exit(&zone->zone_lock);
2856 2860 goto out;
2857 2861 }
2858 2862 mutex_exit(&zone->zone_lock);
2859 2863
2860 2864 /*
2861 2865 * No more user processes in the zone. The zone is empty.
2862 2866 */
2863 2867 zone_status_set(zone, ZONE_IS_EMPTY);
2864 2868 goto out;
2865 2869 }
2866 2870
2867 2871 ASSERT(refcnt == 0);
2868 2872 /*
2869 2873 * zsched has exited; the zone is dead.
2870 2874 */
2871 2875 zone->zone_zsched = NULL; /* paranoia */
2872 2876 mutex_enter(&zone_status_lock);
2873 2877 zone_status_set(zone, ZONE_IS_DEAD);
2874 2878 out:
2875 2879 mutex_exit(&zone_status_lock);
2876 2880 zone_rele(zone);
2877 2881 }
2878 2882
2879 2883 zoneid_t
2880 2884 getzoneid(void)
2881 2885 {
2882 2886 return (curproc->p_zone->zone_id);
2883 2887 }
2884 2888
2885 2889 /*
2886 2890 * Internal versions of zone_find_by_*(). These don't zone_hold() or
2887 2891 * check the validity of a zone's state.
2888 2892 */
2889 2893 static zone_t *
2890 2894 zone_find_all_by_id(zoneid_t zoneid)
2891 2895 {
2892 2896 mod_hash_val_t hv;
2893 2897 zone_t *zone = NULL;
2894 2898
2895 2899 ASSERT(MUTEX_HELD(&zonehash_lock));
2896 2900
2897 2901 if (mod_hash_find(zonehashbyid,
2898 2902 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2899 2903 zone = (zone_t *)hv;
2900 2904 return (zone);
2901 2905 }
2902 2906
2903 2907 static zone_t *
2904 2908 zone_find_all_by_label(const ts_label_t *label)
2905 2909 {
2906 2910 mod_hash_val_t hv;
2907 2911 zone_t *zone = NULL;
2908 2912
2909 2913 ASSERT(MUTEX_HELD(&zonehash_lock));
2910 2914
2911 2915 /*
2912 2916 * zonehashbylabel is not maintained for unlabeled systems
2913 2917 */
2914 2918 if (!is_system_labeled())
2915 2919 return (NULL);
2916 2920 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2917 2921 zone = (zone_t *)hv;
2918 2922 return (zone);
2919 2923 }
2920 2924
2921 2925 static zone_t *
2922 2926 zone_find_all_by_name(char *name)
2923 2927 {
2924 2928 mod_hash_val_t hv;
2925 2929 zone_t *zone = NULL;
2926 2930
2927 2931 ASSERT(MUTEX_HELD(&zonehash_lock));
2928 2932
2929 2933 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2930 2934 zone = (zone_t *)hv;
2931 2935 return (zone);
2932 2936 }
2933 2937
2934 2938 /*
2935 2939 * Public interface for looking up a zone by zoneid. Only returns the zone if
2936 2940 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2937 2941 * Caller must call zone_rele() once it is done with the zone.
2938 2942 *
2939 2943 * The zone may begin the zone_destroy() sequence immediately after this
2940 2944 * function returns, but may be safely used until zone_rele() is called.
2941 2945 */
2942 2946 zone_t *
2943 2947 zone_find_by_id(zoneid_t zoneid)
2944 2948 {
2945 2949 zone_t *zone;
2946 2950 zone_status_t status;
2947 2951
2948 2952 mutex_enter(&zonehash_lock);
2949 2953 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2950 2954 mutex_exit(&zonehash_lock);
2951 2955 return (NULL);
2952 2956 }
2953 2957 status = zone_status_get(zone);
2954 2958 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2955 2959 /*
2956 2960 * For all practical purposes the zone doesn't exist.
2957 2961 */
2958 2962 mutex_exit(&zonehash_lock);
2959 2963 return (NULL);
2960 2964 }
2961 2965 zone_hold(zone);
2962 2966 mutex_exit(&zonehash_lock);
2963 2967 return (zone);
2964 2968 }
2965 2969
2966 2970 /*
2967 2971 * Similar to zone_find_by_id, but using zone label as the key.
2968 2972 */
2969 2973 zone_t *
2970 2974 zone_find_by_label(const ts_label_t *label)
2971 2975 {
2972 2976 zone_t *zone;
2973 2977 zone_status_t status;
2974 2978
2975 2979 mutex_enter(&zonehash_lock);
2976 2980 if ((zone = zone_find_all_by_label(label)) == NULL) {
2977 2981 mutex_exit(&zonehash_lock);
2978 2982 return (NULL);
2979 2983 }
2980 2984
2981 2985 status = zone_status_get(zone);
2982 2986 if (status > ZONE_IS_DOWN) {
2983 2987 /*
2984 2988 * For all practical purposes the zone doesn't exist.
2985 2989 */
2986 2990 mutex_exit(&zonehash_lock);
2987 2991 return (NULL);
2988 2992 }
2989 2993 zone_hold(zone);
2990 2994 mutex_exit(&zonehash_lock);
2991 2995 return (zone);
2992 2996 }
2993 2997
2994 2998 /*
2995 2999 * Similar to zone_find_by_id, but using zone name as the key.
2996 3000 */
2997 3001 zone_t *
2998 3002 zone_find_by_name(char *name)
2999 3003 {
3000 3004 zone_t *zone;
3001 3005 zone_status_t status;
3002 3006
3003 3007 mutex_enter(&zonehash_lock);
3004 3008 if ((zone = zone_find_all_by_name(name)) == NULL) {
3005 3009 mutex_exit(&zonehash_lock);
3006 3010 return (NULL);
3007 3011 }
3008 3012 status = zone_status_get(zone);
3009 3013 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3010 3014 /*
3011 3015 * For all practical purposes the zone doesn't exist.
3012 3016 */
3013 3017 mutex_exit(&zonehash_lock);
3014 3018 return (NULL);
3015 3019 }
3016 3020 zone_hold(zone);
3017 3021 mutex_exit(&zonehash_lock);
3018 3022 return (zone);
3019 3023 }
3020 3024
3021 3025 /*
3022 3026 * Similar to zone_find_by_id(), using the path as a key. For instance,
3023 3027 * if there is a zone "foo" rooted at /foo/root, and the path argument
3024 3028 * is "/foo/root/proc", it will return the held zone_t corresponding to
3025 3029 * zone "foo".
3026 3030 *
3027 3031 * zone_find_by_path() always returns a non-NULL value, since at the
3028 3032 * very least every path will be contained in the global zone.
3029 3033 *
3030 3034 * As with the other zone_find_by_*() functions, the caller is
3031 3035 * responsible for zone_rele()ing the return value of this function.
3032 3036 */
3033 3037 zone_t *
3034 3038 zone_find_by_path(const char *path)
3035 3039 {
3036 3040 zone_t *zone;
3037 3041 zone_t *zret = NULL;
3038 3042 zone_status_t status;
3039 3043
3040 3044 if (path == NULL) {
3041 3045 /*
3042 3046 * Call from rootconf().
3043 3047 */
3044 3048 zone_hold(global_zone);
3045 3049 return (global_zone);
3046 3050 }
3047 3051 ASSERT(*path == '/');
3048 3052 mutex_enter(&zonehash_lock);
3049 3053 for (zone = list_head(&zone_active); zone != NULL;
3050 3054 zone = list_next(&zone_active, zone)) {
3051 3055 if (ZONE_PATH_VISIBLE(path, zone))
3052 3056 zret = zone;
3053 3057 }
3054 3058 ASSERT(zret != NULL);
3055 3059 status = zone_status_get(zret);
3056 3060 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3057 3061 /*
3058 3062 * Zone practically doesn't exist.
3059 3063 */
3060 3064 zret = global_zone;
3061 3065 }
3062 3066 zone_hold(zret);
3063 3067 mutex_exit(&zonehash_lock);
3064 3068 return (zret);
3065 3069 }
3066 3070
3067 3071 /*
3068 3072 * Public interface for updating per-zone load averages. Called once per
3069 3073 * second.
3070 3074 *
3071 3075 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3072 3076 */
3073 3077 void
3074 3078 zone_loadavg_update()
3075 3079 {
3076 3080 zone_t *zp;
3077 3081 zone_status_t status;
3078 3082 struct loadavg_s *lavg;
3079 3083 hrtime_t zone_total;
3080 3084 int i;
3081 3085 hrtime_t hr_avg;
3082 3086 int nrun;
3083 3087 static int64_t f[3] = { 135, 27, 9 };
3084 3088 int64_t q, r;
3085 3089
3086 3090 mutex_enter(&zonehash_lock);
3087 3091 for (zp = list_head(&zone_active); zp != NULL;
3088 3092 zp = list_next(&zone_active, zp)) {
3089 3093 mutex_enter(&zp->zone_lock);
3090 3094
3091 3095 /* Skip zones that are on the way down or not yet up */
3092 3096 status = zone_status_get(zp);
3093 3097 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3094 3098 /* For all practical purposes the zone doesn't exist. */
3095 3099 mutex_exit(&zp->zone_lock);
3096 3100 continue;
3097 3101 }
3098 3102
3099 3103 /*
3100 3104 * Update the 10 second moving average data in zone_loadavg.
3101 3105 */
3102 3106 lavg = &zp->zone_loadavg;
3103 3107
3104 3108 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3105 3109 scalehrtime(&zone_total);
3106 3110
3107 3111 /* The zone_total should always be increasing. */
3108 3112 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3109 3113 zone_total - lavg->lg_total : 0;
3110 3114 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3111 3115 /* lg_total holds the prev. 1 sec. total */
3112 3116 lavg->lg_total = zone_total;
3113 3117
3114 3118 /*
3115 3119 * To simplify the calculation, we don't calculate the load avg.
3116 3120 * until the zone has been up for at least 10 seconds and our
3117 3121 * moving average is thus full.
3118 3122 */
3119 3123 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3120 3124 lavg->lg_len++;
3121 3125 mutex_exit(&zp->zone_lock);
3122 3126 continue;
3123 3127 }
3124 3128
3125 3129 /* Now calculate the 1min, 5min, 15 min load avg. */
3126 3130 hr_avg = 0;
3127 3131 for (i = 0; i < S_LOADAVG_SZ; i++)
3128 3132 hr_avg += lavg->lg_loads[i];
3129 3133 hr_avg = hr_avg / S_LOADAVG_SZ;
3130 3134 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3131 3135
3132 3136 /* Compute load avg. See comment in calcloadavg() */
3133 3137 for (i = 0; i < 3; i++) {
3134 3138 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3135 3139 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3136 3140 zp->zone_hp_avenrun[i] +=
3137 3141 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3138 3142
3139 3143 /* avenrun[] can only hold 31 bits of load avg. */
3140 3144 if (zp->zone_hp_avenrun[i] <
3141 3145 ((uint64_t)1<<(31+16-FSHIFT)))
3142 3146 zp->zone_avenrun[i] = (int32_t)
3143 3147 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3144 3148 else
3145 3149 zp->zone_avenrun[i] = 0x7fffffff;
3146 3150 }
3147 3151
3148 3152 mutex_exit(&zp->zone_lock);
3149 3153 }
3150 3154 mutex_exit(&zonehash_lock);
3151 3155 }
3152 3156
3153 3157 /*
3154 3158 * Get the number of cpus visible to this zone. The system-wide global
3155 3159 * 'ncpus' is returned if pools are disabled, the caller is in the
3156 3160 * global zone, or a NULL zone argument is passed in.
3157 3161 */
3158 3162 int
3159 3163 zone_ncpus_get(zone_t *zone)
3160 3164 {
3161 3165 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3162 3166
3163 3167 return (myncpus != 0 ? myncpus : ncpus);
3164 3168 }
3165 3169
3166 3170 /*
3167 3171 * Get the number of online cpus visible to this zone. The system-wide
3168 3172 * global 'ncpus_online' is returned if pools are disabled, the caller
3169 3173 * is in the global zone, or a NULL zone argument is passed in.
3170 3174 */
3171 3175 int
3172 3176 zone_ncpus_online_get(zone_t *zone)
3173 3177 {
3174 3178 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3175 3179
3176 3180 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3177 3181 }
3178 3182
3179 3183 /*
3180 3184 * Return the pool to which the zone is currently bound.
3181 3185 */
3182 3186 pool_t *
3183 3187 zone_pool_get(zone_t *zone)
3184 3188 {
3185 3189 ASSERT(pool_lock_held());
3186 3190
3187 3191 return (zone->zone_pool);
3188 3192 }
3189 3193
3190 3194 /*
3191 3195 * Set the zone's pool pointer and update the zone's visibility to match
3192 3196 * the resources in the new pool.
3193 3197 */
3194 3198 void
3195 3199 zone_pool_set(zone_t *zone, pool_t *pool)
3196 3200 {
3197 3201 ASSERT(pool_lock_held());
3198 3202 ASSERT(MUTEX_HELD(&cpu_lock));
3199 3203
3200 3204 zone->zone_pool = pool;
3201 3205 zone_pset_set(zone, pool->pool_pset->pset_id);
3202 3206 }
3203 3207
3204 3208 /*
3205 3209 * Return the cached value of the id of the processor set to which the
3206 3210 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3207 3211 * facility is disabled.
3208 3212 */
3209 3213 psetid_t
3210 3214 zone_pset_get(zone_t *zone)
3211 3215 {
3212 3216 ASSERT(MUTEX_HELD(&cpu_lock));
3213 3217
3214 3218 return (zone->zone_psetid);
3215 3219 }
3216 3220
3217 3221 /*
3218 3222 * Set the cached value of the id of the processor set to which the zone
3219 3223 * is currently bound. Also update the zone's visibility to match the
3220 3224 * resources in the new processor set.
3221 3225 */
3222 3226 void
3223 3227 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3224 3228 {
3225 3229 psetid_t oldpsetid;
3226 3230
3227 3231 ASSERT(MUTEX_HELD(&cpu_lock));
3228 3232 oldpsetid = zone_pset_get(zone);
3229 3233
3230 3234 if (oldpsetid == newpsetid)
3231 3235 return;
3232 3236 /*
3233 3237 * Global zone sees all.
3234 3238 */
3235 3239 if (zone != global_zone) {
3236 3240 zone->zone_psetid = newpsetid;
3237 3241 if (newpsetid != ZONE_PS_INVAL)
3238 3242 pool_pset_visibility_add(newpsetid, zone);
3239 3243 if (oldpsetid != ZONE_PS_INVAL)
3240 3244 pool_pset_visibility_remove(oldpsetid, zone);
3241 3245 }
3242 3246 /*
3243 3247 * Disabling pools, so we should start using the global values
3244 3248 * for ncpus and ncpus_online.
3245 3249 */
3246 3250 if (newpsetid == ZONE_PS_INVAL) {
3247 3251 zone->zone_ncpus = 0;
3248 3252 zone->zone_ncpus_online = 0;
3249 3253 }
3250 3254 }
3251 3255
3252 3256 /*
3253 3257 * Walk the list of active zones and issue the provided callback for
3254 3258 * each of them.
3255 3259 *
3256 3260 * Caller must not be holding any locks that may be acquired under
3257 3261 * zonehash_lock. See comment at the beginning of the file for a list of
3258 3262 * common locks and their interactions with zones.
3259 3263 */
3260 3264 int
3261 3265 zone_walk(int (*cb)(zone_t *, void *), void *data)
3262 3266 {
3263 3267 zone_t *zone;
3264 3268 int ret = 0;
3265 3269 zone_status_t status;
3266 3270
3267 3271 mutex_enter(&zonehash_lock);
3268 3272 for (zone = list_head(&zone_active); zone != NULL;
3269 3273 zone = list_next(&zone_active, zone)) {
3270 3274 /*
3271 3275 * Skip zones that shouldn't be externally visible.
3272 3276 */
3273 3277 status = zone_status_get(zone);
3274 3278 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3275 3279 continue;
3276 3280 /*
3277 3281 * Bail immediately if any callback invocation returns a
3278 3282 * non-zero value.
3279 3283 */
3280 3284 ret = (*cb)(zone, data);
3281 3285 if (ret != 0)
3282 3286 break;
3283 3287 }
3284 3288 mutex_exit(&zonehash_lock);
3285 3289 return (ret);
3286 3290 }
3287 3291
3288 3292 static int
3289 3293 zone_set_root(zone_t *zone, const char *upath)
3290 3294 {
3291 3295 vnode_t *vp;
3292 3296 int trycount;
3293 3297 int error = 0;
3294 3298 char *path;
3295 3299 struct pathname upn, pn;
3296 3300 size_t pathlen;
3297 3301
3298 3302 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3299 3303 return (error);
3300 3304
3301 3305 pn_alloc(&pn);
3302 3306
3303 3307 /* prevent infinite loop */
3304 3308 trycount = 10;
3305 3309 for (;;) {
3306 3310 if (--trycount <= 0) {
3307 3311 error = ESTALE;
3308 3312 goto out;
3309 3313 }
3310 3314
3311 3315 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3312 3316 /*
3313 3317 * VOP_ACCESS() may cover 'vp' with a new
3314 3318 * filesystem, if 'vp' is an autoFS vnode.
3315 3319 * Get the new 'vp' if so.
3316 3320 */
3317 3321 if ((error =
3318 3322 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3319 3323 (!vn_ismntpt(vp) ||
3320 3324 (error = traverse(&vp)) == 0)) {
3321 3325 pathlen = pn.pn_pathlen + 2;
3322 3326 path = kmem_alloc(pathlen, KM_SLEEP);
3323 3327 (void) strncpy(path, pn.pn_path,
3324 3328 pn.pn_pathlen + 1);
3325 3329 path[pathlen - 2] = '/';
3326 3330 path[pathlen - 1] = '\0';
3327 3331 pn_free(&pn);
3328 3332 pn_free(&upn);
3329 3333
3330 3334 /* Success! */
3331 3335 break;
3332 3336 }
3333 3337 VN_RELE(vp);
3334 3338 }
3335 3339 if (error != ESTALE)
3336 3340 goto out;
3337 3341 }
3338 3342
3339 3343 ASSERT(error == 0);
3340 3344 zone->zone_rootvp = vp; /* we hold a reference to vp */
3341 3345 zone->zone_rootpath = path;
3342 3346 zone->zone_rootpathlen = pathlen;
3343 3347 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3344 3348 zone->zone_flags |= ZF_IS_SCRATCH;
3345 3349 return (0);
3346 3350
3347 3351 out:
3348 3352 pn_free(&pn);
3349 3353 pn_free(&upn);
3350 3354 return (error);
3351 3355 }
3352 3356
3353 3357 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3354 3358 ((c) >= 'a' && (c) <= 'z') || \
3355 3359 ((c) >= 'A' && (c) <= 'Z'))
3356 3360
3357 3361 static int
3358 3362 zone_set_name(zone_t *zone, const char *uname)
3359 3363 {
3360 3364 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3361 3365 size_t len;
3362 3366 int i, err;
3363 3367
3364 3368 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3365 3369 kmem_free(kname, ZONENAME_MAX);
3366 3370 return (err); /* EFAULT or ENAMETOOLONG */
3367 3371 }
3368 3372
3369 3373 /* must be less than ZONENAME_MAX */
3370 3374 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3371 3375 kmem_free(kname, ZONENAME_MAX);
3372 3376 return (EINVAL);
3373 3377 }
3374 3378
3375 3379 /*
3376 3380 * Name must start with an alphanumeric and must contain only
3377 3381 * alphanumerics, '-', '_' and '.'.
3378 3382 */
3379 3383 if (!isalnum(kname[0])) {
3380 3384 kmem_free(kname, ZONENAME_MAX);
3381 3385 return (EINVAL);
3382 3386 }
3383 3387 for (i = 1; i < len - 1; i++) {
3384 3388 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3385 3389 kname[i] != '.') {
3386 3390 kmem_free(kname, ZONENAME_MAX);
3387 3391 return (EINVAL);
3388 3392 }
3389 3393 }
3390 3394
3391 3395 zone->zone_name = kname;
3392 3396 return (0);
3393 3397 }
3394 3398
3395 3399 /*
3396 3400 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3397 3401 * is NULL or it points to a zone with no hostid emulation, then the machine's
3398 3402 * hostid (i.e., the global zone's hostid) is returned. This function returns
3399 3403 * zero if neither the zone nor the host machine (global zone) have hostids. It
3400 3404 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3401 3405 * hostid and the machine's hostid is invalid.
