1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2013, Joyent Inc. All rights reserved. 25 * Copyright 2016 Garrett D'Amore 26 */ 27 28 /* 29 * Zones 30 * 31 * A zone is a named collection of processes, namespace constraints, 32 * and other system resources which comprise a secure and manageable 33 * application containment facility. 34 * 35 * Zones (represented by the reference counted zone_t) are tracked in 36 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 37 * (zoneid_t) are used to track zone association. Zone IDs are 38 * dynamically generated when the zone is created; if a persistent 39 * identifier is needed (core files, accounting logs, audit trail, 40 * etc.), the zone name should be used. 41 * 42 * 43 * Global Zone: 44 * 45 * The global zone (zoneid 0) is automatically associated with all 46 * system resources that have not been bound to a user-created zone. 47 * This means that even systems where zones are not in active use 48 * have a global zone, and all processes, mounts, etc. are 49 * associated with that zone. The global zone is generally 50 * unconstrained in terms of privileges and access, though the usual 51 * credential and privilege based restrictions apply. 52 * 53 * 54 * Zone States: 55 * 56 * The states in which a zone may be in and the transitions are as 57 * follows: 58 * 59 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 60 * initialized zone is added to the list of active zones on the system but 61 * isn't accessible. 62 * 63 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 64 * not yet completed. Not possible to enter the zone, but attributes can 65 * be retrieved. 66 * 67 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 68 * ready. The zone is made visible after the ZSD constructor callbacks are 69 * executed. A zone remains in this state until it transitions into 70 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 71 * 72 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 73 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 74 * state. 75 * 76 * ZONE_IS_RUNNING: The zone is open for business: zsched has 77 * successfully started init. A zone remains in this state until 78 * zone_shutdown() is called. 79 * 80 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 81 * killing all processes running in the zone. The zone remains 82 * in this state until there are no more user processes running in the zone. 83 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 84 * Since zone_shutdown() is restartable, it may be called successfully 85 * multiple times for the same zone_t. Setting of the zone's state to 86 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 87 * the zone's status without worrying about it being a moving target. 88 * 89 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 90 * are no more user processes in the zone. The zone remains in this 91 * state until there are no more kernel threads associated with the 92 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 93 * fail. 94 * 95 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 96 * have exited. zone_shutdown() returns. Henceforth it is not possible to 97 * join the zone or create kernel threads therein. 98 * 99 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 100 * remains in this state until zsched exits. Calls to zone_find_by_*() 101 * return NULL from now on. 102 * 103 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 104 * processes or threads doing work on behalf of the zone. The zone is 105 * removed from the list of active zones. zone_destroy() returns, and 106 * the zone can be recreated. 107 * 108 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 109 * callbacks are executed, and all memory associated with the zone is 110 * freed. 111 * 112 * Threads can wait for the zone to enter a requested state by using 113 * zone_status_wait() or zone_status_timedwait() with the desired 114 * state passed in as an argument. Zone state transitions are 115 * uni-directional; it is not possible to move back to an earlier state. 116 * 117 * 118 * Zone-Specific Data: 119 * 120 * Subsystems needing to maintain zone-specific data can store that 121 * data using the ZSD mechanism. This provides a zone-specific data 122 * store, similar to thread-specific data (see pthread_getspecific(3C) 123 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 124 * to register callbacks to be invoked when a zone is created, shut 125 * down, or destroyed. This can be used to initialize zone-specific 126 * data for new zones and to clean up when zones go away. 127 * 128 * 129 * Data Structures: 130 * 131 * The per-zone structure (zone_t) is reference counted, and freed 132 * when all references are released. zone_hold and zone_rele can be 133 * used to adjust the reference count. In addition, reference counts 134 * associated with the cred_t structure are tracked separately using 135 * zone_cred_hold and zone_cred_rele. 136 * 137 * Pointers to active zone_t's are stored in two hash tables; one 138 * for searching by id, the other for searching by name. Lookups 139 * can be performed on either basis, using zone_find_by_id and 140 * zone_find_by_name. Both return zone_t pointers with the zone 141 * held, so zone_rele should be called when the pointer is no longer 142 * needed. Zones can also be searched by path; zone_find_by_path 143 * returns the zone with which a path name is associated (global 144 * zone if the path is not within some other zone's file system 145 * hierarchy). This currently requires iterating through each zone, 146 * so it is slower than an id or name search via a hash table. 147 * 148 * 149 * Locking: 150 * 151 * zonehash_lock: This is a top-level global lock used to protect the 152 * zone hash tables and lists. Zones cannot be created or destroyed 153 * while this lock is held. 154 * zone_status_lock: This is a global lock protecting zone state. 155 * Zones cannot change state while this lock is held. It also 156 * protects the list of kernel threads associated with a zone. 157 * zone_lock: This is a per-zone lock used to protect several fields of 158 * the zone_t (see <sys/zone.h> for details). In addition, holding 159 * this lock means that the zone cannot go away. 160 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 161 * related to the zone.max-lwps rctl. 162 * zone_mem_lock: This is a per-zone lock used to protect the fields 163 * related to the zone.max-locked-memory and zone.max-swap rctls. 164 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 165 * currently just max_lofi 166 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 167 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 168 * list (a list of zones in the ZONE_IS_DEAD state). 169 * 170 * Ordering requirements: 171 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 172 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 173 * 174 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 177 * 178 * Blocking memory allocations are permitted while holding any of the 179 * zone locks. 180 * 181 * 182 * System Call Interface: 183 * 184 * The zone subsystem can be managed and queried from user level with 185 * the following system calls (all subcodes of the primary "zone" 186 * system call): 187 * - zone_create: creates a zone with selected attributes (name, 188 * root path, privileges, resource controls, ZFS datasets) 189 * - zone_enter: allows the current process to enter a zone 190 * - zone_getattr: reports attributes of a zone 191 * - zone_setattr: set attributes of a zone 192 * - zone_boot: set 'init' running for the zone 193 * - zone_list: lists all zones active in the system 194 * - zone_lookup: looks up zone id based on name 195 * - zone_shutdown: initiates shutdown process (see states above) 196 * - zone_destroy: completes shutdown process (see states above) 197 * 198 */ 199 200 #include <sys/priv_impl.h> 201 #include <sys/cred.h> 202 #include <c2/audit.h> 203 #include <sys/debug.h> 204 #include <sys/file.h> 205 #include <sys/kmem.h> 206 #include <sys/kstat.h> 207 #include <sys/mutex.h> 208 #include <sys/note.h> 209 #include <sys/pathname.h> 210 #include <sys/proc.h> 211 #include <sys/project.h> 212 #include <sys/sysevent.h> 213 #include <sys/task.h> 214 #include <sys/systm.h> 215 #include <sys/types.h> 216 #include <sys/utsname.h> 217 #include <sys/vnode.h> 218 #include <sys/vfs.h> 219 #include <sys/systeminfo.h> 220 #include <sys/policy.h> 221 #include <sys/cred_impl.h> 222 #include <sys/contract_impl.h> 223 #include <sys/contract/process_impl.h> 224 #include <sys/class.h> 225 #include <sys/pool.h> 226 #include <sys/pool_pset.h> 227 #include <sys/pset.h> 228 #include <sys/strlog.h> 229 #include <sys/sysmacros.h> 230 #include <sys/callb.h> 231 #include <sys/vmparam.h> 232 #include <sys/corectl.h> 233 #include <sys/ipc_impl.h> 234 #include <sys/klpd.h> 235 236 #include <sys/door.h> 237 #include <sys/cpuvar.h> 238 #include <sys/sdt.h> 239 240 #include <sys/uadmin.h> 241 #include <sys/session.h> 242 #include <sys/cmn_err.h> 243 #include <sys/modhash.h> 244 #include <sys/sunddi.h> 245 #include <sys/nvpair.h> 246 #include <sys/rctl.h> 247 #include <sys/fss.h> 248 #include <sys/brand.h> 249 #include <sys/zone.h> 250 #include <net/if.h> 251 #include <sys/cpucaps.h> 252 #include <vm/seg.h> 253 #include <sys/mac.h> 254 255 /* 256 * This constant specifies the number of seconds that threads waiting for 257 * subsystems to release a zone's general-purpose references will wait before 258 * they log the zone's reference counts. The constant's value shouldn't 259 * be so small that reference counts are unnecessarily reported for zones 260 * whose references are slowly released. On the other hand, it shouldn't be so 261 * large that users reboot their systems out of frustration over hung zones 262 * before the system logs the zones' reference counts. 263 */ 264 #define ZONE_DESTROY_TIMEOUT_SECS 60 265 266 /* List of data link IDs which are accessible from the zone */ 267 typedef struct zone_dl { 268 datalink_id_t zdl_id; 269 nvlist_t *zdl_net; 270 list_node_t zdl_linkage; 271 } zone_dl_t; 272 273 /* 274 * cv used to signal that all references to the zone have been released. This 275 * needs to be global since there may be multiple waiters, and the first to 276 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 277 */ 278 static kcondvar_t zone_destroy_cv; 279 /* 280 * Lock used to serialize access to zone_cv. This could have been per-zone, 281 * but then we'd need another lock for zone_destroy_cv, and why bother? 282 */ 283 static kmutex_t zone_status_lock; 284 285 /* 286 * ZSD-related global variables. 287 */ 288 static kmutex_t zsd_key_lock; /* protects the following two */ 289 /* 290 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 291 */ 292 static zone_key_t zsd_keyval = 0; 293 /* 294 * Global list of registered keys. We use this when a new zone is created. 295 */ 296 static list_t zsd_registered_keys; 297 298 int zone_hash_size = 256; 299 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 300 static kmutex_t zonehash_lock; 301 static uint_t zonecount; 302 static id_space_t *zoneid_space; 303 304 /* 305 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 306 * kernel proper runs, and which manages all other zones. 307 * 308 * Although not declared as static, the variable "zone0" should not be used 309 * except for by code that needs to reference the global zone early on in boot, 310 * before it is fully initialized. All other consumers should use 311 * 'global_zone'. 312 */ 313 zone_t zone0; 314 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 315 316 /* 317 * List of active zones, protected by zonehash_lock. 318 */ 319 static list_t zone_active; 320 321 /* 322 * List of destroyed zones that still have outstanding cred references. 323 * Used for debugging. Uses a separate lock to avoid lock ordering 324 * problems in zone_free. 325 */ 326 static list_t zone_deathrow; 327 static kmutex_t zone_deathrow_lock; 328 329 /* number of zones is limited by virtual interface limit in IP */ 330 uint_t maxzones = 8192; 331 332 /* Event channel to sent zone state change notifications */ 333 evchan_t *zone_event_chan; 334 335 /* 336 * This table holds the mapping from kernel zone states to 337 * states visible in the state notification API. 338 * The idea is that we only expose "obvious" states and 339 * do not expose states which are just implementation details. 340 */ 341 const char *zone_status_table[] = { 342 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 343 ZONE_EVENT_INITIALIZED, /* initialized */ 344 ZONE_EVENT_READY, /* ready */ 345 ZONE_EVENT_READY, /* booting */ 346 ZONE_EVENT_RUNNING, /* running */ 347 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 348 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 349 ZONE_EVENT_SHUTTING_DOWN, /* down */ 350 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 351 ZONE_EVENT_UNINITIALIZED, /* dead */ 352 }; 353 354 /* 355 * This array contains the names of the subsystems listed in zone_ref_subsys_t 356 * (see sys/zone.h). 357 */ 358 static char *zone_ref_subsys_names[] = { 359 "NFS", /* ZONE_REF_NFS */ 360 "NFSv4", /* ZONE_REF_NFSV4 */ 361 "SMBFS", /* ZONE_REF_SMBFS */ 362 "MNTFS", /* ZONE_REF_MNTFS */ 363 "LOFI", /* ZONE_REF_LOFI */ 364 "VFS", /* ZONE_REF_VFS */ 365 "IPC" /* ZONE_REF_IPC */ 366 }; 367 368 /* 369 * This isn't static so lint doesn't complain. 370 */ 371 rctl_hndl_t rc_zone_cpu_shares; 372 rctl_hndl_t rc_zone_locked_mem; 373 rctl_hndl_t rc_zone_max_swap; 374 rctl_hndl_t rc_zone_max_lofi; 375 rctl_hndl_t rc_zone_cpu_cap; 376 rctl_hndl_t rc_zone_nlwps; 377 rctl_hndl_t rc_zone_nprocs; 378 rctl_hndl_t rc_zone_shmmax; 379 rctl_hndl_t rc_zone_shmmni; 380 rctl_hndl_t rc_zone_semmni; 381 rctl_hndl_t rc_zone_msgmni; 382 383 const char * const zone_default_initname = "/sbin/init"; 384 static char * const zone_prefix = "/zone/"; 385 static int zone_shutdown(zoneid_t zoneid); 386 static int zone_add_datalink(zoneid_t, datalink_id_t); 387 static int zone_remove_datalink(zoneid_t, datalink_id_t); 388 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 389 static int zone_set_network(zoneid_t, zone_net_data_t *); 390 static int zone_get_network(zoneid_t, zone_net_data_t *); 391 392 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 393 394 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 395 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 396 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 397 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 398 zone_key_t); 399 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 400 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 401 kmutex_t *); 402 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 403 kmutex_t *); 404 405 /* 406 * Bump this number when you alter the zone syscall interfaces; this is 407 * because we need to have support for previous API versions in libc 408 * to support patching; libc calls into the kernel to determine this number. 409 * 410 * Version 1 of the API is the version originally shipped with Solaris 10 411 * Version 2 alters the zone_create system call in order to support more 412 * arguments by moving the args into a structure; and to do better 413 * error reporting when zone_create() fails. 414 * Version 3 alters the zone_create system call in order to support the 415 * import of ZFS datasets to zones. 416 * Version 4 alters the zone_create system call in order to support 417 * Trusted Extensions. 418 * Version 5 alters the zone_boot system call, and converts its old 419 * bootargs parameter to be set by the zone_setattr API instead. 420 * Version 6 adds the flag argument to zone_create. 421 */ 422 static const int ZONE_SYSCALL_API_VERSION = 6; 423 424 /* 425 * Certain filesystems (such as NFS and autofs) need to know which zone 426 * the mount is being placed in. Because of this, we need to be able to 427 * ensure that a zone isn't in the process of being created/destroyed such 428 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 429 * it gets added the list of mounted zones, it ends up on the wrong zone's 430 * mount list. Since a zone can't reside on an NFS file system, we don't 431 * have to worry about the zonepath itself. 432 * 433 * The following functions: block_mounts()/resume_mounts() and 434 * mount_in_progress()/mount_completed() are used by zones and the VFS 435 * layer (respectively) to synchronize zone state transitions and new 436 * mounts within a zone. This syncronization is on a per-zone basis, so 437 * activity for one zone will not interfere with activity for another zone. 438 * 439 * The semantics are like a reader-reader lock such that there may 440 * either be multiple mounts (or zone state transitions, if that weren't 441 * serialized by zonehash_lock) in progress at the same time, but not 442 * both. 443 * 444 * We use cv's so the user can ctrl-C out of the operation if it's 445 * taking too long. 446 * 447 * The semantics are such that there is unfair bias towards the 448 * "current" operation. This means that zone halt may starve if 449 * there is a rapid succession of new mounts coming in to the zone. 450 */ 451 /* 452 * Prevent new mounts from progressing to the point of calling 453 * VFS_MOUNT(). If there are already mounts in this "region", wait for 454 * them to complete. 455 */ 456 static int 457 block_mounts(zone_t *zp) 458 { 459 int retval = 0; 460 461 /* 462 * Since it may block for a long time, block_mounts() shouldn't be 463 * called with zonehash_lock held. 464 */ 465 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 466 mutex_enter(&zp->zone_mount_lock); 467 while (zp->zone_mounts_in_progress > 0) { 468 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 469 goto signaled; 470 } 471 /* 472 * A negative value of mounts_in_progress indicates that mounts 473 * have been blocked by (-mounts_in_progress) different callers 474 * (remotely possible if two threads enter zone_shutdown at the same 475 * time). 476 */ 477 zp->zone_mounts_in_progress--; 478 retval = 1; 479 signaled: 480 mutex_exit(&zp->zone_mount_lock); 481 return (retval); 482 } 483 484 /* 485 * The VFS layer may progress with new mounts as far as we're concerned. 486 * Allow them to progress if we were the last obstacle. 487 */ 488 static void 489 resume_mounts(zone_t *zp) 490 { 491 mutex_enter(&zp->zone_mount_lock); 492 if (++zp->zone_mounts_in_progress == 0) 493 cv_broadcast(&zp->zone_mount_cv); 494 mutex_exit(&zp->zone_mount_lock); 495 } 496 497 /* 498 * The VFS layer is busy with a mount; this zone should wait until all 499 * of its mounts are completed to progress. 500 */ 501 void 502 mount_in_progress(zone_t *zp) 503 { 504 mutex_enter(&zp->zone_mount_lock); 505 while (zp->zone_mounts_in_progress < 0) 506 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 507 zp->zone_mounts_in_progress++; 508 mutex_exit(&zp->zone_mount_lock); 509 } 510 511 /* 512 * VFS is done with one mount; wake up any waiting block_mounts() 513 * callers if this is the last mount. 514 */ 515 void 516 mount_completed(zone_t *zp) 517 { 518 mutex_enter(&zp->zone_mount_lock); 519 if (--zp->zone_mounts_in_progress == 0) 520 cv_broadcast(&zp->zone_mount_cv); 521 mutex_exit(&zp->zone_mount_lock); 522 } 523 524 /* 525 * ZSD routines. 526 * 527 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 528 * defined by the pthread_key_create() and related interfaces. 529 * 530 * Kernel subsystems may register one or more data items and/or 531 * callbacks to be executed when a zone is created, shutdown, or 532 * destroyed. 533 * 534 * Unlike the thread counterpart, destructor callbacks will be executed 535 * even if the data pointer is NULL and/or there are no constructor 536 * callbacks, so it is the responsibility of such callbacks to check for 537 * NULL data values if necessary. 538 * 539 * The locking strategy and overall picture is as follows: 540 * 541 * When someone calls zone_key_create(), a template ZSD entry is added to the 542 * global list "zsd_registered_keys", protected by zsd_key_lock. While 543 * holding that lock all the existing zones are marked as 544 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 545 * zone_zsd list (protected by zone_lock). The global list is updated first 546 * (under zone_key_lock) to make sure that newly created zones use the 547 * most recent list of keys. Then under zonehash_lock we walk the zones 548 * and mark them. Similar locking is used in zone_key_delete(). 549 * 550 * The actual create, shutdown, and destroy callbacks are done without 551 * holding any lock. And zsd_flags are used to ensure that the operations 552 * completed so that when zone_key_create (and zone_create) is done, as well as 553 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 554 * are completed. 555 * 556 * When new zones are created constructor callbacks for all registered ZSD 557 * entries will be called. That also uses the above two phases of marking 558 * what needs to be done, and then running the callbacks without holding 559 * any locks. 560 * 561 * The framework does not provide any locking around zone_getspecific() and 562 * zone_setspecific() apart from that needed for internal consistency, so 563 * callers interested in atomic "test-and-set" semantics will need to provide 564 * their own locking. 565 */ 566 567 /* 568 * Helper function to find the zsd_entry associated with the key in the 569 * given list. 570 */ 571 static struct zsd_entry * 572 zsd_find(list_t *l, zone_key_t key) 573 { 574 struct zsd_entry *zsd; 575 576 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 577 if (zsd->zsd_key == key) { 578 return (zsd); 579 } 580 } 581 return (NULL); 582 } 583 584 /* 585 * Helper function to find the zsd_entry associated with the key in the 586 * given list. Move it to the front of the list. 587 */ 588 static struct zsd_entry * 589 zsd_find_mru(list_t *l, zone_key_t key) 590 { 591 struct zsd_entry *zsd; 592 593 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 594 if (zsd->zsd_key == key) { 595 /* 596 * Move to head of list to keep list in MRU order. 597 */ 598 if (zsd != list_head(l)) { 599 list_remove(l, zsd); 600 list_insert_head(l, zsd); 601 } 602 return (zsd); 603 } 604 } 605 return (NULL); 606 } 607 608 void 609 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 610 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 611 { 612 struct zsd_entry *zsdp; 613 struct zsd_entry *t; 614 struct zone *zone; 615 zone_key_t key; 616 617 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 618 zsdp->zsd_data = NULL; 619 zsdp->zsd_create = create; 620 zsdp->zsd_shutdown = shutdown; 621 zsdp->zsd_destroy = destroy; 622 623 /* 624 * Insert in global list of callbacks. Makes future zone creations 625 * see it. 626 */ 627 mutex_enter(&zsd_key_lock); 628 key = zsdp->zsd_key = ++zsd_keyval; 629 ASSERT(zsd_keyval != 0); 630 list_insert_tail(&zsd_registered_keys, zsdp); 631 mutex_exit(&zsd_key_lock); 632 633 /* 634 * Insert for all existing zones and mark them as needing 635 * a create callback. 636 */ 637 mutex_enter(&zonehash_lock); /* stop the world */ 638 for (zone = list_head(&zone_active); zone != NULL; 639 zone = list_next(&zone_active, zone)) { 640 zone_status_t status; 641 642 mutex_enter(&zone->zone_lock); 643 644 /* Skip zones that are on the way down or not yet up */ 645 status = zone_status_get(zone); 646 if (status >= ZONE_IS_DOWN || 647 status == ZONE_IS_UNINITIALIZED) { 648 mutex_exit(&zone->zone_lock); 649 continue; 650 } 651 652 t = zsd_find_mru(&zone->zone_zsd, key); 653 if (t != NULL) { 654 /* 655 * A zsd_configure already inserted it after 656 * we dropped zsd_key_lock above. 657 */ 658 mutex_exit(&zone->zone_lock); 659 continue; 660 } 661 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 662 t->zsd_key = key; 663 t->zsd_create = create; 664 t->zsd_shutdown = shutdown; 665 t->zsd_destroy = destroy; 666 if (create != NULL) { 667 t->zsd_flags = ZSD_CREATE_NEEDED; 668 DTRACE_PROBE2(zsd__create__needed, 669 zone_t *, zone, zone_key_t, key); 670 } 671 list_insert_tail(&zone->zone_zsd, t); 672 mutex_exit(&zone->zone_lock); 673 } 674 mutex_exit(&zonehash_lock); 675 676 if (create != NULL) { 677 /* Now call the create callback for this key */ 678 zsd_apply_all_zones(zsd_apply_create, key); 679 } 680 /* 681 * It is safe for consumers to use the key now, make it 682 * globally visible. Specifically zone_getspecific() will 683 * always successfully return the zone specific data associated 684 * with the key. 685 */ 686 *keyp = key; 687 688 } 689 690 /* 691 * Function called when a module is being unloaded, or otherwise wishes 692 * to unregister its ZSD key and callbacks. 693 * 694 * Remove from the global list and determine the functions that need to 695 * be called under a global lock. Then call the functions without 696 * holding any locks. Finally free up the zone_zsd entries. (The apply 697 * functions need to access the zone_zsd entries to find zsd_data etc.) 698 */ 699 int 700 zone_key_delete(zone_key_t key) 701 { 702 struct zsd_entry *zsdp = NULL; 703 zone_t *zone; 704 705 mutex_enter(&zsd_key_lock); 706 zsdp = zsd_find_mru(&zsd_registered_keys, key); 707 if (zsdp == NULL) { 708 mutex_exit(&zsd_key_lock); 709 return (-1); 710 } 711 list_remove(&zsd_registered_keys, zsdp); 712 mutex_exit(&zsd_key_lock); 713 714 mutex_enter(&zonehash_lock); 715 for (zone = list_head(&zone_active); zone != NULL; 716 zone = list_next(&zone_active, zone)) { 717 struct zsd_entry *del; 718 719 mutex_enter(&zone->zone_lock); 720 del = zsd_find_mru(&zone->zone_zsd, key); 721 if (del == NULL) { 722 /* 723 * Somebody else got here first e.g the zone going 724 * away. 725 */ 726 mutex_exit(&zone->zone_lock); 727 continue; 728 } 729 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 730 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 731 if (del->zsd_shutdown != NULL && 732 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 733 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 734 DTRACE_PROBE2(zsd__shutdown__needed, 735 zone_t *, zone, zone_key_t, key); 736 } 737 if (del->zsd_destroy != NULL && 738 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 739 del->zsd_flags |= ZSD_DESTROY_NEEDED; 740 DTRACE_PROBE2(zsd__destroy__needed, 741 zone_t *, zone, zone_key_t, key); 742 } 743 mutex_exit(&zone->zone_lock); 744 } 745 mutex_exit(&zonehash_lock); 746 kmem_free(zsdp, sizeof (*zsdp)); 747 748 /* Now call the shutdown and destroy callback for this key */ 749 zsd_apply_all_zones(zsd_apply_shutdown, key); 750 zsd_apply_all_zones(zsd_apply_destroy, key); 751 752 /* Now we can free up the zsdp structures in each zone */ 753 mutex_enter(&zonehash_lock); 754 for (zone = list_head(&zone_active); zone != NULL; 755 zone = list_next(&zone_active, zone)) { 756 struct zsd_entry *del; 757 758 mutex_enter(&zone->zone_lock); 759 del = zsd_find(&zone->zone_zsd, key); 760 if (del != NULL) { 761 list_remove(&zone->zone_zsd, del); 762 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 763 kmem_free(del, sizeof (*del)); 764 } 765 mutex_exit(&zone->zone_lock); 766 } 767 mutex_exit(&zonehash_lock); 768 769 return (0); 770 } 771 772 /* 773 * ZSD counterpart of pthread_setspecific(). 774 * 775 * Since all zsd callbacks, including those with no create function, 776 * have an entry in zone_zsd, if the key is registered it is part of 777 * the zone_zsd list. 778 * Return an error if the key wasn't registerd. 779 */ 780 int 781 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 782 { 783 struct zsd_entry *t; 784 785 mutex_enter(&zone->zone_lock); 786 t = zsd_find_mru(&zone->zone_zsd, key); 787 if (t != NULL) { 788 /* 789 * Replace old value with new 790 */ 791 t->zsd_data = (void *)data; 792 mutex_exit(&zone->zone_lock); 793 return (0); 794 } 795 mutex_exit(&zone->zone_lock); 796 return (-1); 797 } 798 799 /* 800 * ZSD counterpart of pthread_getspecific(). 801 */ 802 void * 803 zone_getspecific(zone_key_t key, zone_t *zone) 804 { 805 struct zsd_entry *t; 806 void *data; 807 808 mutex_enter(&zone->zone_lock); 809 t = zsd_find_mru(&zone->zone_zsd, key); 810 data = (t == NULL ? NULL : t->zsd_data); 811 mutex_exit(&zone->zone_lock); 812 return (data); 813 } 814 815 /* 816 * Function used to initialize a zone's list of ZSD callbacks and data 817 * when the zone is being created. The callbacks are initialized from 818 * the template list (zsd_registered_keys). The constructor callback is 819 * executed later (once the zone exists and with locks dropped). 820 */ 821 static void 822 zone_zsd_configure(zone_t *zone) 823 { 824 struct zsd_entry *zsdp; 825 struct zsd_entry *t; 826 827 ASSERT(MUTEX_HELD(&zonehash_lock)); 828 ASSERT(list_head(&zone->zone_zsd) == NULL); 829 mutex_enter(&zone->zone_lock); 830 mutex_enter(&zsd_key_lock); 831 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 832 zsdp = list_next(&zsd_registered_keys, zsdp)) { 833 /* 834 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 835 * should not have added anything to it. 836 */ 837 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 838 839 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 840 t->zsd_key = zsdp->zsd_key; 841 t->zsd_create = zsdp->zsd_create; 842 t->zsd_shutdown = zsdp->zsd_shutdown; 843 t->zsd_destroy = zsdp->zsd_destroy; 844 if (zsdp->zsd_create != NULL) { 845 t->zsd_flags = ZSD_CREATE_NEEDED; 846 DTRACE_PROBE2(zsd__create__needed, 847 zone_t *, zone, zone_key_t, zsdp->zsd_key); 848 } 849 list_insert_tail(&zone->zone_zsd, t); 850 } 851 mutex_exit(&zsd_key_lock); 852 mutex_exit(&zone->zone_lock); 853 } 854 855 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 856 857 /* 858 * Helper function to execute shutdown or destructor callbacks. 859 */ 860 static void 861 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 862 { 863 struct zsd_entry *t; 864 865 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 866 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 867 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 868 869 /* 870 * Run the callback solely based on what is registered for the zone 871 * in zone_zsd. The global list can change independently of this 872 * as keys are registered and unregistered and we don't register new 873 * callbacks for a zone that is in the process of going away. 874 */ 875 mutex_enter(&zone->zone_lock); 876 for (t = list_head(&zone->zone_zsd); t != NULL; 877 t = list_next(&zone->zone_zsd, t)) { 878 zone_key_t key = t->zsd_key; 879 880 /* Skip if no callbacks registered */ 881 882 if (ct == ZSD_SHUTDOWN) { 883 if (t->zsd_shutdown != NULL && 884 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 885 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 886 DTRACE_PROBE2(zsd__shutdown__needed, 887 zone_t *, zone, zone_key_t, key); 888 } 889 } else { 890 if (t->zsd_destroy != NULL && 891 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 892 t->zsd_flags |= ZSD_DESTROY_NEEDED; 893 DTRACE_PROBE2(zsd__destroy__needed, 894 zone_t *, zone, zone_key_t, key); 895 } 896 } 897 } 898 mutex_exit(&zone->zone_lock); 899 900 /* Now call the shutdown and destroy callback for this key */ 901 zsd_apply_all_keys(zsd_apply_shutdown, zone); 902 zsd_apply_all_keys(zsd_apply_destroy, zone); 903 904 } 905 906 /* 907 * Called when the zone is going away; free ZSD-related memory, and 908 * destroy the zone_zsd list. 909 */ 910 static void 911 zone_free_zsd(zone_t *zone) 912 { 913 struct zsd_entry *t, *next; 914 915 /* 916 * Free all the zsd_entry's we had on this zone. 917 */ 918 mutex_enter(&zone->zone_lock); 919 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 920 next = list_next(&zone->zone_zsd, t); 921 list_remove(&zone->zone_zsd, t); 922 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 923 kmem_free(t, sizeof (*t)); 924 } 925 list_destroy(&zone->zone_zsd); 926 mutex_exit(&zone->zone_lock); 927 928 } 929 930 /* 931 * Apply a function to all zones for particular key value. 932 * 933 * The applyfn has to drop zonehash_lock if it does some work, and 934 * then reacquire it before it returns. 935 * When the lock is dropped we don't follow list_next even 936 * if it is possible to do so without any hazards. This is 937 * because we want the design to allow for the list of zones 938 * to change in any arbitrary way during the time the 939 * lock was dropped. 940 * 941 * It is safe to restart the loop at list_head since the applyfn 942 * changes the zsd_flags as it does work, so a subsequent 943 * pass through will have no effect in applyfn, hence the loop will terminate 944 * in at worst O(N^2). 945 */ 946 static void 947 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 948 { 949 zone_t *zone; 950 951 mutex_enter(&zonehash_lock); 952 zone = list_head(&zone_active); 953 while (zone != NULL) { 954 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 955 /* Lock dropped - restart at head */ 956 zone = list_head(&zone_active); 957 } else { 958 zone = list_next(&zone_active, zone); 959 } 960 } 961 mutex_exit(&zonehash_lock); 962 } 963 964 /* 965 * Apply a function to all keys for a particular zone. 966 * 967 * The applyfn has to drop zonehash_lock if it does some work, and 968 * then reacquire it before it returns. 969 * When the lock is dropped we don't follow list_next even 970 * if it is possible to do so without any hazards. This is 971 * because we want the design to allow for the list of zsd callbacks 972 * to change in any arbitrary way during the time the 973 * lock was dropped. 974 * 975 * It is safe to restart the loop at list_head since the applyfn 976 * changes the zsd_flags as it does work, so a subsequent 977 * pass through will have no effect in applyfn, hence the loop will terminate 978 * in at worst O(N^2). 979 */ 980 static void 981 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 982 { 983 struct zsd_entry *t; 984 985 mutex_enter(&zone->zone_lock); 986 t = list_head(&zone->zone_zsd); 987 while (t != NULL) { 988 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 989 /* Lock dropped - restart at head */ 990 t = list_head(&zone->zone_zsd); 991 } else { 992 t = list_next(&zone->zone_zsd, t); 993 } 994 } 995 mutex_exit(&zone->zone_lock); 996 } 997 998 /* 999 * Call the create function for the zone and key if CREATE_NEEDED 1000 * is set. 1001 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1002 * we wait for that thread to complete so that we can ensure that 1003 * all the callbacks are done when we've looped over all zones/keys. 1004 * 1005 * When we call the create function, we drop the global held by the 1006 * caller, and return true to tell the caller it needs to re-evalute the 1007 * state. 1008 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1009 * remains held on exit. 1010 */ 1011 static boolean_t 1012 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1013 zone_t *zone, zone_key_t key) 1014 { 1015 void *result; 1016 struct zsd_entry *t; 1017 boolean_t dropped; 1018 1019 if (lockp != NULL) { 1020 ASSERT(MUTEX_HELD(lockp)); 1021 } 1022 if (zone_lock_held) { 1023 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1024 } else { 1025 mutex_enter(&zone->zone_lock); 1026 } 1027 1028 t = zsd_find(&zone->zone_zsd, key); 1029 if (t == NULL) { 1030 /* 1031 * Somebody else got here first e.g the zone going 1032 * away. 1033 */ 1034 if (!zone_lock_held) 1035 mutex_exit(&zone->zone_lock); 1036 return (B_FALSE); 1037 } 1038 dropped = B_FALSE; 1039 if (zsd_wait_for_inprogress(zone, t, lockp)) 1040 dropped = B_TRUE; 1041 1042 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1043 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1044 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1045 DTRACE_PROBE2(zsd__create__inprogress, 1046 zone_t *, zone, zone_key_t, key); 1047 mutex_exit(&zone->zone_lock); 1048 if (lockp != NULL) 1049 mutex_exit(lockp); 1050 1051 dropped = B_TRUE; 1052 ASSERT(t->zsd_create != NULL); 1053 DTRACE_PROBE2(zsd__create__start, 1054 zone_t *, zone, zone_key_t, key); 1055 1056 result = (*t->zsd_create)(zone->zone_id); 1057 1058 DTRACE_PROBE2(zsd__create__end, 1059 zone_t *, zone, voidn *, result); 1060 1061 ASSERT(result != NULL); 1062 if (lockp != NULL) 1063 mutex_enter(lockp); 1064 mutex_enter(&zone->zone_lock); 1065 t->zsd_data = result; 1066 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1067 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1068 cv_broadcast(&t->zsd_cv); 1069 DTRACE_PROBE2(zsd__create__completed, 1070 zone_t *, zone, zone_key_t, key); 1071 } 1072 if (!zone_lock_held) 1073 mutex_exit(&zone->zone_lock); 1074 return (dropped); 1075 } 1076 1077 /* 1078 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1079 * is set. 1080 * If some other thread gets here first and sets *_INPROGRESS, then 1081 * we wait for that thread to complete so that we can ensure that 1082 * all the callbacks are done when we've looped over all zones/keys. 1083 * 1084 * When we call the shutdown function, we drop the global held by the 1085 * caller, and return true to tell the caller it needs to re-evalute the 1086 * state. 1087 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1088 * remains held on exit. 1089 */ 1090 static boolean_t 1091 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1092 zone_t *zone, zone_key_t key) 1093 { 1094 struct zsd_entry *t; 1095 void *data; 1096 boolean_t dropped; 1097 1098 if (lockp != NULL) { 1099 ASSERT(MUTEX_HELD(lockp)); 1100 } 1101 if (zone_lock_held) { 1102 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1103 } else { 1104 mutex_enter(&zone->zone_lock); 1105 } 1106 1107 t = zsd_find(&zone->zone_zsd, key); 1108 if (t == NULL) { 1109 /* 1110 * Somebody else got here first e.g the zone going 1111 * away. 1112 */ 1113 if (!zone_lock_held) 1114 mutex_exit(&zone->zone_lock); 1115 return (B_FALSE); 1116 } 1117 dropped = B_FALSE; 1118 if (zsd_wait_for_creator(zone, t, lockp)) 1119 dropped = B_TRUE; 1120 1121 if (zsd_wait_for_inprogress(zone, t, lockp)) 1122 dropped = B_TRUE; 1123 1124 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1125 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1126 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1127 DTRACE_PROBE2(zsd__shutdown__inprogress, 1128 zone_t *, zone, zone_key_t, key); 1129 mutex_exit(&zone->zone_lock); 1130 if (lockp != NULL) 1131 mutex_exit(lockp); 1132 dropped = B_TRUE; 1133 1134 ASSERT(t->zsd_shutdown != NULL); 1135 data = t->zsd_data; 1136 1137 DTRACE_PROBE2(zsd__shutdown__start, 1138 zone_t *, zone, zone_key_t, key); 1139 1140 (t->zsd_shutdown)(zone->zone_id, data); 1141 DTRACE_PROBE2(zsd__shutdown__end, 1142 zone_t *, zone, zone_key_t, key); 1143 1144 if (lockp != NULL) 1145 mutex_enter(lockp); 1146 mutex_enter(&zone->zone_lock); 1147 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1148 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1149 cv_broadcast(&t->zsd_cv); 1150 DTRACE_PROBE2(zsd__shutdown__completed, 1151 zone_t *, zone, zone_key_t, key); 1152 } 1153 if (!zone_lock_held) 1154 mutex_exit(&zone->zone_lock); 1155 return (dropped); 1156 } 1157 1158 /* 1159 * Call the destroy function for the zone and key if DESTROY_NEEDED 1160 * is set. 1161 * If some other thread gets here first and sets *_INPROGRESS, then 1162 * we wait for that thread to complete so that we can ensure that 1163 * all the callbacks are done when we've looped over all zones/keys. 1164 * 1165 * When we call the destroy function, we drop the global held by the 1166 * caller, and return true to tell the caller it needs to re-evalute the 1167 * state. 1168 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1169 * remains held on exit. 1170 */ 1171 static boolean_t 1172 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1173 zone_t *zone, zone_key_t key) 1174 { 1175 struct zsd_entry *t; 1176 void *data; 1177 boolean_t dropped; 1178 1179 if (lockp != NULL) { 1180 ASSERT(MUTEX_HELD(lockp)); 1181 } 1182 if (zone_lock_held) { 1183 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1184 } else { 1185 mutex_enter(&zone->zone_lock); 1186 } 1187 1188 t = zsd_find(&zone->zone_zsd, key); 1189 if (t == NULL) { 1190 /* 1191 * Somebody else got here first e.g the zone going 1192 * away. 1193 */ 1194 if (!zone_lock_held) 1195 mutex_exit(&zone->zone_lock); 1196 return (B_FALSE); 1197 } 1198 dropped = B_FALSE; 1199 if (zsd_wait_for_creator(zone, t, lockp)) 1200 dropped = B_TRUE; 1201 1202 if (zsd_wait_for_inprogress(zone, t, lockp)) 1203 dropped = B_TRUE; 1204 1205 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1206 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1207 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1208 DTRACE_PROBE2(zsd__destroy__inprogress, 1209 zone_t *, zone, zone_key_t, key); 1210 mutex_exit(&zone->zone_lock); 1211 if (lockp != NULL) 1212 mutex_exit(lockp); 1213 dropped = B_TRUE; 1214 1215 ASSERT(t->zsd_destroy != NULL); 1216 data = t->zsd_data; 1217 DTRACE_PROBE2(zsd__destroy__start, 1218 zone_t *, zone, zone_key_t, key); 1219 1220 (t->zsd_destroy)(zone->zone_id, data); 1221 DTRACE_PROBE2(zsd__destroy__end, 1222 zone_t *, zone, zone_key_t, key); 1223 1224 if (lockp != NULL) 1225 mutex_enter(lockp); 1226 mutex_enter(&zone->zone_lock); 1227 t->zsd_data = NULL; 1228 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1229 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1230 cv_broadcast(&t->zsd_cv); 1231 DTRACE_PROBE2(zsd__destroy__completed, 1232 zone_t *, zone, zone_key_t, key); 1233 } 1234 if (!zone_lock_held) 1235 mutex_exit(&zone->zone_lock); 1236 return (dropped); 1237 } 1238 1239 /* 1240 * Wait for any CREATE_NEEDED flag to be cleared. 1241 * Returns true if lockp was temporarily dropped while waiting. 1242 */ 1243 static boolean_t 1244 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1245 { 1246 boolean_t dropped = B_FALSE; 1247 1248 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1249 DTRACE_PROBE2(zsd__wait__for__creator, 1250 zone_t *, zone, struct zsd_entry *, t); 1251 if (lockp != NULL) { 1252 dropped = B_TRUE; 1253 mutex_exit(lockp); 1254 } 1255 cv_wait(&t->zsd_cv, &zone->zone_lock); 1256 if (lockp != NULL) { 1257 /* First drop zone_lock to preserve order */ 1258 mutex_exit(&zone->zone_lock); 1259 mutex_enter(lockp); 1260 mutex_enter(&zone->zone_lock); 1261 } 1262 } 1263 return (dropped); 1264 } 1265 1266 /* 1267 * Wait for any INPROGRESS flag to be cleared. 1268 * Returns true if lockp was temporarily dropped while waiting. 1269 */ 1270 static boolean_t 1271 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1272 { 1273 boolean_t dropped = B_FALSE; 1274 1275 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1276 DTRACE_PROBE2(zsd__wait__for__inprogress, 1277 zone_t *, zone, struct zsd_entry *, t); 1278 if (lockp != NULL) { 1279 dropped = B_TRUE; 1280 mutex_exit(lockp); 1281 } 1282 cv_wait(&t->zsd_cv, &zone->zone_lock); 1283 if (lockp != NULL) { 1284 /* First drop zone_lock to preserve order */ 1285 mutex_exit(&zone->zone_lock); 1286 mutex_enter(lockp); 1287 mutex_enter(&zone->zone_lock); 1288 } 1289 } 1290 return (dropped); 1291 } 1292 1293 /* 1294 * Frees memory associated with the zone dataset list. 1295 */ 1296 static void 1297 zone_free_datasets(zone_t *zone) 1298 { 1299 zone_dataset_t *t, *next; 1300 1301 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1302 next = list_next(&zone->zone_datasets, t); 1303 list_remove(&zone->zone_datasets, t); 1304 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1305 kmem_free(t, sizeof (*t)); 1306 } 1307 list_destroy(&zone->zone_datasets); 1308 } 1309 1310 /* 1311 * zone.cpu-shares resource control support. 1312 */ 1313 /*ARGSUSED*/ 1314 static rctl_qty_t 1315 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1316 { 1317 ASSERT(MUTEX_HELD(&p->p_lock)); 1318 return (p->p_zone->zone_shares); 1319 } 1320 1321 /*ARGSUSED*/ 1322 static int 1323 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1324 rctl_qty_t nv) 1325 { 1326 ASSERT(MUTEX_HELD(&p->p_lock)); 1327 ASSERT(e->rcep_t == RCENTITY_ZONE); 1328 if (e->rcep_p.zone == NULL) 1329 return (0); 1330 1331 e->rcep_p.zone->zone_shares = nv; 1332 return (0); 1333 } 1334 1335 static rctl_ops_t zone_cpu_shares_ops = { 1336 rcop_no_action, 1337 zone_cpu_shares_usage, 1338 zone_cpu_shares_set, 1339 rcop_no_test 1340 }; 1341 1342 /* 1343 * zone.cpu-cap resource control support. 1344 */ 1345 /*ARGSUSED*/ 1346 static rctl_qty_t 1347 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1348 { 1349 ASSERT(MUTEX_HELD(&p->p_lock)); 1350 return (cpucaps_zone_get(p->p_zone)); 1351 } 1352 1353 /*ARGSUSED*/ 1354 static int 1355 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1356 rctl_qty_t nv) 1357 { 1358 zone_t *zone = e->rcep_p.zone; 1359 1360 ASSERT(MUTEX_HELD(&p->p_lock)); 1361 ASSERT(e->rcep_t == RCENTITY_ZONE); 1362 1363 if (zone == NULL) 1364 return (0); 1365 1366 /* 1367 * set cap to the new value. 