3402 3406 */
3403 3407 uint32_t
3404 3408 zone_get_hostid(zone_t *zonep)
3405 3409 {
3406 3410 unsigned long machine_hostid;
3407 3411
3408 3412 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3409 3413 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3410 3414 return (HW_INVALID_HOSTID);
3411 3415 return ((uint32_t)machine_hostid);
3412 3416 }
3413 3417 return (zonep->zone_hostid);
3414 3418 }
3415 3419
3416 3420 /*
3417 3421 * Similar to thread_create(), but makes sure the thread is in the appropriate
3418 3422 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3419 3423 */
3420 3424 /*ARGSUSED*/
3421 3425 kthread_t *
3422 3426 zthread_create(
3423 3427 caddr_t stk,
3424 3428 size_t stksize,
3425 3429 void (*proc)(),
3426 3430 void *arg,
3427 3431 size_t len,
3428 3432 pri_t pri)
3429 3433 {
3430 3434 kthread_t *t;
3431 3435 zone_t *zone = curproc->p_zone;
3432 3436 proc_t *pp = zone->zone_zsched;
3433 3437
3434 3438 zone_hold(zone); /* Reference to be dropped when thread exits */
3435 3439
3436 3440 /*
3437 3441 * No-one should be trying to create threads if the zone is shutting
3438 3442 * down and there aren't any kernel threads around. See comment
3439 3443 * in zthread_exit().
3440 3444 */
3441 3445 ASSERT(!(zone->zone_kthreads == NULL &&
3442 3446 zone_status_get(zone) >= ZONE_IS_EMPTY));
3443 3447 /*
3444 3448 * Create a thread, but don't let it run until we've finished setting
3445 3449 * things up.
3446 3450 */
3447 3451 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3448 3452 ASSERT(t->t_forw == NULL);
3449 3453 mutex_enter(&zone_status_lock);
3450 3454 if (zone->zone_kthreads == NULL) {
3451 3455 t->t_forw = t->t_back = t;
3452 3456 } else {
3453 3457 kthread_t *tx = zone->zone_kthreads;
3454 3458
3455 3459 t->t_forw = tx;
3456 3460 t->t_back = tx->t_back;
3457 3461 tx->t_back->t_forw = t;
3458 3462 tx->t_back = t;
3459 3463 }
3460 3464 zone->zone_kthreads = t;
3461 3465 mutex_exit(&zone_status_lock);
3462 3466
3463 3467 mutex_enter(&pp->p_lock);
3464 3468 t->t_proc_flag |= TP_ZTHREAD;
3465 3469 project_rele(t->t_proj);
3466 3470 t->t_proj = project_hold(pp->p_task->tk_proj);
3467 3471
3468 3472 /*
3469 3473 * Setup complete, let it run.
3470 3474 */
3471 3475 thread_lock(t);
3472 3476 t->t_schedflag |= TS_ALLSTART;
3473 3477 setrun_locked(t);
3474 3478 thread_unlock(t);
3475 3479
3476 3480 mutex_exit(&pp->p_lock);
3477 3481
3478 3482 return (t);
3479 3483 }
3480 3484
3481 3485 /*
3482 3486 * Similar to thread_exit(). Must be called by threads created via
3483 3487 * zthread_exit().
3484 3488 */
3485 3489 void
3486 3490 zthread_exit(void)
3487 3491 {
3488 3492 kthread_t *t = curthread;
3489 3493 proc_t *pp = curproc;
3490 3494 zone_t *zone = pp->p_zone;
3491 3495
3492 3496 mutex_enter(&zone_status_lock);
3493 3497
3494 3498 /*
3495 3499 * Reparent to p0
3496 3500 */
3497 3501 kpreempt_disable();
3498 3502 mutex_enter(&pp->p_lock);
3499 3503 t->t_proc_flag &= ~TP_ZTHREAD;
3500 3504 t->t_procp = &p0;
3501 3505 hat_thread_exit(t);
3502 3506 mutex_exit(&pp->p_lock);
3503 3507 kpreempt_enable();
3504 3508
3505 3509 if (t->t_back == t) {
3506 3510 ASSERT(t->t_forw == t);
3507 3511 /*
3508 3512 * If the zone is empty, once the thread count
3509 3513 * goes to zero no further kernel threads can be
3510 3514 * created. This is because if the creator is a process
3511 3515 * in the zone, then it must have exited before the zone
3512 3516 * state could be set to ZONE_IS_EMPTY.
3513 3517 * Otherwise, if the creator is a kernel thread in the
3514 3518 * zone, the thread count is non-zero.
3515 3519 *
3516 3520 * This really means that non-zone kernel threads should
3517 3521 * not create zone kernel threads.
3518 3522 */
3519 3523 zone->zone_kthreads = NULL;
3520 3524 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3521 3525 zone_status_set(zone, ZONE_IS_DOWN);
3522 3526 /*
3523 3527 * Remove any CPU caps on this zone.
3524 3528 */
3525 3529 cpucaps_zone_remove(zone);
3526 3530 }
3527 3531 } else {
3528 3532 t->t_forw->t_back = t->t_back;
3529 3533 t->t_back->t_forw = t->t_forw;
3530 3534 if (zone->zone_kthreads == t)
3531 3535 zone->zone_kthreads = t->t_forw;
3532 3536 }
3533 3537 mutex_exit(&zone_status_lock);
3534 3538 zone_rele(zone);
3535 3539 thread_exit();
3536 3540 /* NOTREACHED */
3537 3541 }
3538 3542
3539 3543 static void
3540 3544 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3541 3545 {
3542 3546 vnode_t *oldvp;
3543 3547
3544 3548 /* we're going to hold a reference here to the directory */
3545 3549 VN_HOLD(vp);
3546 3550
3547 3551 /* update abs cwd/root path see c2/audit.c */
3548 3552 if (AU_AUDITING())
3549 3553 audit_chdirec(vp, vpp);
3550 3554
3551 3555 mutex_enter(&pp->p_lock);
3552 3556 oldvp = *vpp;
3553 3557 *vpp = vp;
3554 3558 mutex_exit(&pp->p_lock);
3555 3559 if (oldvp != NULL)
3556 3560 VN_RELE(oldvp);
3557 3561 }
3558 3562
3559 3563 /*
3560 3564 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3561 3565 */
3562 3566 static int
3563 3567 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3564 3568 {
3565 3569 nvpair_t *nvp = NULL;
3566 3570 boolean_t priv_set = B_FALSE;
3567 3571 boolean_t limit_set = B_FALSE;
3568 3572 boolean_t action_set = B_FALSE;
3569 3573
3570 3574 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3571 3575 const char *name;
3572 3576 uint64_t ui64;
3573 3577
3574 3578 name = nvpair_name(nvp);
3575 3579 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3576 3580 return (EINVAL);
3577 3581 (void) nvpair_value_uint64(nvp, &ui64);
3578 3582 if (strcmp(name, "privilege") == 0) {
3579 3583 /*
3580 3584 * Currently only privileged values are allowed, but
3581 3585 * this may change in the future.
3582 3586 */
3583 3587 if (ui64 != RCPRIV_PRIVILEGED)
3584 3588 return (EINVAL);
3585 3589 rv->rcv_privilege = ui64;
3586 3590 priv_set = B_TRUE;
3587 3591 } else if (strcmp(name, "limit") == 0) {
3588 3592 rv->rcv_value = ui64;
3589 3593 limit_set = B_TRUE;
3590 3594 } else if (strcmp(name, "action") == 0) {
3591 3595 if (ui64 != RCTL_LOCAL_NOACTION &&
3592 3596 ui64 != RCTL_LOCAL_DENY)
3593 3597 return (EINVAL);
3594 3598 rv->rcv_flagaction = ui64;
3595 3599 action_set = B_TRUE;
3596 3600 } else {
3597 3601 return (EINVAL);
3598 3602 }
3599 3603 }
3600 3604
3601 3605 if (!(priv_set && limit_set && action_set))
3602 3606 return (EINVAL);
3603 3607 rv->rcv_action_signal = 0;
3604 3608 rv->rcv_action_recipient = NULL;
3605 3609 rv->rcv_action_recip_pid = -1;
3606 3610 rv->rcv_firing_time = 0;
3607 3611
3608 3612 return (0);
3609 3613 }
3610 3614
3611 3615 /*
3612 3616 * Non-global zone version of start_init.
3613 3617 */
3614 3618 void
3615 3619 zone_start_init(void)
3616 3620 {
3617 3621 proc_t *p = ttoproc(curthread);
3618 3622 zone_t *z = p->p_zone;
3619 3623
3620 3624 ASSERT(!INGLOBALZONE(curproc));
3621 3625
3622 3626 /*
3623 3627 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3624 3628 * storing just the pid of init is sufficient.
3625 3629 */
3626 3630 z->zone_proc_initpid = p->p_pid;
3627 3631
3628 3632 /*
3629 3633 * We maintain zone_boot_err so that we can return the cause of the
3630 3634 * failure back to the caller of the zone_boot syscall.
3631 3635 */
3632 3636 p->p_zone->zone_boot_err = start_init_common();
3633 3637
3634 3638 /*
3635 3639 * We will prevent booting zones from becoming running zones if the
3636 3640 * global zone is shutting down.
3637 3641 */
3638 3642 mutex_enter(&zone_status_lock);
3639 3643 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3640 3644 ZONE_IS_SHUTTING_DOWN) {
3641 3645 /*
3642 3646 * Make sure we are still in the booting state-- we could have
3643 3647 * raced and already be shutting down, or even further along.
3644 3648 */
3645 3649 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3646 3650 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3647 3651 }
3648 3652 mutex_exit(&zone_status_lock);
3649 3653 /* It's gone bad, dispose of the process */
3650 3654 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3651 3655 mutex_enter(&p->p_lock);
3652 3656 ASSERT(p->p_flag & SEXITLWPS);
3653 3657 lwp_exit();
3654 3658 }
3655 3659 } else {
3656 3660 if (zone_status_get(z) == ZONE_IS_BOOTING)
3657 3661 zone_status_set(z, ZONE_IS_RUNNING);
3658 3662 mutex_exit(&zone_status_lock);
3659 3663 /* cause the process to return to userland. */
3660 3664 lwp_rtt();
3661 3665 }
3662 3666 }
3663 3667
3664 3668 struct zsched_arg {
3665 3669 zone_t *zone;
3666 3670 nvlist_t *nvlist;
3667 3671 };
3668 3672
3669 3673 /*
3670 3674 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3671 3675 * anything to do with scheduling, but rather with the fact that
3672 3676 * per-zone kernel threads are parented to zsched, just like regular
3673 3677 * kernel threads are parented to sched (p0).
3674 3678 *
3675 3679 * zsched is also responsible for launching init for the zone.
3676 3680 */
3677 3681 static void
3678 3682 zsched(void *arg)
3679 3683 {
3680 3684 struct zsched_arg *za = arg;
3681 3685 proc_t *pp = curproc;
3682 3686 proc_t *initp = proc_init;
3683 3687 zone_t *zone = za->zone;
3684 3688 cred_t *cr, *oldcred;
3685 3689 rctl_set_t *set;
3686 3690 rctl_alloc_gp_t *gp;
3687 3691 contract_t *ct = NULL;
3688 3692 task_t *tk, *oldtk;
3689 3693 rctl_entity_p_t e;
3690 3694 kproject_t *pj;
3691 3695
3692 3696 nvlist_t *nvl = za->nvlist;
3693 3697 nvpair_t *nvp = NULL;
3694 3698
3695 3699 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3696 3700 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3697 3701 PTOU(pp)->u_argc = 0;
3698 3702 PTOU(pp)->u_argv = NULL;
3699 3703 PTOU(pp)->u_envp = NULL;
3700 3704 closeall(P_FINFO(pp));
3701 3705
3702 3706 /*
3703 3707 * We are this zone's "zsched" process. As the zone isn't generally
3704 3708 * visible yet we don't need to grab any locks before initializing its
3705 3709 * zone_proc pointer.
3706 3710 */
3707 3711 zone_hold(zone); /* this hold is released by zone_destroy() */
3708 3712 zone->zone_zsched = pp;
3709 3713 mutex_enter(&pp->p_lock);
3710 3714 pp->p_zone = zone;
3711 3715 mutex_exit(&pp->p_lock);
3712 3716
3713 3717 /*
3714 3718 * Disassociate process from its 'parent'; parent ourselves to init
3715 3719 * (pid 1) and change other values as needed.
3716 3720 */
3717 3721 sess_create();
3718 3722
3719 3723 mutex_enter(&pidlock);
3720 3724 proc_detach(pp);
3721 3725 pp->p_ppid = 1;
3722 3726 pp->p_flag |= SZONETOP;
3723 3727 pp->p_ancpid = 1;
3724 3728 pp->p_parent = initp;
3725 3729 pp->p_psibling = NULL;
3726 3730 if (initp->p_child)
3727 3731 initp->p_child->p_psibling = pp;
3728 3732 pp->p_sibling = initp->p_child;
3729 3733 initp->p_child = pp;
3730 3734
3731 3735 /* Decrement what newproc() incremented. */
3732 3736 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3733 3737 /*
3734 3738 * Our credentials are about to become kcred-like, so we don't care
3735 3739 * about the caller's ruid.
3736 3740 */
3737 3741 upcount_inc(crgetruid(kcred), zone->zone_id);
3738 3742 mutex_exit(&pidlock);
3739 3743
3740 3744 /*
3741 3745 * getting out of global zone, so decrement lwp and process counts
3742 3746 */
3743 3747 pj = pp->p_task->tk_proj;
3744 3748 mutex_enter(&global_zone->zone_nlwps_lock);
3745 3749 pj->kpj_nlwps -= pp->p_lwpcnt;
3746 3750 global_zone->zone_nlwps -= pp->p_lwpcnt;
3747 3751 pj->kpj_nprocs--;
3748 3752 global_zone->zone_nprocs--;
3749 3753 mutex_exit(&global_zone->zone_nlwps_lock);
3750 3754
3751 3755 /*
3752 3756 * Decrement locked memory counts on old zone and project.
3753 3757 */
3754 3758 mutex_enter(&global_zone->zone_mem_lock);
3755 3759 global_zone->zone_locked_mem -= pp->p_locked_mem;
3756 3760 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3757 3761 mutex_exit(&global_zone->zone_mem_lock);
3758 3762
3759 3763 /*
3760 3764 * Create and join a new task in project '0' of this zone.
3761 3765 *
3762 3766 * We don't need to call holdlwps() since we know we're the only lwp in
3763 3767 * this process.
3764 3768 *
3765 3769 * task_join() returns with p_lock held.
3766 3770 */
3767 3771 tk = task_create(0, zone);
3768 3772 mutex_enter(&cpu_lock);
3769 3773 oldtk = task_join(tk, 0);
3770 3774
3771 3775 pj = pp->p_task->tk_proj;
3772 3776
3773 3777 mutex_enter(&zone->zone_mem_lock);
3774 3778 zone->zone_locked_mem += pp->p_locked_mem;
3775 3779 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3776 3780 mutex_exit(&zone->zone_mem_lock);
3777 3781
3778 3782 /*
3779 3783 * add lwp and process counts to zsched's zone, and increment
3780 3784 * project's task and process count due to the task created in
3781 3785 * the above task_create.
3782 3786 */
3783 3787 mutex_enter(&zone->zone_nlwps_lock);
3784 3788 pj->kpj_nlwps += pp->p_lwpcnt;
3785 3789 pj->kpj_ntasks += 1;
3786 3790 zone->zone_nlwps += pp->p_lwpcnt;
3787 3791 pj->kpj_nprocs++;
3788 3792 zone->zone_nprocs++;
3789 3793 mutex_exit(&zone->zone_nlwps_lock);
3790 3794
3791 3795 mutex_exit(&curproc->p_lock);
3792 3796 mutex_exit(&cpu_lock);
3793 3797 task_rele(oldtk);
3794 3798
3795 3799 /*
3796 3800 * The process was created by a process in the global zone, hence the
3797 3801 * credentials are wrong. We might as well have kcred-ish credentials.
3798 3802 */
3799 3803 cr = zone->zone_kcred;
3800 3804 crhold(cr);
3801 3805 mutex_enter(&pp->p_crlock);
3802 3806 oldcred = pp->p_cred;
3803 3807 pp->p_cred = cr;
3804 3808 mutex_exit(&pp->p_crlock);
3805 3809 crfree(oldcred);
3806 3810
3807 3811 /*
3808 3812 * Hold credentials again (for thread)
3809 3813 */
3810 3814 crhold(cr);
3811 3815
3812 3816 /*
3813 3817 * p_lwpcnt can't change since this is a kernel process.
3814 3818 */
3815 3819 crset(pp, cr);
3816 3820
3817 3821 /*
3818 3822 * Chroot
3819 3823 */
3820 3824 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3821 3825 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3822 3826
3823 3827 /*
3824 3828 * Initialize zone's rctl set.
3825 3829 */
3826 3830 set = rctl_set_create();
3827 3831 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3828 3832 mutex_enter(&pp->p_lock);
3829 3833 e.rcep_p.zone = zone;
3830 3834 e.rcep_t = RCENTITY_ZONE;
3831 3835 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3832 3836 mutex_exit(&pp->p_lock);
3833 3837 rctl_prealloc_destroy(gp);
3834 3838
3835 3839 /*
3836 3840 * Apply the rctls passed in to zone_create(). This is basically a list
3837 3841 * assignment: all of the old values are removed and the new ones
3838 3842 * inserted. That is, if an empty list is passed in, all values are
3839 3843 * removed.
3840 3844 */
3841 3845 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3842 3846 rctl_dict_entry_t *rde;
3843 3847 rctl_hndl_t hndl;
3844 3848 char *name;
3845 3849 nvlist_t **nvlarray;
3846 3850 uint_t i, nelem;
3847 3851 int error; /* For ASSERT()s */
3848 3852
3849 3853 name = nvpair_name(nvp);
3850 3854 hndl = rctl_hndl_lookup(name);
3851 3855 ASSERT(hndl != -1);
3852 3856 rde = rctl_dict_lookup_hndl(hndl);
3853 3857 ASSERT(rde != NULL);
3854 3858
3855 3859 for (; /* ever */; ) {
3856 3860 rctl_val_t oval;
3857 3861
3858 3862 mutex_enter(&pp->p_lock);
3859 3863 error = rctl_local_get(hndl, NULL, &oval, pp);
3860 3864 mutex_exit(&pp->p_lock);
3861 3865 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
3862 3866 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3863 3867 if (oval.rcv_privilege == RCPRIV_SYSTEM)
3864 3868 break;
3865 3869 mutex_enter(&pp->p_lock);
3866 3870 error = rctl_local_delete(hndl, &oval, pp);
3867 3871 mutex_exit(&pp->p_lock);
3868 3872 ASSERT(error == 0);
3869 3873 }
3870 3874 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3871 3875 ASSERT(error == 0);
3872 3876 for (i = 0; i < nelem; i++) {
3873 3877 rctl_val_t *nvalp;
3874 3878
3875 3879 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3876 3880 error = nvlist2rctlval(nvlarray[i], nvalp);
3877 3881 ASSERT(error == 0);
3878 3882 /*
3879 3883 * rctl_local_insert can fail if the value being
3880 3884 * inserted is a duplicate; this is OK.
3881 3885 */
3882 3886 mutex_enter(&pp->p_lock);
3883 3887 if (rctl_local_insert(hndl, nvalp, pp) != 0)
3884 3888 kmem_cache_free(rctl_val_cache, nvalp);
3885 3889 mutex_exit(&pp->p_lock);
3886 3890 }
3887 3891 }
3888 3892 /*
3889 3893 * Tell the world that we're done setting up.
3890 3894 *
3891 3895 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3892 3896 * and atomically set the zone's processor set visibility. Once
3893 3897 * we drop pool_lock() this zone will automatically get updated
3894 3898 * to reflect any future changes to the pools configuration.
3895 3899 *
3896 3900 * Note that after we drop the locks below (zonehash_lock in
3897 3901 * particular) other operations such as a zone_getattr call can
3898 3902 * now proceed and observe the zone. That is the reason for doing a
3899 3903 * state transition to the INITIALIZED state.
3900 3904 */
3901 3905 pool_lock();
3902 3906 mutex_enter(&cpu_lock);
3903 3907 mutex_enter(&zonehash_lock);
3904 3908 zone_uniqid(zone);
3905 3909 zone_zsd_configure(zone);
3906 3910 if (pool_state == POOL_ENABLED)
3907 3911 zone_pset_set(zone, pool_default->pool_pset->pset_id);
3908 3912 mutex_enter(&zone_status_lock);
3909 3913 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3910 3914 zone_status_set(zone, ZONE_IS_INITIALIZED);
3911 3915 mutex_exit(&zone_status_lock);
3912 3916 mutex_exit(&zonehash_lock);
3913 3917 mutex_exit(&cpu_lock);
3914 3918 pool_unlock();
3915 3919
3916 3920 /* Now call the create callback for this key */
3917 3921 zsd_apply_all_keys(zsd_apply_create, zone);
3918 3922
3919 3923 /* The callbacks are complete. Mark ZONE_IS_READY */
3920 3924 mutex_enter(&zone_status_lock);
3921 3925 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3922 3926 zone_status_set(zone, ZONE_IS_READY);
3923 3927 mutex_exit(&zone_status_lock);
3924 3928
3925 3929 /*
3926 3930 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3927 3931 * we launch init, and set the state to running.