1368 */ 1369 return (cpucaps_zone_set(zone, nv)); 1370 } 1371 1372 static rctl_ops_t zone_cpu_cap_ops = { 1373 rcop_no_action, 1374 zone_cpu_cap_get, 1375 zone_cpu_cap_set, 1376 rcop_no_test 1377 }; 1378 1379 /*ARGSUSED*/ 1380 static rctl_qty_t 1381 zone_lwps_usage(rctl_t *r, proc_t *p) 1382 { 1383 rctl_qty_t nlwps; 1384 zone_t *zone = p->p_zone; 1385 1386 ASSERT(MUTEX_HELD(&p->p_lock)); 1387 1388 mutex_enter(&zone->zone_nlwps_lock); 1389 nlwps = zone->zone_nlwps; 1390 mutex_exit(&zone->zone_nlwps_lock); 1391 1392 return (nlwps); 1393 } 1394 1395 /*ARGSUSED*/ 1396 static int 1397 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1398 rctl_qty_t incr, uint_t flags) 1399 { 1400 rctl_qty_t nlwps; 1401 1402 ASSERT(MUTEX_HELD(&p->p_lock)); 1403 ASSERT(e->rcep_t == RCENTITY_ZONE); 1404 if (e->rcep_p.zone == NULL) 1405 return (0); 1406 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1407 nlwps = e->rcep_p.zone->zone_nlwps; 1408 1409 if (nlwps + incr > rcntl->rcv_value) 1410 return (1); 1411 1412 return (0); 1413 } 1414 1415 /*ARGSUSED*/ 1416 static int 1417 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1418 { 1419 ASSERT(MUTEX_HELD(&p->p_lock)); 1420 ASSERT(e->rcep_t == RCENTITY_ZONE); 1421 if (e->rcep_p.zone == NULL) 1422 return (0); 1423 e->rcep_p.zone->zone_nlwps_ctl = nv; 1424 return (0); 1425 } 1426 1427 static rctl_ops_t zone_lwps_ops = { 1428 rcop_no_action, 1429 zone_lwps_usage, 1430 zone_lwps_set, 1431 zone_lwps_test, 1432 }; 1433 1434 /*ARGSUSED*/ 1435 static rctl_qty_t 1436 zone_procs_usage(rctl_t *r, proc_t *p) 1437 { 1438 rctl_qty_t nprocs; 1439 zone_t *zone = p->p_zone; 1440 1441 ASSERT(MUTEX_HELD(&p->p_lock)); 1442 1443 mutex_enter(&zone->zone_nlwps_lock); 1444 nprocs = zone->zone_nprocs; 1445 mutex_exit(&zone->zone_nlwps_lock); 1446 1447 return (nprocs); 1448 } 1449 1450 /*ARGSUSED*/ 1451 static int 1452 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1453 rctl_qty_t incr, uint_t flags) 1454 { 1455 rctl_qty_t nprocs; 1456 1457 ASSERT(MUTEX_HELD(&p->p_lock)); 1458 ASSERT(e->rcep_t == RCENTITY_ZONE); 1459 if (e->rcep_p.zone == NULL) 1460 return (0); 1461 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1462 nprocs = e->rcep_p.zone->zone_nprocs; 1463 1464 if (nprocs + incr > rcntl->rcv_value) 1465 return (1); 1466 1467 return (0); 1468 } 1469 1470 /*ARGSUSED*/ 1471 static int 1472 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1473 { 1474 ASSERT(MUTEX_HELD(&p->p_lock)); 1475 ASSERT(e->rcep_t == RCENTITY_ZONE); 1476 if (e->rcep_p.zone == NULL) 1477 return (0); 1478 e->rcep_p.zone->zone_nprocs_ctl = nv; 1479 return (0); 1480 } 1481 1482 static rctl_ops_t zone_procs_ops = { 1483 rcop_no_action, 1484 zone_procs_usage, 1485 zone_procs_set, 1486 zone_procs_test, 1487 }; 1488 1489 /*ARGSUSED*/ 1490 static int 1491 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1492 rctl_qty_t incr, uint_t flags) 1493 { 1494 rctl_qty_t v; 1495 ASSERT(MUTEX_HELD(&p->p_lock)); 1496 ASSERT(e->rcep_t == RCENTITY_ZONE); 1497 v = e->rcep_p.zone->zone_shmmax + incr; 1498 if (v > rval->rcv_value) 1499 return (1); 1500 return (0); 1501 } 1502 1503 static rctl_ops_t zone_shmmax_ops = { 1504 rcop_no_action, 1505 rcop_no_usage, 1506 rcop_no_set, 1507 zone_shmmax_test 1508 }; 1509 1510 /*ARGSUSED*/ 1511 static int 1512 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1513 rctl_qty_t incr, uint_t flags) 1514 { 1515 rctl_qty_t v; 1516 ASSERT(MUTEX_HELD(&p->p_lock)); 1517 ASSERT(e->rcep_t == RCENTITY_ZONE); 1518 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1519 if (v > rval->rcv_value) 1520 return (1); 1521 return (0); 1522 } 1523 1524 static rctl_ops_t zone_shmmni_ops = { 1525 rcop_no_action, 1526 rcop_no_usage, 1527 rcop_no_set, 1528 zone_shmmni_test 1529 }; 1530 1531 /*ARGSUSED*/ 1532 static int 1533 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1534 rctl_qty_t incr, uint_t flags) 1535 { 1536 rctl_qty_t v; 1537 ASSERT(MUTEX_HELD(&p->p_lock)); 1538 ASSERT(e->rcep_t == RCENTITY_ZONE); 1539 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1540 if (v > rval->rcv_value) 1541 return (1); 1542 return (0); 1543 } 1544 1545 static rctl_ops_t zone_semmni_ops = { 1546 rcop_no_action, 1547 rcop_no_usage, 1548 rcop_no_set, 1549 zone_semmni_test 1550 }; 1551 1552 /*ARGSUSED*/ 1553 static int 1554 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1555 rctl_qty_t incr, uint_t flags) 1556 { 1557 rctl_qty_t v; 1558 ASSERT(MUTEX_HELD(&p->p_lock)); 1559 ASSERT(e->rcep_t == RCENTITY_ZONE); 1560 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1561 if (v > rval->rcv_value) 1562 return (1); 1563 return (0); 1564 } 1565 1566 static rctl_ops_t zone_msgmni_ops = { 1567 rcop_no_action, 1568 rcop_no_usage, 1569 rcop_no_set, 1570 zone_msgmni_test 1571 }; 1572 1573 /*ARGSUSED*/ 1574 static rctl_qty_t 1575 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1576 { 1577 rctl_qty_t q; 1578 ASSERT(MUTEX_HELD(&p->p_lock)); 1579 mutex_enter(&p->p_zone->zone_mem_lock); 1580 q = p->p_zone->zone_locked_mem; 1581 mutex_exit(&p->p_zone->zone_mem_lock); 1582 return (q); 1583 } 1584 1585 /*ARGSUSED*/ 1586 static int 1587 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1588 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1589 { 1590 rctl_qty_t q; 1591 zone_t *z; 1592 1593 z = e->rcep_p.zone; 1594 ASSERT(MUTEX_HELD(&p->p_lock)); 1595 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1596 q = z->zone_locked_mem; 1597 if (q + incr > rcntl->rcv_value) 1598 return (1); 1599 return (0); 1600 } 1601 1602 /*ARGSUSED*/ 1603 static int 1604 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1605 rctl_qty_t nv) 1606 { 1607 ASSERT(MUTEX_HELD(&p->p_lock)); 1608 ASSERT(e->rcep_t == RCENTITY_ZONE); 1609 if (e->rcep_p.zone == NULL) 1610 return (0); 1611 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1612 return (0); 1613 } 1614 1615 static rctl_ops_t zone_locked_mem_ops = { 1616 rcop_no_action, 1617 zone_locked_mem_usage, 1618 zone_locked_mem_set, 1619 zone_locked_mem_test 1620 }; 1621 1622 /*ARGSUSED*/ 1623 static rctl_qty_t 1624 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1625 { 1626 rctl_qty_t q; 1627 zone_t *z = p->p_zone; 1628 1629 ASSERT(MUTEX_HELD(&p->p_lock)); 1630 mutex_enter(&z->zone_mem_lock); 1631 q = z->zone_max_swap; 1632 mutex_exit(&z->zone_mem_lock); 1633 return (q); 1634 } 1635 1636 /*ARGSUSED*/ 1637 static int 1638 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1639 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1640 { 1641 rctl_qty_t q; 1642 zone_t *z; 1643 1644 z = e->rcep_p.zone; 1645 ASSERT(MUTEX_HELD(&p->p_lock)); 1646 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1647 q = z->zone_max_swap; 1648 if (q + incr > rcntl->rcv_value) 1649 return (1); 1650 return (0); 1651 } 1652 1653 /*ARGSUSED*/ 1654 static int 1655 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1656 rctl_qty_t nv) 1657 { 1658 ASSERT(MUTEX_HELD(&p->p_lock)); 1659 ASSERT(e->rcep_t == RCENTITY_ZONE); 1660 if (e->rcep_p.zone == NULL) 1661 return (0); 1662 e->rcep_p.zone->zone_max_swap_ctl = nv; 1663 return (0); 1664 } 1665 1666 static rctl_ops_t zone_max_swap_ops = { 1667 rcop_no_action, 1668 zone_max_swap_usage, 1669 zone_max_swap_set, 1670 zone_max_swap_test 1671 }; 1672 1673 /*ARGSUSED*/ 1674 static rctl_qty_t 1675 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1676 { 1677 rctl_qty_t q; 1678 zone_t *z = p->p_zone; 1679 1680 ASSERT(MUTEX_HELD(&p->p_lock)); 1681 mutex_enter(&z->zone_rctl_lock); 1682 q = z->zone_max_lofi; 1683 mutex_exit(&z->zone_rctl_lock); 1684 return (q); 1685 } 1686 1687 /*ARGSUSED*/ 1688 static int 1689 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1690 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1691 { 1692 rctl_qty_t q; 1693 zone_t *z; 1694 1695 z = e->rcep_p.zone; 1696 ASSERT(MUTEX_HELD(&p->p_lock)); 1697 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1698 q = z->zone_max_lofi; 1699 if (q + incr > rcntl->rcv_value) 1700 return (1); 1701 return (0); 1702 } 1703 1704 /*ARGSUSED*/ 1705 static int 1706 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1707 rctl_qty_t nv) 1708 { 1709 ASSERT(MUTEX_HELD(&p->p_lock)); 1710 ASSERT(e->rcep_t == RCENTITY_ZONE); 1711 if (e->rcep_p.zone == NULL) 1712 return (0); 1713 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1714 return (0); 1715 } 1716 1717 static rctl_ops_t zone_max_lofi_ops = { 1718 rcop_no_action, 1719 zone_max_lofi_usage, 1720 zone_max_lofi_set, 1721 zone_max_lofi_test 1722 }; 1723 1724 /* 1725 * Helper function to brand the zone with a unique ID. 1726 */ 1727 static void 1728 zone_uniqid(zone_t *zone) 1729 { 1730 static uint64_t uniqid = 0; 1731 1732 ASSERT(MUTEX_HELD(&zonehash_lock)); 1733 zone->zone_uniqid = uniqid++; 1734 } 1735 1736 /* 1737 * Returns a held pointer to the "kcred" for the specified zone. 1738 */ 1739 struct cred * 1740 zone_get_kcred(zoneid_t zoneid) 1741 { 1742 zone_t *zone; 1743 cred_t *cr; 1744 1745 if ((zone = zone_find_by_id(zoneid)) == NULL) 1746 return (NULL); 1747 cr = zone->zone_kcred; 1748 crhold(cr); 1749 zone_rele(zone); 1750 return (cr); 1751 } 1752 1753 static int 1754 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1755 { 1756 zone_t *zone = ksp->ks_private; 1757 zone_kstat_t *zk = ksp->ks_data; 1758 1759 if (rw == KSTAT_WRITE) 1760 return (EACCES); 1761 1762 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1763 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1764 return (0); 1765 } 1766 1767 static int 1768 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1769 { 1770 zone_t *zone = ksp->ks_private; 1771 zone_kstat_t *zk = ksp->ks_data; 1772 1773 if (rw == KSTAT_WRITE) 1774 return (EACCES); 1775 1776 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1777 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1778 return (0); 1779 } 1780 1781 static int 1782 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1783 { 1784 zone_t *zone = ksp->ks_private; 1785 zone_kstat_t *zk = ksp->ks_data; 1786 1787 if (rw == KSTAT_WRITE) 1788 return (EACCES); 1789 1790 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1791 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1792 return (0); 1793 } 1794 1795 static kstat_t * 1796 zone_kstat_create_common(zone_t *zone, char *name, 1797 int (*updatefunc) (kstat_t *, int)) 1798 { 1799 kstat_t *ksp; 1800 zone_kstat_t *zk; 1801 1802 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1803 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1804 KSTAT_FLAG_VIRTUAL); 1805 1806 if (ksp == NULL) 1807 return (NULL); 1808 1809 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1810 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1811 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1812 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1813 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1814 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1815 ksp->ks_update = updatefunc; 1816 ksp->ks_private = zone; 1817 kstat_install(ksp); 1818 return (ksp); 1819 } 1820 1821 static int 1822 zone_misc_kstat_update(kstat_t *ksp, int rw) 1823 { 1824 zone_t *zone = ksp->ks_private; 1825 zone_misc_kstat_t *zmp = ksp->ks_data; 1826 hrtime_t tmp; 1827 1828 if (rw == KSTAT_WRITE) 1829 return (EACCES); 1830 1831 tmp = zone->zone_utime; 1832 scalehrtime(&tmp); 1833 zmp->zm_utime.value.ui64 = tmp; 1834 tmp = zone->zone_stime; 1835 scalehrtime(&tmp); 1836 zmp->zm_stime.value.ui64 = tmp; 1837 tmp = zone->zone_wtime; 1838 scalehrtime(&tmp); 1839 zmp->zm_wtime.value.ui64 = tmp; 1840 1841 zmp->zm_boot_hrtime.value.t = zone->zone_boot_hrtime; 1842 1843 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1844 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1845 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1846 1847 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1848 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1849 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1850 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1851 1852 return (0); 1853 } 1854 1855 static kstat_t * 1856 zone_misc_kstat_create(zone_t *zone) 1857 { 1858 kstat_t *ksp; 1859 zone_misc_kstat_t *zmp; 1860 1861 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1862 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1863 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1864 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1865 return (NULL); 1866 1867 if (zone->zone_id != GLOBAL_ZONEID) 1868 kstat_zone_add(ksp, GLOBAL_ZONEID); 1869 1870 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1871 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1872 ksp->ks_lock = &zone->zone_misc_lock; 1873 zone->zone_misc_stats = zmp; 1874 1875 /* The kstat "name" field is not large enough for a full zonename */ 1876 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1877 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1878 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1879 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1880 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1881 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1882 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1883 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1884 KSTAT_DATA_UINT32); 1885 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1886 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1887 KSTAT_DATA_UINT32); 1888 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1889 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1890 kstat_named_init(&zmp->zm_boot_hrtime, "boot_hrtime", KSTAT_DATA_TIME); 1891 1892 1893 ksp->ks_update = zone_misc_kstat_update; 1894 ksp->ks_private = zone; 1895 1896 kstat_install(ksp); 1897 return (ksp); 1898 } 1899 1900 static void 1901 zone_kstat_create(zone_t *zone) 1902 { 1903 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1904 "lockedmem", zone_lockedmem_kstat_update); 1905 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1906 "swapresv", zone_swapresv_kstat_update); 1907 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1908 "nprocs", zone_nprocs_kstat_update); 1909 1910 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 1911 zone->zone_misc_stats = kmem_zalloc( 1912 sizeof (zone_misc_kstat_t), KM_SLEEP); 1913 } 1914 } 1915 1916 static void 1917 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 1918 { 1919 void *data; 1920 1921 if (*pkstat != NULL) { 1922 data = (*pkstat)->ks_data; 1923 kstat_delete(*pkstat); 1924 kmem_free(data, datasz); 1925 *pkstat = NULL; 1926 } 1927 } 1928 1929 static void 1930 zone_kstat_delete(zone_t *zone) 1931 { 1932 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 1933 sizeof (zone_kstat_t)); 1934 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 1935 sizeof (zone_kstat_t)); 1936 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 1937 sizeof (zone_kstat_t)); 1938 zone_kstat_delete_common(&zone->zone_misc_ksp, 1939 sizeof (zone_misc_kstat_t)); 1940 } 1941 1942 /* 1943 * Called very early on in boot to initialize the ZSD list so that 1944 * zone_key_create() can be called before zone_init(). It also initializes 1945 * portions of zone0 which may be used before zone_init() is called. The 1946 * variable "global_zone" will be set when zone0 is fully initialized by 1947 * zone_init(). 1948 */ 1949 void 1950 zone_zsd_init(void) 1951 { 1952 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1953 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1954 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1955 offsetof(struct zsd_entry, zsd_linkage)); 1956 list_create(&zone_active, sizeof (zone_t), 1957 offsetof(zone_t, zone_linkage)); 1958 list_create(&zone_deathrow, sizeof (zone_t), 1959 offsetof(zone_t, zone_linkage)); 1960 1961 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1962 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1963 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1964 zone0.zone_shares = 1; 1965 zone0.zone_nlwps = 0; 1966 zone0.zone_nlwps_ctl = INT_MAX; 1967 zone0.zone_nprocs = 0; 1968 zone0.zone_nprocs_ctl = INT_MAX; 1969 zone0.zone_locked_mem = 0; 1970 zone0.zone_locked_mem_ctl = UINT64_MAX; 1971 ASSERT(zone0.zone_max_swap == 0); 1972 zone0.zone_max_swap_ctl = UINT64_MAX; 1973 zone0.zone_max_lofi = 0; 1974 zone0.zone_max_lofi_ctl = UINT64_MAX; 1975 zone0.zone_shmmax = 0; 1976 zone0.zone_ipc.ipcq_shmmni = 0; 1977 zone0.zone_ipc.ipcq_semmni = 0; 1978 zone0.zone_ipc.ipcq_msgmni = 0; 1979 zone0.zone_name = GLOBAL_ZONENAME; 1980 zone0.zone_nodename = utsname.nodename; 1981 zone0.zone_domain = srpc_domain; 1982 zone0.zone_hostid = HW_INVALID_HOSTID; 1983 zone0.zone_fs_allowed = NULL; 1984 zone0.zone_ref = 1; 1985 zone0.zone_id = GLOBAL_ZONEID; 1986 zone0.zone_status = ZONE_IS_RUNNING; 1987 zone0.zone_rootpath = "/"; 1988 zone0.zone_rootpathlen = 2; 1989 zone0.zone_psetid = ZONE_PS_INVAL; 1990 zone0.zone_ncpus = 0; 1991 zone0.zone_ncpus_online = 0; 1992 zone0.zone_proc_initpid = 1; 1993 zone0.zone_initname = initname; 1994 zone0.zone_lockedmem_kstat = NULL; 1995 zone0.zone_swapresv_kstat = NULL; 1996 zone0.zone_nprocs_kstat = NULL; 1997 1998 zone0.zone_stime = 0; 1999 zone0.zone_utime = 0; 2000 zone0.zone_wtime = 0; 2001 2002 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2003 offsetof(zone_ref_t, zref_linkage)); 2004 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2005 offsetof(struct zsd_entry, zsd_linkage)); 2006 list_insert_head(&zone_active, &zone0); 2007 2008 /* 2009 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2010 * to anything meaningful. It is assigned to be 'rootdir' in 2011 * vfs_mountroot(). 2012 */ 2013 zone0.zone_rootvp = NULL; 2014 zone0.zone_vfslist = NULL; 2015 zone0.zone_bootargs = initargs; 2016 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2017 /* 2018 * The global zone has all privileges 2019 */ 2020 priv_fillset(zone0.zone_privset); 2021 /* 2022 * Add p0 to the global zone 2023 */ 2024 zone0.zone_zsched = &p0; 2025 p0.p_zone = &zone0; 2026 } 2027 2028 /* 2029 * Compute a hash value based on the contents of the label and the DOI. The 2030 * hash algorithm is somewhat arbitrary, but is based on the observation that 2031 * humans will likely pick labels that differ by amounts that work out to be 2032 * multiples of the number of hash chains, and thus stirring in some primes 2033 * should help. 2034 */ 2035 static uint_t 2036 hash_bylabel(void *hdata, mod_hash_key_t key) 2037 { 2038 const ts_label_t *lab = (ts_label_t *)key; 2039 const uint32_t *up, *ue; 2040 uint_t hash; 2041 int i; 2042 2043 _NOTE(ARGUNUSED(hdata)); 2044 2045 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2046 /* we depend on alignment of label, but not representation */ 2047 up = (const uint32_t *)&lab->tsl_label; 2048 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2049 i = 1; 2050 while (up < ue) { 2051 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2052 hash += *up + (*up << ((i % 16) + 1)); 2053 up++; 2054 i++; 2055 } 2056 return (hash); 2057 } 2058 2059 /* 2060 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2061 * equal). This may need to be changed if less than / greater than is ever 2062 * needed. 2063 */ 2064 static int 2065 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2066 { 2067 ts_label_t *lab1 = (ts_label_t *)key1; 2068 ts_label_t *lab2 = (ts_label_t *)key2; 2069 2070 return (label_equal(lab1, lab2) ? 0 : 1); 2071 } 2072 2073 /* 2074 * Called by main() to initialize the zones framework. 2075 */ 2076 void 2077 zone_init(void) 2078 { 2079 rctl_dict_entry_t *rde; 2080 rctl_val_t *dval; 2081 rctl_set_t *set; 2082 rctl_alloc_gp_t *gp; 2083 rctl_entity_p_t e; 2084 int res; 2085 2086 ASSERT(curproc == &p0); 2087 2088 /* 2089 * Create ID space for zone IDs. ID 0 is reserved for the 2090 * global zone. 2091 */ 2092 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2093 2094 /* 2095 * Initialize generic zone resource controls, if any. 2096 */ 2097 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2098 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2099 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2100 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2101 2102 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2103 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2104 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2105 RCTL_GLOBAL_INFINITE, 2106 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2107 2108 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2109 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2110 INT_MAX, INT_MAX, &zone_lwps_ops); 2111 2112 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2113 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2114 INT_MAX, INT_MAX, &zone_procs_ops); 2115 2116 /* 2117 * System V IPC resource controls 2118 */ 2119 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2120 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2121 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2122 2123 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2124 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2125 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2126 2127 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2128 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2129 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2130 2131 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2132 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2133 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2134 2135 /* 2136 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2137 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2138 */ 2139 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2140 bzero(dval, sizeof (rctl_val_t)); 2141 dval->rcv_value = 1; 2142 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2143 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2144 dval->rcv_action_recip_pid = -1; 2145 2146 rde = rctl_dict_lookup("zone.cpu-shares"); 2147 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2148 2149 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2150 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2151 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2152 &zone_locked_mem_ops); 2153 2154 rc_zone_max_swap = rctl_register("zone.max-swap", 2155 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2156 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2157 &zone_max_swap_ops); 2158 2159 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2160 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2161 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2162 &zone_max_lofi_ops); 2163 2164 /* 2165 * Initialize the ``global zone''. 2166 */ 2167 set = rctl_set_create(); 2168 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2169 mutex_enter(&p0.p_lock); 2170 e.rcep_p.zone = &zone0; 2171 e.rcep_t = RCENTITY_ZONE; 2172 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2173 gp); 2174 2175 zone0.zone_nlwps = p0.p_lwpcnt; 2176 zone0.zone_nprocs = 1; 2177 zone0.zone_ntasks = 1; 2178 mutex_exit(&p0.p_lock); 2179 zone0.zone_restart_init = B_TRUE; 2180 zone0.zone_brand = &native_brand; 2181 rctl_prealloc_destroy(gp); 2182 /* 2183 * pool_default hasn't been initialized yet, so we let pool_init() 2184 * take care of making sure the global zone is in the default pool. 2185 */ 2186 2187 /* 2188 * Initialize global zone kstats 2189 */ 2190 zone_kstat_create(&zone0); 2191 2192 /* 2193 * Initialize zone label. 2194 * mlp are initialized when tnzonecfg is loaded. 2195 */ 2196 zone0.zone_slabel = l_admin_low; 2197 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2198 label_hold(l_admin_low); 2199 2200 /* 2201 * Initialise the lock for the database structure used by mntfs. 2202 */ 2203 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2204 2205 mutex_enter(&zonehash_lock); 2206 zone_uniqid(&zone0); 2207 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2208 2209 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2210 mod_hash_null_valdtor); 2211 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2212 zone_hash_size, mod_hash_null_valdtor); 2213 /* 2214 * maintain zonehashbylabel only for labeled systems 2215 */ 2216 if (is_system_labeled()) 2217 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2218 zone_hash_size, mod_hash_null_keydtor, 2219 mod_hash_null_valdtor, hash_bylabel, NULL, 2220 hash_labelkey_cmp, KM_SLEEP); 2221 zonecount = 1; 2222 2223 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2224 (mod_hash_val_t)&zone0); 2225 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2226 (mod_hash_val_t)&zone0); 2227 if (is_system_labeled()) { 2228 zone0.zone_flags |= ZF_HASHED_LABEL; 2229 (void) mod_hash_insert(zonehashbylabel, 2230 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2231 } 2232 mutex_exit(&zonehash_lock); 2233 2234 /* 2235 * We avoid setting zone_kcred until now, since kcred is initialized 2236 * sometime after zone_zsd_init() and before zone_init(). 2237 */ 2238 zone0.zone_kcred = kcred; 2239 /* 2240 * The global zone is fully initialized (except for zone_rootvp which 2241 * will be set when the root filesystem is mounted). 