3928 3932 */
3929 3933 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3930 3934
3931 3935 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3932 3936 id_t cid;
3933 3937
3934 3938 /*
3935 3939 * Ok, this is a little complicated. We need to grab the
3936 3940 * zone's pool's scheduling class ID; note that by now, we
3937 3941 * are already bound to a pool if we need to be (zoneadmd
3938 3942 * will have done that to us while we're in the READY
3939 3943 * state). *But* the scheduling class for the zone's 'init'
3940 3944 * must be explicitly passed to newproc, which doesn't
3941 3945 * respect pool bindings.
3942 3946 *
3943 3947 * We hold the pool_lock across the call to newproc() to
3944 3948 * close the obvious race: the pool's scheduling class
3945 3949 * could change before we manage to create the LWP with
3946 3950 * classid 'cid'.
3947 3951 */
3948 3952 pool_lock();
3949 3953 if (zone->zone_defaultcid > 0)
3950 3954 cid = zone->zone_defaultcid;
3951 3955 else
3952 3956 cid = pool_get_class(zone->zone_pool);
3953 3957 if (cid == -1)
3954 3958 cid = defaultcid;
3955 3959
3956 3960 /*
3957 3961 * If this fails, zone_boot will ultimately fail. The
↓ open down ↓ |
2061 lines elided |
↑ open up ↑ |
3958 3962 * state of the zone will be set to SHUTTING_DOWN-- userland
3959 3963 * will have to tear down the zone, and fail, or try again.
3960 3964 */
3961 3965 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3962 3966 minclsyspri - 1, &ct, 0)) != 0) {
3963 3967 mutex_enter(&zone_status_lock);
3964 3968 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3965 3969 mutex_exit(&zone_status_lock);
3966 3970 } else {
3967 3971 zone->zone_boot_time = gethrestime_sec();
3972 + zone->zone_boot_hrtime = gethrtime();
3968 3973 }
3969 3974
3970 3975 pool_unlock();
3971 3976 }
3972 3977
3973 3978 /*
3974 3979 * Wait for zone_destroy() to be called. This is what we spend
3975 3980 * most of our life doing.
3976 3981 */
3977 3982 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3978 3983
3979 3984 if (ct)
3980 3985 /*
3981 3986 * At this point the process contract should be empty.
3982 3987 * (Though if it isn't, it's not the end of the world.)
3983 3988 */
3984 3989 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3985 3990
3986 3991 /*
3987 3992 * Allow kcred to be freed when all referring processes
3988 3993 * (including this one) go away. We can't just do this in
3989 3994 * zone_free because we need to wait for the zone_cred_ref to
3990 3995 * drop to 0 before calling zone_free, and the existence of
3991 3996 * zone_kcred will prevent that. Thus, we call crfree here to
3992 3997 * balance the crdup in zone_create. The crhold calls earlier
3993 3998 * in zsched will be dropped when the thread and process exit.
3994 3999 */
3995 4000 crfree(zone->zone_kcred);
3996 4001 zone->zone_kcred = NULL;
3997 4002
3998 4003 exit(CLD_EXITED, 0);
3999 4004 }
4000 4005
4001 4006 /*
4002 4007 * Helper function to determine if there are any submounts of the
4003 4008 * provided path. Used to make sure the zone doesn't "inherit" any
4004 4009 * mounts from before it is created.
4005 4010 */
4006 4011 static uint_t
4007 4012 zone_mount_count(const char *rootpath)
4008 4013 {
4009 4014 vfs_t *vfsp;
4010 4015 uint_t count = 0;
4011 4016 size_t rootpathlen = strlen(rootpath);
4012 4017
4013 4018 /*
4014 4019 * Holding zonehash_lock prevents race conditions with
4015 4020 * vfs_list_add()/vfs_list_remove() since we serialize with
4016 4021 * zone_find_by_path().
4017 4022 */
4018 4023 ASSERT(MUTEX_HELD(&zonehash_lock));
4019 4024 /*
4020 4025 * The rootpath must end with a '/'
4021 4026 */
4022 4027 ASSERT(rootpath[rootpathlen - 1] == '/');
4023 4028
4024 4029 /*
4025 4030 * This intentionally does not count the rootpath itself if that
4026 4031 * happens to be a mount point.
4027 4032 */
4028 4033 vfs_list_read_lock();
4029 4034 vfsp = rootvfs;
4030 4035 do {
4031 4036 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4032 4037 rootpathlen) == 0)
4033 4038 count++;
4034 4039 vfsp = vfsp->vfs_next;
4035 4040 } while (vfsp != rootvfs);
4036 4041 vfs_list_unlock();
4037 4042 return (count);
4038 4043 }
4039 4044
4040 4045 /*
4041 4046 * Helper function to make sure that a zone created on 'rootpath'
4042 4047 * wouldn't end up containing other zones' rootpaths.
4043 4048 */
4044 4049 static boolean_t
4045 4050 zone_is_nested(const char *rootpath)
4046 4051 {
4047 4052 zone_t *zone;
4048 4053 size_t rootpathlen = strlen(rootpath);
4049 4054 size_t len;
4050 4055
4051 4056 ASSERT(MUTEX_HELD(&zonehash_lock));
4052 4057
4053 4058 /*
4054 4059 * zone_set_root() appended '/' and '\0' at the end of rootpath
4055 4060 */
4056 4061 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4057 4062 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4058 4063 return (B_TRUE);
4059 4064
4060 4065 for (zone = list_head(&zone_active); zone != NULL;
4061 4066 zone = list_next(&zone_active, zone)) {
4062 4067 if (zone == global_zone)
4063 4068 continue;
4064 4069 len = strlen(zone->zone_rootpath);
4065 4070 if (strncmp(rootpath, zone->zone_rootpath,
4066 4071 MIN(rootpathlen, len)) == 0)
4067 4072 return (B_TRUE);
4068 4073 }
4069 4074 return (B_FALSE);
4070 4075 }
4071 4076
4072 4077 static int
4073 4078 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4074 4079 size_t zone_privssz)
4075 4080 {
4076 4081 priv_set_t *privs;
4077 4082
4078 4083 if (zone_privssz < sizeof (priv_set_t))
4079 4084 return (ENOMEM);
4080 4085
4081 4086 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4082 4087
4083 4088 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4084 4089 kmem_free(privs, sizeof (priv_set_t));
4085 4090 return (EFAULT);
4086 4091 }
4087 4092
4088 4093 zone->zone_privset = privs;
4089 4094 return (0);
4090 4095 }
4091 4096
4092 4097 /*
4093 4098 * We make creative use of nvlists to pass in rctls from userland. The list is
4094 4099 * a list of the following structures:
4095 4100 *
4096 4101 * (name = rctl_name, value = nvpair_list_array)
4097 4102 *
4098 4103 * Where each element of the nvpair_list_array is of the form:
4099 4104 *
4100 4105 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4101 4106 * (name = "limit", value = uint64_t),
4102 4107 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4103 4108 */
4104 4109 static int
4105 4110 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4106 4111 {
4107 4112 nvpair_t *nvp = NULL;
4108 4113 nvlist_t *nvl = NULL;
4109 4114 char *kbuf;
4110 4115 int error;
4111 4116 rctl_val_t rv;
4112 4117
4113 4118 *nvlp = NULL;
4114 4119
4115 4120 if (buflen == 0)
4116 4121 return (0);
4117 4122
4118 4123 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4119 4124 return (ENOMEM);
4120 4125 if (copyin(ubuf, kbuf, buflen)) {
4121 4126 error = EFAULT;
4122 4127 goto out;
4123 4128 }
4124 4129 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4125 4130 /*
4126 4131 * nvl may have been allocated/free'd, but the value set to
4127 4132 * non-NULL, so we reset it here.
4128 4133 */
4129 4134 nvl = NULL;
4130 4135 error = EINVAL;
4131 4136 goto out;
4132 4137 }
4133 4138 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4134 4139 rctl_dict_entry_t *rde;
4135 4140 rctl_hndl_t hndl;
4136 4141 nvlist_t **nvlarray;
4137 4142 uint_t i, nelem;
4138 4143 char *name;
4139 4144
4140 4145 error = EINVAL;
4141 4146 name = nvpair_name(nvp);
4142 4147 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4143 4148 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4144 4149 goto out;
4145 4150 }
4146 4151 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4147 4152 goto out;
4148 4153 }
4149 4154 rde = rctl_dict_lookup_hndl(hndl);
4150 4155 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4151 4156 ASSERT(error == 0);
4152 4157 for (i = 0; i < nelem; i++) {
4153 4158 if (error = nvlist2rctlval(nvlarray[i], &rv))
4154 4159 goto out;
4155 4160 }
4156 4161 if (rctl_invalid_value(rde, &rv)) {
4157 4162 error = EINVAL;
4158 4163 goto out;
4159 4164 }
4160 4165 }
4161 4166 error = 0;
4162 4167 *nvlp = nvl;
4163 4168 out:
4164 4169 kmem_free(kbuf, buflen);
4165 4170 if (error && nvl != NULL)
4166 4171 nvlist_free(nvl);
4167 4172 return (error);
4168 4173 }
4169 4174
4170 4175 int
4171 4176 zone_create_error(int er_error, int er_ext, int *er_out) {
4172 4177 if (er_out != NULL) {
4173 4178 if (copyout(&er_ext, er_out, sizeof (int))) {
4174 4179 return (set_errno(EFAULT));
4175 4180 }
4176 4181 }
4177 4182 return (set_errno(er_error));
4178 4183 }
4179 4184
4180 4185 static int
4181 4186 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4182 4187 {
4183 4188 ts_label_t *tsl;
4184 4189 bslabel_t blab;
4185 4190
4186 4191 /* Get label from user */
4187 4192 if (copyin(lab, &blab, sizeof (blab)) != 0)
4188 4193 return (EFAULT);
4189 4194 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4190 4195 if (tsl == NULL)
4191 4196 return (ENOMEM);
4192 4197
4193 4198 zone->zone_slabel = tsl;
4194 4199 return (0);
4195 4200 }
4196 4201
4197 4202 /*
4198 4203 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4199 4204 */
4200 4205 static int
4201 4206 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4202 4207 {
4203 4208 char *kbuf;
4204 4209 char *dataset, *next;
4205 4210 zone_dataset_t *zd;
4206 4211 size_t len;
4207 4212
4208 4213 if (ubuf == NULL || buflen == 0)
4209 4214 return (0);
4210 4215
4211 4216 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4212 4217 return (ENOMEM);
4213 4218
4214 4219 if (copyin(ubuf, kbuf, buflen) != 0) {
4215 4220 kmem_free(kbuf, buflen);
4216 4221 return (EFAULT);
4217 4222 }
4218 4223
4219 4224 dataset = next = kbuf;
4220 4225 for (;;) {
4221 4226 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4222 4227
4223 4228 next = strchr(dataset, ',');
4224 4229
4225 4230 if (next == NULL)
4226 4231 len = strlen(dataset);
4227 4232 else
4228 4233 len = next - dataset;
4229 4234
4230 4235 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4231 4236 bcopy(dataset, zd->zd_dataset, len);
4232 4237 zd->zd_dataset[len] = '\0';
4233 4238
4234 4239 list_insert_head(&zone->zone_datasets, zd);
4235 4240
4236 4241 if (next == NULL)
4237 4242 break;
4238 4243
4239 4244 dataset = next + 1;
4240 4245 }
4241 4246
4242 4247 kmem_free(kbuf, buflen);
4243 4248 return (0);
4244 4249 }
4245 4250
4246 4251 /*
4247 4252 * System call to create/initialize a new zone named 'zone_name', rooted
4248 4253 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4249 4254 * and initialized with the zone-wide rctls described in 'rctlbuf', and
4250 4255 * with labeling set by 'match', 'doi', and 'label'.
4251 4256 *
4252 4257 * If extended error is non-null, we may use it to return more detailed
4253 4258 * error information.
4254 4259 */
4255 4260 static zoneid_t
4256 4261 zone_create(const char *zone_name, const char *zone_root,
4257 4262 const priv_set_t *zone_privs, size_t zone_privssz,
4258 4263 caddr_t rctlbuf, size_t rctlbufsz,
4259 4264 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4260 4265 int match, uint32_t doi, const bslabel_t *label,
4261 4266 int flags)
4262 4267 {
4263 4268 struct zsched_arg zarg;
4264 4269 nvlist_t *rctls = NULL;
4265 4270 proc_t *pp = curproc;
4266 4271 zone_t *zone, *ztmp;
4267 4272 zoneid_t zoneid;
4268 4273 int error;
4269 4274 int error2 = 0;
4270 4275 char *str;
4271 4276 cred_t *zkcr;
4272 4277 boolean_t insert_label_hash;
4273 4278
4274 4279 if (secpolicy_zone_config(CRED()) != 0)
4275 4280 return (set_errno(EPERM));
4276 4281
4277 4282 /* can't boot zone from within chroot environment */
4278 4283 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4279 4284 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4280 4285 extended_error));
4281 4286
4282 4287 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4283 4288 zoneid = zone->zone_id = id_alloc(zoneid_space);
4284 4289 zone->zone_status = ZONE_IS_UNINITIALIZED;
4285 4290 zone->zone_pool = pool_default;
4286 4291 zone->zone_pool_mod = gethrtime();
4287 4292 zone->zone_psetid = ZONE_PS_INVAL;
4288 4293 zone->zone_ncpus = 0;
4289 4294 zone->zone_ncpus_online = 0;
4290 4295 zone->zone_restart_init = B_TRUE;
4291 4296 zone->zone_brand = &native_brand;
4292 4297 zone->zone_initname = NULL;
4293 4298 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4294 4299 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4295 4300 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4296 4301 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4297 4302 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4298 4303 offsetof(zone_ref_t, zref_linkage));
4299 4304 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4300 4305 offsetof(struct zsd_entry, zsd_linkage));
4301 4306 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4302 4307 offsetof(zone_dataset_t, zd_linkage));
4303 4308 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4304 4309 offsetof(zone_dl_t, zdl_linkage));
4305 4310 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4306 4311 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4307 4312
4308 4313 if (flags & ZCF_NET_EXCL) {
4309 4314 zone->zone_flags |= ZF_NET_EXCL;
4310 4315 }
4311 4316
4312 4317 if ((error = zone_set_name(zone, zone_name)) != 0) {
4313 4318 zone_free(zone);
4314 4319 return (zone_create_error(error, 0, extended_error));
4315 4320 }
4316 4321
4317 4322 if ((error = zone_set_root(zone, zone_root)) != 0) {
4318 4323 zone_free(zone);
4319 4324 return (zone_create_error(error, 0, extended_error));
4320 4325 }
4321 4326 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4322 4327 zone_free(zone);
4323 4328 return (zone_create_error(error, 0, extended_error));
4324 4329 }
4325 4330
4326 4331 /* initialize node name to be the same as zone name */
4327 4332 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4328 4333 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4329 4334 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4330 4335
4331 4336 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4332 4337 zone->zone_domain[0] = '\0';
4333 4338 zone->zone_hostid = HW_INVALID_HOSTID;
4334 4339 zone->zone_shares = 1;
4335 4340 zone->zone_shmmax = 0;
4336 4341 zone->zone_ipc.ipcq_shmmni = 0;
4337 4342 zone->zone_ipc.ipcq_semmni = 0;
4338 4343 zone->zone_ipc.ipcq_msgmni = 0;
4339 4344 zone->zone_bootargs = NULL;
4340 4345 zone->zone_fs_allowed = NULL;
4341 4346 zone->zone_initname =
4342 4347 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4343 4348 (void) strcpy(zone->zone_initname, zone_default_initname);
4344 4349 zone->zone_nlwps = 0;
4345 4350 zone->zone_nlwps_ctl = INT_MAX;
4346 4351 zone->zone_nprocs = 0;
4347 4352 zone->zone_nprocs_ctl = INT_MAX;
4348 4353 zone->zone_locked_mem = 0;
4349 4354 zone->zone_locked_mem_ctl = UINT64_MAX;
4350 4355 zone->zone_max_swap = 0;
4351 4356 zone->zone_max_swap_ctl = UINT64_MAX;
4352 4357 zone->zone_max_lofi = 0;
4353 4358 zone->zone_max_lofi_ctl = UINT64_MAX;
4354 4359 zone0.zone_lockedmem_kstat = NULL;
4355 4360 zone0.zone_swapresv_kstat = NULL;
4356 4361
4357 4362 /*
4358 4363 * Zsched initializes the rctls.
4359 4364 */
4360 4365 zone->zone_rctls = NULL;
4361 4366
4362 4367 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4363 4368 zone_free(zone);
4364 4369 return (zone_create_error(error, 0, extended_error));
4365 4370 }
4366 4371
4367 4372 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4368 4373 zone_free(zone);
4369 4374 return (set_errno(error));
4370 4375 }
4371 4376
4372 4377 /*
4373 4378 * Read in the trusted system parameters:
4374 4379 * match flag and sensitivity label.
4375 4380 */
4376 4381 zone->zone_match = match;
4377 4382 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4378 4383 /* Fail if requested to set doi to anything but system's doi */
4379 4384 if (doi != 0 && doi != default_doi) {
4380 4385 zone_free(zone);
4381 4386 return (set_errno(EINVAL));
4382 4387 }
4383 4388 /* Always apply system's doi to the zone */
4384 4389 error = zone_set_label(zone, label, default_doi);
4385 4390 if (error != 0) {
4386 4391 zone_free(zone);
4387 4392 return (set_errno(error));
4388 4393 }
4389 4394 insert_label_hash = B_TRUE;
4390 4395 } else {
4391 4396 /* all zones get an admin_low label if system is not labeled */
4392 4397 zone->zone_slabel = l_admin_low;
4393 4398 label_hold(l_admin_low);
4394 4399 insert_label_hash = B_FALSE;
4395 4400 }
4396 4401
4397 4402 /*
4398 4403 * Stop all lwps since that's what normally happens as part of fork().
4399 4404 * This needs to happen before we grab any locks to avoid deadlock
4400 4405 * (another lwp in the process could be waiting for the held lock).
4401 4406 */
4402 4407 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4403 4408 zone_free(zone);
4404 4409 if (rctls)
4405 4410 nvlist_free(rctls);
4406 4411 return (zone_create_error(error, 0, extended_error));
4407 4412 }
4408 4413
4409 4414 if (block_mounts(zone) == 0) {
4410 4415 mutex_enter(&pp->p_lock);
4411 4416 if (curthread != pp->p_agenttp)
4412 4417 continuelwps(pp);
4413 4418 mutex_exit(&pp->p_lock);
4414 4419 zone_free(zone);
4415 4420 if (rctls)
4416 4421 nvlist_free(rctls);
4417 4422 return (zone_create_error(error, 0, extended_error));
4418 4423 }
4419 4424
4420 4425 /*
4421 4426 * Set up credential for kernel access. After this, any errors
4422 4427 * should go through the dance in errout rather than calling
4423 4428 * zone_free directly.
4424 4429 */
4425 4430 zone->zone_kcred = crdup(kcred);
4426 4431 crsetzone(zone->zone_kcred, zone);
4427 4432 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4428 4433 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4429 4434 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4430 4435 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4431 4436
4432 4437 mutex_enter(&zonehash_lock);
4433 4438 /*
4434 4439 * Make sure zone doesn't already exist.
4435 4440 *
4436 4441 * If the system and zone are labeled,
4437 4442 * make sure no other zone exists that has the same label.
4438 4443 */
4439 4444 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4440 4445 (insert_label_hash &&
4441 4446 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4442 4447 zone_status_t status;
4443 4448
4444 4449 status = zone_status_get(ztmp);
4445 4450 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4446 4451 error = EEXIST;
4447 4452 else
4448 4453 error = EBUSY;
4449 4454
4450 4455 if (insert_label_hash)
4451 4456 error2 = ZE_LABELINUSE;
4452 4457
4453 4458 goto errout;
4454 4459 }
4455 4460
4456 4461 /*
4457 4462 * Don't allow zone creations which would cause one zone's rootpath to
4458 4463 * be accessible from that of another (non-global) zone.
4459 4464 */
4460 4465 if (zone_is_nested(zone->zone_rootpath)) {
4461 4466 error = EBUSY;
4462 4467 goto errout;
4463 4468 }
4464 4469
4465 4470 ASSERT(zonecount != 0); /* check for leaks */
4466 4471 if (zonecount + 1 > maxzones) {
4467 4472 error = ENOMEM;
4468 4473 goto errout;
4469 4474 }
4470 4475
4471 4476 if (zone_mount_count(zone->zone_rootpath) != 0) {
4472 4477 error = EBUSY;
4473 4478 error2 = ZE_AREMOUNTS;
4474 4479 goto errout;
4475 4480 }
4476 4481
4477 4482 /*
4478 4483 * Zone is still incomplete, but we need to drop all locks while
4479 4484 * zsched() initializes this zone's kernel process. We
4480 4485 * optimistically add the zone to the hashtable and associated
4481 4486 * lists so a parallel zone_create() doesn't try to create the
4482 4487 * same zone.