2242 */ 2243 global_zone = &zone0; 2244 2245 /* 2246 * Setup an event channel to send zone status change notifications on 2247 */ 2248 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2249 EVCH_CREAT); 2250 2251 if (res) 2252 panic("Sysevent_evc_bind failed during zone setup.\n"); 2253 2254 } 2255 2256 static void 2257 zone_free(zone_t *zone) 2258 { 2259 ASSERT(zone != global_zone); 2260 ASSERT(zone->zone_ntasks == 0); 2261 ASSERT(zone->zone_nlwps == 0); 2262 ASSERT(zone->zone_nprocs == 0); 2263 ASSERT(zone->zone_cred_ref == 0); 2264 ASSERT(zone->zone_kcred == NULL); 2265 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2266 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2267 ASSERT(list_is_empty(&zone->zone_ref_list)); 2268 2269 /* 2270 * Remove any zone caps. 2271 */ 2272 cpucaps_zone_remove(zone); 2273 2274 ASSERT(zone->zone_cpucap == NULL); 2275 2276 /* remove from deathrow list */ 2277 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2278 ASSERT(zone->zone_ref == 0); 2279 mutex_enter(&zone_deathrow_lock); 2280 list_remove(&zone_deathrow, zone); 2281 mutex_exit(&zone_deathrow_lock); 2282 } 2283 2284 list_destroy(&zone->zone_ref_list); 2285 zone_free_zsd(zone); 2286 zone_free_datasets(zone); 2287 list_destroy(&zone->zone_dl_list); 2288 2289 if (zone->zone_rootvp != NULL) 2290 VN_RELE(zone->zone_rootvp); 2291 if (zone->zone_rootpath) 2292 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2293 if (zone->zone_name != NULL) 2294 kmem_free(zone->zone_name, ZONENAME_MAX); 2295 if (zone->zone_slabel != NULL) 2296 label_rele(zone->zone_slabel); 2297 if (zone->zone_nodename != NULL) 2298 kmem_free(zone->zone_nodename, _SYS_NMLN); 2299 if (zone->zone_domain != NULL) 2300 kmem_free(zone->zone_domain, _SYS_NMLN); 2301 if (zone->zone_privset != NULL) 2302 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2303 if (zone->zone_rctls != NULL) 2304 rctl_set_free(zone->zone_rctls); 2305 if (zone->zone_bootargs != NULL) 2306 strfree(zone->zone_bootargs); 2307 if (zone->zone_initname != NULL) 2308 strfree(zone->zone_initname); 2309 if (zone->zone_fs_allowed != NULL) 2310 strfree(zone->zone_fs_allowed); 2311 if (zone->zone_pfexecd != NULL) 2312 klpd_freelist(&zone->zone_pfexecd); 2313 id_free(zoneid_space, zone->zone_id); 2314 mutex_destroy(&zone->zone_lock); 2315 cv_destroy(&zone->zone_cv); 2316 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2317 rw_destroy(&zone->zone_mntfs_db_lock); 2318 kmem_free(zone, sizeof (zone_t)); 2319 } 2320 2321 /* 2322 * See block comment at the top of this file for information about zone 2323 * status values. 2324 */ 2325 /* 2326 * Convenience function for setting zone status. 2327 */ 2328 static void 2329 zone_status_set(zone_t *zone, zone_status_t status) 2330 { 2331 2332 nvlist_t *nvl = NULL; 2333 ASSERT(MUTEX_HELD(&zone_status_lock)); 2334 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2335 status >= zone_status_get(zone)); 2336 2337 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2338 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2339 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2340 zone_status_table[status]) || 2341 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2342 zone_status_table[zone->zone_status]) || 2343 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2344 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2345 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2346 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2347 #ifdef DEBUG 2348 (void) printf( 2349 "Failed to allocate and send zone state change event.\n"); 2350 #endif 2351 } 2352 nvlist_free(nvl); 2353 2354 zone->zone_status = status; 2355 2356 cv_broadcast(&zone->zone_cv); 2357 } 2358 2359 /* 2360 * Public function to retrieve the zone status. The zone status may 2361 * change after it is retrieved. 2362 */ 2363 zone_status_t 2364 zone_status_get(zone_t *zone) 2365 { 2366 return (zone->zone_status); 2367 } 2368 2369 static int 2370 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2371 { 2372 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2373 int err = 0; 2374 2375 ASSERT(zone != global_zone); 2376 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2377 goto done; /* EFAULT or ENAMETOOLONG */ 2378 2379 if (zone->zone_bootargs != NULL) 2380 strfree(zone->zone_bootargs); 2381 2382 zone->zone_bootargs = strdup(buf); 2383 2384 done: 2385 kmem_free(buf, BOOTARGS_MAX); 2386 return (err); 2387 } 2388 2389 static int 2390 zone_set_brand(zone_t *zone, const char *brand) 2391 { 2392 struct brand_attr *attrp; 2393 brand_t *bp; 2394 2395 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2396 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2397 kmem_free(attrp, sizeof (struct brand_attr)); 2398 return (EFAULT); 2399 } 2400 2401 bp = brand_register_zone(attrp); 2402 kmem_free(attrp, sizeof (struct brand_attr)); 2403 if (bp == NULL) 2404 return (EINVAL); 2405 2406 /* 2407 * This is the only place where a zone can change it's brand. 2408 * We already need to hold zone_status_lock to check the zone 2409 * status, so we'll just use that lock to serialize zone 2410 * branding requests as well. 2411 */ 2412 mutex_enter(&zone_status_lock); 2413 2414 /* Re-Branding is not allowed and the zone can't be booted yet */ 2415 if ((ZONE_IS_BRANDED(zone)) || 2416 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2417 mutex_exit(&zone_status_lock); 2418 brand_unregister_zone(bp); 2419 return (EINVAL); 2420 } 2421 2422 /* set up the brand specific data */ 2423 zone->zone_brand = bp; 2424 ZBROP(zone)->b_init_brand_data(zone); 2425 2426 mutex_exit(&zone_status_lock); 2427 return (0); 2428 } 2429 2430 static int 2431 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2432 { 2433 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2434 int err = 0; 2435 2436 ASSERT(zone != global_zone); 2437 if ((err = copyinstr(zone_fs_allowed, buf, 2438 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2439 goto done; 2440 2441 if (zone->zone_fs_allowed != NULL) 2442 strfree(zone->zone_fs_allowed); 2443 2444 zone->zone_fs_allowed = strdup(buf); 2445 2446 done: 2447 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2448 return (err); 2449 } 2450 2451 static int 2452 zone_set_initname(zone_t *zone, const char *zone_initname) 2453 { 2454 char initname[INITNAME_SZ]; 2455 size_t len; 2456 int err = 0; 2457 2458 ASSERT(zone != global_zone); 2459 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2460 return (err); /* EFAULT or ENAMETOOLONG */ 2461 2462 if (zone->zone_initname != NULL) 2463 strfree(zone->zone_initname); 2464 2465 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2466 (void) strcpy(zone->zone_initname, initname); 2467 return (0); 2468 } 2469 2470 static int 2471 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2472 { 2473 uint64_t mcap; 2474 int err = 0; 2475 2476 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2477 zone->zone_phys_mcap = mcap; 2478 2479 return (err); 2480 } 2481 2482 static int 2483 zone_set_sched_class(zone_t *zone, const char *new_class) 2484 { 2485 char sched_class[PC_CLNMSZ]; 2486 id_t classid; 2487 int err; 2488 2489 ASSERT(zone != global_zone); 2490 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2491 return (err); /* EFAULT or ENAMETOOLONG */ 2492 2493 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2494 return (set_errno(EINVAL)); 2495 zone->zone_defaultcid = classid; 2496 ASSERT(zone->zone_defaultcid > 0 && 2497 zone->zone_defaultcid < loaded_classes); 2498 2499 return (0); 2500 } 2501 2502 /* 2503 * Block indefinitely waiting for (zone_status >= status) 2504 */ 2505 void 2506 zone_status_wait(zone_t *zone, zone_status_t status) 2507 { 2508 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2509 2510 mutex_enter(&zone_status_lock); 2511 while (zone->zone_status < status) { 2512 cv_wait(&zone->zone_cv, &zone_status_lock); 2513 } 2514 mutex_exit(&zone_status_lock); 2515 } 2516 2517 /* 2518 * Private CPR-safe version of zone_status_wait(). 2519 */ 2520 static void 2521 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2522 { 2523 callb_cpr_t cprinfo; 2524 2525 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2526 2527 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2528 str); 2529 mutex_enter(&zone_status_lock); 2530 while (zone->zone_status < status) { 2531 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2532 cv_wait(&zone->zone_cv, &zone_status_lock); 2533 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2534 } 2535 /* 2536 * zone_status_lock is implicitly released by the following. 2537 */ 2538 CALLB_CPR_EXIT(&cprinfo); 2539 } 2540 2541 /* 2542 * Block until zone enters requested state or signal is received. Return (0) 2543 * if signaled, non-zero otherwise. 2544 */ 2545 int 2546 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2547 { 2548 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2549 2550 mutex_enter(&zone_status_lock); 2551 while (zone->zone_status < status) { 2552 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2553 mutex_exit(&zone_status_lock); 2554 return (0); 2555 } 2556 } 2557 mutex_exit(&zone_status_lock); 2558 return (1); 2559 } 2560 2561 /* 2562 * Block until the zone enters the requested state or the timeout expires, 2563 * whichever happens first. Return (-1) if operation timed out, time remaining 2564 * otherwise. 2565 */ 2566 clock_t 2567 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2568 { 2569 clock_t timeleft = 0; 2570 2571 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2572 2573 mutex_enter(&zone_status_lock); 2574 while (zone->zone_status < status && timeleft != -1) { 2575 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2576 } 2577 mutex_exit(&zone_status_lock); 2578 return (timeleft); 2579 } 2580 2581 /* 2582 * Block until the zone enters the requested state, the current process is 2583 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2584 * operation timed out, 0 if signaled, time remaining otherwise. 2585 */ 2586 clock_t 2587 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2588 { 2589 clock_t timeleft = tim - ddi_get_lbolt(); 2590 2591 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2592 2593 mutex_enter(&zone_status_lock); 2594 while (zone->zone_status < status) { 2595 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2596 tim); 2597 if (timeleft <= 0) 2598 break; 2599 } 2600 mutex_exit(&zone_status_lock); 2601 return (timeleft); 2602 } 2603 2604 /* 2605 * Zones have two reference counts: one for references from credential 2606 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2607 * This is so we can allow a zone to be rebooted while there are still 2608 * outstanding cred references, since certain drivers cache dblks (which 2609 * implicitly results in cached creds). We wait for zone_ref to drop to 2610 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2611 * later freed when the zone_cred_ref drops to 0, though nothing other 2612 * than the zone id and privilege set should be accessed once the zone 2613 * is "dead". 2614 * 2615 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2616 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2617 * to 0. This can be useful to flush out other sources of cached creds 2618 * that may be less innocuous than the driver case. 2619 * 2620 * Zones also provide a tracked reference counting mechanism in which zone 2621 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2622 * debuggers determine the sources of leaked zone references. See 2623 * zone_hold_ref() and zone_rele_ref() below for more information. 2624 */ 2625 2626 int zone_wait_for_cred = 0; 2627 2628 static void 2629 zone_hold_locked(zone_t *z) 2630 { 2631 ASSERT(MUTEX_HELD(&z->zone_lock)); 2632 z->zone_ref++; 2633 ASSERT(z->zone_ref != 0); 2634 } 2635 2636 /* 2637 * Increment the specified zone's reference count. The zone's zone_t structure 2638 * will not be freed as long as the zone's reference count is nonzero. 2639 * Decrement the zone's reference count via zone_rele(). 2640 * 2641 * NOTE: This function should only be used to hold zones for short periods of 2642 * time. Use zone_hold_ref() if the zone must be held for a long time. 2643 */ 2644 void 2645 zone_hold(zone_t *z) 2646 { 2647 mutex_enter(&z->zone_lock); 2648 zone_hold_locked(z); 2649 mutex_exit(&z->zone_lock); 2650 } 2651 2652 /* 2653 * If the non-cred ref count drops to 1 and either the cred ref count 2654 * is 0 or we aren't waiting for cred references, the zone is ready to 2655 * be destroyed. 2656 */ 2657 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2658 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2659 2660 /* 2661 * Common zone reference release function invoked by zone_rele() and 2662 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2663 * zone's subsystem-specific reference counters are not affected by the 2664 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2665 * removed from the specified zone's reference list. ref must be non-NULL iff 2666 * subsys is not ZONE_REF_NUM_SUBSYS. 2667 */ 2668 static void 2669 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2670 { 2671 boolean_t wakeup; 2672 2673 mutex_enter(&z->zone_lock); 2674 ASSERT(z->zone_ref != 0); 2675 z->zone_ref--; 2676 if (subsys != ZONE_REF_NUM_SUBSYS) { 2677 ASSERT(z->zone_subsys_ref[subsys] != 0); 2678 z->zone_subsys_ref[subsys]--; 2679 list_remove(&z->zone_ref_list, ref); 2680 } 2681 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2682 /* no more refs, free the structure */ 2683 mutex_exit(&z->zone_lock); 2684 zone_free(z); 2685 return; 2686 } 2687 /* signal zone_destroy so the zone can finish halting */ 2688 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2689 mutex_exit(&z->zone_lock); 2690 2691 if (wakeup) { 2692 /* 2693 * Grabbing zonehash_lock here effectively synchronizes with 2694 * zone_destroy() to avoid missed signals. 2695 */ 2696 mutex_enter(&zonehash_lock); 2697 cv_broadcast(&zone_destroy_cv); 2698 mutex_exit(&zonehash_lock); 2699 } 2700 } 2701 2702 /* 2703 * Decrement the specified zone's reference count. The specified zone will 2704 * cease to exist after this function returns if the reference count drops to 2705 * zero. This function should be paired with zone_hold(). 2706 */ 2707 void 2708 zone_rele(zone_t *z) 2709 { 2710 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2711 } 2712 2713 /* 2714 * Initialize a zone reference structure. This function must be invoked for 2715 * a reference structure before the structure is passed to zone_hold_ref(). 2716 */ 2717 void 2718 zone_init_ref(zone_ref_t *ref) 2719 { 2720 ref->zref_zone = NULL; 2721 list_link_init(&ref->zref_linkage); 2722 } 2723 2724 /* 2725 * Acquire a reference to zone z. The caller must specify the 2726 * zone_ref_subsys_t constant associated with its subsystem. The specified 2727 * zone_ref_t structure will represent a reference to the specified zone. Use 2728 * zone_rele_ref() to release the reference. 2729 * 2730 * The referenced zone_t structure will not be freed as long as the zone_t's 2731 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2732 * references. 2733 * 2734 * NOTE: The zone_ref_t structure must be initialized before it is used. 2735 * See zone_init_ref() above. 2736 */ 2737 void 2738 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2739 { 2740 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2741 2742 /* 2743 * Prevent consumers from reusing a reference structure before 2744 * releasing it. 2745 */ 2746 VERIFY(ref->zref_zone == NULL); 2747 2748 ref->zref_zone = z; 2749 mutex_enter(&z->zone_lock); 2750 zone_hold_locked(z); 2751 z->zone_subsys_ref[subsys]++; 2752 ASSERT(z->zone_subsys_ref[subsys] != 0); 2753 list_insert_head(&z->zone_ref_list, ref); 2754 mutex_exit(&z->zone_lock); 2755 } 2756 2757 /* 2758 * Release the zone reference represented by the specified zone_ref_t. 2759 * The reference is invalid after it's released; however, the zone_ref_t 2760 * structure can be reused without having to invoke zone_init_ref(). 2761 * subsys should be the same value that was passed to zone_hold_ref() 2762 * when the reference was acquired. 2763 */ 2764 void 2765 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2766 { 2767 zone_rele_common(ref->zref_zone, ref, subsys); 2768 2769 /* 2770 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2771 * when consumers dereference the reference. This helps us catch 2772 * consumers who use released references. Furthermore, this lets 2773 * consumers reuse the zone_ref_t structure without having to 2774 * invoke zone_init_ref(). 2775 */ 2776 ref->zref_zone = NULL; 2777 } 2778 2779 void 2780 zone_cred_hold(zone_t *z) 2781 { 2782 mutex_enter(&z->zone_lock); 2783 z->zone_cred_ref++; 2784 ASSERT(z->zone_cred_ref != 0); 2785 mutex_exit(&z->zone_lock); 2786 } 2787 2788 void 2789 zone_cred_rele(zone_t *z) 2790 { 2791 boolean_t wakeup; 2792 2793 mutex_enter(&z->zone_lock); 2794 ASSERT(z->zone_cred_ref != 0); 2795 z->zone_cred_ref--; 2796 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2797 /* no more refs, free the structure */ 2798 mutex_exit(&z->zone_lock); 2799 zone_free(z); 2800 return; 2801 } 2802 /* 2803 * If zone_destroy is waiting for the cred references to drain 2804 * out, and they have, signal it. 2805 */ 2806 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2807 zone_status_get(z) >= ZONE_IS_DEAD); 2808 mutex_exit(&z->zone_lock); 2809 2810 if (wakeup) { 2811 /* 2812 * Grabbing zonehash_lock here effectively synchronizes with 2813 * zone_destroy() to avoid missed signals. 2814 */ 2815 mutex_enter(&zonehash_lock); 2816 cv_broadcast(&zone_destroy_cv); 2817 mutex_exit(&zonehash_lock); 2818 } 2819 } 2820 2821 void 2822 zone_task_hold(zone_t *z) 2823 { 2824 mutex_enter(&z->zone_lock); 2825 z->zone_ntasks++; 2826 ASSERT(z->zone_ntasks != 0); 2827 mutex_exit(&z->zone_lock); 2828 } 2829 2830 void 2831 zone_task_rele(zone_t *zone) 2832 { 2833 uint_t refcnt; 2834 2835 mutex_enter(&zone->zone_lock); 2836 ASSERT(zone->zone_ntasks != 0); 2837 refcnt = --zone->zone_ntasks; 2838 if (refcnt > 1) { /* Common case */ 2839 mutex_exit(&zone->zone_lock); 2840 return; 2841 } 2842 zone_hold_locked(zone); /* so we can use the zone_t later */ 2843 mutex_exit(&zone->zone_lock); 2844 if (refcnt == 1) { 2845 /* 2846 * See if the zone is shutting down. 2847 */ 2848 mutex_enter(&zone_status_lock); 2849 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2850 goto out; 2851 } 2852 2853 /* 2854 * Make sure the ntasks didn't change since we 2855 * dropped zone_lock. 2856 */ 2857 mutex_enter(&zone->zone_lock); 2858 if (refcnt != zone->zone_ntasks) { 2859 mutex_exit(&zone->zone_lock); 2860 goto out; 2861 } 2862 mutex_exit(&zone->zone_lock); 2863 2864 /* 2865 * No more user processes in the zone. The zone is empty. 2866 */ 2867 zone_status_set(zone, ZONE_IS_EMPTY); 2868 goto out; 2869 } 2870 2871 ASSERT(refcnt == 0); 2872 /* 2873 * zsched has exited; the zone is dead. 2874 */ 2875 zone->zone_zsched = NULL; /* paranoia */ 2876 mutex_enter(&zone_status_lock); 2877 zone_status_set(zone, ZONE_IS_DEAD); 2878 out: 2879 mutex_exit(&zone_status_lock); 2880 zone_rele(zone); 2881 } 2882 2883 zoneid_t 2884 getzoneid(void) 2885 { 2886 return (curproc->p_zone->zone_id); 2887 } 2888 2889 /* 2890 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2891 * check the validity of a zone's state. 2892 */ 2893 static zone_t * 2894 zone_find_all_by_id(zoneid_t zoneid) 2895 { 2896 mod_hash_val_t hv; 2897 zone_t *zone = NULL; 2898 2899 ASSERT(MUTEX_HELD(&zonehash_lock)); 2900 2901 if (mod_hash_find(zonehashbyid, 2902 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2903 zone = (zone_t *)hv; 2904 return (zone); 2905 } 2906 2907 static zone_t * 2908 zone_find_all_by_label(const ts_label_t *label) 2909 { 2910 mod_hash_val_t hv; 2911 zone_t *zone = NULL; 2912 2913 ASSERT(MUTEX_HELD(&zonehash_lock)); 2914 2915 /* 2916 * zonehashbylabel is not maintained for unlabeled systems 2917 */ 2918 if (!is_system_labeled()) 2919 return (NULL); 2920 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2921 zone = (zone_t *)hv; 2922 return (zone); 2923 } 2924 2925 static zone_t * 2926 zone_find_all_by_name(char *name) 2927 { 2928 mod_hash_val_t hv; 2929 zone_t *zone = NULL; 2930 2931 ASSERT(MUTEX_HELD(&zonehash_lock)); 2932 2933 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2934 zone = (zone_t *)hv; 2935 return (zone); 2936 } 2937 2938 /* 2939 * Public interface for looking up a zone by zoneid. Only returns the zone if 2940 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2941 * Caller must call zone_rele() once it is done with the zone. 2942 * 2943 * The zone may begin the zone_destroy() sequence immediately after this 2944 * function returns, but may be safely used until zone_rele() is called. 2945 */ 2946 zone_t * 2947 zone_find_by_id(zoneid_t zoneid) 2948 { 2949 zone_t *zone; 2950 zone_status_t status; 2951 2952 mutex_enter(&zonehash_lock); 2953 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2954 mutex_exit(&zonehash_lock); 2955 return (NULL); 2956 } 2957 status = zone_status_get(zone); 2958 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2959 /* 2960 * For all practical purposes the zone doesn't exist. 2961 */ 2962 mutex_exit(&zonehash_lock); 2963 return (NULL); 2964 } 2965 zone_hold(zone); 2966 mutex_exit(&zonehash_lock); 2967 return (zone); 2968 } 2969 2970 /* 2971 * Similar to zone_find_by_id, but using zone label as the key. 2972 */ 2973 zone_t * 2974 zone_find_by_label(const ts_label_t *label) 2975 { 2976 zone_t *zone; 2977 zone_status_t status; 2978 2979 mutex_enter(&zonehash_lock); 2980 if ((zone = zone_find_all_by_label(label)) == NULL) { 2981 mutex_exit(&zonehash_lock); 2982 return (NULL); 2983 } 2984 2985 status = zone_status_get(zone); 2986 if (status > ZONE_IS_DOWN) { 2987 /* 2988 * For all practical purposes the zone doesn't exist. 2989 */ 2990 mutex_exit(&zonehash_lock); 2991 return (NULL); 2992 } 2993 zone_hold(zone); 2994 mutex_exit(&zonehash_lock); 2995 return (zone); 2996 } 2997 2998 /* 2999 * Similar to zone_find_by_id, but using zone name as the key. 3000 */ 3001 zone_t * 3002 zone_find_by_name(char *name) 3003 { 3004 zone_t *zone; 3005 zone_status_t status; 3006 3007 mutex_enter(&zonehash_lock); 3008 if ((zone = zone_find_all_by_name(name)) == NULL) { 3009 mutex_exit(&zonehash_lock); 3010 return (NULL); 3011 } 3012 status = zone_status_get(zone); 3013 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3014 /* 3015 * For all practical purposes the zone doesn't exist. 3016 */ 3017 mutex_exit(&zonehash_lock); 3018 return (NULL); 3019 } 3020 zone_hold(zone); 3021 mutex_exit(&zonehash_lock); 3022 return (zone); 3023 } 3024 3025 /* 3026 * Similar to zone_find_by_id(), using the path as a key. For instance, 3027 * if there is a zone "foo" rooted at /foo/root, and the path argument 3028 * is "/foo/root/proc", it will return the held zone_t corresponding to 3029 * zone "foo". 3030 * 3031 * zone_find_by_path() always returns a non-NULL value, since at the 3032 * very least every path will be contained in the global zone. 3033 * 3034 * As with the other zone_find_by_*() functions, the caller is 3035 * responsible for zone_rele()ing the return value of this function. 3036 */ 3037 zone_t * 3038 zone_find_by_path(const char *path) 3039 { 3040 zone_t *zone; 3041 zone_t *zret = NULL; 3042 zone_status_t status; 3043 3044 if (path == NULL) { 3045 /* 3046 * Call from rootconf(). 