4483 4488 */
4484 4489 zonecount++;
4485 4490 (void) mod_hash_insert(zonehashbyid,
4486 4491 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4487 4492 (mod_hash_val_t)(uintptr_t)zone);
4488 4493 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4489 4494 (void) strcpy(str, zone->zone_name);
4490 4495 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4491 4496 (mod_hash_val_t)(uintptr_t)zone);
4492 4497 if (insert_label_hash) {
4493 4498 (void) mod_hash_insert(zonehashbylabel,
4494 4499 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4495 4500 zone->zone_flags |= ZF_HASHED_LABEL;
4496 4501 }
4497 4502
4498 4503 /*
4499 4504 * Insert into active list. At this point there are no 'hold's
4500 4505 * on the zone, but everyone else knows not to use it, so we can
4501 4506 * continue to use it. zsched() will do a zone_hold() if the
4502 4507 * newproc() is successful.
4503 4508 */
4504 4509 list_insert_tail(&zone_active, zone);
4505 4510 mutex_exit(&zonehash_lock);
4506 4511
4507 4512 zarg.zone = zone;
4508 4513 zarg.nvlist = rctls;
4509 4514 /*
4510 4515 * The process, task, and project rctls are probably wrong;
4511 4516 * we need an interface to get the default values of all rctls,
4512 4517 * and initialize zsched appropriately. I'm not sure that that
4513 4518 * makes much of a difference, though.
4514 4519 */
4515 4520 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4516 4521 if (error != 0) {
4517 4522 /*
4518 4523 * We need to undo all globally visible state.
4519 4524 */
4520 4525 mutex_enter(&zonehash_lock);
4521 4526 list_remove(&zone_active, zone);
4522 4527 if (zone->zone_flags & ZF_HASHED_LABEL) {
4523 4528 ASSERT(zone->zone_slabel != NULL);
4524 4529 (void) mod_hash_destroy(zonehashbylabel,
4525 4530 (mod_hash_key_t)zone->zone_slabel);
4526 4531 }
4527 4532 (void) mod_hash_destroy(zonehashbyname,
4528 4533 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4529 4534 (void) mod_hash_destroy(zonehashbyid,
4530 4535 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4531 4536 ASSERT(zonecount > 1);
4532 4537 zonecount--;
4533 4538 goto errout;
4534 4539 }
4535 4540
4536 4541 /*
4537 4542 * Zone creation can't fail from now on.
4538 4543 */
4539 4544
4540 4545 /*
4541 4546 * Create zone kstats
4542 4547 */
4543 4548 zone_kstat_create(zone);
4544 4549
4545 4550 /*
4546 4551 * Let the other lwps continue.
4547 4552 */
4548 4553 mutex_enter(&pp->p_lock);
4549 4554 if (curthread != pp->p_agenttp)
4550 4555 continuelwps(pp);
4551 4556 mutex_exit(&pp->p_lock);
4552 4557
4553 4558 /*
4554 4559 * Wait for zsched to finish initializing the zone.
4555 4560 */
4556 4561 zone_status_wait(zone, ZONE_IS_READY);
4557 4562 /*
4558 4563 * The zone is fully visible, so we can let mounts progress.
4559 4564 */
4560 4565 resume_mounts(zone);
4561 4566 if (rctls)
4562 4567 nvlist_free(rctls);
4563 4568
4564 4569 return (zoneid);
4565 4570
4566 4571 errout:
4567 4572 mutex_exit(&zonehash_lock);
4568 4573 /*
4569 4574 * Let the other lwps continue.
4570 4575 */
4571 4576 mutex_enter(&pp->p_lock);
4572 4577 if (curthread != pp->p_agenttp)
4573 4578 continuelwps(pp);
4574 4579 mutex_exit(&pp->p_lock);
4575 4580
4576 4581 resume_mounts(zone);
4577 4582 if (rctls)
4578 4583 nvlist_free(rctls);
4579 4584 /*
4580 4585 * There is currently one reference to the zone, a cred_ref from
4581 4586 * zone_kcred. To free the zone, we call crfree, which will call
4582 4587 * zone_cred_rele, which will call zone_free.
4583 4588 */
4584 4589 ASSERT(zone->zone_cred_ref == 1);
4585 4590 ASSERT(zone->zone_kcred->cr_ref == 1);
4586 4591 ASSERT(zone->zone_ref == 0);
4587 4592 zkcr = zone->zone_kcred;
4588 4593 zone->zone_kcred = NULL;
4589 4594 crfree(zkcr); /* triggers call to zone_free */
4590 4595 return (zone_create_error(error, error2, extended_error));
4591 4596 }
4592 4597
4593 4598 /*
4594 4599 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4595 4600 * the heavy lifting. initname is the path to the program to launch
4596 4601 * at the "top" of the zone; if this is NULL, we use the system default,
4597 4602 * which is stored at zone_default_initname.
4598 4603 */
4599 4604 static int
4600 4605 zone_boot(zoneid_t zoneid)
4601 4606 {
4602 4607 int err;
4603 4608 zone_t *zone;
4604 4609
4605 4610 if (secpolicy_zone_config(CRED()) != 0)
4606 4611 return (set_errno(EPERM));
4607 4612 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4608 4613 return (set_errno(EINVAL));
4609 4614
4610 4615 mutex_enter(&zonehash_lock);
4611 4616 /*
4612 4617 * Look for zone under hash lock to prevent races with calls to
4613 4618 * zone_shutdown, zone_destroy, etc.
4614 4619 */
4615 4620 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4616 4621 mutex_exit(&zonehash_lock);
4617 4622 return (set_errno(EINVAL));
4618 4623 }
4619 4624
4620 4625 mutex_enter(&zone_status_lock);
4621 4626 if (zone_status_get(zone) != ZONE_IS_READY) {
4622 4627 mutex_exit(&zone_status_lock);
4623 4628 mutex_exit(&zonehash_lock);
4624 4629 return (set_errno(EINVAL));
4625 4630 }
4626 4631 zone_status_set(zone, ZONE_IS_BOOTING);
4627 4632 mutex_exit(&zone_status_lock);
4628 4633
4629 4634 zone_hold(zone); /* so we can use the zone_t later */
4630 4635 mutex_exit(&zonehash_lock);
4631 4636
4632 4637 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4633 4638 zone_rele(zone);
4634 4639 return (set_errno(EINTR));
4635 4640 }
4636 4641
4637 4642 /*
4638 4643 * Boot (starting init) might have failed, in which case the zone
4639 4644 * will go to the SHUTTING_DOWN state; an appropriate errno will
4640 4645 * be placed in zone->zone_boot_err, and so we return that.
4641 4646 */
4642 4647 err = zone->zone_boot_err;
4643 4648 zone_rele(zone);
4644 4649 return (err ? set_errno(err) : 0);
4645 4650 }
4646 4651
4647 4652 /*
4648 4653 * Kills all user processes in the zone, waiting for them all to exit
4649 4654 * before returning.
4650 4655 */
4651 4656 static int
4652 4657 zone_empty(zone_t *zone)
4653 4658 {
4654 4659 int waitstatus;
4655 4660
4656 4661 /*
4657 4662 * We need to drop zonehash_lock before killing all
4658 4663 * processes, otherwise we'll deadlock with zone_find_*
4659 4664 * which can be called from the exit path.
4660 4665 */
4661 4666 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4662 4667 while ((waitstatus = zone_status_timedwait_sig(zone,
4663 4668 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4664 4669 killall(zone->zone_id);
4665 4670 }
4666 4671 /*
4667 4672 * return EINTR if we were signaled
4668 4673 */
4669 4674 if (waitstatus == 0)
4670 4675 return (EINTR);
4671 4676 return (0);
4672 4677 }
4673 4678
4674 4679 /*
4675 4680 * This function implements the policy for zone visibility.
4676 4681 *
4677 4682 * In standard Solaris, a non-global zone can only see itself.
4678 4683 *
4679 4684 * In Trusted Extensions, a labeled zone can lookup any zone whose label
4680 4685 * it dominates. For this test, the label of the global zone is treated as
4681 4686 * admin_high so it is special-cased instead of being checked for dominance.
4682 4687 *
4683 4688 * Returns true if zone attributes are viewable, false otherwise.
4684 4689 */
4685 4690 static boolean_t
4686 4691 zone_list_access(zone_t *zone)
4687 4692 {
4688 4693
4689 4694 if (curproc->p_zone == global_zone ||
4690 4695 curproc->p_zone == zone) {
4691 4696 return (B_TRUE);
4692 4697 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4693 4698 bslabel_t *curproc_label;
4694 4699 bslabel_t *zone_label;
4695 4700
4696 4701 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4697 4702 zone_label = label2bslabel(zone->zone_slabel);
4698 4703
4699 4704 if (zone->zone_id != GLOBAL_ZONEID &&
4700 4705 bldominates(curproc_label, zone_label)) {
4701 4706 return (B_TRUE);
4702 4707 } else {
4703 4708 return (B_FALSE);
4704 4709 }
4705 4710 } else {
4706 4711 return (B_FALSE);
4707 4712 }
4708 4713 }
4709 4714
4710 4715 /*
4711 4716 * Systemcall to start the zone's halt sequence. By the time this
4712 4717 * function successfully returns, all user processes and kernel threads
4713 4718 * executing in it will have exited, ZSD shutdown callbacks executed,
4714 4719 * and the zone status set to ZONE_IS_DOWN.
4715 4720 *
4716 4721 * It is possible that the call will interrupt itself if the caller is the
4717 4722 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4718 4723 */
4719 4724 static int
4720 4725 zone_shutdown(zoneid_t zoneid)
4721 4726 {
4722 4727 int error;
4723 4728 zone_t *zone;
4724 4729 zone_status_t status;
4725 4730
4726 4731 if (secpolicy_zone_config(CRED()) != 0)
4727 4732 return (set_errno(EPERM));
4728 4733 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4729 4734 return (set_errno(EINVAL));
4730 4735
4731 4736 mutex_enter(&zonehash_lock);
4732 4737 /*
4733 4738 * Look for zone under hash lock to prevent races with other
4734 4739 * calls to zone_shutdown and zone_destroy.
4735 4740 */
4736 4741 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4737 4742 mutex_exit(&zonehash_lock);
4738 4743 return (set_errno(EINVAL));
4739 4744 }
4740 4745
4741 4746 /*
4742 4747 * We have to drop zonehash_lock before calling block_mounts.
4743 4748 * Hold the zone so we can continue to use the zone_t.
4744 4749 */
4745 4750 zone_hold(zone);
4746 4751 mutex_exit(&zonehash_lock);
4747 4752
4748 4753 /*
4749 4754 * Block mounts so that VFS_MOUNT() can get an accurate view of
4750 4755 * the zone's status with regards to ZONE_IS_SHUTTING down.
4751 4756 *
4752 4757 * e.g. NFS can fail the mount if it determines that the zone
4753 4758 * has already begun the shutdown sequence.
4754 4759 *
4755 4760 */
4756 4761 if (block_mounts(zone) == 0) {
4757 4762 zone_rele(zone);
4758 4763 return (set_errno(EINTR));
4759 4764 }
4760 4765
4761 4766 mutex_enter(&zonehash_lock);
4762 4767 mutex_enter(&zone_status_lock);
4763 4768 status = zone_status_get(zone);
4764 4769 /*
4765 4770 * Fail if the zone isn't fully initialized yet.
4766 4771 */
4767 4772 if (status < ZONE_IS_READY) {
4768 4773 mutex_exit(&zone_status_lock);
4769 4774 mutex_exit(&zonehash_lock);
4770 4775 resume_mounts(zone);
4771 4776 zone_rele(zone);
4772 4777 return (set_errno(EINVAL));
4773 4778 }
4774 4779 /*
4775 4780 * If conditions required for zone_shutdown() to return have been met,
4776 4781 * return success.
4777 4782 */
4778 4783 if (status >= ZONE_IS_DOWN) {
4779 4784 mutex_exit(&zone_status_lock);
4780 4785 mutex_exit(&zonehash_lock);
4781 4786 resume_mounts(zone);
4782 4787 zone_rele(zone);
4783 4788 return (0);
4784 4789 }
4785 4790 /*
4786 4791 * If zone_shutdown() hasn't been called before, go through the motions.
4787 4792 * If it has, there's nothing to do but wait for the kernel threads to
4788 4793 * drain.
4789 4794 */
4790 4795 if (status < ZONE_IS_EMPTY) {
4791 4796 uint_t ntasks;
4792 4797
4793 4798 mutex_enter(&zone->zone_lock);
4794 4799 if ((ntasks = zone->zone_ntasks) != 1) {
4795 4800 /*
4796 4801 * There's still stuff running.
4797 4802 */
4798 4803 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4799 4804 }
4800 4805 mutex_exit(&zone->zone_lock);
4801 4806 if (ntasks == 1) {
4802 4807 /*
4803 4808 * The only way to create another task is through
4804 4809 * zone_enter(), which will block until we drop
4805 4810 * zonehash_lock. The zone is empty.
4806 4811 */
4807 4812 if (zone->zone_kthreads == NULL) {
4808 4813 /*
4809 4814 * Skip ahead to ZONE_IS_DOWN
4810 4815 */
4811 4816 zone_status_set(zone, ZONE_IS_DOWN);
4812 4817 } else {
4813 4818 zone_status_set(zone, ZONE_IS_EMPTY);
4814 4819 }
4815 4820 }
4816 4821 }
4817 4822 mutex_exit(&zone_status_lock);
4818 4823 mutex_exit(&zonehash_lock);
4819 4824 resume_mounts(zone);
4820 4825
4821 4826 if (error = zone_empty(zone)) {
4822 4827 zone_rele(zone);
4823 4828 return (set_errno(error));
4824 4829 }
4825 4830 /*
4826 4831 * After the zone status goes to ZONE_IS_DOWN this zone will no
4827 4832 * longer be notified of changes to the pools configuration, so
4828 4833 * in order to not end up with a stale pool pointer, we point
4829 4834 * ourselves at the default pool and remove all resource
4830 4835 * visibility. This is especially important as the zone_t may
4831 4836 * languish on the deathrow for a very long time waiting for
4832 4837 * cred's to drain out.
4833 4838 *
4834 4839 * This rebinding of the zone can happen multiple times
4835 4840 * (presumably due to interrupted or parallel systemcalls)
4836 4841 * without any adverse effects.
4837 4842 */
4838 4843 if (pool_lock_intr() != 0) {
4839 4844 zone_rele(zone);
4840 4845 return (set_errno(EINTR));
4841 4846 }
4842 4847 if (pool_state == POOL_ENABLED) {
4843 4848 mutex_enter(&cpu_lock);
4844 4849 zone_pool_set(zone, pool_default);
4845 4850 /*
4846 4851 * The zone no longer needs to be able to see any cpus.
4847 4852 */
4848 4853 zone_pset_set(zone, ZONE_PS_INVAL);
4849 4854 mutex_exit(&cpu_lock);
4850 4855 }
4851 4856 pool_unlock();
4852 4857
4853 4858 /*
4854 4859 * ZSD shutdown callbacks can be executed multiple times, hence
4855 4860 * it is safe to not be holding any locks across this call.
4856 4861 */
4857 4862 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4858 4863
4859 4864 mutex_enter(&zone_status_lock);
4860 4865 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4861 4866 zone_status_set(zone, ZONE_IS_DOWN);
4862 4867 mutex_exit(&zone_status_lock);
4863 4868
4864 4869 /*
4865 4870 * Wait for kernel threads to drain.
4866 4871 */
4867 4872 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4868 4873 zone_rele(zone);
4869 4874 return (set_errno(EINTR));
4870 4875 }
4871 4876
4872 4877 /*
4873 4878 * Zone can be become down/destroyable even if the above wait
4874 4879 * returns EINTR, so any code added here may never execute.
4875 4880 * (i.e. don't add code here)
4876 4881 */
4877 4882
4878 4883 zone_rele(zone);
4879 4884 return (0);
4880 4885 }
4881 4886
4882 4887 /*
4883 4888 * Log the specified zone's reference counts. The caller should not be
4884 4889 * holding the zone's zone_lock.
4885 4890 */
4886 4891 static void
4887 4892 zone_log_refcounts(zone_t *zone)
4888 4893 {
4889 4894 char *buffer;
4890 4895 char *buffer_position;
4891 4896 uint32_t buffer_size;
4892 4897 uint32_t index;
4893 4898 uint_t ref;
4894 4899 uint_t cred_ref;
4895 4900
4896 4901 /*
4897 4902 * Construct a string representing the subsystem-specific reference
4898 4903 * counts. The counts are printed in ascending order by index into the
4899 4904 * zone_t::zone_subsys_ref array. The list will be surrounded by
4900 4905 * square brackets [] and will only contain nonzero reference counts.
4901 4906 *
4902 4907 * The buffer will hold two square bracket characters plus ten digits,
4903 4908 * one colon, one space, one comma, and some characters for a
4904 4909 * subsystem name per subsystem-specific reference count. (Unsigned 32-
4905 4910 * bit integers have at most ten decimal digits.) The last
4906 4911 * reference count's comma is replaced by the closing square
4907 4912 * bracket and a NULL character to terminate the string.
4908 4913 *
4909 4914 * NOTE: We have to grab the zone's zone_lock to create a consistent
4910 4915 * snapshot of the zone's reference counters.
4911 4916 *
4912 4917 * First, figure out how much space the string buffer will need.
4913 4918 * The buffer's size is stored in buffer_size.
4914 4919 */
4915 4920 buffer_size = 2; /* for the square brackets */
4916 4921 mutex_enter(&zone->zone_lock);
4917 4922 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4918 4923 ref = zone->zone_ref;
4919 4924 cred_ref = zone->zone_cred_ref;
4920 4925 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4921 4926 if (zone->zone_subsys_ref[index] != 0)
4922 4927 buffer_size += strlen(zone_ref_subsys_names[index]) +
4923 4928 13;
4924 4929 if (buffer_size == 2) {
4925 4930 /*
4926 4931 * No subsystems had nonzero reference counts. Don't bother
4927 4932 * with allocating a buffer; just log the general-purpose and
4928 4933 * credential reference counts.
4929 4934 */
4930 4935 mutex_exit(&zone->zone_lock);
4931 4936 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4932 4937 "Zone '%s' (ID: %d) is shutting down, but %u zone "
4933 4938 "references and %u credential references are still extant",
4934 4939 zone->zone_name, zone->zone_id, ref, cred_ref);
4935 4940 return;
4936 4941 }
4937 4942
4938 4943 /*
4939 4944 * buffer_size contains the exact number of characters that the
4940 4945 * buffer will need. Allocate the buffer and fill it with nonzero
4941 4946 * subsystem-specific reference counts. Surround the results with
4942 4947 * square brackets afterwards.
4943 4948 */
4944 4949 buffer = kmem_alloc(buffer_size, KM_SLEEP);
4945 4950 buffer_position = &buffer[1];
4946 4951 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
4947 4952 /*
4948 4953 * NOTE: The DDI's version of sprintf() returns a pointer to
4949 4954 * the modified buffer rather than the number of bytes written
4950 4955 * (as in snprintf(3C)). This is unfortunate and annoying.
4951 4956 * Therefore, we'll use snprintf() with INT_MAX to get the
4952 4957 * number of bytes written. Using INT_MAX is safe because
4953 4958 * the buffer is perfectly sized for the data: we'll never
4954 4959 * overrun the buffer.
4955 4960 */
4956 4961 if (zone->zone_subsys_ref[index] != 0)
4957 4962 buffer_position += snprintf(buffer_position, INT_MAX,
4958 4963 "%s: %u,", zone_ref_subsys_names[index],
4959 4964 zone->zone_subsys_ref[index]);
4960 4965 }
4961 4966 mutex_exit(&zone->zone_lock);
4962 4967 buffer[0] = '[';
4963 4968 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
4964 4969 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
4965 4970 buffer_position[-1] = ']';
4966 4971
4967 4972 /*
4968 4973 * Log the reference counts and free the message buffer.
4969 4974 */
4970 4975 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4971 4976 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
4972 4977 "%u credential references are still extant %s", zone->zone_name,
4973 4978 zone->zone_id, ref, cred_ref, buffer);
4974 4979 kmem_free(buffer, buffer_size);
4975 4980 }
4976 4981
4977 4982 /*
4978 4983 * Systemcall entry point to finalize the zone halt process. The caller
4979 4984 * must have already successfully called zone_shutdown().
4980 4985 *
4981 4986 * Upon successful completion, the zone will have been fully destroyed:
4982 4987 * zsched will have exited, destructor callbacks executed, and the zone
4983 4988 * removed from the list of active zones.
4984 4989 */
4985 4990 static int
4986 4991 zone_destroy(zoneid_t zoneid)
4987 4992 {
4988 4993 uint64_t uniqid;
4989 4994 zone_t *zone;
4990 4995 zone_status_t status;
4991 4996 clock_t wait_time;
4992 4997 boolean_t log_refcounts;
4993 4998
4994 4999 if (secpolicy_zone_config(CRED()) != 0)
4995 5000 return (set_errno(EPERM));
4996 5001 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4997 5002 return (set_errno(EINVAL));
4998 5003
4999 5004 mutex_enter(&zonehash_lock);
5000 5005 /*
5001 5006 * Look for zone under hash lock to prevent races with other
5002 5007 * calls to zone_destroy.
5003 5008 */
5004 5009 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5005 5010 mutex_exit(&zonehash_lock);
5006 5011 return (set_errno(EINVAL));
5007 5012 }
5008 5013
5009 5014 if (zone_mount_count(zone->zone_rootpath) != 0) {
5010 5015 mutex_exit(&zonehash_lock);
5011 5016 return (set_errno(EBUSY));
5012 5017 }
5013 5018 mutex_enter(&zone_status_lock);
5014 5019 status = zone_status_get(zone);
5015 5020 if (status < ZONE_IS_DOWN) {
5016 5021 mutex_exit(&zone_status_lock);
5017 5022 mutex_exit(&zonehash_lock);
5018 5023 return (set_errno(EBUSY));
5019 5024 } else if (status == ZONE_IS_DOWN) {
5020 5025 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5021 5026 }
5022 5027 mutex_exit(&zone_status_lock);
5023 5028 zone_hold(zone);
5024 5029 mutex_exit(&zonehash_lock);
5025 5030
5026 5031 /*
5027 5032 * wait for zsched to exit
5028 5033 */
5029 5034 zone_status_wait(zone, ZONE_IS_DEAD);
5030 5035 zone_zsd_callbacks(zone, ZSD_DESTROY);
5031 5036 zone->zone_netstack = NULL;
5032 5037 uniqid = zone->zone_uniqid;
5033 5038 zone_rele(zone);
5034 5039 zone = NULL; /* potentially free'd */
5035 5040
5036 5041 log_refcounts = B_FALSE;
5037 5042 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5038 5043 mutex_enter(&zonehash_lock);
5039 5044 for (; /* ever */; ) {
5040 5045 boolean_t unref;
5041 5046 boolean_t refs_have_been_logged;
5042 5047
5043 5048 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5044 5049 zone->zone_uniqid != uniqid) {
5045 5050 /*
5046 5051 * The zone has gone away. Necessary conditions
5047 5052 * are met, so we return success.
5048 5053 */
5049 5054 mutex_exit(&zonehash_lock);
5050 5055 return (0);
5051 5056 }
5052 5057 mutex_enter(&zone->zone_lock);
5053 5058 unref = ZONE_IS_UNREF(zone);
5054 5059 refs_have_been_logged = (zone->zone_flags &
5055 5060 ZF_REFCOUNTS_LOGGED);
5056 5061 mutex_exit(&zone->zone_lock);
5057 5062 if (unref) {
5058 5063 /*
5059 5064 * There is only one reference to the zone -- that
5060 5065 * added when the zone was added to the hashtables --
5061 5066 * and things will remain this way until we drop
5062 5067 * zonehash_lock... we can go ahead and cleanup the
5063 5068 * zone.
5064 5069 */
5065 5070 break;
5066 5071 }
5067 5072
5068 5073 /*
5069 5074 * Wait for zone_rele_common() or zone_cred_rele() to signal
5070 5075 * zone_destroy_cv. zone_destroy_cv is signaled only when
5071 5076 * some zone's general-purpose reference count reaches one.
5072 5077 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5073 5078 * on zone_destroy_cv, then log the zone's reference counts and
5074 5079 * continue to wait for zone_rele() and zone_cred_rele().
5075 5080 */
5076 5081 if (!refs_have_been_logged) {
5077 5082 if (!log_refcounts) {
5078 5083 /*
5079 5084 * This thread hasn't timed out waiting on
5080 5085 * zone_destroy_cv yet. Wait wait_time clock
5081 5086 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5082 5087 * seconds) for the zone's references to clear.
5083 5088 */
5084 5089 ASSERT(wait_time > 0);
5085 5090 wait_time = cv_reltimedwait_sig(
5086 5091 &zone_destroy_cv, &zonehash_lock, wait_time,
5087 5092 TR_SEC);
5088 5093 if (wait_time > 0) {
5089 5094 /*
5090 5095 * A thread in zone_rele() or
5091 5096 * zone_cred_rele() signaled
5092 5097 * zone_destroy_cv before this thread's
5093 5098 * wait timed out. The zone might have
5094 5099 * only one reference left; find out!
5095 5100 */
5096 5101 continue;
5097 5102 } else if (wait_time == 0) {
5098 5103 /* The thread's process was signaled. */
5099 5104 mutex_exit(&zonehash_lock);
5100 5105 return (set_errno(EINTR));
5101 5106 }
5102 5107
5103 5108 /*
5104 5109 * The thread timed out while waiting on
5105 5110 * zone_destroy_cv. Even though the thread
5106 5111 * timed out, it has to check whether another
5107 5112 * thread woke up from zone_destroy_cv and
5108 5113 * destroyed the zone.
5109 5114 *
5110 5115 * If the zone still exists and has more than
5111 5116 * one unreleased general-purpose reference,
5112 5117 * then log the zone's reference counts.
5113 5118 */
5114 5119 log_refcounts = B_TRUE;
5115 5120 continue;
5116 5121 }
5117 5122
5118 5123 /*
5119 5124 * The thread already timed out on zone_destroy_cv while
5120 5125 * waiting for subsystems to release the zone's last
5121 5126 * general-purpose references. Log the zone's reference
5122 5127 * counts and wait indefinitely on zone_destroy_cv.
5123 5128 */
5124 5129 zone_log_refcounts(zone);
5125 5130 }
5126 5131 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5127 5132 /* The thread's process was signaled. */
5128 5133 mutex_exit(&zonehash_lock);
5129 5134 return (set_errno(EINTR));
5130 5135 }
5131 5136 }
5132 5137
5133 5138 /*
5134 5139 * Remove CPU cap for this zone now since we're not going to
5135 5140 * fail below this point.
5136 5141 */
5137 5142 cpucaps_zone_remove(zone);
5138 5143
5139 5144 /* Get rid of the zone's kstats */
5140 5145 zone_kstat_delete(zone);
5141 5146
5142 5147 /* remove the pfexecd doors */
5143 5148 if (zone->zone_pfexecd != NULL) {
5144 5149 klpd_freelist(&zone->zone_pfexecd);
5145 5150 zone->zone_pfexecd = NULL;
5146 5151 }
5147 5152
5148 5153 /* free brand specific data */
5149 5154 if (ZONE_IS_BRANDED(zone))
5150 5155 ZBROP(zone)->b_free_brand_data(zone);
5151 5156
5152 5157 /* Say goodbye to brand framework. */
5153 5158 brand_unregister_zone(zone->zone_brand);
5154 5159
5155 5160 /*
5156 5161 * It is now safe to let the zone be recreated; remove it from the
5157 5162 * lists. The memory will not be freed until the last cred
5158 5163 * reference goes away.
5159 5164 */
5160 5165 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
5161 5166 zonecount--;
5162 5167 /* remove from active list and hash tables */
5163 5168 list_remove(&zone_active, zone);
5164 5169 (void) mod_hash_destroy(zonehashbyname,
5165 5170 (mod_hash_key_t)zone->zone_name);
5166 5171 (void) mod_hash_destroy(zonehashbyid,
5167 5172 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5168 5173 if (zone->zone_flags & ZF_HASHED_LABEL)
5169 5174 (void) mod_hash_destroy(zonehashbylabel,
5170 5175 (mod_hash_key_t)zone->zone_slabel);
5171 5176 mutex_exit(&zonehash_lock);
5172 5177
5173 5178 /*
5174 5179 * Release the root vnode; we're not using it anymore. Nor should any
5175 5180 * other thread that might access it exist.
5176 5181 */
5177 5182 if (zone->zone_rootvp != NULL) {
5178 5183 VN_RELE(zone->zone_rootvp);
5179 5184 zone->zone_rootvp = NULL;
5180 5185 }
5181 5186
5182 5187 /* add to deathrow list */
5183 5188 mutex_enter(&zone_deathrow_lock);
5184 5189 list_insert_tail(&zone_deathrow, zone);
5185 5190 mutex_exit(&zone_deathrow_lock);
5186 5191
5187 5192 /*
5188 5193 * Drop last reference (which was added by zsched()), this will
5189 5194 * free the zone unless there are outstanding cred references.
5190 5195 */
5191 5196 zone_rele(zone);
5192 5197 return (0);
5193 5198 }
5194 5199
5195 5200 /*
5196 5201 * Systemcall entry point for zone_getattr(2).
5197 5202 */
5198 5203 static ssize_t
5199 5204 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5200 5205 {
5201 5206 size_t size;
5202 5207 int error = 0, err;
5203 5208 zone_t *zone;
5204 5209 char *zonepath;
5205 5210 char *outstr;
5206 5211 zone_status_t zone_status;
5207 5212 pid_t initpid;
5208 5213 boolean_t global = (curzone == global_zone);
5209 5214 boolean_t inzone = (curzone->zone_id == zoneid);
5210 5215 ushort_t flags;
5211 5216 zone_net_data_t *zbuf;
5212 5217
5213 5218 mutex_enter(&zonehash_lock);
5214 5219 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5215 5220 mutex_exit(&zonehash_lock);
5216 5221 return (set_errno(EINVAL));
5217 5222 }
5218 5223 zone_status = zone_status_get(zone);
5219 5224 if (zone_status < ZONE_IS_INITIALIZED) {
5220 5225 mutex_exit(&zonehash_lock);
5221 5226 return (set_errno(EINVAL));
5222 5227 }
5223 5228 zone_hold(zone);
5224 5229 mutex_exit(&zonehash_lock);
5225 5230
5226 5231 /*
5227 5232 * If not in the global zone, don't show information about other zones,
5228 5233 * unless the system is labeled and the local zone's label dominates
5229 5234 * the other zone.
5230 5235 */
5231 5236 if (!zone_list_access(zone)) {
5232 5237 zone_rele(zone);
5233 5238 return (set_errno(EINVAL));
5234 5239 }
5235 5240
5236 5241 switch (attr) {
5237 5242 case ZONE_ATTR_ROOT:
5238 5243 if (global) {
5239 5244 /*
5240 5245 * Copy the path to trim the trailing "/" (except for
5241 5246 * the global zone).
5242 5247 */
5243 5248 if (zone != global_zone)
5244 5249 size = zone->zone_rootpathlen - 1;
5245 5250 else
5246 5251 size = zone->zone_rootpathlen;
5247 5252 zonepath = kmem_alloc(size, KM_SLEEP);
5248 5253 bcopy(zone->zone_rootpath, zonepath, size);
5249 5254 zonepath[size - 1] = '\0';
5250 5255 } else {
5251 5256 if (inzone || !is_system_labeled()) {
5252 5257 /*
5253 5258 * Caller is not in the global zone.
5254 5259 * if the query is on the current zone
5255 5260 * or the system is not labeled,
5256 5261 * just return faked-up path for current zone.
5257 5262 */
5258 5263 zonepath = "/";
5259 5264 size = 2;
5260 5265 } else {
5261 5266 /*
5262 5267 * Return related path for current zone.
5263 5268 */
5264 5269 int prefix_len = strlen(zone_prefix);
5265 5270 int zname_len = strlen(zone->zone_name);
5266 5271
5267 5272 size = prefix_len + zname_len + 1;
5268 5273 zonepath = kmem_alloc(size, KM_SLEEP);
5269 5274 bcopy(zone_prefix, zonepath, prefix_len);
5270 5275 bcopy(zone->zone_name, zonepath +
5271 5276 prefix_len, zname_len);
5272 5277 zonepath[size - 1] = '\0';
5273 5278 }
5274 5279 }
5275 5280 if (bufsize > size)
5276 5281 bufsize = size;
5277 5282 if (buf != NULL) {
5278 5283 err = copyoutstr(zonepath, buf, bufsize, NULL);
5279 5284 if (err != 0 && err != ENAMETOOLONG)
5280 5285 error = EFAULT;
5281 5286 }
5282 5287 if (global || (is_system_labeled() && !inzone))
5283 5288 kmem_free(zonepath, size);
5284 5289 break;
5285 5290
5286 5291 case ZONE_ATTR_NAME:
5287 5292 size = strlen(zone->zone_name) + 1;
5288 5293 if (bufsize > size)
5289 5294 bufsize = size;
5290 5295 if (buf != NULL) {
5291 5296 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5292 5297 if (err != 0 && err != ENAMETOOLONG)
5293 5298 error = EFAULT;
5294 5299 }
5295 5300 break;
5296 5301
5297 5302 case ZONE_ATTR_STATUS:
5298 5303 /*
5299 5304 * Since we're not holding zonehash_lock, the zone status
5300 5305 * may be anything; leave it up to userland to sort it out.
5301 5306 */
5302 5307 size = sizeof (zone_status);
5303 5308 if (bufsize > size)
5304 5309 bufsize = size;
5305 5310 zone_status = zone_status_get(zone);
5306 5311 if (buf != NULL &&
5307 5312 copyout(&zone_status, buf, bufsize) != 0)
5308 5313 error = EFAULT;
5309 5314 break;
5310 5315 case ZONE_ATTR_FLAGS:
5311 5316 size = sizeof (zone->zone_flags);
5312 5317 if (bufsize > size)
5313 5318 bufsize = size;
5314 5319 flags = zone->zone_flags;
5315 5320 if (buf != NULL &&
5316 5321 copyout(&flags, buf, bufsize) != 0)
5317 5322 error = EFAULT;
5318 5323 break;
5319 5324 case ZONE_ATTR_PRIVSET:
5320 5325 size = sizeof (priv_set_t);
5321 5326 if (bufsize > size)
5322 5327 bufsize = size;
5323 5328 if (buf != NULL &&
5324 5329 copyout(zone->zone_privset, buf, bufsize) != 0)
5325 5330 error = EFAULT;
5326 5331 break;
5327 5332 case ZONE_ATTR_UNIQID:
5328 5333 size = sizeof (zone->zone_uniqid);
5329 5334 if (bufsize > size)
5330 5335 bufsize = size;
5331 5336 if (buf != NULL &&
5332 5337 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5333 5338 error = EFAULT;
5334 5339 break;
5335 5340 case ZONE_ATTR_POOLID:
5336 5341 {
5337 5342 pool_t *pool;
5338 5343 poolid_t poolid;
5339 5344
5340 5345 if (pool_lock_intr() != 0) {
5341 5346 error = EINTR;
5342 5347 break;
5343 5348 }
5344 5349 pool = zone_pool_get(zone);
5345 5350 poolid = pool->pool_id;
5346 5351 pool_unlock();
5347 5352 size = sizeof (poolid);
5348 5353 if (bufsize > size)
5349 5354 bufsize = size;
5350 5355 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5351 5356 error = EFAULT;
5352 5357 }
5353 5358 break;
5354 5359 case ZONE_ATTR_SLBL:
5355 5360 size = sizeof (bslabel_t);
5356 5361 if (bufsize > size)
5357 5362 bufsize = size;
5358 5363 if (zone->zone_slabel == NULL)
5359 5364 error = EINVAL;
5360 5365 else if (buf != NULL &&
5361 5366 copyout(label2bslabel(zone->zone_slabel), buf,
5362 5367 bufsize) != 0)
5363 5368 error = EFAULT;
5364 5369 break;
5365 5370 case ZONE_ATTR_INITPID:
5366 5371 size = sizeof (initpid);
5367 5372 if (bufsize > size)
5368 5373 bufsize = size;
5369 5374 initpid = zone->zone_proc_initpid;
5370 5375 if (initpid == -1) {
5371 5376 error = ESRCH;
5372 5377 break;
5373 5378 }
5374 5379 if (buf != NULL &&
5375 5380 copyout(&initpid, buf, bufsize) != 0)
5376 5381 error = EFAULT;
5377 5382 break;
5378 5383 case ZONE_ATTR_BRAND:
5379 5384 size = strlen(zone->zone_brand->b_name) + 1;
5380 5385
5381 5386 if (bufsize > size)
5382 5387 bufsize = size;
5383 5388 if (buf != NULL) {
5384 5389 err = copyoutstr(zone->zone_brand->b_name, buf,
5385 5390 bufsize, NULL);
5386 5391 if (err != 0 && err != ENAMETOOLONG)
5387 5392 error = EFAULT;
5388 5393 }
5389 5394 break;
5390 5395 case ZONE_ATTR_INITNAME:
5391 5396 size = strlen(zone->zone_initname) + 1;
5392 5397 if (bufsize > size)
5393 5398 bufsize = size;
5394 5399 if (buf != NULL) {
5395 5400 err = copyoutstr(zone->zone_initname, buf, bufsize,
5396 5401 NULL);
5397 5402 if (err != 0 && err != ENAMETOOLONG)
5398 5403 error = EFAULT;
5399 5404 }
5400 5405 break;
5401 5406 case ZONE_ATTR_BOOTARGS:
5402 5407 if (zone->zone_bootargs == NULL)
5403 5408 outstr = "";
5404 5409 else
5405 5410 outstr = zone->zone_bootargs;
5406 5411 size = strlen(outstr) + 1;
5407 5412 if (bufsize > size)
5408 5413 bufsize = size;
5409 5414 if (buf != NULL) {
5410 5415 err = copyoutstr(outstr, buf, bufsize, NULL);
5411 5416 if (err != 0 && err != ENAMETOOLONG)
5412 5417 error = EFAULT;
5413 5418 }
5414 5419 break;
5415 5420 case ZONE_ATTR_PHYS_MCAP:
5416 5421 size = sizeof (zone->zone_phys_mcap);
5417 5422 if (bufsize > size)
5418 5423 bufsize = size;
5419 5424 if (buf != NULL &&
5420 5425 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5421 5426 error = EFAULT;
5422 5427 break;
5423 5428 case ZONE_ATTR_SCHED_CLASS:
5424 5429 mutex_enter(&class_lock);
5425 5430
5426 5431 if (zone->zone_defaultcid >= loaded_classes)
5427 5432 outstr = "";
5428 5433 else
5429 5434 outstr = sclass[zone->zone_defaultcid].cl_name;
5430 5435 size = strlen(outstr) + 1;
5431 5436 if (bufsize > size)
5432 5437 bufsize = size;
5433 5438 if (buf != NULL) {
5434 5439 err = copyoutstr(outstr, buf, bufsize, NULL);
5435 5440 if (err != 0 && err != ENAMETOOLONG)
5436 5441 error = EFAULT;
5437 5442 }
5438 5443
5439 5444 mutex_exit(&class_lock);
5440 5445 break;
5441 5446 case ZONE_ATTR_HOSTID:
5442 5447 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5443 5448 bufsize == sizeof (zone->zone_hostid)) {
5444 5449 size = sizeof (zone->zone_hostid);
5445 5450 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5446 5451 bufsize) != 0)
5447 5452 error = EFAULT;
5448 5453 } else {
5449 5454 error = EINVAL;
5450 5455 }
5451 5456 break;
5452 5457 case ZONE_ATTR_FS_ALLOWED:
5453 5458 if (zone->zone_fs_allowed == NULL)
5454 5459 outstr = "";
5455 5460 else
5456 5461 outstr = zone->zone_fs_allowed;
5457 5462 size = strlen(outstr) + 1;
5458 5463 if (bufsize > size)
5459 5464 bufsize = size;
5460 5465 if (buf != NULL) {
5461 5466 err = copyoutstr(outstr, buf, bufsize, NULL);
5462 5467 if (err != 0 && err != ENAMETOOLONG)
5463 5468 error = EFAULT;
5464 5469 }
5465 5470 break;
5466 5471 case ZONE_ATTR_NETWORK:
5467 5472 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5468 5473 if (copyin(buf, zbuf, bufsize) != 0) {
5469 5474 error = EFAULT;
5470 5475 } else {
5471 5476 error = zone_get_network(zoneid, zbuf);
5472 5477 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5473 5478 error = EFAULT;
5474 5479 }
5475 5480 kmem_free(zbuf, bufsize);
5476 5481 break;
5477 5482 default:
5478 5483 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5479 5484 size = bufsize;
5480 5485 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5481 5486 } else {
5482 5487 error = EINVAL;
5483 5488 }
5484 5489 }
5485 5490 zone_rele(zone);
5486 5491
5487 5492 if (error)
5488 5493 return (set_errno(error));
5489 5494 return ((ssize_t)size);
5490 5495 }
5491 5496
5492 5497 /*
5493 5498 * Systemcall entry point for zone_setattr(2).
5494 5499 */
5495 5500 /*ARGSUSED*/
5496 5501 static int
5497 5502 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5498 5503 {
5499 5504 zone_t *zone;
5500 5505 zone_status_t zone_status;
5501 5506 int err = -1;
5502 5507 zone_net_data_t *zbuf;
5503 5508
5504 5509 if (secpolicy_zone_config(CRED()) != 0)
5505 5510 return (set_errno(EPERM));
5506 5511
5507 5512 /*
5508 5513 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5509 5514 * global zone.