3047 */ 3048 zone_hold(global_zone); 3049 return (global_zone); 3050 } 3051 ASSERT(*path == '/'); 3052 mutex_enter(&zonehash_lock); 3053 for (zone = list_head(&zone_active); zone != NULL; 3054 zone = list_next(&zone_active, zone)) { 3055 if (ZONE_PATH_VISIBLE(path, zone)) 3056 zret = zone; 3057 } 3058 ASSERT(zret != NULL); 3059 status = zone_status_get(zret); 3060 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3061 /* 3062 * Zone practically doesn't exist. 3063 */ 3064 zret = global_zone; 3065 } 3066 zone_hold(zret); 3067 mutex_exit(&zonehash_lock); 3068 return (zret); 3069 } 3070 3071 /* 3072 * Public interface for updating per-zone load averages. Called once per 3073 * second. 3074 * 3075 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3076 */ 3077 void 3078 zone_loadavg_update() 3079 { 3080 zone_t *zp; 3081 zone_status_t status; 3082 struct loadavg_s *lavg; 3083 hrtime_t zone_total; 3084 int i; 3085 hrtime_t hr_avg; 3086 int nrun; 3087 static int64_t f[3] = { 135, 27, 9 }; 3088 int64_t q, r; 3089 3090 mutex_enter(&zonehash_lock); 3091 for (zp = list_head(&zone_active); zp != NULL; 3092 zp = list_next(&zone_active, zp)) { 3093 mutex_enter(&zp->zone_lock); 3094 3095 /* Skip zones that are on the way down or not yet up */ 3096 status = zone_status_get(zp); 3097 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3098 /* For all practical purposes the zone doesn't exist. */ 3099 mutex_exit(&zp->zone_lock); 3100 continue; 3101 } 3102 3103 /* 3104 * Update the 10 second moving average data in zone_loadavg. 3105 */ 3106 lavg = &zp->zone_loadavg; 3107 3108 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3109 scalehrtime(&zone_total); 3110 3111 /* The zone_total should always be increasing. */ 3112 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3113 zone_total - lavg->lg_total : 0; 3114 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3115 /* lg_total holds the prev. 1 sec. total */ 3116 lavg->lg_total = zone_total; 3117 3118 /* 3119 * To simplify the calculation, we don't calculate the load avg. 3120 * until the zone has been up for at least 10 seconds and our 3121 * moving average is thus full. 3122 */ 3123 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3124 lavg->lg_len++; 3125 mutex_exit(&zp->zone_lock); 3126 continue; 3127 } 3128 3129 /* Now calculate the 1min, 5min, 15 min load avg. */ 3130 hr_avg = 0; 3131 for (i = 0; i < S_LOADAVG_SZ; i++) 3132 hr_avg += lavg->lg_loads[i]; 3133 hr_avg = hr_avg / S_LOADAVG_SZ; 3134 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3135 3136 /* Compute load avg. See comment in calcloadavg() */ 3137 for (i = 0; i < 3; i++) { 3138 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3139 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3140 zp->zone_hp_avenrun[i] += 3141 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3142 3143 /* avenrun[] can only hold 31 bits of load avg. */ 3144 if (zp->zone_hp_avenrun[i] < 3145 ((uint64_t)1<<(31+16-FSHIFT))) 3146 zp->zone_avenrun[i] = (int32_t) 3147 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3148 else 3149 zp->zone_avenrun[i] = 0x7fffffff; 3150 } 3151 3152 mutex_exit(&zp->zone_lock); 3153 } 3154 mutex_exit(&zonehash_lock); 3155 } 3156 3157 /* 3158 * Get the number of cpus visible to this zone. The system-wide global 3159 * 'ncpus' is returned if pools are disabled, the caller is in the 3160 * global zone, or a NULL zone argument is passed in. 3161 */ 3162 int 3163 zone_ncpus_get(zone_t *zone) 3164 { 3165 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3166 3167 return (myncpus != 0 ? myncpus : ncpus); 3168 } 3169 3170 /* 3171 * Get the number of online cpus visible to this zone. The system-wide 3172 * global 'ncpus_online' is returned if pools are disabled, the caller 3173 * is in the global zone, or a NULL zone argument is passed in. 3174 */ 3175 int 3176 zone_ncpus_online_get(zone_t *zone) 3177 { 3178 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3179 3180 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3181 } 3182 3183 /* 3184 * Return the pool to which the zone is currently bound. 3185 */ 3186 pool_t * 3187 zone_pool_get(zone_t *zone) 3188 { 3189 ASSERT(pool_lock_held()); 3190 3191 return (zone->zone_pool); 3192 } 3193 3194 /* 3195 * Set the zone's pool pointer and update the zone's visibility to match 3196 * the resources in the new pool. 3197 */ 3198 void 3199 zone_pool_set(zone_t *zone, pool_t *pool) 3200 { 3201 ASSERT(pool_lock_held()); 3202 ASSERT(MUTEX_HELD(&cpu_lock)); 3203 3204 zone->zone_pool = pool; 3205 zone_pset_set(zone, pool->pool_pset->pset_id); 3206 } 3207 3208 /* 3209 * Return the cached value of the id of the processor set to which the 3210 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3211 * facility is disabled. 3212 */ 3213 psetid_t 3214 zone_pset_get(zone_t *zone) 3215 { 3216 ASSERT(MUTEX_HELD(&cpu_lock)); 3217 3218 return (zone->zone_psetid); 3219 } 3220 3221 /* 3222 * Set the cached value of the id of the processor set to which the zone 3223 * is currently bound. Also update the zone's visibility to match the 3224 * resources in the new processor set. 3225 */ 3226 void 3227 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3228 { 3229 psetid_t oldpsetid; 3230 3231 ASSERT(MUTEX_HELD(&cpu_lock)); 3232 oldpsetid = zone_pset_get(zone); 3233 3234 if (oldpsetid == newpsetid) 3235 return; 3236 /* 3237 * Global zone sees all. 3238 */ 3239 if (zone != global_zone) { 3240 zone->zone_psetid = newpsetid; 3241 if (newpsetid != ZONE_PS_INVAL) 3242 pool_pset_visibility_add(newpsetid, zone); 3243 if (oldpsetid != ZONE_PS_INVAL) 3244 pool_pset_visibility_remove(oldpsetid, zone); 3245 } 3246 /* 3247 * Disabling pools, so we should start using the global values 3248 * for ncpus and ncpus_online. 3249 */ 3250 if (newpsetid == ZONE_PS_INVAL) { 3251 zone->zone_ncpus = 0; 3252 zone->zone_ncpus_online = 0; 3253 } 3254 } 3255 3256 /* 3257 * Walk the list of active zones and issue the provided callback for 3258 * each of them. 3259 * 3260 * Caller must not be holding any locks that may be acquired under 3261 * zonehash_lock. See comment at the beginning of the file for a list of 3262 * common locks and their interactions with zones. 3263 */ 3264 int 3265 zone_walk(int (*cb)(zone_t *, void *), void *data) 3266 { 3267 zone_t *zone; 3268 int ret = 0; 3269 zone_status_t status; 3270 3271 mutex_enter(&zonehash_lock); 3272 for (zone = list_head(&zone_active); zone != NULL; 3273 zone = list_next(&zone_active, zone)) { 3274 /* 3275 * Skip zones that shouldn't be externally visible. 3276 */ 3277 status = zone_status_get(zone); 3278 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3279 continue; 3280 /* 3281 * Bail immediately if any callback invocation returns a 3282 * non-zero value. 3283 */ 3284 ret = (*cb)(zone, data); 3285 if (ret != 0) 3286 break; 3287 } 3288 mutex_exit(&zonehash_lock); 3289 return (ret); 3290 } 3291 3292 static int 3293 zone_set_root(zone_t *zone, const char *upath) 3294 { 3295 vnode_t *vp; 3296 int trycount; 3297 int error = 0; 3298 char *path; 3299 struct pathname upn, pn; 3300 size_t pathlen; 3301 3302 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3303 return (error); 3304 3305 pn_alloc(&pn); 3306 3307 /* prevent infinite loop */ 3308 trycount = 10; 3309 for (;;) { 3310 if (--trycount <= 0) { 3311 error = ESTALE; 3312 goto out; 3313 } 3314 3315 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3316 /* 3317 * VOP_ACCESS() may cover 'vp' with a new 3318 * filesystem, if 'vp' is an autoFS vnode. 3319 * Get the new 'vp' if so. 3320 */ 3321 if ((error = 3322 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3323 (!vn_ismntpt(vp) || 3324 (error = traverse(&vp)) == 0)) { 3325 pathlen = pn.pn_pathlen + 2; 3326 path = kmem_alloc(pathlen, KM_SLEEP); 3327 (void) strncpy(path, pn.pn_path, 3328 pn.pn_pathlen + 1); 3329 path[pathlen - 2] = '/'; 3330 path[pathlen - 1] = '\0'; 3331 pn_free(&pn); 3332 pn_free(&upn); 3333 3334 /* Success! */ 3335 break; 3336 } 3337 VN_RELE(vp); 3338 } 3339 if (error != ESTALE) 3340 goto out; 3341 } 3342 3343 ASSERT(error == 0); 3344 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3345 zone->zone_rootpath = path; 3346 zone->zone_rootpathlen = pathlen; 3347 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3348 zone->zone_flags |= ZF_IS_SCRATCH; 3349 return (0); 3350 3351 out: 3352 pn_free(&pn); 3353 pn_free(&upn); 3354 return (error); 3355 } 3356 3357 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3358 ((c) >= 'a' && (c) <= 'z') || \ 3359 ((c) >= 'A' && (c) <= 'Z')) 3360 3361 static int 3362 zone_set_name(zone_t *zone, const char *uname) 3363 { 3364 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3365 size_t len; 3366 int i, err; 3367 3368 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3369 kmem_free(kname, ZONENAME_MAX); 3370 return (err); /* EFAULT or ENAMETOOLONG */ 3371 } 3372 3373 /* must be less than ZONENAME_MAX */ 3374 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3375 kmem_free(kname, ZONENAME_MAX); 3376 return (EINVAL); 3377 } 3378 3379 /* 3380 * Name must start with an alphanumeric and must contain only 3381 * alphanumerics, '-', '_' and '.'. 3382 */ 3383 if (!isalnum(kname[0])) { 3384 kmem_free(kname, ZONENAME_MAX); 3385 return (EINVAL); 3386 } 3387 for (i = 1; i < len - 1; i++) { 3388 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3389 kname[i] != '.') { 3390 kmem_free(kname, ZONENAME_MAX); 3391 return (EINVAL); 3392 } 3393 } 3394 3395 zone->zone_name = kname; 3396 return (0); 3397 } 3398 3399 /* 3400 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3401 * is NULL or it points to a zone with no hostid emulation, then the machine's 3402 * hostid (i.e., the global zone's hostid) is returned. This function returns 3403 * zero if neither the zone nor the host machine (global zone) have hostids. It 3404 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3405 * hostid and the machine's hostid is invalid. 3406 */ 3407 uint32_t 3408 zone_get_hostid(zone_t *zonep) 3409 { 3410 unsigned long machine_hostid; 3411 3412 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3413 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3414 return (HW_INVALID_HOSTID); 3415 return ((uint32_t)machine_hostid); 3416 } 3417 return (zonep->zone_hostid); 3418 } 3419 3420 /* 3421 * Similar to thread_create(), but makes sure the thread is in the appropriate 3422 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3423 */ 3424 /*ARGSUSED*/ 3425 kthread_t * 3426 zthread_create( 3427 caddr_t stk, 3428 size_t stksize, 3429 void (*proc)(), 3430 void *arg, 3431 size_t len, 3432 pri_t pri) 3433 { 3434 kthread_t *t; 3435 zone_t *zone = curproc->p_zone; 3436 proc_t *pp = zone->zone_zsched; 3437 3438 zone_hold(zone); /* Reference to be dropped when thread exits */ 3439 3440 /* 3441 * No-one should be trying to create threads if the zone is shutting 3442 * down and there aren't any kernel threads around. See comment 3443 * in zthread_exit(). 3444 */ 3445 ASSERT(!(zone->zone_kthreads == NULL && 3446 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3447 /* 3448 * Create a thread, but don't let it run until we've finished setting 3449 * things up. 3450 */ 3451 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3452 ASSERT(t->t_forw == NULL); 3453 mutex_enter(&zone_status_lock); 3454 if (zone->zone_kthreads == NULL) { 3455 t->t_forw = t->t_back = t; 3456 } else { 3457 kthread_t *tx = zone->zone_kthreads; 3458 3459 t->t_forw = tx; 3460 t->t_back = tx->t_back; 3461 tx->t_back->t_forw = t; 3462 tx->t_back = t; 3463 } 3464 zone->zone_kthreads = t; 3465 mutex_exit(&zone_status_lock); 3466 3467 mutex_enter(&pp->p_lock); 3468 t->t_proc_flag |= TP_ZTHREAD; 3469 project_rele(t->t_proj); 3470 t->t_proj = project_hold(pp->p_task->tk_proj); 3471 3472 /* 3473 * Setup complete, let it run. 3474 */ 3475 thread_lock(t); 3476 t->t_schedflag |= TS_ALLSTART; 3477 setrun_locked(t); 3478 thread_unlock(t); 3479 3480 mutex_exit(&pp->p_lock); 3481 3482 return (t); 3483 } 3484 3485 /* 3486 * Similar to thread_exit(). Must be called by threads created via 3487 * zthread_exit(). 3488 */ 3489 void 3490 zthread_exit(void) 3491 { 3492 kthread_t *t = curthread; 3493 proc_t *pp = curproc; 3494 zone_t *zone = pp->p_zone; 3495 3496 mutex_enter(&zone_status_lock); 3497 3498 /* 3499 * Reparent to p0 3500 */ 3501 kpreempt_disable(); 3502 mutex_enter(&pp->p_lock); 3503 t->t_proc_flag &= ~TP_ZTHREAD; 3504 t->t_procp = &p0; 3505 hat_thread_exit(t); 3506 mutex_exit(&pp->p_lock); 3507 kpreempt_enable(); 3508 3509 if (t->t_back == t) { 3510 ASSERT(t->t_forw == t); 3511 /* 3512 * If the zone is empty, once the thread count 3513 * goes to zero no further kernel threads can be 3514 * created. This is because if the creator is a process 3515 * in the zone, then it must have exited before the zone 3516 * state could be set to ZONE_IS_EMPTY. 3517 * Otherwise, if the creator is a kernel thread in the 3518 * zone, the thread count is non-zero. 3519 * 3520 * This really means that non-zone kernel threads should 3521 * not create zone kernel threads. 3522 */ 3523 zone->zone_kthreads = NULL; 3524 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3525 zone_status_set(zone, ZONE_IS_DOWN); 3526 /* 3527 * Remove any CPU caps on this zone. 3528 */ 3529 cpucaps_zone_remove(zone); 3530 } 3531 } else { 3532 t->t_forw->t_back = t->t_back; 3533 t->t_back->t_forw = t->t_forw; 3534 if (zone->zone_kthreads == t) 3535 zone->zone_kthreads = t->t_forw; 3536 } 3537 mutex_exit(&zone_status_lock); 3538 zone_rele(zone); 3539 thread_exit(); 3540 /* NOTREACHED */ 3541 } 3542 3543 static void 3544 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3545 { 3546 vnode_t *oldvp; 3547 3548 /* we're going to hold a reference here to the directory */ 3549 VN_HOLD(vp); 3550 3551 /* update abs cwd/root path see c2/audit.c */ 3552 if (AU_AUDITING()) 3553 audit_chdirec(vp, vpp); 3554 3555 mutex_enter(&pp->p_lock); 3556 oldvp = *vpp; 3557 *vpp = vp; 3558 mutex_exit(&pp->p_lock); 3559 if (oldvp != NULL) 3560 VN_RELE(oldvp); 3561 } 3562 3563 /* 3564 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3565 */ 3566 static int 3567 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3568 { 3569 nvpair_t *nvp = NULL; 3570 boolean_t priv_set = B_FALSE; 3571 boolean_t limit_set = B_FALSE; 3572 boolean_t action_set = B_FALSE; 3573 3574 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3575 const char *name; 3576 uint64_t ui64; 3577 3578 name = nvpair_name(nvp); 3579 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3580 return (EINVAL); 3581 (void) nvpair_value_uint64(nvp, &ui64); 3582 if (strcmp(name, "privilege") == 0) { 3583 /* 3584 * Currently only privileged values are allowed, but 3585 * this may change in the future. 3586 */ 3587 if (ui64 != RCPRIV_PRIVILEGED) 3588 return (EINVAL); 3589 rv->rcv_privilege = ui64; 3590 priv_set = B_TRUE; 3591 } else if (strcmp(name, "limit") == 0) { 3592 rv->rcv_value = ui64; 3593 limit_set = B_TRUE; 3594 } else if (strcmp(name, "action") == 0) { 3595 if (ui64 != RCTL_LOCAL_NOACTION && 3596 ui64 != RCTL_LOCAL_DENY) 3597 return (EINVAL); 3598 rv->rcv_flagaction = ui64; 3599 action_set = B_TRUE; 3600 } else { 3601 return (EINVAL); 3602 } 3603 } 3604 3605 if (!(priv_set && limit_set && action_set)) 3606 return (EINVAL); 3607 rv->rcv_action_signal = 0; 3608 rv->rcv_action_recipient = NULL; 3609 rv->rcv_action_recip_pid = -1; 3610 rv->rcv_firing_time = 0; 3611 3612 return (0); 3613 } 3614 3615 /* 3616 * Non-global zone version of start_init. 3617 */ 3618 void 3619 zone_start_init(void) 3620 { 3621 proc_t *p = ttoproc(curthread); 3622 zone_t *z = p->p_zone; 3623 3624 ASSERT(!INGLOBALZONE(curproc)); 3625 3626 /* 3627 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3628 * storing just the pid of init is sufficient. 3629 */ 3630 z->zone_proc_initpid = p->p_pid; 3631 3632 /* 3633 * We maintain zone_boot_err so that we can return the cause of the 3634 * failure back to the caller of the zone_boot syscall. 3635 */ 3636 p->p_zone->zone_boot_err = start_init_common(); 3637 3638 /* 3639 * We will prevent booting zones from becoming running zones if the 3640 * global zone is shutting down. 3641 */ 3642 mutex_enter(&zone_status_lock); 3643 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3644 ZONE_IS_SHUTTING_DOWN) { 3645 /* 3646 * Make sure we are still in the booting state-- we could have 3647 * raced and already be shutting down, or even further along. 3648 */ 3649 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3650 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3651 } 3652 mutex_exit(&zone_status_lock); 3653 /* It's gone bad, dispose of the process */ 3654 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3655 mutex_enter(&p->p_lock); 3656 ASSERT(p->p_flag & SEXITLWPS); 3657 lwp_exit(); 3658 } 3659 } else { 3660 if (zone_status_get(z) == ZONE_IS_BOOTING) 3661 zone_status_set(z, ZONE_IS_RUNNING); 3662 mutex_exit(&zone_status_lock); 3663 /* cause the process to return to userland. */ 3664 lwp_rtt(); 3665 } 3666 } 3667 3668 struct zsched_arg { 3669 zone_t *zone; 3670 nvlist_t *nvlist; 3671 }; 3672 3673 /* 3674 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3675 * anything to do with scheduling, but rather with the fact that 3676 * per-zone kernel threads are parented to zsched, just like regular 3677 * kernel threads are parented to sched (p0). 3678 * 3679 * zsched is also responsible for launching init for the zone. 3680 */ 3681 static void 3682 zsched(void *arg) 3683 { 3684 struct zsched_arg *za = arg; 3685 proc_t *pp = curproc; 3686 proc_t *initp = proc_init; 3687 zone_t *zone = za->zone; 3688 cred_t *cr, *oldcred; 3689 rctl_set_t *set; 3690 rctl_alloc_gp_t *gp; 3691 contract_t *ct = NULL; 3692 task_t *tk, *oldtk; 3693 rctl_entity_p_t e; 3694 kproject_t *pj; 3695 3696 nvlist_t *nvl = za->nvlist; 3697 nvpair_t *nvp = NULL; 3698 3699 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3700 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3701 PTOU(pp)->u_argc = 0; 3702 PTOU(pp)->u_argv = NULL; 3703 PTOU(pp)->u_envp = NULL; 3704 closeall(P_FINFO(pp)); 3705 3706 /* 3707 * We are this zone's "zsched" process. As the zone isn't generally 3708 * visible yet we don't need to grab any locks before initializing its 3709 * zone_proc pointer. 3710 */ 3711 zone_hold(zone); /* this hold is released by zone_destroy() */ 3712 zone->zone_zsched = pp; 3713 mutex_enter(&pp->p_lock); 3714 pp->p_zone = zone; 3715 mutex_exit(&pp->p_lock); 3716 3717 /* 3718 * Disassociate process from its 'parent'; parent ourselves to init 3719 * (pid 1) and change other values as needed. 3720 */ 3721 sess_create(); 3722 3723 mutex_enter(&pidlock); 3724 proc_detach(pp); 3725 pp->p_ppid = 1; 3726 pp->p_flag |= SZONETOP; 3727 pp->p_ancpid = 1; 3728 pp->p_parent = initp; 3729 pp->p_psibling = NULL; 3730 if (initp->p_child) 3731 initp->p_child->p_psibling = pp; 3732 pp->p_sibling = initp->p_child; 3733 initp->p_child = pp; 3734 3735 /* Decrement what newproc() incremented. */ 3736 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3737 /* 3738 * Our credentials are about to become kcred-like, so we don't care 3739 * about the caller's ruid. 3740 */ 3741 upcount_inc(crgetruid(kcred), zone->zone_id); 3742 mutex_exit(&pidlock); 3743 3744 /* 3745 * getting out of global zone, so decrement lwp and process counts 3746 */ 3747 pj = pp->p_task->tk_proj; 3748 mutex_enter(&global_zone->zone_nlwps_lock); 3749 pj->kpj_nlwps -= pp->p_lwpcnt; 3750 global_zone->zone_nlwps -= pp->p_lwpcnt; 3751 pj->kpj_nprocs--; 3752 global_zone->zone_nprocs--; 3753 mutex_exit(&global_zone->zone_nlwps_lock); 3754 3755 /* 3756 * Decrement locked memory counts on old zone and project. 3757 */ 3758 mutex_enter(&global_zone->zone_mem_lock); 3759 global_zone->zone_locked_mem -= pp->p_locked_mem; 3760 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3761 mutex_exit(&global_zone->zone_mem_lock); 3762 3763 /* 3764 * Create and join a new task in project '0' of this zone. 3765 * 3766 * We don't need to call holdlwps() since we know we're the only lwp in 3767 * this process. 3768 * 3769 * task_join() returns with p_lock held. 3770 */ 3771 tk = task_create(0, zone); 3772 mutex_enter(&cpu_lock); 3773 oldtk = task_join(tk, 0); 3774 3775 pj = pp->p_task->tk_proj; 3776 3777 mutex_enter(&zone->zone_mem_lock); 3778 zone->zone_locked_mem += pp->p_locked_mem; 3779 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3780 mutex_exit(&zone->zone_mem_lock); 3781 3782 /* 3783 * add lwp and process counts to zsched's zone, and increment 3784 * project's task and process count due to the task created in 3785 * the above task_create. 3786 */ 3787 mutex_enter(&zone->zone_nlwps_lock); 3788 pj->kpj_nlwps += pp->p_lwpcnt; 3789 pj->kpj_ntasks += 1; 3790 zone->zone_nlwps += pp->p_lwpcnt; 3791 pj->kpj_nprocs++; 3792 zone->zone_nprocs++; 3793 mutex_exit(&zone->zone_nlwps_lock); 3794 3795 mutex_exit(&curproc->p_lock); 3796 mutex_exit(&cpu_lock); 3797 task_rele(oldtk); 3798 3799 /* 3800 * The process was created by a process in the global zone, hence the 3801 * credentials are wrong. We might as well have kcred-ish credentials. 3802 */ 3803 cr = zone->zone_kcred; 3804 crhold(cr); 3805 mutex_enter(&pp->p_crlock); 3806 oldcred = pp->p_cred; 3807 pp->p_cred = cr; 3808 mutex_exit(&pp->p_crlock); 3809 crfree(oldcred); 3810 3811 /* 3812 * Hold credentials again (for thread) 3813 */ 3814 crhold(cr); 3815 3816 /* 3817 * p_lwpcnt can't change since this is a kernel process. 3818 */ 3819 crset(pp, cr); 3820 3821 /* 3822 * Chroot 3823 */ 3824 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3825 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3826 3827 /* 3828 * Initialize zone's rctl set. 3829 */ 3830 set = rctl_set_create(); 3831 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3832 mutex_enter(&pp->p_lock); 3833 e.rcep_p.zone = zone; 3834 e.rcep_t = RCENTITY_ZONE; 3835 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3836 mutex_exit(&pp->p_lock); 3837 rctl_prealloc_destroy(gp); 3838 3839 /* 3840 * Apply the rctls passed in to zone_create(). This is basically a list 3841 * assignment: all of the old values are removed and the new ones 3842 * inserted. That is, if an empty list is passed in, all values are 3843 * removed. 3844 */ 3845 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3846 rctl_dict_entry_t *rde; 3847 rctl_hndl_t hndl; 3848 char *name; 3849 nvlist_t **nvlarray; 3850 uint_t i, nelem; 3851 int error; /* For ASSERT()s */ 3852 3853 name = nvpair_name(nvp); 3854 hndl = rctl_hndl_lookup(name); 3855 ASSERT(hndl != -1); 3856 rde = rctl_dict_lookup_hndl(hndl); 3857 ASSERT(rde != NULL); 3858 3859 for (; /* ever */; ) { 3860 rctl_val_t oval; 3861 3862 mutex_enter(&pp->p_lock); 3863 error = rctl_local_get(hndl, NULL, &oval, pp); 3864 mutex_exit(&pp->p_lock); 3865 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3866 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3867 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3868 break; 3869 mutex_enter(&pp->p_lock); 3870 error = rctl_local_delete(hndl, &oval, pp); 3871 mutex_exit(&pp->p_lock); 3872 ASSERT(error == 0); 3873 } 3874 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3875 ASSERT(error == 0); 3876 for (i = 0; i < nelem; i++) { 3877 rctl_val_t *nvalp; 3878 3879 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3880 error = nvlist2rctlval(nvlarray[i], nvalp); 3881 ASSERT(error == 0); 3882 /* 3883 * rctl_local_insert can fail if the value being 3884 * inserted is a duplicate; this is OK. 3885 */ 3886 mutex_enter(&pp->p_lock); 3887 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3888 kmem_cache_free(rctl_val_cache, nvalp); 3889 mutex_exit(&pp->p_lock); 3890 } 3891 } 3892 /* 3893 * Tell the world that we're done setting up. 3894 * 3895 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3896 * and atomically set the zone's processor set visibility. Once 3897 * we drop pool_lock() this zone will automatically get updated 3898 * to reflect any future changes to the pools configuration. 3899 * 3900 * Note that after we drop the locks below (zonehash_lock in 3901 * particular) other operations such as a zone_getattr call can 3902 * now proceed and observe the zone. That is the reason for doing a 3903 * state transition to the INITIALIZED state. 3904 */ 3905 pool_lock(); 3906 mutex_enter(&cpu_lock); 3907 mutex_enter(&zonehash_lock); 3908 zone_uniqid(zone); 3909 zone_zsd_configure(zone); 3910 if (pool_state == POOL_ENABLED) 3911 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3912 mutex_enter(&zone_status_lock); 3913 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3914 zone_status_set(zone, ZONE_IS_INITIALIZED); 3915 mutex_exit(&zone_status_lock); 3916 mutex_exit(&zonehash_lock); 3917 mutex_exit(&cpu_lock); 3918 pool_unlock(); 3919 3920 /* Now call the create callback for this key */ 3921 zsd_apply_all_keys(zsd_apply_create, zone); 3922 3923 /* The callbacks are complete. Mark ZONE_IS_READY */ 3924 mutex_enter(&zone_status_lock); 3925 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3926 zone_status_set(zone, ZONE_IS_READY); 3927 mutex_exit(&zone_status_lock); 3928 3929 /* 3930 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3931 * we launch init, and set the state to running. 3932 */ 3933 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3934 3935 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3936 id_t cid; 3937 3938 /* 3939 * Ok, this is a little complicated. We need to grab the 3940 * zone's pool's scheduling class ID; note that by now, we 3941 * are already bound to a pool if we need to be (zoneadmd 3942 * will have done that to us while we're in the READY 3943 * state). *But* the scheduling class for the zone's 'init' 3944 * must be explicitly passed to newproc, which doesn't 3945 * respect pool bindings. 3946 * 3947 * We hold the pool_lock across the call to newproc() to 3948 * close the obvious race: the pool's scheduling class 3949 * could change before we manage to create the LWP with 3950 * classid 'cid'. 3951 */ 3952 pool_lock(); 3953 if (zone->zone_defaultcid > 0) 3954 cid = zone->zone_defaultcid; 3955 else 3956 cid = pool_get_class(zone->zone_pool); 3957 if (cid == -1) 3958 cid = defaultcid; 3959 3960 /* 3961 * If this fails, zone_boot will ultimately fail. The 3962 * state of the zone will be set to SHUTTING_DOWN-- userland 3963 * will have to tear down the zone, and fail, or try again. 3964 */ 3965 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3966 minclsyspri - 1, &ct, 0)) != 0) { 3967 mutex_enter(&zone_status_lock); 3968 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3969 mutex_exit(&zone_status_lock); 3970 } else { 3971 zone->zone_boot_time = gethrestime_sec(); 3972 zone->zone_boot_hrtime = gethrtime(); 3973 } 3974 3975 pool_unlock(); 3976 } 3977 3978 /* 3979 * Wait for zone_destroy() to be called. This is what we spend 3980 * most of our life doing. 3981 */ 3982 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3983 3984 if (ct) 3985 /* 3986 * At this point the process contract should be empty. 3987 * (Though if it isn't, it's not the end of the world.) 3988 */ 3989 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3990 3991 /* 3992 * Allow kcred to be freed when all referring processes 3993 * (including this one) go away. We can't just do this in 3994 * zone_free because we need to wait for the zone_cred_ref to 3995 * drop to 0 before calling zone_free, and the existence of 3996 * zone_kcred will prevent that. Thus, we call crfree here to 3997 * balance the crdup in zone_create. The crhold calls earlier 3998 * in zsched will be dropped when the thread and process exit. 3999 */ 4000 crfree(zone->zone_kcred); 4001 zone->zone_kcred = NULL; 4002 4003 exit(CLD_EXITED, 0); 4004 } 4005 4006 /* 4007 * Helper function to determine if there are any submounts of the 4008 * provided path. Used to make sure the zone doesn't "inherit" any 4009 * mounts from before it is created. 4010 */ 4011 static uint_t 4012 zone_mount_count(const char *rootpath) 4013 { 4014 vfs_t *vfsp; 4015 uint_t count = 0; 4016 size_t rootpathlen = strlen(rootpath); 4017 4018 /* 4019 * Holding zonehash_lock prevents race conditions with 4020 * vfs_list_add()/vfs_list_remove() since we serialize with 4021 * zone_find_by_path(). 4022 */ 4023 ASSERT(MUTEX_HELD(&zonehash_lock)); 4024 /* 4025 * The rootpath must end with a '/' 4026 */ 4027 ASSERT(rootpath[rootpathlen - 1] == '/'); 4028 4029 /* 4030 * This intentionally does not count the rootpath itself if that 4031 * happens to be a mount point. 4032 */ 4033 vfs_list_read_lock(); 4034 vfsp = rootvfs; 4035 do { 4036 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4037 rootpathlen) == 0) 4038 count++; 4039 vfsp = vfsp->vfs_next; 4040 } while (vfsp != rootvfs); 4041 vfs_list_unlock(); 4042 return (count); 4043 } 4044 4045 /* 4046 * Helper function to make sure that a zone created on 'rootpath' 4047 * wouldn't end up containing other zones' rootpaths. 4048 */ 4049 static boolean_t 4050 zone_is_nested(const char *rootpath) 4051 { 4052 zone_t *zone; 4053 size_t rootpathlen = strlen(rootpath); 4054 size_t len; 4055 4056 ASSERT(MUTEX_HELD(&zonehash_lock)); 4057 4058 /* 4059 * zone_set_root() appended '/' and '\0' at the end of rootpath 4060 */ 4061 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4062 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4063 return (B_TRUE); 4064 4065 for (zone = list_head(&zone_active); zone != NULL; 4066 zone = list_next(&zone_active, zone)) { 4067 if (zone == global_zone) 4068 continue; 4069 len = strlen(zone->zone_rootpath); 4070 if (strncmp(rootpath, zone->zone_rootpath, 4071 MIN(rootpathlen, len)) == 0) 4072 return (B_TRUE); 4073 } 4074 return (B_FALSE); 4075 } 4076 4077 static int 4078 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4079 size_t zone_privssz) 4080 { 4081 priv_set_t *privs; 4082 4083 if (zone_privssz < sizeof (priv_set_t)) 4084 return (ENOMEM); 4085 4086 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4087 4088 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4089 kmem_free(privs, sizeof (priv_set_t)); 4090 return (EFAULT); 4091 } 4092 4093 zone->zone_privset = privs; 4094 return (0); 4095 } 4096 4097 /* 4098 * We make creative use of nvlists to pass in rctls from userland. The list is 4099 * a list of the following structures: 4100 * 4101 * (name = rctl_name, value = nvpair_list_array) 4102 * 4103 * Where each element of the nvpair_list_array is of the form: 4104 * 4105 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4106 * (name = "limit", value = uint64_t), 4107 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4108 */ 4109 static int 4110 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4111 { 4112 nvpair_t *nvp = NULL; 4113 nvlist_t *nvl = NULL; 4114 char *kbuf; 4115 int error; 4116 rctl_val_t rv; 4117 4118 *nvlp = NULL; 4119 4120 if (buflen == 0) 4121 return (0); 4122 4123 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4124 return (ENOMEM); 4125 if (copyin(ubuf, kbuf, buflen)) { 4126 error = EFAULT; 4127 goto out; 4128 } 4129 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4130 /* 4131 * nvl may have been allocated/free'd, but the value set to 4132 * non-NULL, so we reset it here. 4133 */ 4134 nvl = NULL; 4135 error = EINVAL; 4136 goto out; 4137 } 4138 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4139 rctl_dict_entry_t *rde; 4140 rctl_hndl_t hndl; 4141 nvlist_t **nvlarray; 4142 uint_t i, nelem; 4143 char *name; 4144 4145 error = EINVAL; 4146 name = nvpair_name(nvp); 4147 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4148 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4149 goto out; 4150 } 4151 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4152 goto out; 4153 } 4154 rde = rctl_dict_lookup_hndl(hndl); 4155 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4156 ASSERT(error == 0); 4157 for (i = 0; i < nelem; i++) { 4158 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4159 goto out; 4160 } 4161 if (rctl_invalid_value(rde, &rv)) { 4162 error = EINVAL; 4163 goto out; 4164 } 4165 } 4166 error = 0; 4167 *nvlp = nvl; 4168 out: 4169 kmem_free(kbuf, buflen); 4170 if (error && nvl != NULL) 4171 nvlist_free(nvl); 4172 return (error); 4173 } 4174 4175 int 4176 zone_create_error(int er_error, int er_ext, int *er_out) { 4177 if (er_out != NULL) { 4178 if (copyout(&er_ext, er_out, sizeof (int))) { 4179 return (set_errno(EFAULT)); 4180 } 4181 } 4182 return (set_errno(er_error)); 4183 } 4184 4185 static int 4186 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4187 { 4188 ts_label_t *tsl; 4189 bslabel_t blab; 4190 4191 /* Get label from user */ 4192 if (copyin(lab, &blab, sizeof (blab)) != 0) 4193 return (EFAULT); 4194 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4195 if (tsl == NULL) 4196 return (ENOMEM); 4197 4198 zone->zone_slabel = tsl; 4199 return (0); 4200 } 4201 4202 /* 4203 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4204 */ 4205 static int 4206 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4207 { 4208 char *kbuf; 4209 char *dataset, *next; 4210 zone_dataset_t *zd; 4211 size_t len; 4212 4213 if (ubuf == NULL || buflen == 0) 4214 return (0); 4215 4216 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4217 return (ENOMEM); 4218 4219 if (copyin(ubuf, kbuf, buflen) != 0) { 4220 kmem_free(kbuf, buflen); 4221 return (EFAULT); 4222 } 4223 4224 dataset = next = kbuf; 4225 for (;;) { 4226 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4227 4228 next = strchr(dataset, ','); 4229 4230 if (next == NULL) 4231 len = strlen(dataset); 4232 else 4233 len = next - dataset; 4234 4235 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4236 bcopy(dataset, zd->zd_dataset, len); 4237 zd->zd_dataset[len] = '\0'; 4238 4239 list_insert_head(&zone->zone_datasets, zd); 4240 4241 if (next == NULL) 4242 break; 4243 4244 dataset = next + 1; 4245 } 4246 4247 kmem_free(kbuf, buflen); 4248 return (0); 4249 } 4250 4251 /* 4252 * System call to create/initialize a new zone named 'zone_name', rooted 4253 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4254 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4255 * with labeling set by 'match', 'doi', and 'label'. 4256 * 4257 * If extended error is non-null, we may use it to return more detailed 4258 * error information. 4259 */ 4260 static zoneid_t 4261 zone_create(const char *zone_name, const char *zone_root, 4262 const priv_set_t *zone_privs, size_t zone_privssz, 4263 caddr_t rctlbuf, size_t rctlbufsz, 4264 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4265 int match, uint32_t doi, const bslabel_t *label, 4266 int flags) 4267 { 4268 struct zsched_arg zarg; 4269 nvlist_t *rctls = NULL; 4270 proc_t *pp = curproc; 4271 zone_t *zone, *ztmp; 4272 zoneid_t zoneid; 4273 int error; 4274 int error2 = 0; 4275 char *str; 4276 cred_t *zkcr; 4277 boolean_t insert_label_hash; 4278 4279 if (secpolicy_zone_config(CRED()) != 0) 4280 return (set_errno(EPERM)); 4281 4282 /* can't boot zone from within chroot environment */ 4283 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4284 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4285 extended_error)); 4286 4287 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4288 zoneid = zone->zone_id = id_alloc(zoneid_space); 4289 zone->zone_status = ZONE_IS_UNINITIALIZED; 4290 zone->zone_pool = pool_default; 4291 zone->zone_pool_mod = gethrtime(); 4292 zone->zone_psetid = ZONE_PS_INVAL; 4293 zone->zone_ncpus = 0; 4294 zone->zone_ncpus_online = 0; 4295 zone->zone_restart_init = B_TRUE; 4296 zone->zone_brand = &native_brand; 4297 zone->zone_initname = NULL; 4298 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4299 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4300 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4301 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4302 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4303 offsetof(zone_ref_t, zref_linkage)); 4304 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4305 offsetof(struct zsd_entry, zsd_linkage)); 4306 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4307 offsetof(zone_dataset_t, zd_linkage)); 4308 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4309 offsetof(zone_dl_t, zdl_linkage)); 4310 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4311 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4312 4313 if (flags & ZCF_NET_EXCL) { 4314 zone->zone_flags |= ZF_NET_EXCL; 4315 } 4316 4317 if ((error = zone_set_name(zone, zone_name)) != 0) { 4318 zone_free(zone); 4319 return (zone_create_error(error, 0, extended_error)); 4320 } 4321 4322 if ((error = zone_set_root(zone, zone_root)) != 0) { 4323 zone_free(zone); 4324 return (zone_create_error(error, 0, extended_error)); 4325 } 4326 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4327 zone_free(zone); 4328 return (zone_create_error(error, 0, extended_error)); 4329 } 4330 4331 /* initialize node name to be the same as zone name */ 4332 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4333 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4334 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4335 4336 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4337 zone->zone_domain[0] = '\0'; 4338 zone->zone_hostid = HW_INVALID_HOSTID; 4339 zone->zone_shares = 1; 4340 zone->zone_shmmax = 0; 4341 zone->zone_ipc.ipcq_shmmni = 0; 4342 zone->zone_ipc.ipcq_semmni = 0; 4343 zone->zone_ipc.ipcq_msgmni = 0; 4344 zone->zone_bootargs = NULL; 4345 zone->zone_fs_allowed = NULL; 4346 zone->zone_initname = 4347 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4348 (void) strcpy(zone->zone_initname, zone_default_initname); 4349 zone->zone_nlwps = 0; 4350 zone->zone_nlwps_ctl = INT_MAX; 4351 zone->zone_nprocs = 0; 4352 zone->zone_nprocs_ctl = INT_MAX; 4353 zone->zone_locked_mem = 0; 4354 zone->zone_locked_mem_ctl = UINT64_MAX; 4355 zone->zone_max_swap = 0; 4356 zone->zone_max_swap_ctl = UINT64_MAX; 4357 zone->zone_max_lofi = 0; 4358 zone->zone_max_lofi_ctl = UINT64_MAX; 4359 zone0.zone_lockedmem_kstat = NULL; 4360 zone0.zone_swapresv_kstat = NULL; 4361 4362 /* 4363 * Zsched initializes the rctls. 4364 */ 4365 zone->zone_rctls = NULL; 4366 4367 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4368 zone_free(zone); 4369 return (zone_create_error(error, 0, extended_error)); 4370 } 4371 4372 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4373 zone_free(zone); 4374 return (set_errno(error)); 4375 } 4376 4377 /* 4378 * Read in the trusted system parameters: 4379 * match flag and sensitivity label. 4380 */ 4381 zone->zone_match = match; 4382 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4383 /* Fail if requested to set doi to anything but system's doi */ 4384 if (doi != 0 && doi != default_doi) { 4385 zone_free(zone); 4386 return (set_errno(EINVAL)); 4387 } 4388 /* Always apply system's doi to the zone */ 4389 error = zone_set_label(zone, label, default_doi); 4390 if (error != 0) { 4391 zone_free(zone); 4392 return (set_errno(error)); 4393 } 4394 insert_label_hash = B_TRUE; 4395 } else { 4396 /* all zones get an admin_low label if system is not labeled */ 4397 zone->zone_slabel = l_admin_low; 4398 label_hold(l_admin_low); 4399 insert_label_hash = B_FALSE; 4400 } 4401 4402 /* 4403 * Stop all lwps since that's what normally happens as part of fork(). 4404 * This needs to happen before we grab any locks to avoid deadlock 4405 * (another lwp in the process could be waiting for the held lock). 4406 */ 4407 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4408 zone_free(zone); 4409 if (rctls) 4410 nvlist_free(rctls); 4411 return (zone_create_error(error, 0, extended_error)); 4412 } 4413 4414 if (block_mounts(zone) == 0) { 4415 mutex_enter(&pp->p_lock); 4416 if (curthread != pp->p_agenttp) 4417 continuelwps(pp); 4418 mutex_exit(&pp->p_lock); 4419 zone_free(zone); 4420 if (rctls) 4421 nvlist_free(rctls); 4422 return (zone_create_error(error, 0, extended_error)); 4423 } 4424 4425 /* 4426 * Set up credential for kernel access. After this, any errors 4427 * should go through the dance in errout rather than calling 4428 * zone_free directly. 4429 */ 4430 zone->zone_kcred = crdup(kcred); 4431 crsetzone(zone->zone_kcred, zone); 4432 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4433 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4434 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4435 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4436 4437 mutex_enter(&zonehash_lock); 4438 /* 4439 * Make sure zone doesn't already exist. 4440 * 4441 * If the system and zone are labeled, 4442 * make sure no other zone exists that has the same label. 4443 */ 4444 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4445 (insert_label_hash && 4446 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4447 zone_status_t status; 4448 4449 status = zone_status_get(ztmp); 4450 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4451 error = EEXIST; 4452 else 4453 error = EBUSY; 4454 4455 if (insert_label_hash) 4456 error2 = ZE_LABELINUSE; 4457 4458 goto errout; 4459 } 4460 4461 /* 4462 * Don't allow zone creations which would cause one zone's rootpath to 4463 * be accessible from that of another (non-global) zone. 4464 */ 4465 if (zone_is_nested(zone->zone_rootpath)) { 4466 error = EBUSY; 4467 goto errout; 4468 } 4469 4470 ASSERT(zonecount != 0); /* check for leaks */ 4471 if (zonecount + 1 > maxzones) { 4472 error = ENOMEM; 4473 goto errout; 4474 } 4475 4476 if (zone_mount_count(zone->zone_rootpath) != 0) { 4477 error = EBUSY; 4478 error2 = ZE_AREMOUNTS; 4479 goto errout; 4480 } 4481 4482 /* 4483 * Zone is still incomplete, but we need to drop all locks while 4484 * zsched() initializes this zone's kernel process. We 4485 * optimistically add the zone to the hashtable and associated 4486 * lists so a parallel zone_create() doesn't try to create the 4487 * same zone. 4488 */ 4489 zonecount++; 4490 (void) mod_hash_insert(zonehashbyid, 4491 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4492 (mod_hash_val_t)(uintptr_t)zone); 4493 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4494 (void) strcpy(str, zone->zone_name); 4495 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4496 (mod_hash_val_t)(uintptr_t)zone); 4497 if (insert_label_hash) { 4498 (void) mod_hash_insert(zonehashbylabel, 4499 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4500 zone->zone_flags |= ZF_HASHED_LABEL; 4501 } 4502 4503 /* 4504 * Insert into active list. At this point there are no 'hold's 4505 * on the zone, but everyone else knows not to use it, so we can 4506 * continue to use it. zsched() will do a zone_hold() if the 4507 * newproc() is successful. 4508 */ 4509 list_insert_tail(&zone_active, zone); 4510 mutex_exit(&zonehash_lock); 4511 4512 zarg.zone = zone; 4513 zarg.nvlist = rctls; 4514 /* 4515 * The process, task, and project rctls are probably wrong; 4516 * we need an interface to get the default values of all rctls, 4517 * and initialize zsched appropriately. I'm not sure that that 4518 * makes much of a difference, though. 4519 */ 4520 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4521 if (error != 0) { 4522 /* 4523 * We need to undo all globally visible state. 4524 */ 4525 mutex_enter(&zonehash_lock); 4526 list_remove(&zone_active, zone); 4527 if (zone->zone_flags & ZF_HASHED_LABEL) { 4528 ASSERT(zone->zone_slabel != NULL); 4529 (void) mod_hash_destroy(zonehashbylabel, 4530 (mod_hash_key_t)zone->zone_slabel); 4531 } 4532 (void) mod_hash_destroy(zonehashbyname, 4533 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4534 (void) mod_hash_destroy(zonehashbyid, 4535 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4536 ASSERT(zonecount > 1); 4537 zonecount--; 4538 goto errout; 4539 } 4540 4541 /* 4542 * Zone creation can't fail from now on. 4543 */ 4544 4545 /* 4546 * Create zone kstats 4547 */ 4548 zone_kstat_create(zone); 4549 4550 /* 4551 * Let the other lwps continue. 4552 */ 4553 mutex_enter(&pp->p_lock); 4554 if (curthread != pp->p_agenttp) 4555 continuelwps(pp); 4556 mutex_exit(&pp->p_lock); 4557 4558 /* 4559 * Wait for zsched to finish initializing the zone. 4560 */ 4561 zone_status_wait(zone, ZONE_IS_READY); 4562 /* 4563 * The zone is fully visible, so we can let mounts progress. 4564 */ 4565 resume_mounts(zone); 4566 if (rctls) 4567 nvlist_free(rctls); 4568 4569 return (zoneid); 4570 4571 errout: 4572 mutex_exit(&zonehash_lock); 4573 /* 4574 * Let the other lwps continue. 4575 */ 4576 mutex_enter(&pp->p_lock); 4577 if (curthread != pp->p_agenttp) 4578 continuelwps(pp); 4579 mutex_exit(&pp->p_lock); 4580 4581 resume_mounts(zone); 4582 if (rctls) 4583 nvlist_free(rctls); 4584 /* 4585 * There is currently one reference to the zone, a cred_ref from 4586 * zone_kcred. To free the zone, we call crfree, which will call 4587 * zone_cred_rele, which will call zone_free. 4588 */ 4589 ASSERT(zone->zone_cred_ref == 1); 4590 ASSERT(zone->zone_kcred->cr_ref == 1); 4591 ASSERT(zone->zone_ref == 0); 4592 zkcr = zone->zone_kcred; 4593 zone->zone_kcred = NULL; 4594 crfree(zkcr); /* triggers call to zone_free */ 4595 return (zone_create_error(error, error2, extended_error)); 4596 } 4597 4598 /* 4599 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4600 * the heavy lifting. initname is the path to the program to launch 4601 * at the "top" of the zone; if this is NULL, we use the system default, 4602 * which is stored at zone_default_initname. 4603 */ 4604 static int 4605 zone_boot(zoneid_t zoneid) 4606 { 4607 int err; 4608 zone_t *zone; 4609 4610 if (secpolicy_zone_config(CRED()) != 0) 4611 return (set_errno(EPERM)); 4612 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4613 return (set_errno(EINVAL)); 4614 4615 mutex_enter(&zonehash_lock); 4616 /* 4617 * Look for zone under hash lock to prevent races with calls to 4618 * zone_shutdown, zone_destroy, etc. 4619 */ 4620 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4621 mutex_exit(&zonehash_lock); 4622 return (set_errno(EINVAL)); 4623 } 4624 4625 mutex_enter(&zone_status_lock); 4626 if (zone_status_get(zone) != ZONE_IS_READY) { 4627 mutex_exit(&zone_status_lock); 4628 mutex_exit(&zonehash_lock); 4629 return (set_errno(EINVAL)); 4630 } 4631 zone_status_set(zone, ZONE_IS_BOOTING); 4632 mutex_exit(&zone_status_lock); 4633 4634 zone_hold(zone); /* so we can use the zone_t later */ 4635 mutex_exit(&zonehash_lock); 4636 4637 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4638 zone_rele(zone); 4639 return (set_errno(EINTR)); 4640 } 4641 4642 /* 4643 * Boot (starting init) might have failed, in which case the zone 4644 * will go to the SHUTTING_DOWN state; an appropriate errno will 4645 * be placed in zone->zone_boot_err, and so we return that. 4646 */ 4647 err = zone->zone_boot_err; 4648 zone_rele(zone); 4649 return (err ? set_errno(err) : 0); 4650 } 4651 4652 /* 4653 * Kills all user processes in the zone, waiting for them all to exit 4654 * before returning. 