5510 5515 */
5511 5516 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5512 5517 return (set_errno(EINVAL));
5513 5518 }
5514 5519
5515 5520 mutex_enter(&zonehash_lock);
5516 5521 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5517 5522 mutex_exit(&zonehash_lock);
5518 5523 return (set_errno(EINVAL));
5519 5524 }
5520 5525 zone_hold(zone);
5521 5526 mutex_exit(&zonehash_lock);
5522 5527
5523 5528 /*
5524 5529 * At present most attributes can only be set on non-running,
5525 5530 * non-global zones.
5526 5531 */
5527 5532 zone_status = zone_status_get(zone);
5528 5533 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5529 5534 err = EINVAL;
5530 5535 goto done;
5531 5536 }
5532 5537
5533 5538 switch (attr) {
5534 5539 case ZONE_ATTR_INITNAME:
5535 5540 err = zone_set_initname(zone, (const char *)buf);
5536 5541 break;
5537 5542 case ZONE_ATTR_INITNORESTART:
5538 5543 zone->zone_restart_init = B_FALSE;
5539 5544 err = 0;
5540 5545 break;
5541 5546 case ZONE_ATTR_BOOTARGS:
5542 5547 err = zone_set_bootargs(zone, (const char *)buf);
5543 5548 break;
5544 5549 case ZONE_ATTR_BRAND:
5545 5550 err = zone_set_brand(zone, (const char *)buf);
5546 5551 break;
5547 5552 case ZONE_ATTR_FS_ALLOWED:
5548 5553 err = zone_set_fs_allowed(zone, (const char *)buf);
5549 5554 break;
5550 5555 case ZONE_ATTR_PHYS_MCAP:
5551 5556 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5552 5557 break;
5553 5558 case ZONE_ATTR_SCHED_CLASS:
5554 5559 err = zone_set_sched_class(zone, (const char *)buf);
5555 5560 break;
5556 5561 case ZONE_ATTR_HOSTID:
5557 5562 if (bufsize == sizeof (zone->zone_hostid)) {
5558 5563 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5559 5564 err = 0;
5560 5565 else
5561 5566 err = EFAULT;
5562 5567 } else {
5563 5568 err = EINVAL;
5564 5569 }
5565 5570 break;
5566 5571 case ZONE_ATTR_NETWORK:
5567 5572 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5568 5573 err = EINVAL;
5569 5574 break;
5570 5575 }
5571 5576 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5572 5577 if (copyin(buf, zbuf, bufsize) != 0) {
5573 5578 kmem_free(zbuf, bufsize);
5574 5579 err = EFAULT;
5575 5580 break;
5576 5581 }
5577 5582 err = zone_set_network(zoneid, zbuf);
5578 5583 kmem_free(zbuf, bufsize);
5579 5584 break;
5580 5585 default:
5581 5586 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5582 5587 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5583 5588 else
5584 5589 err = EINVAL;
5585 5590 }
5586 5591
5587 5592 done:
5588 5593 zone_rele(zone);
5589 5594 ASSERT(err != -1);
5590 5595 return (err != 0 ? set_errno(err) : 0);
5591 5596 }
5592 5597
5593 5598 /*
5594 5599 * Return zero if the process has at least one vnode mapped in to its
5595 5600 * address space which shouldn't be allowed to change zones.
5596 5601 *
5597 5602 * Also return zero if the process has any shared mappings which reserve
5598 5603 * swap. This is because the counting for zone.max-swap does not allow swap
5599 5604 * reservation to be shared between zones. zone swap reservation is counted
5600 5605 * on zone->zone_max_swap.
5601 5606 */
5602 5607 static int
5603 5608 as_can_change_zones(void)
5604 5609 {
5605 5610 proc_t *pp = curproc;
5606 5611 struct seg *seg;
5607 5612 struct as *as = pp->p_as;
5608 5613 vnode_t *vp;
5609 5614 int allow = 1;
5610 5615
5611 5616 ASSERT(pp->p_as != &kas);
5612 5617 AS_LOCK_ENTER(as, RW_READER);
5613 5618 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5614 5619
5615 5620 /*
5616 5621 * Cannot enter zone with shared anon memory which
5617 5622 * reserves swap. See comment above.
5618 5623 */
5619 5624 if (seg_can_change_zones(seg) == B_FALSE) {
5620 5625 allow = 0;
5621 5626 break;
5622 5627 }
5623 5628 /*
5624 5629 * if we can't get a backing vnode for this segment then skip
5625 5630 * it.
5626 5631 */
5627 5632 vp = NULL;
5628 5633 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5629 5634 continue;
5630 5635 if (!vn_can_change_zones(vp)) { /* bail on first match */
5631 5636 allow = 0;
5632 5637 break;
5633 5638 }
5634 5639 }
5635 5640 AS_LOCK_EXIT(as);
5636 5641 return (allow);
5637 5642 }
5638 5643
5639 5644 /*
5640 5645 * Count swap reserved by curproc's address space
5641 5646 */
5642 5647 static size_t
5643 5648 as_swresv(void)
5644 5649 {
5645 5650 proc_t *pp = curproc;
5646 5651 struct seg *seg;
5647 5652 struct as *as = pp->p_as;
5648 5653 size_t swap = 0;
5649 5654
5650 5655 ASSERT(pp->p_as != &kas);
5651 5656 ASSERT(AS_WRITE_HELD(as));
5652 5657 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5653 5658 swap += seg_swresv(seg);
5654 5659
5655 5660 return (swap);
5656 5661 }
5657 5662
5658 5663 /*
5659 5664 * Systemcall entry point for zone_enter().
5660 5665 *
5661 5666 * The current process is injected into said zone. In the process
5662 5667 * it will change its project membership, privileges, rootdir/cwd,
5663 5668 * zone-wide rctls, and pool association to match those of the zone.
5664 5669 *
5665 5670 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5666 5671 * state will transition it to ZONE_IS_RUNNING. Processes may only
5667 5672 * enter a zone that is "ready" or "running".
5668 5673 */
5669 5674 static int
5670 5675 zone_enter(zoneid_t zoneid)
5671 5676 {
5672 5677 zone_t *zone;
5673 5678 vnode_t *vp;
5674 5679 proc_t *pp = curproc;
5675 5680 contract_t *ct;
5676 5681 cont_process_t *ctp;
5677 5682 task_t *tk, *oldtk;
5678 5683 kproject_t *zone_proj0;
5679 5684 cred_t *cr, *newcr;
5680 5685 pool_t *oldpool, *newpool;
5681 5686 sess_t *sp;
5682 5687 uid_t uid;
5683 5688 zone_status_t status;
5684 5689 int err = 0;
5685 5690 rctl_entity_p_t e;
5686 5691 size_t swap;
5687 5692 kthread_id_t t;
5688 5693
5689 5694 if (secpolicy_zone_config(CRED()) != 0)
5690 5695 return (set_errno(EPERM));
5691 5696 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5692 5697 return (set_errno(EINVAL));
5693 5698
5694 5699 /*
5695 5700 * Stop all lwps so we don't need to hold a lock to look at
5696 5701 * curproc->p_zone. This needs to happen before we grab any
5697 5702 * locks to avoid deadlock (another lwp in the process could
5698 5703 * be waiting for the held lock).
5699 5704 */
5700 5705 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5701 5706 return (set_errno(EINTR));
5702 5707
5703 5708 /*
5704 5709 * Make sure we're not changing zones with files open or mapped in
5705 5710 * to our address space which shouldn't be changing zones.
5706 5711 */
5707 5712 if (!files_can_change_zones()) {
5708 5713 err = EBADF;
5709 5714 goto out;
5710 5715 }
5711 5716 if (!as_can_change_zones()) {
5712 5717 err = EFAULT;
5713 5718 goto out;
5714 5719 }
5715 5720
5716 5721 mutex_enter(&zonehash_lock);
5717 5722 if (pp->p_zone != global_zone) {
5718 5723 mutex_exit(&zonehash_lock);
5719 5724 err = EINVAL;
5720 5725 goto out;
5721 5726 }
5722 5727
5723 5728 zone = zone_find_all_by_id(zoneid);
5724 5729 if (zone == NULL) {
5725 5730 mutex_exit(&zonehash_lock);
5726 5731 err = EINVAL;
5727 5732 goto out;
5728 5733 }
5729 5734
5730 5735 /*
5731 5736 * To prevent processes in a zone from holding contracts on
5732 5737 * extrazonal resources, and to avoid process contract
5733 5738 * memberships which span zones, contract holders and processes
5734 5739 * which aren't the sole members of their encapsulating process
5735 5740 * contracts are not allowed to zone_enter.
5736 5741 */
5737 5742 ctp = pp->p_ct_process;
5738 5743 ct = &ctp->conp_contract;
5739 5744 mutex_enter(&ct->ct_lock);
5740 5745 mutex_enter(&pp->p_lock);
5741 5746 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5742 5747 mutex_exit(&pp->p_lock);
5743 5748 mutex_exit(&ct->ct_lock);
5744 5749 mutex_exit(&zonehash_lock);
5745 5750 err = EINVAL;
5746 5751 goto out;
5747 5752 }
5748 5753
5749 5754 /*
5750 5755 * Moreover, we don't allow processes whose encapsulating
5751 5756 * process contracts have inherited extrazonal contracts.
5752 5757 * While it would be easier to eliminate all process contracts
5753 5758 * with inherited contracts, we need to be able to give a
5754 5759 * restarted init (or other zone-penetrating process) its
5755 5760 * predecessor's contracts.
5756 5761 */
5757 5762 if (ctp->conp_ninherited != 0) {
5758 5763 contract_t *next;
5759 5764 for (next = list_head(&ctp->conp_inherited); next;
5760 5765 next = list_next(&ctp->conp_inherited, next)) {
5761 5766 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5762 5767 mutex_exit(&pp->p_lock);
5763 5768 mutex_exit(&ct->ct_lock);
5764 5769 mutex_exit(&zonehash_lock);
5765 5770 err = EINVAL;
5766 5771 goto out;
5767 5772 }
5768 5773 }
5769 5774 }
5770 5775
5771 5776 mutex_exit(&pp->p_lock);
5772 5777 mutex_exit(&ct->ct_lock);
5773 5778
5774 5779 status = zone_status_get(zone);
5775 5780 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5776 5781 /*
5777 5782 * Can't join
5778 5783 */
5779 5784 mutex_exit(&zonehash_lock);
5780 5785 err = EINVAL;
5781 5786 goto out;
5782 5787 }
5783 5788
5784 5789 /*
5785 5790 * Make sure new priv set is within the permitted set for caller
5786 5791 */
5787 5792 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5788 5793 mutex_exit(&zonehash_lock);
5789 5794 err = EPERM;
5790 5795 goto out;
5791 5796 }
5792 5797 /*
5793 5798 * We want to momentarily drop zonehash_lock while we optimistically
5794 5799 * bind curproc to the pool it should be running in. This is safe
5795 5800 * since the zone can't disappear (we have a hold on it).
5796 5801 */
5797 5802 zone_hold(zone);
5798 5803 mutex_exit(&zonehash_lock);
5799 5804
5800 5805 /*
5801 5806 * Grab pool_lock to keep the pools configuration from changing
5802 5807 * and to stop ourselves from getting rebound to another pool
5803 5808 * until we join the zone.
5804 5809 */
5805 5810 if (pool_lock_intr() != 0) {
5806 5811 zone_rele(zone);
5807 5812 err = EINTR;
5808 5813 goto out;
5809 5814 }
5810 5815 ASSERT(secpolicy_pool(CRED()) == 0);
5811 5816 /*
5812 5817 * Bind ourselves to the pool currently associated with the zone.
5813 5818 */
5814 5819 oldpool = curproc->p_pool;
5815 5820 newpool = zone_pool_get(zone);
5816 5821 if (pool_state == POOL_ENABLED && newpool != oldpool &&
5817 5822 (err = pool_do_bind(newpool, P_PID, P_MYID,
5818 5823 POOL_BIND_ALL)) != 0) {
5819 5824 pool_unlock();
5820 5825 zone_rele(zone);
5821 5826 goto out;
5822 5827 }
5823 5828
5824 5829 /*
5825 5830 * Grab cpu_lock now; we'll need it later when we call
5826 5831 * task_join().
5827 5832 */
5828 5833 mutex_enter(&cpu_lock);
5829 5834 mutex_enter(&zonehash_lock);
5830 5835 /*
5831 5836 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5832 5837 */
5833 5838 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5834 5839 /*
5835 5840 * Can't join anymore.
5836 5841 */
5837 5842 mutex_exit(&zonehash_lock);
5838 5843 mutex_exit(&cpu_lock);
5839 5844 if (pool_state == POOL_ENABLED &&
5840 5845 newpool != oldpool)
5841 5846 (void) pool_do_bind(oldpool, P_PID, P_MYID,
5842 5847 POOL_BIND_ALL);
5843 5848 pool_unlock();
5844 5849 zone_rele(zone);
5845 5850 err = EINVAL;
5846 5851 goto out;
5847 5852 }
5848 5853
5849 5854 /*
5850 5855 * a_lock must be held while transfering locked memory and swap
5851 5856 * reservation from the global zone to the non global zone because
5852 5857 * asynchronous faults on the processes' address space can lock
5853 5858 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5854 5859 * segments respectively.
5855 5860 */
5856 5861 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
5857 5862 swap = as_swresv();
5858 5863 mutex_enter(&pp->p_lock);
5859 5864 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5860 5865 /* verify that we do not exceed and task or lwp limits */
5861 5866 mutex_enter(&zone->zone_nlwps_lock);
5862 5867 /* add new lwps to zone and zone's proj0 */
5863 5868 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5864 5869 zone->zone_nlwps += pp->p_lwpcnt;
5865 5870 /* add 1 task to zone's proj0 */
5866 5871 zone_proj0->kpj_ntasks += 1;
5867 5872
5868 5873 zone_proj0->kpj_nprocs++;
5869 5874 zone->zone_nprocs++;
5870 5875 mutex_exit(&zone->zone_nlwps_lock);
5871 5876
5872 5877 mutex_enter(&zone->zone_mem_lock);
5873 5878 zone->zone_locked_mem += pp->p_locked_mem;
5874 5879 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5875 5880 zone->zone_max_swap += swap;
5876 5881 mutex_exit(&zone->zone_mem_lock);
5877 5882
5878 5883 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5879 5884 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5880 5885 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5881 5886
5882 5887 /* remove lwps and process from proc's old zone and old project */
5883 5888 mutex_enter(&pp->p_zone->zone_nlwps_lock);
5884 5889 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5885 5890 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5886 5891 pp->p_task->tk_proj->kpj_nprocs--;
5887 5892 pp->p_zone->zone_nprocs--;
5888 5893 mutex_exit(&pp->p_zone->zone_nlwps_lock);
5889 5894
5890 5895 mutex_enter(&pp->p_zone->zone_mem_lock);
5891 5896 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5892 5897 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5893 5898 pp->p_zone->zone_max_swap -= swap;
5894 5899 mutex_exit(&pp->p_zone->zone_mem_lock);
5895 5900
5896 5901 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5897 5902 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5898 5903 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5899 5904
5900 5905 pp->p_flag |= SZONETOP;
5901 5906 pp->p_zone = zone;
5902 5907 mutex_exit(&pp->p_lock);
5903 5908 AS_LOCK_EXIT(pp->p_as);
5904 5909
5905 5910 /*
5906 5911 * Joining the zone cannot fail from now on.
5907 5912 *
5908 5913 * This means that a lot of the following code can be commonized and
5909 5914 * shared with zsched().
5910 5915 */
5911 5916
5912 5917 /*
5913 5918 * If the process contract fmri was inherited, we need to
5914 5919 * flag this so that any contract status will not leak
5915 5920 * extra zone information, svc_fmri in this case
5916 5921 */
5917 5922 if (ctp->conp_svc_ctid != ct->ct_id) {
5918 5923 mutex_enter(&ct->ct_lock);
5919 5924 ctp->conp_svc_zone_enter = ct->ct_id;
5920 5925 mutex_exit(&ct->ct_lock);
5921 5926 }
5922 5927
5923 5928 /*
5924 5929 * Reset the encapsulating process contract's zone.
5925 5930 */
5926 5931 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5927 5932 contract_setzuniqid(ct, zone->zone_uniqid);
5928 5933
5929 5934 /*
5930 5935 * Create a new task and associate the process with the project keyed
5931 5936 * by (projid,zoneid).
5932 5937 *
5933 5938 * We might as well be in project 0; the global zone's projid doesn't
5934 5939 * make much sense in a zone anyhow.
5935 5940 *
5936 5941 * This also increments zone_ntasks, and returns with p_lock held.
5937 5942 */
5938 5943 tk = task_create(0, zone);
5939 5944 oldtk = task_join(tk, 0);
5940 5945 mutex_exit(&cpu_lock);
5941 5946
5942 5947 /*
5943 5948 * call RCTLOP_SET functions on this proc
5944 5949 */
5945 5950 e.rcep_p.zone = zone;
5946 5951 e.rcep_t = RCENTITY_ZONE;
5947 5952 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5948 5953 RCD_CALLBACK);
5949 5954 mutex_exit(&pp->p_lock);
5950 5955
5951 5956 /*
5952 5957 * We don't need to hold any of zsched's locks here; not only do we know
5953 5958 * the process and zone aren't going away, we know its session isn't
5954 5959 * changing either.
5955 5960 *
5956 5961 * By joining zsched's session here, we mimic the behavior in the
5957 5962 * global zone of init's sid being the pid of sched. We extend this
5958 5963 * to all zlogin-like zone_enter()'ing processes as well.
5959 5964 */
5960 5965 mutex_enter(&pidlock);
5961 5966 sp = zone->zone_zsched->p_sessp;
5962 5967 sess_hold(zone->zone_zsched);
5963 5968 mutex_enter(&pp->p_lock);
5964 5969 pgexit(pp);
5965 5970 sess_rele(pp->p_sessp, B_TRUE);
5966 5971 pp->p_sessp = sp;
5967 5972 pgjoin(pp, zone->zone_zsched->p_pidp);
5968 5973
5969 5974 /*
5970 5975 * If any threads are scheduled to be placed on zone wait queue they
5971 5976 * should abandon the idea since the wait queue is changing.
5972 5977 * We need to be holding pidlock & p_lock to do this.
5973 5978 */
5974 5979 if ((t = pp->p_tlist) != NULL) {
5975 5980 do {
5976 5981 thread_lock(t);
5977 5982 /*
5978 5983 * Kick this thread so that he doesn't sit
5979 5984 * on a wrong wait queue.
5980 5985 */
5981 5986 if (ISWAITING(t))
5982 5987 setrun_locked(t);
5983 5988
5984 5989 if (t->t_schedflag & TS_ANYWAITQ)
5985 5990 t->t_schedflag &= ~ TS_ANYWAITQ;
5986 5991
5987 5992 thread_unlock(t);
5988 5993 } while ((t = t->t_forw) != pp->p_tlist);
5989 5994 }
5990 5995
5991 5996 /*
5992 5997 * If there is a default scheduling class for the zone and it is not
5993 5998 * the class we are currently in, change all of the threads in the
5994 5999 * process to the new class. We need to be holding pidlock & p_lock
5995 6000 * when we call parmsset so this is a good place to do it.
5996 6001 */
5997 6002 if (zone->zone_defaultcid > 0 &&
5998 6003 zone->zone_defaultcid != curthread->t_cid) {
5999 6004 pcparms_t pcparms;
6000 6005
6001 6006 pcparms.pc_cid = zone->zone_defaultcid;
6002 6007 pcparms.pc_clparms[0] = 0;
6003 6008
6004 6009 /*
6005 6010 * If setting the class fails, we still want to enter the zone.
6006 6011 */
6007 6012 if ((t = pp->p_tlist) != NULL) {
6008 6013 do {
6009 6014 (void) parmsset(&pcparms, t);
6010 6015 } while ((t = t->t_forw) != pp->p_tlist);
6011 6016 }
6012 6017 }
6013 6018
6014 6019 mutex_exit(&pp->p_lock);
6015 6020 mutex_exit(&pidlock);
6016 6021
6017 6022 mutex_exit(&zonehash_lock);
6018 6023 /*
6019 6024 * We're firmly in the zone; let pools progress.
6020 6025 */
6021 6026 pool_unlock();
6022 6027 task_rele(oldtk);
6023 6028 /*
6024 6029 * We don't need to retain a hold on the zone since we already
6025 6030 * incremented zone_ntasks, so the zone isn't going anywhere.
6026 6031 */
6027 6032 zone_rele(zone);
6028 6033
6029 6034 /*
6030 6035 * Chroot
6031 6036 */
6032 6037 vp = zone->zone_rootvp;
6033 6038 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6034 6039 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6035 6040
6036 6041 /*
6037 6042 * Change process credentials
6038 6043 */
6039 6044 newcr = cralloc();
6040 6045 mutex_enter(&pp->p_crlock);
6041 6046 cr = pp->p_cred;
6042 6047 crcopy_to(cr, newcr);
6043 6048 crsetzone(newcr, zone);
6044 6049 pp->p_cred = newcr;
6045 6050
6046 6051 /*
6047 6052 * Restrict all process privilege sets to zone limit
6048 6053 */
6049 6054 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6050 6055 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6051 6056 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6052 6057 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6053 6058 mutex_exit(&pp->p_crlock);
6054 6059 crset(pp, newcr);
6055 6060
6056 6061 /*
6057 6062 * Adjust upcount to reflect zone entry.
6058 6063 */
6059 6064 uid = crgetruid(newcr);
6060 6065 mutex_enter(&pidlock);
6061 6066 upcount_dec(uid, GLOBAL_ZONEID);
6062 6067 upcount_inc(uid, zoneid);
6063 6068 mutex_exit(&pidlock);
6064 6069
6065 6070 /*
6066 6071 * Set up core file path and content.
6067 6072 */
6068 6073 set_core_defaults();
6069 6074
6070 6075 out:
6071 6076 /*
6072 6077 * Let the other lwps continue.
6073 6078 */
6074 6079 mutex_enter(&pp->p_lock);
6075 6080 if (curthread != pp->p_agenttp)
6076 6081 continuelwps(pp);
6077 6082 mutex_exit(&pp->p_lock);
6078 6083
6079 6084 return (err != 0 ? set_errno(err) : 0);
6080 6085 }
6081 6086
6082 6087 /*
6083 6088 * Systemcall entry point for zone_list(2).
6084 6089 *
6085 6090 * Processes running in a (non-global) zone only see themselves.
6086 6091 * On labeled systems, they see all zones whose label they dominate.
6087 6092 */
6088 6093 static int
6089 6094 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6090 6095 {
6091 6096 zoneid_t *zoneids;
6092 6097 zone_t *zone, *myzone;
6093 6098 uint_t user_nzones, real_nzones;
6094 6099 uint_t domi_nzones;
6095 6100 int error;
6096 6101
6097 6102 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6098 6103 return (set_errno(EFAULT));
6099 6104
6100 6105 myzone = curproc->p_zone;
6101 6106 if (myzone != global_zone) {
6102 6107 bslabel_t *mybslab;
6103 6108
6104 6109 if (!is_system_labeled()) {
6105 6110 /* just return current zone */
6106 6111 real_nzones = domi_nzones = 1;
6107 6112 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6108 6113 zoneids[0] = myzone->zone_id;
6109 6114 } else {
6110 6115 /* return all zones that are dominated */
6111 6116 mutex_enter(&zonehash_lock);
6112 6117 real_nzones = zonecount;
6113 6118 domi_nzones = 0;
6114 6119 if (real_nzones > 0) {
6115 6120 zoneids = kmem_alloc(real_nzones *
6116 6121 sizeof (zoneid_t), KM_SLEEP);
6117 6122 mybslab = label2bslabel(myzone->zone_slabel);
6118 6123 for (zone = list_head(&zone_active);
6119 6124 zone != NULL;
6120 6125 zone = list_next(&zone_active, zone)) {
6121 6126 if (zone->zone_id == GLOBAL_ZONEID)
6122 6127 continue;
6123 6128 if (zone != myzone &&
6124 6129 (zone->zone_flags & ZF_IS_SCRATCH))
6125 6130 continue;
6126 6131 /*
6127 6132 * Note that a label always dominates
6128 6133 * itself, so myzone is always included
6129 6134 * in the list.
6130 6135 */
6131 6136 if (bldominates(mybslab,
6132 6137 label2bslabel(zone->zone_slabel))) {
6133 6138 zoneids[domi_nzones++] =
6134 6139 zone->zone_id;
6135 6140 }
6136 6141 }
6137 6142 }
6138 6143 mutex_exit(&zonehash_lock);
6139 6144 }
6140 6145 } else {
6141 6146 mutex_enter(&zonehash_lock);
6142 6147 real_nzones = zonecount;
6143 6148 domi_nzones = 0;
6144 6149 if (real_nzones > 0) {
6145 6150 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6146 6151 KM_SLEEP);
6147 6152 for (zone = list_head(&zone_active); zone != NULL;
6148 6153 zone = list_next(&zone_active, zone))
6149 6154 zoneids[domi_nzones++] = zone->zone_id;
6150 6155 ASSERT(domi_nzones == real_nzones);
6151 6156 }
6152 6157 mutex_exit(&zonehash_lock);
6153 6158 }
6154 6159
6155 6160 /*
6156 6161 * If user has allocated space for fewer entries than we found, then
6157 6162 * return only up to his limit. Either way, tell him exactly how many
6158 6163 * we found.
6159 6164 */
6160 6165 if (domi_nzones < user_nzones)
6161 6166 user_nzones = domi_nzones;
6162 6167 error = 0;
6163 6168 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6164 6169 error = EFAULT;
6165 6170 } else if (zoneidlist != NULL && user_nzones != 0) {
6166 6171 if (copyout(zoneids, zoneidlist,
6167 6172 user_nzones * sizeof (zoneid_t)) != 0)
6168 6173 error = EFAULT;
6169 6174 }
6170 6175
6171 6176 if (real_nzones > 0)
6172 6177 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6173 6178
6174 6179 if (error != 0)
6175 6180 return (set_errno(error));
6176 6181 else
6177 6182 return (0);
6178 6183 }
6179 6184
6180 6185 /*
6181 6186 * Systemcall entry point for zone_lookup(2).
6182 6187 *
6183 6188 * Non-global zones are only able to see themselves and (on labeled systems)
6184 6189 * the zones they dominate.
6185 6190 */
6186 6191 static zoneid_t
6187 6192 zone_lookup(const char *zone_name)
6188 6193 {
6189 6194 char *kname;
6190 6195 zone_t *zone;
6191 6196 zoneid_t zoneid;
6192 6197 int err;
6193 6198
6194 6199 if (zone_name == NULL) {
6195 6200 /* return caller's zone id */
6196 6201 return (getzoneid());
6197 6202 }
6198 6203
6199 6204 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6200 6205 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6201 6206 kmem_free(kname, ZONENAME_MAX);
6202 6207 return (set_errno(err));
6203 6208 }
6204 6209
6205 6210 mutex_enter(&zonehash_lock);
6206 6211 zone = zone_find_all_by_name(kname);
6207 6212 kmem_free(kname, ZONENAME_MAX);
6208 6213 /*
6209 6214 * In a non-global zone, can only lookup global and own name.
6210 6215 * In Trusted Extensions zone label dominance rules apply.
6211 6216 */
6212 6217 if (zone == NULL ||
6213 6218 zone_status_get(zone) < ZONE_IS_READY ||
6214 6219 !zone_list_access(zone)) {
6215 6220 mutex_exit(&zonehash_lock);
6216 6221 return (set_errno(EINVAL));
6217 6222 } else {
6218 6223 zoneid = zone->zone_id;
6219 6224 mutex_exit(&zonehash_lock);
6220 6225 return (zoneid);
6221 6226 }
6222 6227 }
6223 6228
6224 6229 static int
6225 6230 zone_version(int *version_arg)
6226 6231 {
6227 6232 int version = ZONE_SYSCALL_API_VERSION;
6228 6233
6229 6234 if (copyout(&version, version_arg, sizeof (int)) != 0)
6230 6235 return (set_errno(EFAULT));
6231 6236 return (0);
6232 6237 }
6233 6238
6234 6239 /* ARGSUSED */
6235 6240 long
6236 6241 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6237 6242 {
6238 6243 zone_def zs;
6239 6244 int err;
6240 6245
6241 6246 switch (cmd) {
6242 6247 case ZONE_CREATE:
6243 6248 if (get_udatamodel() == DATAMODEL_NATIVE) {
6244 6249 if (copyin(arg1, &zs, sizeof (zone_def))) {
6245 6250 return (set_errno(EFAULT));
6246 6251 }
6247 6252 } else {
6248 6253 #ifdef _SYSCALL32_IMPL
6249 6254 zone_def32 zs32;
6250 6255
6251 6256 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6252 6257 return (set_errno(EFAULT));
6253 6258 }
6254 6259 zs.zone_name =
6255 6260 (const char *)(unsigned long)zs32.zone_name;
6256 6261 zs.zone_root =
6257 6262 (const char *)(unsigned long)zs32.zone_root;
6258 6263 zs.zone_privs =
6259 6264 (const struct priv_set *)
6260 6265 (unsigned long)zs32.zone_privs;
6261 6266 zs.zone_privssz = zs32.zone_privssz;
6262 6267 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6263 6268 zs.rctlbufsz = zs32.rctlbufsz;
6264 6269 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6265 6270 zs.zfsbufsz = zs32.zfsbufsz;
6266 6271 zs.extended_error =
6267 6272 (int *)(unsigned long)zs32.extended_error;
6268 6273 zs.match = zs32.match;
6269 6274 zs.doi = zs32.doi;
6270 6275 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6271 6276 zs.flags = zs32.flags;
6272 6277 #else
6273 6278 panic("get_udatamodel() returned bogus result\n");
6274 6279 #endif
6275 6280 }
6276 6281
6277 6282 return (zone_create(zs.zone_name, zs.zone_root,
6278 6283 zs.zone_privs, zs.zone_privssz,
6279 6284 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6280 6285 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6281 6286 zs.extended_error, zs.match, zs.doi,
6282 6287 zs.label, zs.flags));
6283 6288 case ZONE_BOOT:
6284 6289 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6285 6290 case ZONE_DESTROY:
6286 6291 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6287 6292 case ZONE_GETATTR:
6288 6293 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6289 6294 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6290 6295 case ZONE_SETATTR:
6291 6296 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6292 6297 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6293 6298 case ZONE_ENTER:
6294 6299 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6295 6300 case ZONE_LIST:
6296 6301 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6297 6302 case ZONE_SHUTDOWN:
6298 6303 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6299 6304 case ZONE_LOOKUP:
6300 6305 return (zone_lookup((const char *)arg1));
6301 6306 case ZONE_VERSION:
6302 6307 return (zone_version((int *)arg1));
6303 6308 case ZONE_ADD_DATALINK:
6304 6309 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6305 6310 (datalink_id_t)(uintptr_t)arg2));
6306 6311 case ZONE_DEL_DATALINK:
6307 6312 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6308 6313 (datalink_id_t)(uintptr_t)arg2));
6309 6314 case ZONE_CHECK_DATALINK: {
6310 6315 zoneid_t zoneid;
6311 6316 boolean_t need_copyout;
6312 6317
6313 6318 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6314 6319 return (EFAULT);
6315 6320 need_copyout = (zoneid == ALL_ZONES);
6316 6321 err = zone_check_datalink(&zoneid,
6317 6322 (datalink_id_t)(uintptr_t)arg2);
6318 6323 if (err == 0 && need_copyout) {
6319 6324 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6320 6325 err = EFAULT;
6321 6326 }
6322 6327 return (err == 0 ? 0 : set_errno(err));
6323 6328 }
6324 6329 case ZONE_LIST_DATALINK:
6325 6330 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6326 6331 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6327 6332 default:
6328 6333 return (set_errno(EINVAL));
6329 6334 }
6330 6335 }
6331 6336
6332 6337 struct zarg {
6333 6338 zone_t *zone;
6334 6339 zone_cmd_arg_t arg;
6335 6340 };
6336 6341
6337 6342 static int
6338 6343 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6339 6344 {
6340 6345 char *buf;
6341 6346 size_t buflen;
6342 6347 int error;
6343 6348
6344 6349 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6345 6350 buf = kmem_alloc(buflen, KM_SLEEP);
6346 6351 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6347 6352 error = door_ki_open(buf, doorp);
6348 6353 kmem_free(buf, buflen);
6349 6354 return (error);
6350 6355 }
6351 6356
6352 6357 static void
6353 6358 zone_release_door(door_handle_t *doorp)
6354 6359 {
6355 6360 door_ki_rele(*doorp);
6356 6361 *doorp = NULL;
6357 6362 }
6358 6363
6359 6364 static void
6360 6365 zone_ki_call_zoneadmd(struct zarg *zargp)
6361 6366 {
6362 6367 door_handle_t door = NULL;
6363 6368 door_arg_t darg, save_arg;
6364 6369 char *zone_name;
6365 6370 size_t zone_namelen;
6366 6371 zoneid_t zoneid;
6367 6372 zone_t *zone;
6368 6373 zone_cmd_arg_t arg;
6369 6374 uint64_t uniqid;
6370 6375 size_t size;
6371 6376 int error;
6372 6377 int retry;
6373 6378
6374 6379 zone = zargp->zone;
6375 6380 arg = zargp->arg;
6376 6381 kmem_free(zargp, sizeof (*zargp));
6377 6382
6378 6383 zone_namelen = strlen(zone->zone_name) + 1;
6379 6384 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6380 6385 bcopy(zone->zone_name, zone_name, zone_namelen);
6381 6386 zoneid = zone->zone_id;
6382 6387 uniqid = zone->zone_uniqid;
6383 6388 /*
6384 6389 * zoneadmd may be down, but at least we can empty out the zone.
6385 6390 * We can ignore the return value of zone_empty() since we're called
6386 6391 * from a kernel thread and know we won't be delivered any signals.
6387 6392 */
6388 6393 ASSERT(curproc == &p0);
6389 6394 (void) zone_empty(zone);
6390 6395 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6391 6396 zone_rele(zone);
6392 6397
6393 6398 size = sizeof (arg);
6394 6399 darg.rbuf = (char *)&arg;
6395 6400 darg.data_ptr = (char *)&arg;
6396 6401 darg.rsize = size;
6397 6402 darg.data_size = size;
6398 6403 darg.desc_ptr = NULL;
6399 6404 darg.desc_num = 0;
6400 6405
6401 6406 save_arg = darg;
6402 6407 /*
6403 6408 * Since we're not holding a reference to the zone, any number of
6404 6409 * things can go wrong, including the zone disappearing before we get a
6405 6410 * chance to talk to zoneadmd.
6406 6411 */
6407 6412 for (retry = 0; /* forever */; retry++) {
6408 6413 if (door == NULL &&
6409 6414 (error = zone_lookup_door(zone_name, &door)) != 0) {
6410 6415 goto next;
6411 6416 }
6412 6417 ASSERT(door != NULL);
6413 6418
6414 6419 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6415 6420 SIZE_MAX, 0)) == 0) {
6416 6421 break;
6417 6422 }
6418 6423 switch (error) {
6419 6424 case EINTR:
6420 6425 /* FALLTHROUGH */
6421 6426 case EAGAIN: /* process may be forking */
6422 6427 /*
6423 6428 * Back off for a bit
6424 6429 */
6425 6430 break;
6426 6431 case EBADF:
6427 6432 zone_release_door(&door);
6428 6433 if (zone_lookup_door(zone_name, &door) != 0) {
6429 6434 /*
6430 6435 * zoneadmd may be dead, but it may come back to
6431 6436 * life later.
6432 6437 */
6433 6438 break;
6434 6439 }
6435 6440 break;
6436 6441 default:
6437 6442 cmn_err(CE_WARN,
6438 6443 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6439 6444 error);
6440 6445 goto out;
6441 6446 }
6442 6447 next:
6443 6448 /*
6444 6449 * If this isn't the same zone_t that we originally had in mind,
6445 6450 * then this is the same as if two kadmin requests come in at
6446 6451 * the same time: the first one wins. This means we lose, so we
6447 6452 * bail.
6448 6453 */
6449 6454 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6450 6455 /*
6451 6456 * Problem is solved.
6452 6457 */
6453 6458 break;
6454 6459 }
6455 6460 if (zone->zone_uniqid != uniqid) {
6456 6461 /*
6457 6462 * zoneid recycled
6458 6463 */
6459 6464 zone_rele(zone);
6460 6465 break;
6461 6466 }
6462 6467 /*
6463 6468 * We could zone_status_timedwait(), but there doesn't seem to
6464 6469 * be much point in doing that (plus, it would mean that
6465 6470 * zone_free() isn't called until this thread exits).
6466 6471 */
6467 6472 zone_rele(zone);
6468 6473 delay(hz);
6469 6474 darg = save_arg;
6470 6475 }
6471 6476 out:
6472 6477 if (door != NULL) {
6473 6478 zone_release_door(&door);
6474 6479 }
6475 6480 kmem_free(zone_name, zone_namelen);
6476 6481 thread_exit();
6477 6482 }
6478 6483
6479 6484 /*
6480 6485 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6481 6486 * kadmin(). The caller is a process in the zone.
6482 6487 *
6483 6488 * In order to shutdown the zone, we will hand off control to zoneadmd
6484 6489 * (running in the global zone) via a door. We do a half-hearted job at
6485 6490 * killing all processes in the zone, create a kernel thread to contact
6486 6491 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6487 6492 * a form of generation number used to let zoneadmd (as well as
6488 6493 * zone_destroy()) know exactly which zone they're re talking about.
6489 6494 */
6490 6495 int
6491 6496 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6492 6497 {
6493 6498 struct zarg *zargp;
6494 6499 zone_cmd_t zcmd;
6495 6500 zone_t *zone;
6496 6501
6497 6502 zone = curproc->p_zone;
6498 6503 ASSERT(getzoneid() != GLOBAL_ZONEID);
6499 6504
6500 6505 switch (cmd) {
6501 6506 case A_SHUTDOWN:
6502 6507 switch (fcn) {
6503 6508 case AD_HALT:
6504 6509 case AD_POWEROFF:
6505 6510 zcmd = Z_HALT;
6506 6511 break;
6507 6512 case AD_BOOT:
6508 6513 zcmd = Z_REBOOT;
6509 6514 break;
6510 6515 case AD_IBOOT:
6511 6516 case AD_SBOOT:
6512 6517 case AD_SIBOOT:
6513 6518 case AD_NOSYNC:
6514 6519 return (ENOTSUP);
6515 6520 default:
6516 6521 return (EINVAL);
6517 6522 }
6518 6523 break;
6519 6524 case A_REBOOT:
6520 6525 zcmd = Z_REBOOT;
6521 6526 break;
6522 6527 case A_FTRACE:
6523 6528 case A_REMOUNT:
6524 6529 case A_FREEZE:
6525 6530 case A_DUMP:
6526 6531 case A_CONFIG:
6527 6532 return (ENOTSUP);
6528 6533 default:
6529 6534 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6530 6535 return (EINVAL);
6531 6536 }
6532 6537
6533 6538 if (secpolicy_zone_admin(credp, B_FALSE))
6534 6539 return (EPERM);
6535 6540 mutex_enter(&zone_status_lock);
6536 6541
6537 6542 /*
6538 6543 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6539 6544 * is in the zone.
6540 6545 */
6541 6546 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6542 6547 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6543 6548 /*
6544 6549 * This zone is already on its way down.
6545 6550 */
6546 6551 mutex_exit(&zone_status_lock);
6547 6552 return (0);
6548 6553 }
6549 6554 /*
6550 6555 * Prevent future zone_enter()s
6551 6556 */
6552 6557 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6553 6558 mutex_exit(&zone_status_lock);
6554 6559
6555 6560 /*
6556 6561 * Kill everyone now and call zoneadmd later.
6557 6562 * zone_ki_call_zoneadmd() will do a more thorough job of this
6558 6563 * later.
6559 6564 */
6560 6565 killall(zone->zone_id);
6561 6566 /*
6562 6567 * Now, create the thread to contact zoneadmd and do the rest of the
6563 6568 * work. This thread can't be created in our zone otherwise
6564 6569 * zone_destroy() would deadlock.
6565 6570 */
6566 6571 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6567 6572 zargp->arg.cmd = zcmd;
6568 6573 zargp->arg.uniqid = zone->zone_uniqid;
6569 6574 zargp->zone = zone;
6570 6575 (void) strcpy(zargp->arg.locale, "C");
6571 6576 /* mdep was already copied in for us by uadmin */
6572 6577 if (mdep != NULL)
6573 6578 (void) strlcpy(zargp->arg.bootbuf, mdep,
6574 6579 sizeof (zargp->arg.bootbuf));
6575 6580 zone_hold(zone);
6576 6581
6577 6582 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6578 6583 TS_RUN, minclsyspri);
6579 6584 exit(CLD_EXITED, 0);
6580 6585
6581 6586 return (EINVAL);
6582 6587 }
6583 6588
6584 6589 /*
6585 6590 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6586 6591 * status to ZONE_IS_SHUTTING_DOWN.
6587 6592 *
6588 6593 * This function also shuts down all running zones to ensure that they won't
6589 6594 * fork new processes.
6590 6595 */
6591 6596 void
6592 6597 zone_shutdown_global(void)
6593 6598 {
6594 6599 zone_t *current_zonep;
6595 6600
6596 6601 ASSERT(INGLOBALZONE(curproc));
6597 6602 mutex_enter(&zonehash_lock);
6598 6603 mutex_enter(&zone_status_lock);
6599 6604
6600 6605 /* Modify the global zone's status first. */
6601 6606 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6602 6607 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6603 6608
6604 6609 /*
6605 6610 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6606 6611 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6607 6612 * could cause assertions to fail (e.g., assertions about a zone's
6608 6613 * state during initialization, readying, or booting) or produce races.
6609 6614 * We'll let threads continue to initialize and ready new zones: they'll
6610 6615 * fail to boot the new zones when they see that the global zone is
6611 6616 * shutting down.