4655 */ 4656 static int 4657 zone_empty(zone_t *zone) 4658 { 4659 int waitstatus; 4660 4661 /* 4662 * We need to drop zonehash_lock before killing all 4663 * processes, otherwise we'll deadlock with zone_find_* 4664 * which can be called from the exit path. 4665 */ 4666 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4667 while ((waitstatus = zone_status_timedwait_sig(zone, 4668 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4669 killall(zone->zone_id); 4670 } 4671 /* 4672 * return EINTR if we were signaled 4673 */ 4674 if (waitstatus == 0) 4675 return (EINTR); 4676 return (0); 4677 } 4678 4679 /* 4680 * This function implements the policy for zone visibility. 4681 * 4682 * In standard Solaris, a non-global zone can only see itself. 4683 * 4684 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4685 * it dominates. For this test, the label of the global zone is treated as 4686 * admin_high so it is special-cased instead of being checked for dominance. 4687 * 4688 * Returns true if zone attributes are viewable, false otherwise. 4689 */ 4690 static boolean_t 4691 zone_list_access(zone_t *zone) 4692 { 4693 4694 if (curproc->p_zone == global_zone || 4695 curproc->p_zone == zone) { 4696 return (B_TRUE); 4697 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4698 bslabel_t *curproc_label; 4699 bslabel_t *zone_label; 4700 4701 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4702 zone_label = label2bslabel(zone->zone_slabel); 4703 4704 if (zone->zone_id != GLOBAL_ZONEID && 4705 bldominates(curproc_label, zone_label)) { 4706 return (B_TRUE); 4707 } else { 4708 return (B_FALSE); 4709 } 4710 } else { 4711 return (B_FALSE); 4712 } 4713 } 4714 4715 /* 4716 * Systemcall to start the zone's halt sequence. By the time this 4717 * function successfully returns, all user processes and kernel threads 4718 * executing in it will have exited, ZSD shutdown callbacks executed, 4719 * and the zone status set to ZONE_IS_DOWN. 4720 * 4721 * It is possible that the call will interrupt itself if the caller is the 4722 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4723 */ 4724 static int 4725 zone_shutdown(zoneid_t zoneid) 4726 { 4727 int error; 4728 zone_t *zone; 4729 zone_status_t status; 4730 4731 if (secpolicy_zone_config(CRED()) != 0) 4732 return (set_errno(EPERM)); 4733 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4734 return (set_errno(EINVAL)); 4735 4736 mutex_enter(&zonehash_lock); 4737 /* 4738 * Look for zone under hash lock to prevent races with other 4739 * calls to zone_shutdown and zone_destroy. 4740 */ 4741 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4742 mutex_exit(&zonehash_lock); 4743 return (set_errno(EINVAL)); 4744 } 4745 4746 /* 4747 * We have to drop zonehash_lock before calling block_mounts. 4748 * Hold the zone so we can continue to use the zone_t. 4749 */ 4750 zone_hold(zone); 4751 mutex_exit(&zonehash_lock); 4752 4753 /* 4754 * Block mounts so that VFS_MOUNT() can get an accurate view of 4755 * the zone's status with regards to ZONE_IS_SHUTTING down. 4756 * 4757 * e.g. NFS can fail the mount if it determines that the zone 4758 * has already begun the shutdown sequence. 4759 * 4760 */ 4761 if (block_mounts(zone) == 0) { 4762 zone_rele(zone); 4763 return (set_errno(EINTR)); 4764 } 4765 4766 mutex_enter(&zonehash_lock); 4767 mutex_enter(&zone_status_lock); 4768 status = zone_status_get(zone); 4769 /* 4770 * Fail if the zone isn't fully initialized yet. 4771 */ 4772 if (status < ZONE_IS_READY) { 4773 mutex_exit(&zone_status_lock); 4774 mutex_exit(&zonehash_lock); 4775 resume_mounts(zone); 4776 zone_rele(zone); 4777 return (set_errno(EINVAL)); 4778 } 4779 /* 4780 * If conditions required for zone_shutdown() to return have been met, 4781 * return success. 4782 */ 4783 if (status >= ZONE_IS_DOWN) { 4784 mutex_exit(&zone_status_lock); 4785 mutex_exit(&zonehash_lock); 4786 resume_mounts(zone); 4787 zone_rele(zone); 4788 return (0); 4789 } 4790 /* 4791 * If zone_shutdown() hasn't been called before, go through the motions. 4792 * If it has, there's nothing to do but wait for the kernel threads to 4793 * drain. 4794 */ 4795 if (status < ZONE_IS_EMPTY) { 4796 uint_t ntasks; 4797 4798 mutex_enter(&zone->zone_lock); 4799 if ((ntasks = zone->zone_ntasks) != 1) { 4800 /* 4801 * There's still stuff running. 4802 */ 4803 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4804 } 4805 mutex_exit(&zone->zone_lock); 4806 if (ntasks == 1) { 4807 /* 4808 * The only way to create another task is through 4809 * zone_enter(), which will block until we drop 4810 * zonehash_lock. The zone is empty. 4811 */ 4812 if (zone->zone_kthreads == NULL) { 4813 /* 4814 * Skip ahead to ZONE_IS_DOWN 4815 */ 4816 zone_status_set(zone, ZONE_IS_DOWN); 4817 } else { 4818 zone_status_set(zone, ZONE_IS_EMPTY); 4819 } 4820 } 4821 } 4822 mutex_exit(&zone_status_lock); 4823 mutex_exit(&zonehash_lock); 4824 resume_mounts(zone); 4825 4826 if (error = zone_empty(zone)) { 4827 zone_rele(zone); 4828 return (set_errno(error)); 4829 } 4830 /* 4831 * After the zone status goes to ZONE_IS_DOWN this zone will no 4832 * longer be notified of changes to the pools configuration, so 4833 * in order to not end up with a stale pool pointer, we point 4834 * ourselves at the default pool and remove all resource 4835 * visibility. This is especially important as the zone_t may 4836 * languish on the deathrow for a very long time waiting for 4837 * cred's to drain out. 4838 * 4839 * This rebinding of the zone can happen multiple times 4840 * (presumably due to interrupted or parallel systemcalls) 4841 * without any adverse effects. 4842 */ 4843 if (pool_lock_intr() != 0) { 4844 zone_rele(zone); 4845 return (set_errno(EINTR)); 4846 } 4847 if (pool_state == POOL_ENABLED) { 4848 mutex_enter(&cpu_lock); 4849 zone_pool_set(zone, pool_default); 4850 /* 4851 * The zone no longer needs to be able to see any cpus. 4852 */ 4853 zone_pset_set(zone, ZONE_PS_INVAL); 4854 mutex_exit(&cpu_lock); 4855 } 4856 pool_unlock(); 4857 4858 /* 4859 * ZSD shutdown callbacks can be executed multiple times, hence 4860 * it is safe to not be holding any locks across this call. 4861 */ 4862 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4863 4864 mutex_enter(&zone_status_lock); 4865 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4866 zone_status_set(zone, ZONE_IS_DOWN); 4867 mutex_exit(&zone_status_lock); 4868 4869 /* 4870 * Wait for kernel threads to drain. 4871 */ 4872 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4873 zone_rele(zone); 4874 return (set_errno(EINTR)); 4875 } 4876 4877 /* 4878 * Zone can be become down/destroyable even if the above wait 4879 * returns EINTR, so any code added here may never execute. 4880 * (i.e. don't add code here) 4881 */ 4882 4883 zone_rele(zone); 4884 return (0); 4885 } 4886 4887 /* 4888 * Log the specified zone's reference counts. The caller should not be 4889 * holding the zone's zone_lock. 4890 */ 4891 static void 4892 zone_log_refcounts(zone_t *zone) 4893 { 4894 char *buffer; 4895 char *buffer_position; 4896 uint32_t buffer_size; 4897 uint32_t index; 4898 uint_t ref; 4899 uint_t cred_ref; 4900 4901 /* 4902 * Construct a string representing the subsystem-specific reference 4903 * counts. The counts are printed in ascending order by index into the 4904 * zone_t::zone_subsys_ref array. The list will be surrounded by 4905 * square brackets [] and will only contain nonzero reference counts. 4906 * 4907 * The buffer will hold two square bracket characters plus ten digits, 4908 * one colon, one space, one comma, and some characters for a 4909 * subsystem name per subsystem-specific reference count. (Unsigned 32- 4910 * bit integers have at most ten decimal digits.) The last 4911 * reference count's comma is replaced by the closing square 4912 * bracket and a NULL character to terminate the string. 4913 * 4914 * NOTE: We have to grab the zone's zone_lock to create a consistent 4915 * snapshot of the zone's reference counters. 4916 * 4917 * First, figure out how much space the string buffer will need. 4918 * The buffer's size is stored in buffer_size. 4919 */ 4920 buffer_size = 2; /* for the square brackets */ 4921 mutex_enter(&zone->zone_lock); 4922 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 4923 ref = zone->zone_ref; 4924 cred_ref = zone->zone_cred_ref; 4925 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 4926 if (zone->zone_subsys_ref[index] != 0) 4927 buffer_size += strlen(zone_ref_subsys_names[index]) + 4928 13; 4929 if (buffer_size == 2) { 4930 /* 4931 * No subsystems had nonzero reference counts. Don't bother 4932 * with allocating a buffer; just log the general-purpose and 4933 * credential reference counts. 4934 */ 4935 mutex_exit(&zone->zone_lock); 4936 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4937 "Zone '%s' (ID: %d) is shutting down, but %u zone " 4938 "references and %u credential references are still extant", 4939 zone->zone_name, zone->zone_id, ref, cred_ref); 4940 return; 4941 } 4942 4943 /* 4944 * buffer_size contains the exact number of characters that the 4945 * buffer will need. Allocate the buffer and fill it with nonzero 4946 * subsystem-specific reference counts. Surround the results with 4947 * square brackets afterwards. 4948 */ 4949 buffer = kmem_alloc(buffer_size, KM_SLEEP); 4950 buffer_position = &buffer[1]; 4951 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 4952 /* 4953 * NOTE: The DDI's version of sprintf() returns a pointer to 4954 * the modified buffer rather than the number of bytes written 4955 * (as in snprintf(3C)). This is unfortunate and annoying. 4956 * Therefore, we'll use snprintf() with INT_MAX to get the 4957 * number of bytes written. Using INT_MAX is safe because 4958 * the buffer is perfectly sized for the data: we'll never 4959 * overrun the buffer. 4960 */ 4961 if (zone->zone_subsys_ref[index] != 0) 4962 buffer_position += snprintf(buffer_position, INT_MAX, 4963 "%s: %u,", zone_ref_subsys_names[index], 4964 zone->zone_subsys_ref[index]); 4965 } 4966 mutex_exit(&zone->zone_lock); 4967 buffer[0] = '['; 4968 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 4969 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 4970 buffer_position[-1] = ']'; 4971 4972 /* 4973 * Log the reference counts and free the message buffer. 4974 */ 4975 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4976 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 4977 "%u credential references are still extant %s", zone->zone_name, 4978 zone->zone_id, ref, cred_ref, buffer); 4979 kmem_free(buffer, buffer_size); 4980 } 4981 4982 /* 4983 * Systemcall entry point to finalize the zone halt process. The caller 4984 * must have already successfully called zone_shutdown(). 4985 * 4986 * Upon successful completion, the zone will have been fully destroyed: 4987 * zsched will have exited, destructor callbacks executed, and the zone 4988 * removed from the list of active zones. 4989 */ 4990 static int 4991 zone_destroy(zoneid_t zoneid) 4992 { 4993 uint64_t uniqid; 4994 zone_t *zone; 4995 zone_status_t status; 4996 clock_t wait_time; 4997 boolean_t log_refcounts; 4998 4999 if (secpolicy_zone_config(CRED()) != 0) 5000 return (set_errno(EPERM)); 5001 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5002 return (set_errno(EINVAL)); 5003 5004 mutex_enter(&zonehash_lock); 5005 /* 5006 * Look for zone under hash lock to prevent races with other 5007 * calls to zone_destroy. 5008 */ 5009 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5010 mutex_exit(&zonehash_lock); 5011 return (set_errno(EINVAL)); 5012 } 5013 5014 if (zone_mount_count(zone->zone_rootpath) != 0) { 5015 mutex_exit(&zonehash_lock); 5016 return (set_errno(EBUSY)); 5017 } 5018 mutex_enter(&zone_status_lock); 5019 status = zone_status_get(zone); 5020 if (status < ZONE_IS_DOWN) { 5021 mutex_exit(&zone_status_lock); 5022 mutex_exit(&zonehash_lock); 5023 return (set_errno(EBUSY)); 5024 } else if (status == ZONE_IS_DOWN) { 5025 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5026 } 5027 mutex_exit(&zone_status_lock); 5028 zone_hold(zone); 5029 mutex_exit(&zonehash_lock); 5030 5031 /* 5032 * wait for zsched to exit 5033 */ 5034 zone_status_wait(zone, ZONE_IS_DEAD); 5035 zone_zsd_callbacks(zone, ZSD_DESTROY); 5036 zone->zone_netstack = NULL; 5037 uniqid = zone->zone_uniqid; 5038 zone_rele(zone); 5039 zone = NULL; /* potentially free'd */ 5040 5041 log_refcounts = B_FALSE; 5042 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5043 mutex_enter(&zonehash_lock); 5044 for (; /* ever */; ) { 5045 boolean_t unref; 5046 boolean_t refs_have_been_logged; 5047 5048 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5049 zone->zone_uniqid != uniqid) { 5050 /* 5051 * The zone has gone away. Necessary conditions 5052 * are met, so we return success. 5053 */ 5054 mutex_exit(&zonehash_lock); 5055 return (0); 5056 } 5057 mutex_enter(&zone->zone_lock); 5058 unref = ZONE_IS_UNREF(zone); 5059 refs_have_been_logged = (zone->zone_flags & 5060 ZF_REFCOUNTS_LOGGED); 5061 mutex_exit(&zone->zone_lock); 5062 if (unref) { 5063 /* 5064 * There is only one reference to the zone -- that 5065 * added when the zone was added to the hashtables -- 5066 * and things will remain this way until we drop 5067 * zonehash_lock... we can go ahead and cleanup the 5068 * zone. 5069 */ 5070 break; 5071 } 5072 5073 /* 5074 * Wait for zone_rele_common() or zone_cred_rele() to signal 5075 * zone_destroy_cv. zone_destroy_cv is signaled only when 5076 * some zone's general-purpose reference count reaches one. 5077 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5078 * on zone_destroy_cv, then log the zone's reference counts and 5079 * continue to wait for zone_rele() and zone_cred_rele(). 5080 */ 5081 if (!refs_have_been_logged) { 5082 if (!log_refcounts) { 5083 /* 5084 * This thread hasn't timed out waiting on 5085 * zone_destroy_cv yet. Wait wait_time clock 5086 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5087 * seconds) for the zone's references to clear. 5088 */ 5089 ASSERT(wait_time > 0); 5090 wait_time = cv_reltimedwait_sig( 5091 &zone_destroy_cv, &zonehash_lock, wait_time, 5092 TR_SEC); 5093 if (wait_time > 0) { 5094 /* 5095 * A thread in zone_rele() or 5096 * zone_cred_rele() signaled 5097 * zone_destroy_cv before this thread's 5098 * wait timed out. The zone might have 5099 * only one reference left; find out! 5100 */ 5101 continue; 5102 } else if (wait_time == 0) { 5103 /* The thread's process was signaled. */ 5104 mutex_exit(&zonehash_lock); 5105 return (set_errno(EINTR)); 5106 } 5107 5108 /* 5109 * The thread timed out while waiting on 5110 * zone_destroy_cv. Even though the thread 5111 * timed out, it has to check whether another 5112 * thread woke up from zone_destroy_cv and 5113 * destroyed the zone. 5114 * 5115 * If the zone still exists and has more than 5116 * one unreleased general-purpose reference, 5117 * then log the zone's reference counts. 5118 */ 5119 log_refcounts = B_TRUE; 5120 continue; 5121 } 5122 5123 /* 5124 * The thread already timed out on zone_destroy_cv while 5125 * waiting for subsystems to release the zone's last 5126 * general-purpose references. Log the zone's reference 5127 * counts and wait indefinitely on zone_destroy_cv. 5128 */ 5129 zone_log_refcounts(zone); 5130 } 5131 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5132 /* The thread's process was signaled. */ 5133 mutex_exit(&zonehash_lock); 5134 return (set_errno(EINTR)); 5135 } 5136 } 5137 5138 /* 5139 * Remove CPU cap for this zone now since we're not going to 5140 * fail below this point. 5141 */ 5142 cpucaps_zone_remove(zone); 5143 5144 /* Get rid of the zone's kstats */ 5145 zone_kstat_delete(zone); 5146 5147 /* remove the pfexecd doors */ 5148 if (zone->zone_pfexecd != NULL) { 5149 klpd_freelist(&zone->zone_pfexecd); 5150 zone->zone_pfexecd = NULL; 5151 } 5152 5153 /* free brand specific data */ 5154 if (ZONE_IS_BRANDED(zone)) 5155 ZBROP(zone)->b_free_brand_data(zone); 5156 5157 /* Say goodbye to brand framework. */ 5158 brand_unregister_zone(zone->zone_brand); 5159 5160 /* 5161 * It is now safe to let the zone be recreated; remove it from the 5162 * lists. The memory will not be freed until the last cred 5163 * reference goes away. 5164 */ 5165 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5166 zonecount--; 5167 /* remove from active list and hash tables */ 5168 list_remove(&zone_active, zone); 5169 (void) mod_hash_destroy(zonehashbyname, 5170 (mod_hash_key_t)zone->zone_name); 5171 (void) mod_hash_destroy(zonehashbyid, 5172 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5173 if (zone->zone_flags & ZF_HASHED_LABEL) 5174 (void) mod_hash_destroy(zonehashbylabel, 5175 (mod_hash_key_t)zone->zone_slabel); 5176 mutex_exit(&zonehash_lock); 5177 5178 /* 5179 * Release the root vnode; we're not using it anymore. Nor should any 5180 * other thread that might access it exist. 5181 */ 5182 if (zone->zone_rootvp != NULL) { 5183 VN_RELE(zone->zone_rootvp); 5184 zone->zone_rootvp = NULL; 5185 } 5186 5187 /* add to deathrow list */ 5188 mutex_enter(&zone_deathrow_lock); 5189 list_insert_tail(&zone_deathrow, zone); 5190 mutex_exit(&zone_deathrow_lock); 5191 5192 /* 5193 * Drop last reference (which was added by zsched()), this will 5194 * free the zone unless there are outstanding cred references. 5195 */ 5196 zone_rele(zone); 5197 return (0); 5198 } 5199 5200 /* 5201 * Systemcall entry point for zone_getattr(2). 5202 */ 5203 static ssize_t 5204 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5205 { 5206 size_t size; 5207 int error = 0, err; 5208 zone_t *zone; 5209 char *zonepath; 5210 char *outstr; 5211 zone_status_t zone_status; 5212 pid_t initpid; 5213 boolean_t global = (curzone == global_zone); 5214 boolean_t inzone = (curzone->zone_id == zoneid); 5215 ushort_t flags; 5216 zone_net_data_t *zbuf; 5217 5218 mutex_enter(&zonehash_lock); 5219 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5220 mutex_exit(&zonehash_lock); 5221 return (set_errno(EINVAL)); 5222 } 5223 zone_status = zone_status_get(zone); 5224 if (zone_status < ZONE_IS_INITIALIZED) { 5225 mutex_exit(&zonehash_lock); 5226 return (set_errno(EINVAL)); 5227 } 5228 zone_hold(zone); 5229 mutex_exit(&zonehash_lock); 5230 5231 /* 5232 * If not in the global zone, don't show information about other zones, 5233 * unless the system is labeled and the local zone's label dominates 5234 * the other zone. 5235 */ 5236 if (!zone_list_access(zone)) { 5237 zone_rele(zone); 5238 return (set_errno(EINVAL)); 5239 } 5240 5241 switch (attr) { 5242 case ZONE_ATTR_ROOT: 5243 if (global) { 5244 /* 5245 * Copy the path to trim the trailing "/" (except for 5246 * the global zone). 5247 */ 5248 if (zone != global_zone) 5249 size = zone->zone_rootpathlen - 1; 5250 else 5251 size = zone->zone_rootpathlen; 5252 zonepath = kmem_alloc(size, KM_SLEEP); 5253 bcopy(zone->zone_rootpath, zonepath, size); 5254 zonepath[size - 1] = '\0'; 5255 } else { 5256 if (inzone || !is_system_labeled()) { 5257 /* 5258 * Caller is not in the global zone. 5259 * if the query is on the current zone 5260 * or the system is not labeled, 5261 * just return faked-up path for current zone. 5262 */ 5263 zonepath = "/"; 5264 size = 2; 5265 } else { 5266 /* 5267 * Return related path for current zone. 5268 */ 5269 int prefix_len = strlen(zone_prefix); 5270 int zname_len = strlen(zone->zone_name); 5271 5272 size = prefix_len + zname_len + 1; 5273 zonepath = kmem_alloc(size, KM_SLEEP); 5274 bcopy(zone_prefix, zonepath, prefix_len); 5275 bcopy(zone->zone_name, zonepath + 5276 prefix_len, zname_len); 5277 zonepath[size - 1] = '\0'; 5278 } 5279 } 5280 if (bufsize > size) 5281 bufsize = size; 5282 if (buf != NULL) { 5283 err = copyoutstr(zonepath, buf, bufsize, NULL); 5284 if (err != 0 && err != ENAMETOOLONG) 5285 error = EFAULT; 5286 } 5287 if (global || (is_system_labeled() && !inzone)) 5288 kmem_free(zonepath, size); 5289 break; 5290 5291 case ZONE_ATTR_NAME: 5292 size = strlen(zone->zone_name) + 1; 5293 if (bufsize > size) 5294 bufsize = size; 5295 if (buf != NULL) { 5296 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5297 if (err != 0 && err != ENAMETOOLONG) 5298 error = EFAULT; 5299 } 5300 break; 5301 5302 case ZONE_ATTR_STATUS: 5303 /* 5304 * Since we're not holding zonehash_lock, the zone status 5305 * may be anything; leave it up to userland to sort it out. 5306 */ 5307 size = sizeof (zone_status); 5308 if (bufsize > size) 5309 bufsize = size; 5310 zone_status = zone_status_get(zone); 5311 if (buf != NULL && 5312 copyout(&zone_status, buf, bufsize) != 0) 5313 error = EFAULT; 5314 break; 5315 case ZONE_ATTR_FLAGS: 5316 size = sizeof (zone->zone_flags); 5317 if (bufsize > size) 5318 bufsize = size; 5319 flags = zone->zone_flags; 5320 if (buf != NULL && 5321 copyout(&flags, buf, bufsize) != 0) 5322 error = EFAULT; 5323 break; 5324 case ZONE_ATTR_PRIVSET: 5325 size = sizeof (priv_set_t); 5326 if (bufsize > size) 5327 bufsize = size; 5328 if (buf != NULL && 5329 copyout(zone->zone_privset, buf, bufsize) != 0) 5330 error = EFAULT; 5331 break; 5332 case ZONE_ATTR_UNIQID: 5333 size = sizeof (zone->zone_uniqid); 5334 if (bufsize > size) 5335 bufsize = size; 5336 if (buf != NULL && 5337 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5338 error = EFAULT; 5339 break; 5340 case ZONE_ATTR_POOLID: 5341 { 5342 pool_t *pool; 5343 poolid_t poolid; 5344 5345 if (pool_lock_intr() != 0) { 5346 error = EINTR; 5347 break; 5348 } 5349 pool = zone_pool_get(zone); 5350 poolid = pool->pool_id; 5351 pool_unlock(); 5352 size = sizeof (poolid); 5353 if (bufsize > size) 5354 bufsize = size; 5355 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5356 error = EFAULT; 5357 } 5358 break; 5359 case ZONE_ATTR_SLBL: 5360 size = sizeof (bslabel_t); 5361 if (bufsize > size) 5362 bufsize = size; 5363 if (zone->zone_slabel == NULL) 5364 error = EINVAL; 5365 else if (buf != NULL && 5366 copyout(label2bslabel(zone->zone_slabel), buf, 5367 bufsize) != 0) 5368 error = EFAULT; 5369 break; 5370 case ZONE_ATTR_INITPID: 5371 size = sizeof (initpid); 5372 if (bufsize > size) 5373 bufsize = size; 5374 initpid = zone->zone_proc_initpid; 5375 if (initpid == -1) { 5376 error = ESRCH; 5377 break; 5378 } 5379 if (buf != NULL && 5380 copyout(&initpid, buf, bufsize) != 0) 5381 error = EFAULT; 5382 break; 5383 case ZONE_ATTR_BRAND: 5384 size = strlen(zone->zone_brand->b_name) + 1; 5385 5386 if (bufsize > size) 5387 bufsize = size; 5388 if (buf != NULL) { 5389 err = copyoutstr(zone->zone_brand->b_name, buf, 5390 bufsize, NULL); 5391 if (err != 0 && err != ENAMETOOLONG) 5392 error = EFAULT; 5393 } 5394 break; 5395 case ZONE_ATTR_INITNAME: 5396 size = strlen(zone->zone_initname) + 1; 5397 if (bufsize > size) 5398 bufsize = size; 5399 if (buf != NULL) { 5400 err = copyoutstr(zone->zone_initname, buf, bufsize, 5401 NULL); 5402 if (err != 0 && err != ENAMETOOLONG) 5403 error = EFAULT; 5404 } 5405 break; 5406 case ZONE_ATTR_BOOTARGS: 5407 if (zone->zone_bootargs == NULL) 5408 outstr = ""; 5409 else 5410 outstr = zone->zone_bootargs; 5411 size = strlen(outstr) + 1; 5412 if (bufsize > size) 5413 bufsize = size; 5414 if (buf != NULL) { 5415 err = copyoutstr(outstr, buf, bufsize, NULL); 5416 if (err != 0 && err != ENAMETOOLONG) 5417 error = EFAULT; 5418 } 5419 break; 5420 case ZONE_ATTR_PHYS_MCAP: 5421 size = sizeof (zone->zone_phys_mcap); 5422 if (bufsize > size) 5423 bufsize = size; 5424 if (buf != NULL && 5425 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5426 error = EFAULT; 5427 break; 5428 case ZONE_ATTR_SCHED_CLASS: 5429 mutex_enter(&class_lock); 5430 5431 if (zone->zone_defaultcid >= loaded_classes) 5432 outstr = ""; 5433 else 5434 outstr = sclass[zone->zone_defaultcid].cl_name; 5435 size = strlen(outstr) + 1; 5436 if (bufsize > size) 5437 bufsize = size; 5438 if (buf != NULL) { 5439 err = copyoutstr(outstr, buf, bufsize, NULL); 5440 if (err != 0 && err != ENAMETOOLONG) 5441 error = EFAULT; 5442 } 5443 5444 mutex_exit(&class_lock); 5445 break; 5446 case ZONE_ATTR_HOSTID: 5447 if (zone->zone_hostid != HW_INVALID_HOSTID && 5448 bufsize == sizeof (zone->zone_hostid)) { 5449 size = sizeof (zone->zone_hostid); 5450 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5451 bufsize) != 0) 5452 error = EFAULT; 5453 } else { 5454 error = EINVAL; 5455 } 5456 break; 5457 case ZONE_ATTR_FS_ALLOWED: 5458 if (zone->zone_fs_allowed == NULL) 5459 outstr = ""; 5460 else 5461 outstr = zone->zone_fs_allowed; 5462 size = strlen(outstr) + 1; 5463 if (bufsize > size) 5464 bufsize = size; 5465 if (buf != NULL) { 5466 err = copyoutstr(outstr, buf, bufsize, NULL); 5467 if (err != 0 && err != ENAMETOOLONG) 5468 error = EFAULT; 5469 } 5470 break; 5471 case ZONE_ATTR_NETWORK: 5472 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5473 if (copyin(buf, zbuf, bufsize) != 0) { 5474 error = EFAULT; 5475 } else { 5476 error = zone_get_network(zoneid, zbuf); 5477 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5478 error = EFAULT; 5479 } 5480 kmem_free(zbuf, bufsize); 5481 break; 5482 default: 5483 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5484 size = bufsize; 5485 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5486 } else { 5487 error = EINVAL; 5488 } 5489 } 5490 zone_rele(zone); 5491 5492 if (error) 5493 return (set_errno(error)); 5494 return ((ssize_t)size); 5495 } 5496 5497 /* 5498 * Systemcall entry point for zone_setattr(2). 5499 */ 5500 /*ARGSUSED*/ 5501 static int 5502 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5503 { 5504 zone_t *zone; 5505 zone_status_t zone_status; 5506 int err = -1; 5507 zone_net_data_t *zbuf; 5508 5509 if (secpolicy_zone_config(CRED()) != 0) 5510 return (set_errno(EPERM)); 5511 5512 /* 5513 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5514 * global zone. 5515 */ 5516 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5517 return (set_errno(EINVAL)); 5518 } 5519 5520 mutex_enter(&zonehash_lock); 5521 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5522 mutex_exit(&zonehash_lock); 5523 return (set_errno(EINVAL)); 5524 } 5525 zone_hold(zone); 5526 mutex_exit(&zonehash_lock); 5527 5528 /* 5529 * At present most attributes can only be set on non-running, 5530 * non-global zones. 5531 */ 5532 zone_status = zone_status_get(zone); 5533 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5534 err = EINVAL; 5535 goto done; 5536 } 5537 5538 switch (attr) { 5539 case ZONE_ATTR_INITNAME: 5540 err = zone_set_initname(zone, (const char *)buf); 5541 break; 5542 case ZONE_ATTR_INITNORESTART: 5543 zone->zone_restart_init = B_FALSE; 5544 err = 0; 5545 break; 5546 case ZONE_ATTR_BOOTARGS: 5547 err = zone_set_bootargs(zone, (const char *)buf); 5548 break; 5549 case ZONE_ATTR_BRAND: 5550 err = zone_set_brand(zone, (const char *)buf); 5551 break; 5552 case ZONE_ATTR_FS_ALLOWED: 5553 err = zone_set_fs_allowed(zone, (const char *)buf); 5554 break; 5555 case ZONE_ATTR_PHYS_MCAP: 5556 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5557 break; 5558 case ZONE_ATTR_SCHED_CLASS: 5559 err = zone_set_sched_class(zone, (const char *)buf); 5560 break; 5561 case ZONE_ATTR_HOSTID: 5562 if (bufsize == sizeof (zone->zone_hostid)) { 5563 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5564 err = 0; 5565 else 5566 err = EFAULT; 5567 } else { 5568 err = EINVAL; 5569 } 5570 break; 5571 case ZONE_ATTR_NETWORK: 5572 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5573 err = EINVAL; 5574 break; 5575 } 5576 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5577 if (copyin(buf, zbuf, bufsize) != 0) { 5578 kmem_free(zbuf, bufsize); 5579 err = EFAULT; 5580 break; 5581 } 5582 err = zone_set_network(zoneid, zbuf); 5583 kmem_free(zbuf, bufsize); 5584 break; 5585 default: 5586 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5587 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5588 else 5589 err = EINVAL; 5590 } 5591 5592 done: 5593 zone_rele(zone); 5594 ASSERT(err != -1); 5595 return (err != 0 ? set_errno(err) : 0); 5596 } 5597 5598 /* 5599 * Return zero if the process has at least one vnode mapped in to its 5600 * address space which shouldn't be allowed to change zones. 5601 * 5602 * Also return zero if the process has any shared mappings which reserve 5603 * swap. This is because the counting for zone.max-swap does not allow swap 5604 * reservation to be shared between zones. zone swap reservation is counted 5605 * on zone->zone_max_swap. 5606 */ 5607 static int 5608 as_can_change_zones(void) 5609 { 5610 proc_t *pp = curproc; 5611 struct seg *seg; 5612 struct as *as = pp->p_as; 5613 vnode_t *vp; 5614 int allow = 1; 5615 5616 ASSERT(pp->p_as != &kas); 5617 AS_LOCK_ENTER(as, RW_READER); 5618 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5619 5620 /* 5621 * Cannot enter zone with shared anon memory which 5622 * reserves swap. See comment above. 5623 */ 5624 if (seg_can_change_zones(seg) == B_FALSE) { 5625 allow = 0; 5626 break; 5627 } 5628 /* 5629 * if we can't get a backing vnode for this segment then skip 5630 * it. 5631 */ 5632 vp = NULL; 5633 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5634 continue; 5635 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5636 allow = 0; 5637 break; 5638 } 5639 } 5640 AS_LOCK_EXIT(as); 5641 return (allow); 5642 } 5643 5644 /* 5645 * Count swap reserved by curproc's address space 5646 */ 5647 static size_t 5648 as_swresv(void) 5649 { 5650 proc_t *pp = curproc; 5651 struct seg *seg; 5652 struct as *as = pp->p_as; 5653 size_t swap = 0; 5654 5655 ASSERT(pp->p_as != &kas); 5656 ASSERT(AS_WRITE_HELD(as)); 5657 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5658 swap += seg_swresv(seg); 5659 5660 return (swap); 5661 } 5662 5663 /* 5664 * Systemcall entry point for zone_enter(). 5665 * 5666 * The current process is injected into said zone. In the process 5667 * it will change its project membership, privileges, rootdir/cwd, 5668 * zone-wide rctls, and pool association to match those of the zone. 5669 * 5670 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5671 * state will transition it to ZONE_IS_RUNNING. Processes may only 5672 * enter a zone that is "ready" or "running". 5673 */ 5674 static int 5675 zone_enter(zoneid_t zoneid) 5676 { 5677 zone_t *zone; 5678 vnode_t *vp; 5679 proc_t *pp = curproc; 5680 contract_t *ct; 5681 cont_process_t *ctp; 5682 task_t *tk, *oldtk; 5683 kproject_t *zone_proj0; 5684 cred_t *cr, *newcr; 5685 pool_t *oldpool, *newpool; 5686 sess_t *sp; 5687 uid_t uid; 5688 zone_status_t status; 5689 int err = 0; 5690 rctl_entity_p_t e; 5691 size_t swap; 5692 kthread_id_t t; 5693 5694 if (secpolicy_zone_config(CRED()) != 0) 5695 return (set_errno(EPERM)); 5696 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5697 return (set_errno(EINVAL)); 5698 5699 /* 5700 * Stop all lwps so we don't need to hold a lock to look at 5701 * curproc->p_zone. This needs to happen before we grab any 5702 * locks to avoid deadlock (another lwp in the process could 5703 * be waiting for the held lock). 5704 */ 5705 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5706 return (set_errno(EINTR)); 5707 5708 /* 5709 * Make sure we're not changing zones with files open or mapped in 5710 * to our address space which shouldn't be changing zones. 5711 */ 5712 if (!files_can_change_zones()) { 5713 err = EBADF; 5714 goto out; 5715 } 5716 if (!as_can_change_zones()) { 5717 err = EFAULT; 5718 goto out; 5719 } 5720 5721 mutex_enter(&zonehash_lock); 5722 if (pp->p_zone != global_zone) { 5723 mutex_exit(&zonehash_lock); 5724 err = EINVAL; 5725 goto out; 5726 } 5727 5728 zone = zone_find_all_by_id(zoneid); 5729 if (zone == NULL) { 5730 mutex_exit(&zonehash_lock); 5731 err = EINVAL; 5732 goto out; 5733 } 5734 5735 /* 5736 * To prevent processes in a zone from holding contracts on 5737 * extrazonal resources, and to avoid process contract 5738 * memberships which span zones, contract holders and processes 5739 * which aren't the sole members of their encapsulating process 5740 * contracts are not allowed to zone_enter. 5741 */ 5742 ctp = pp->p_ct_process; 5743 ct = &ctp->conp_contract; 5744 mutex_enter(&ct->ct_lock); 5745 mutex_enter(&pp->p_lock); 5746 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5747 mutex_exit(&pp->p_lock); 5748 mutex_exit(&ct->ct_lock); 5749 mutex_exit(&zonehash_lock); 5750 err = EINVAL; 5751 goto out; 5752 } 5753 5754 /* 5755 * Moreover, we don't allow processes whose encapsulating 5756 * process contracts have inherited extrazonal contracts. 5757 * While it would be easier to eliminate all process contracts 5758 * with inherited contracts, we need to be able to give a 5759 * restarted init (or other zone-penetrating process) its 5760 * predecessor's contracts. 5761 */ 5762 if (ctp->conp_ninherited != 0) { 5763 contract_t *next; 5764 for (next = list_head(&ctp->conp_inherited); next; 5765 next = list_next(&ctp->conp_inherited, next)) { 5766 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5767 mutex_exit(&pp->p_lock); 5768 mutex_exit(&ct->ct_lock); 5769 mutex_exit(&zonehash_lock); 5770 err = EINVAL; 5771 goto out; 5772 } 5773 } 5774 } 5775 5776 mutex_exit(&pp->p_lock); 5777 mutex_exit(&ct->ct_lock); 5778 5779 status = zone_status_get(zone); 5780 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5781 /* 5782 * Can't join 5783 */ 5784 mutex_exit(&zonehash_lock); 5785 err = EINVAL; 5786 goto out; 5787 } 5788 5789 /* 5790 * Make sure new priv set is within the permitted set for caller 5791 */ 5792 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5793 mutex_exit(&zonehash_lock); 5794 err = EPERM; 5795 goto out; 5796 } 5797 /* 5798 * We want to momentarily drop zonehash_lock while we optimistically 5799 * bind curproc to the pool it should be running in. This is safe 5800 * since the zone can't disappear (we have a hold on it). 5801 */ 5802 zone_hold(zone); 5803 mutex_exit(&zonehash_lock); 5804 5805 /* 5806 * Grab pool_lock to keep the pools configuration from changing 5807 * and to stop ourselves from getting rebound to another pool 5808 * until we join the zone. 5809 */ 5810 if (pool_lock_intr() != 0) { 5811 zone_rele(zone); 5812 err = EINTR; 5813 goto out; 5814 } 5815 ASSERT(secpolicy_pool(CRED()) == 0); 5816 /* 5817 * Bind ourselves to the pool currently associated with the zone. 5818 */ 5819 oldpool = curproc->p_pool; 5820 newpool = zone_pool_get(zone); 5821 if (pool_state == POOL_ENABLED && newpool != oldpool && 5822 (err = pool_do_bind(newpool, P_PID, P_MYID, 5823 POOL_BIND_ALL)) != 0) { 5824 pool_unlock(); 5825 zone_rele(zone); 5826 goto out; 5827 } 5828 5829 /* 5830 * Grab cpu_lock now; we'll need it later when we call 5831 * task_join(). 5832 */ 5833 mutex_enter(&cpu_lock); 5834 mutex_enter(&zonehash_lock); 5835 /* 5836 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5837 */ 5838 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5839 /* 5840 * Can't join anymore. 5841 */ 5842 mutex_exit(&zonehash_lock); 5843 mutex_exit(&cpu_lock); 5844 if (pool_state == POOL_ENABLED && 5845 newpool != oldpool) 5846 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5847 POOL_BIND_ALL); 5848 pool_unlock(); 5849 zone_rele(zone); 5850 err = EINVAL; 5851 goto out; 5852 } 5853 5854 /* 5855 * a_lock must be held while transfering locked memory and swap 5856 * reservation from the global zone to the non global zone because 5857 * asynchronous faults on the processes' address space can lock 5858 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5859 * segments respectively. 5860 */ 5861 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 5862 swap = as_swresv(); 5863 mutex_enter(&pp->p_lock); 5864 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5865 /* verify that we do not exceed and task or lwp limits */ 5866 mutex_enter(&zone->zone_nlwps_lock); 5867 /* add new lwps to zone and zone's proj0 */ 5868 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5869 zone->zone_nlwps += pp->p_lwpcnt; 5870 /* add 1 task to zone's proj0 */ 5871 zone_proj0->kpj_ntasks += 1; 5872 5873 zone_proj0->kpj_nprocs++; 5874 zone->zone_nprocs++; 5875 mutex_exit(&zone->zone_nlwps_lock); 5876 5877 mutex_enter(&zone->zone_mem_lock); 5878 zone->zone_locked_mem += pp->p_locked_mem; 5879 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5880 zone->zone_max_swap += swap; 5881 mutex_exit(&zone->zone_mem_lock); 5882 5883 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5884 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5885 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5886 5887 /* remove lwps and process from proc's old zone and old project */ 5888 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5889 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5890 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5891 pp->p_task->tk_proj->kpj_nprocs--; 5892 pp->p_zone->zone_nprocs--; 5893 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5894 5895 mutex_enter(&pp->p_zone->zone_mem_lock); 5896 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5897 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5898 pp->p_zone->zone_max_swap -= swap; 5899 mutex_exit(&pp->p_zone->zone_mem_lock); 5900 5901 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5902 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5903 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5904 5905 pp->p_flag |= SZONETOP; 5906 pp->p_zone = zone; 5907 mutex_exit(&pp->p_lock); 5908 AS_LOCK_EXIT(pp->p_as); 5909 5910 /* 5911 * Joining the zone cannot fail from now on. 5912 * 5913 * This means that a lot of the following code can be commonized and 5914 * shared with zsched(). 5915 */ 5916 5917 /* 5918 * If the process contract fmri was inherited, we need to 5919 * flag this so that any contract status will not leak 5920 * extra zone information, svc_fmri in this case 5921 */ 5922 if (ctp->conp_svc_ctid != ct->ct_id) { 5923 mutex_enter(&ct->ct_lock); 5924 ctp->conp_svc_zone_enter = ct->ct_id; 5925 mutex_exit(&ct->ct_lock); 5926 } 5927 5928 /* 5929 * Reset the encapsulating process contract's zone. 5930 */ 5931 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5932 contract_setzuniqid(ct, zone->zone_uniqid); 5933 5934 /* 5935 * Create a new task and associate the process with the project keyed 5936 * by (projid,zoneid). 5937 * 5938 * We might as well be in project 0; the global zone's projid doesn't 5939 * make much sense in a zone anyhow. 5940 * 5941 * This also increments zone_ntasks, and returns with p_lock held. 5942 */ 5943 tk = task_create(0, zone); 5944 oldtk = task_join(tk, 0); 5945 mutex_exit(&cpu_lock); 5946 5947 /* 5948 * call RCTLOP_SET functions on this proc 5949 */ 5950 e.rcep_p.zone = zone; 5951 e.rcep_t = RCENTITY_ZONE; 5952 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5953 RCD_CALLBACK); 5954 mutex_exit(&pp->p_lock); 5955 5956 /* 5957 * We don't need to hold any of zsched's locks here; not only do we know 5958 * the process and zone aren't going away, we know its session isn't 5959 * changing either. 5960 * 5961 * By joining zsched's session here, we mimic the behavior in the 5962 * global zone of init's sid being the pid of sched. We extend this 5963 * to all zlogin-like zone_enter()'ing processes as well. 5964 */ 5965 mutex_enter(&pidlock); 5966 sp = zone->zone_zsched->p_sessp; 5967 sess_hold(zone->zone_zsched); 5968 mutex_enter(&pp->p_lock); 5969 pgexit(pp); 5970 sess_rele(pp->p_sessp, B_TRUE); 5971 pp->p_sessp = sp; 5972 pgjoin(pp, zone->zone_zsched->p_pidp); 5973 5974 /* 5975 * If any threads are scheduled to be placed on zone wait queue they 5976 * should abandon the idea since the wait queue is changing. 5977 * We need to be holding pidlock & p_lock to do this. 5978 */ 5979 if ((t = pp->p_tlist) != NULL) { 5980 do { 5981 thread_lock(t); 5982 /* 5983 * Kick this thread so that he doesn't sit 5984 * on a wrong wait queue. 5985 */ 5986 if (ISWAITING(t)) 5987 setrun_locked(t); 5988 5989 if (t->t_schedflag & TS_ANYWAITQ) 5990 t->t_schedflag &= ~ TS_ANYWAITQ; 5991 5992 thread_unlock(t); 5993 } while ((t = t->t_forw) != pp->p_tlist); 5994 } 5995 5996 /* 5997 * If there is a default scheduling class for the zone and it is not 5998 * the class we are currently in, change all of the threads in the 5999 * process to the new class. We need to be holding pidlock & p_lock 6000 * when we call parmsset so this is a good place to do it. 6001 */ 6002 if (zone->zone_defaultcid > 0 && 6003 zone->zone_defaultcid != curthread->t_cid) { 6004 pcparms_t pcparms; 6005 6006 pcparms.pc_cid = zone->zone_defaultcid; 6007 pcparms.pc_clparms[0] = 0; 6008 6009 /* 6010 * If setting the class fails, we still want to enter the zone. 6011 */ 6012 if ((t = pp->p_tlist) != NULL) { 6013 do { 6014 (void) parmsset(&pcparms, t); 6015 } while ((t = t->t_forw) != pp->p_tlist); 6016 } 6017 } 6018 6019 mutex_exit(&pp->p_lock); 6020 mutex_exit(&pidlock); 6021 6022 mutex_exit(&zonehash_lock); 6023 /* 6024 * We're firmly in the zone; let pools progress. 6025 */ 6026 pool_unlock(); 6027 task_rele(oldtk); 6028 /* 6029 * We don't need to retain a hold on the zone since we already 6030 * incremented zone_ntasks, so the zone isn't going anywhere. 6031 */ 6032 zone_rele(zone); 6033 6034 /* 6035 * Chroot 6036 */ 6037 vp = zone->zone_rootvp; 6038 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6039 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6040 6041 /* 6042 * Change process credentials 6043 */ 6044 newcr = cralloc(); 6045 mutex_enter(&pp->p_crlock); 6046 cr = pp->p_cred; 6047 crcopy_to(cr, newcr); 6048 crsetzone(newcr, zone); 6049 pp->p_cred = newcr; 6050 6051 /* 6052 * Restrict all process privilege sets to zone limit 6053 */ 6054 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6055 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6056 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6057 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6058 mutex_exit(&pp->p_crlock); 6059 crset(pp, newcr); 6060 6061 /* 6062 * Adjust upcount to reflect zone entry. 6063 */ 6064 uid = crgetruid(newcr); 6065 mutex_enter(&pidlock); 6066 upcount_dec(uid, GLOBAL_ZONEID); 6067 upcount_inc(uid, zoneid); 6068 mutex_exit(&pidlock); 6069 6070 /* 6071 * Set up core file path and content. 6072 */ 6073 set_core_defaults(); 6074 6075 out: 6076 /* 6077 * Let the other lwps continue. 6078 */ 6079 mutex_enter(&pp->p_lock); 6080 if (curthread != pp->p_agenttp) 6081 continuelwps(pp); 6082 mutex_exit(&pp->p_lock); 6083 6084 return (err != 0 ? set_errno(err) : 0); 6085 } 6086 6087 /* 6088 * Systemcall entry point for zone_list(2). 6089 * 6090 * Processes running in a (non-global) zone only see themselves. 6091 * On labeled systems, they see all zones whose label they dominate. 6092 */ 6093 static int 6094 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6095 { 6096 zoneid_t *zoneids; 6097 zone_t *zone, *myzone; 6098 uint_t user_nzones, real_nzones; 6099 uint_t domi_nzones; 6100 int error; 6101 6102 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6103 return (set_errno(EFAULT)); 6104 6105 myzone = curproc->p_zone; 6106 if (myzone != global_zone) { 6107 bslabel_t *mybslab; 6108 6109 if (!is_system_labeled()) { 6110 /* just return current zone */ 6111 real_nzones = domi_nzones = 1; 6112 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6113 zoneids[0] = myzone->zone_id; 6114 } else { 6115 /* return all zones that are dominated */ 6116 mutex_enter(&zonehash_lock); 6117 real_nzones = zonecount; 6118 domi_nzones = 0; 6119 if (real_nzones > 0) { 6120 zoneids = kmem_alloc(real_nzones * 6121 sizeof (zoneid_t), KM_SLEEP); 6122 mybslab = label2bslabel(myzone->zone_slabel); 6123 for (zone = list_head(&zone_active); 6124 zone != NULL; 6125 zone = list_next(&zone_active, zone)) { 6126 if (zone->zone_id == GLOBAL_ZONEID) 6127 continue; 6128 if (zone != myzone && 6129 (zone->zone_flags & ZF_IS_SCRATCH)) 6130 continue; 6131 /* 6132 * Note that a label always dominates 6133 * itself, so myzone is always included 6134 * in the list. 6135 */ 6136 if (bldominates(mybslab, 6137 label2bslabel(zone->zone_slabel))) { 6138 zoneids[domi_nzones++] = 6139 zone->zone_id; 6140 } 6141 } 6142 } 6143 mutex_exit(&zonehash_lock); 6144 } 6145 } else { 6146 mutex_enter(&zonehash_lock); 6147 real_nzones = zonecount; 6148 domi_nzones = 0; 6149 if (real_nzones > 0) { 6150 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6151 KM_SLEEP); 6152 for (zone = list_head(&zone_active); zone != NULL; 6153 zone = list_next(&zone_active, zone)) 6154 zoneids[domi_nzones++] = zone->zone_id; 6155 ASSERT(domi_nzones == real_nzones); 6156 } 6157 mutex_exit(&zonehash_lock); 6158 } 6159 6160 /* 6161 * If user has allocated space for fewer entries than we found, then 6162 * return only up to his limit. Either way, tell him exactly how many 6163 * we found. 6164 */ 6165 if (domi_nzones < user_nzones) 6166 user_nzones = domi_nzones; 6167 error = 0; 6168 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6169 error = EFAULT; 6170 } else if (zoneidlist != NULL && user_nzones != 0) { 6171 if (copyout(zoneids, zoneidlist, 6172 user_nzones * sizeof (zoneid_t)) != 0) 6173 error = EFAULT; 6174 } 6175 6176 if (real_nzones > 0) 6177 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6178 6179 if (error != 0) 6180 return (set_errno(error)); 6181 else 6182 return (0); 6183 } 6184 6185 /* 6186 * Systemcall entry point for zone_lookup(2). 6187 * 6188 * Non-global zones are only able to see themselves and (on labeled systems) 6189 * the zones they dominate. 6190 */ 6191 static zoneid_t 6192 zone_lookup(const char *zone_name) 6193 { 6194 char *kname; 6195 zone_t *zone; 6196 zoneid_t zoneid; 6197 int err; 6198 6199 if (zone_name == NULL) { 6200 /* return caller's zone id */ 6201 return (getzoneid()); 6202 } 6203 6204 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6205 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6206 kmem_free(kname, ZONENAME_MAX); 6207 return (set_errno(err)); 6208 } 6209 6210 mutex_enter(&zonehash_lock); 6211 zone = zone_find_all_by_name(kname); 6212 kmem_free(kname, ZONENAME_MAX); 6213 /* 6214 * In a non-global zone, can only lookup global and own name. 6215 * In Trusted Extensions zone label dominance rules apply. 6216 */ 6217 if (zone == NULL || 6218 zone_status_get(zone) < ZONE_IS_READY || 6219 !zone_list_access(zone)) { 6220 mutex_exit(&zonehash_lock); 6221 return (set_errno(EINVAL)); 6222 } else { 6223 zoneid = zone->zone_id; 6224 mutex_exit(&zonehash_lock); 6225 return (zoneid); 6226 } 6227 } 6228 6229 static int 6230 zone_version(int *version_arg) 6231 { 6232 int version = ZONE_SYSCALL_API_VERSION; 6233 6234 if (copyout