6612 6617 */
6613 6618 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6614 6619 current_zonep = list_next(&zone_active, current_zonep)) {
6615 6620 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6616 6621 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6617 6622 }
6618 6623 mutex_exit(&zone_status_lock);
6619 6624 mutex_exit(&zonehash_lock);
6620 6625 }
6621 6626
6622 6627 /*
6623 6628 * Returns true if the named dataset is visible in the current zone.
6624 6629 * The 'write' parameter is set to 1 if the dataset is also writable.
6625 6630 */
6626 6631 int
6627 6632 zone_dataset_visible(const char *dataset, int *write)
6628 6633 {
6629 6634 static int zfstype = -1;
6630 6635 zone_dataset_t *zd;
6631 6636 size_t len;
6632 6637 zone_t *zone = curproc->p_zone;
6633 6638 const char *name = NULL;
6634 6639 vfs_t *vfsp = NULL;
6635 6640
6636 6641 if (dataset[0] == '\0')
6637 6642 return (0);
6638 6643
6639 6644 /*
6640 6645 * Walk the list once, looking for datasets which match exactly, or
6641 6646 * specify a dataset underneath an exported dataset. If found, return
6642 6647 * true and note that it is writable.
6643 6648 */
6644 6649 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6645 6650 zd = list_next(&zone->zone_datasets, zd)) {
6646 6651
6647 6652 len = strlen(zd->zd_dataset);
6648 6653 if (strlen(dataset) >= len &&
6649 6654 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6650 6655 (dataset[len] == '\0' || dataset[len] == '/' ||
6651 6656 dataset[len] == '@')) {
6652 6657 if (write)
6653 6658 *write = 1;
6654 6659 return (1);
6655 6660 }
6656 6661 }
6657 6662
6658 6663 /*
6659 6664 * Walk the list a second time, searching for datasets which are parents
6660 6665 * of exported datasets. These should be visible, but read-only.
6661 6666 *
6662 6667 * Note that we also have to support forms such as 'pool/dataset/', with
6663 6668 * a trailing slash.
6664 6669 */
6665 6670 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6666 6671 zd = list_next(&zone->zone_datasets, zd)) {
6667 6672
6668 6673 len = strlen(dataset);
6669 6674 if (dataset[len - 1] == '/')
6670 6675 len--; /* Ignore trailing slash */
6671 6676 if (len < strlen(zd->zd_dataset) &&
6672 6677 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6673 6678 zd->zd_dataset[len] == '/') {
6674 6679 if (write)
6675 6680 *write = 0;
6676 6681 return (1);
6677 6682 }
6678 6683 }
6679 6684
6680 6685 /*
6681 6686 * We reach here if the given dataset is not found in the zone_dataset
6682 6687 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6683 6688 * instead of delegation. For this we search for the dataset in the
6684 6689 * zone_vfslist of this zone. If found, return true and note that it is
6685 6690 * not writable.
6686 6691 */
6687 6692
6688 6693 /*
6689 6694 * Initialize zfstype if it is not initialized yet.
6690 6695 */
6691 6696 if (zfstype == -1) {
6692 6697 struct vfssw *vswp = vfs_getvfssw("zfs");
6693 6698 zfstype = vswp - vfssw;
6694 6699 vfs_unrefvfssw(vswp);
6695 6700 }
6696 6701
6697 6702 vfs_list_read_lock();
6698 6703 vfsp = zone->zone_vfslist;
6699 6704 do {
6700 6705 ASSERT(vfsp);
6701 6706 if (vfsp->vfs_fstype == zfstype) {
6702 6707 name = refstr_value(vfsp->vfs_resource);
6703 6708
6704 6709 /*
6705 6710 * Check if we have an exact match.
6706 6711 */
6707 6712 if (strcmp(dataset, name) == 0) {
6708 6713 vfs_list_unlock();
6709 6714 if (write)
6710 6715 *write = 0;
6711 6716 return (1);
6712 6717 }
6713 6718 /*
6714 6719 * We need to check if we are looking for parents of
6715 6720 * a dataset. These should be visible, but read-only.
6716 6721 */
6717 6722 len = strlen(dataset);
6718 6723 if (dataset[len - 1] == '/')
6719 6724 len--;
6720 6725
6721 6726 if (len < strlen(name) &&
6722 6727 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6723 6728 vfs_list_unlock();
6724 6729 if (write)
6725 6730 *write = 0;
6726 6731 return (1);
6727 6732 }
6728 6733 }
6729 6734 vfsp = vfsp->vfs_zone_next;
6730 6735 } while (vfsp != zone->zone_vfslist);
6731 6736
6732 6737 vfs_list_unlock();
6733 6738 return (0);
6734 6739 }
6735 6740
6736 6741 /*
6737 6742 * zone_find_by_any_path() -
6738 6743 *
6739 6744 * kernel-private routine similar to zone_find_by_path(), but which
6740 6745 * effectively compares against zone paths rather than zonerootpath
6741 6746 * (i.e., the last component of zonerootpaths, which should be "root/",
6742 6747 * are not compared.) This is done in order to accurately identify all
6743 6748 * paths, whether zone-visible or not, including those which are parallel
6744 6749 * to /root/, such as /dev/, /home/, etc...
6745 6750 *
6746 6751 * If the specified path does not fall under any zone path then global
6747 6752 * zone is returned.
6748 6753 *
6749 6754 * The treat_abs parameter indicates whether the path should be treated as
6750 6755 * an absolute path although it does not begin with "/". (This supports
6751 6756 * nfs mount syntax such as host:any/path.)
6752 6757 *
6753 6758 * The caller is responsible for zone_rele of the returned zone.
6754 6759 */
6755 6760 zone_t *
6756 6761 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6757 6762 {
6758 6763 zone_t *zone;
6759 6764 int path_offset = 0;
6760 6765
6761 6766 if (path == NULL) {
6762 6767 zone_hold(global_zone);
6763 6768 return (global_zone);
6764 6769 }
6765 6770
6766 6771 if (*path != '/') {
6767 6772 ASSERT(treat_abs);
6768 6773 path_offset = 1;
6769 6774 }
6770 6775
6771 6776 mutex_enter(&zonehash_lock);
6772 6777 for (zone = list_head(&zone_active); zone != NULL;
6773 6778 zone = list_next(&zone_active, zone)) {
6774 6779 char *c;
6775 6780 size_t pathlen;
6776 6781 char *rootpath_start;
6777 6782
6778 6783 if (zone == global_zone) /* skip global zone */
6779 6784 continue;
6780 6785
6781 6786 /* scan backwards to find start of last component */
6782 6787 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6783 6788 do {
6784 6789 c--;
6785 6790 } while (*c != '/');
6786 6791
6787 6792 pathlen = c - zone->zone_rootpath + 1 - path_offset;
6788 6793 rootpath_start = (zone->zone_rootpath + path_offset);
6789 6794 if (strncmp(path, rootpath_start, pathlen) == 0)
6790 6795 break;
6791 6796 }
6792 6797 if (zone == NULL)
6793 6798 zone = global_zone;
6794 6799 zone_hold(zone);
6795 6800 mutex_exit(&zonehash_lock);
6796 6801 return (zone);
6797 6802 }
6798 6803
6799 6804 /*
6800 6805 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
6801 6806 * zone_dl_t pointer if found, and NULL otherwise.
6802 6807 */
6803 6808 static zone_dl_t *
6804 6809 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6805 6810 {
6806 6811 zone_dl_t *zdl;
6807 6812
6808 6813 ASSERT(mutex_owned(&zone->zone_lock));
6809 6814 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6810 6815 zdl = list_next(&zone->zone_dl_list, zdl)) {
6811 6816 if (zdl->zdl_id == linkid)
6812 6817 break;
6813 6818 }
6814 6819 return (zdl);
6815 6820 }
6816 6821
6817 6822 static boolean_t
6818 6823 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6819 6824 {
6820 6825 boolean_t exists;
6821 6826
6822 6827 mutex_enter(&zone->zone_lock);
6823 6828 exists = (zone_find_dl(zone, linkid) != NULL);
6824 6829 mutex_exit(&zone->zone_lock);
6825 6830 return (exists);
6826 6831 }
6827 6832
6828 6833 /*
6829 6834 * Add an data link name for the zone.
6830 6835 */
6831 6836 static int
6832 6837 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6833 6838 {
6834 6839 zone_dl_t *zdl;
6835 6840 zone_t *zone;
6836 6841 zone_t *thiszone;
6837 6842
6838 6843 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6839 6844 return (set_errno(ENXIO));
6840 6845
6841 6846 /* Verify that the datalink ID doesn't already belong to a zone. */
6842 6847 mutex_enter(&zonehash_lock);
6843 6848 for (zone = list_head(&zone_active); zone != NULL;
6844 6849 zone = list_next(&zone_active, zone)) {
6845 6850 if (zone_dl_exists(zone, linkid)) {
6846 6851 mutex_exit(&zonehash_lock);
6847 6852 zone_rele(thiszone);
6848 6853 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6849 6854 }
6850 6855 }
6851 6856
6852 6857 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6853 6858 zdl->zdl_id = linkid;
6854 6859 zdl->zdl_net = NULL;
6855 6860 mutex_enter(&thiszone->zone_lock);
6856 6861 list_insert_head(&thiszone->zone_dl_list, zdl);
6857 6862 mutex_exit(&thiszone->zone_lock);
6858 6863 mutex_exit(&zonehash_lock);
6859 6864 zone_rele(thiszone);
6860 6865 return (0);
6861 6866 }
6862 6867
6863 6868 static int
6864 6869 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6865 6870 {
6866 6871 zone_dl_t *zdl;
6867 6872 zone_t *zone;
6868 6873 int err = 0;
6869 6874
6870 6875 if ((zone = zone_find_by_id(zoneid)) == NULL)
6871 6876 return (set_errno(EINVAL));
6872 6877
6873 6878 mutex_enter(&zone->zone_lock);
6874 6879 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6875 6880 err = ENXIO;
6876 6881 } else {
6877 6882 list_remove(&zone->zone_dl_list, zdl);
6878 6883 if (zdl->zdl_net != NULL)
6879 6884 nvlist_free(zdl->zdl_net);
6880 6885 kmem_free(zdl, sizeof (zone_dl_t));
6881 6886 }
6882 6887 mutex_exit(&zone->zone_lock);
6883 6888 zone_rele(zone);
6884 6889 return (err == 0 ? 0 : set_errno(err));
6885 6890 }
6886 6891
6887 6892 /*
6888 6893 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6889 6894 * the linkid. Otherwise we just check if the specified zoneidp has been
6890 6895 * assigned the supplied linkid.
6891 6896 */
6892 6897 int
6893 6898 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6894 6899 {
6895 6900 zone_t *zone;
6896 6901 int err = ENXIO;
6897 6902
6898 6903 if (*zoneidp != ALL_ZONES) {
6899 6904 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6900 6905 if (zone_dl_exists(zone, linkid))
6901 6906 err = 0;
6902 6907 zone_rele(zone);
6903 6908 }
6904 6909 return (err);
6905 6910 }
6906 6911
6907 6912 mutex_enter(&zonehash_lock);
6908 6913 for (zone = list_head(&zone_active); zone != NULL;
6909 6914 zone = list_next(&zone_active, zone)) {
6910 6915 if (zone_dl_exists(zone, linkid)) {
6911 6916 *zoneidp = zone->zone_id;
6912 6917 err = 0;
6913 6918 break;
6914 6919 }
6915 6920 }
6916 6921 mutex_exit(&zonehash_lock);
6917 6922 return (err);
6918 6923 }
6919 6924
6920 6925 /*
6921 6926 * Get the list of datalink IDs assigned to a zone.
6922 6927 *
6923 6928 * On input, *nump is the number of datalink IDs that can fit in the supplied
6924 6929 * idarray. Upon return, *nump is either set to the number of datalink IDs
6925 6930 * that were placed in the array if the array was large enough, or to the
6926 6931 * number of datalink IDs that the function needs to place in the array if the
6927 6932 * array is too small.
6928 6933 */
6929 6934 static int
6930 6935 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6931 6936 {
6932 6937 uint_t num, dlcount;
6933 6938 zone_t *zone;
6934 6939 zone_dl_t *zdl;
6935 6940 datalink_id_t *idptr = idarray;
6936 6941
6937 6942 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6938 6943 return (set_errno(EFAULT));
6939 6944 if ((zone = zone_find_by_id(zoneid)) == NULL)
6940 6945 return (set_errno(ENXIO));
6941 6946
6942 6947 num = 0;
6943 6948 mutex_enter(&zone->zone_lock);
6944 6949 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6945 6950 zdl = list_next(&zone->zone_dl_list, zdl)) {
6946 6951 /*
6947 6952 * If the list is bigger than what the caller supplied, just
6948 6953 * count, don't do copyout.
6949 6954 */
6950 6955 if (++num > dlcount)
6951 6956 continue;
6952 6957 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6953 6958 mutex_exit(&zone->zone_lock);
6954 6959 zone_rele(zone);
6955 6960 return (set_errno(EFAULT));
6956 6961 }
6957 6962 idptr++;
6958 6963 }
6959 6964 mutex_exit(&zone->zone_lock);
6960 6965 zone_rele(zone);
6961 6966
6962 6967 /* Increased or decreased, caller should be notified. */
6963 6968 if (num != dlcount) {
6964 6969 if (copyout(&num, nump, sizeof (num)) != 0)
6965 6970 return (set_errno(EFAULT));
6966 6971 }
6967 6972 return (0);
6968 6973 }
6969 6974
6970 6975 /*
6971 6976 * Public interface for looking up a zone by zoneid. It's a customized version
6972 6977 * for netstack_zone_create(). It can only be called from the zsd create
6973 6978 * callbacks, since it doesn't have reference on the zone structure hence if
6974 6979 * it is called elsewhere the zone could disappear after the zonehash_lock
6975 6980 * is dropped.
6976 6981 *
6977 6982 * Furthermore it
6978 6983 * 1. Doesn't check the status of the zone.
6979 6984 * 2. It will be called even before zone_init is called, in that case the
6980 6985 * address of zone0 is returned directly, and netstack_zone_create()
6981 6986 * will only assign a value to zone0.zone_netstack, won't break anything.
6982 6987 * 3. Returns without the zone being held.
6983 6988 */
6984 6989 zone_t *
6985 6990 zone_find_by_id_nolock(zoneid_t zoneid)
6986 6991 {
6987 6992 zone_t *zone;
6988 6993
6989 6994 mutex_enter(&zonehash_lock);
6990 6995 if (zonehashbyid == NULL)
6991 6996 zone = &zone0;
6992 6997 else
6993 6998 zone = zone_find_all_by_id(zoneid);
6994 6999 mutex_exit(&zonehash_lock);
6995 7000 return (zone);
6996 7001 }
6997 7002
6998 7003 /*
6999 7004 * Walk the datalinks for a given zone
7000 7005 */
7001 7006 int
7002 7007 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7003 7008 void *data)
7004 7009 {
7005 7010 zone_t *zone;
7006 7011 zone_dl_t *zdl;
7007 7012 datalink_id_t *idarray;
7008 7013 uint_t idcount = 0;
7009 7014 int i, ret = 0;
7010 7015
7011 7016 if ((zone = zone_find_by_id(zoneid)) == NULL)
7012 7017 return (ENOENT);
7013 7018
7014 7019 /*
7015 7020 * We first build an array of linkid's so that we can walk these and
7016 7021 * execute the callback with the zone_lock dropped.
7017 7022 */
7018 7023 mutex_enter(&zone->zone_lock);
7019 7024 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7020 7025 zdl = list_next(&zone->zone_dl_list, zdl)) {
7021 7026 idcount++;
7022 7027 }
7023 7028
7024 7029 if (idcount == 0) {
7025 7030 mutex_exit(&zone->zone_lock);
7026 7031 zone_rele(zone);
7027 7032 return (0);
7028 7033 }
7029 7034
7030 7035 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7031 7036 if (idarray == NULL) {
7032 7037 mutex_exit(&zone->zone_lock);
7033 7038 zone_rele(zone);
7034 7039 return (ENOMEM);
7035 7040 }
7036 7041
7037 7042 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7038 7043 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7039 7044 idarray[i] = zdl->zdl_id;
7040 7045 }
7041 7046
7042 7047 mutex_exit(&zone->zone_lock);
7043 7048
7044 7049 for (i = 0; i < idcount && ret == 0; i++) {
7045 7050 if ((ret = (*cb)(idarray[i], data)) != 0)
7046 7051 break;
7047 7052 }
7048 7053
7049 7054 zone_rele(zone);
7050 7055 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7051 7056 return (ret);
7052 7057 }
7053 7058
7054 7059 static char *
7055 7060 zone_net_type2name(int type)
7056 7061 {
7057 7062 switch (type) {
7058 7063 case ZONE_NETWORK_ADDRESS:
7059 7064 return (ZONE_NET_ADDRNAME);
7060 7065 case ZONE_NETWORK_DEFROUTER:
7061 7066 return (ZONE_NET_RTRNAME);
7062 7067 default:
7063 7068 return (NULL);
7064 7069 }
7065 7070 }
7066 7071
7067 7072 static int
7068 7073 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7069 7074 {
7070 7075 zone_t *zone;
7071 7076 zone_dl_t *zdl;
7072 7077 nvlist_t *nvl;
7073 7078 int err = 0;
7074 7079 uint8_t *new = NULL;
7075 7080 char *nvname;
7076 7081 int bufsize;
7077 7082 datalink_id_t linkid = znbuf->zn_linkid;
7078 7083
7079 7084 if (secpolicy_zone_config(CRED()) != 0)
7080 7085 return (set_errno(EPERM));
7081 7086
7082 7087 if (zoneid == GLOBAL_ZONEID)
7083 7088 return (set_errno(EINVAL));
7084 7089
7085 7090 nvname = zone_net_type2name(znbuf->zn_type);
7086 7091 bufsize = znbuf->zn_len;
7087 7092 new = znbuf->zn_val;
7088 7093 if (nvname == NULL)
7089 7094 return (set_errno(EINVAL));
7090 7095
7091 7096 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7092 7097 return (set_errno(EINVAL));
7093 7098 }
7094 7099
7095 7100 mutex_enter(&zone->zone_lock);
7096 7101 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7097 7102 err = ENXIO;
7098 7103 goto done;
7099 7104 }
7100 7105 if ((nvl = zdl->zdl_net) == NULL) {
7101 7106 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7102 7107 err = ENOMEM;
7103 7108 goto done;
7104 7109 } else {
7105 7110 zdl->zdl_net = nvl;
7106 7111 }
7107 7112 }
7108 7113 if (nvlist_exists(nvl, nvname)) {
7109 7114 err = EINVAL;
7110 7115 goto done;
7111 7116 }
7112 7117 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7113 7118 ASSERT(err == 0);
7114 7119 done:
7115 7120 mutex_exit(&zone->zone_lock);
7116 7121 zone_rele(zone);
7117 7122 if (err != 0)
7118 7123 return (set_errno(err));
7119 7124 else
7120 7125 return (0);
7121 7126 }
7122 7127
7123 7128 static int
7124 7129 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7125 7130 {
7126 7131 zone_t *zone;
7127 7132 zone_dl_t *zdl;
7128 7133 nvlist_t *nvl;
7129 7134 uint8_t *ptr;
7130 7135 uint_t psize;
7131 7136 int err = 0;
7132 7137 char *nvname;
7133 7138 int bufsize;
7134 7139 void *buf;
7135 7140 datalink_id_t linkid = znbuf->zn_linkid;
7136 7141
7137 7142 if (zoneid == GLOBAL_ZONEID)
7138 7143 return (set_errno(EINVAL));
7139 7144
7140 7145 nvname = zone_net_type2name(znbuf->zn_type);
7141 7146 bufsize = znbuf->zn_len;
7142 7147 buf = znbuf->zn_val;
7143 7148
7144 7149 if (nvname == NULL)
7145 7150 return (set_errno(EINVAL));
7146 7151 if ((zone = zone_find_by_id(zoneid)) == NULL)
7147 7152 return (set_errno(EINVAL));
7148 7153
7149 7154 mutex_enter(&zone->zone_lock);
7150 7155 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7151 7156 err = ENXIO;
7152 7157 goto done;
7153 7158 }
7154 7159 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7155 7160 err = ENOENT;
7156 7161 goto done;
7157 7162 }
7158 7163 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7159 7164 ASSERT(err == 0);
7160 7165
7161 7166 if (psize > bufsize) {
7162 7167 err = ENOBUFS;
7163 7168 goto done;
7164 7169 }
7165 7170 znbuf->zn_len = psize;
7166 7171 bcopy(ptr, buf, psize);
7167 7172 done:
7168 7173 mutex_exit(&zone->zone_lock);
7169 7174 zone_rele(zone);
7170 7175 if (err != 0)
7171 7176 return (set_errno(err));
7172 7177 else
7173 7178 return (0);
7174 7179 }
↓ open down ↓ |
3197 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX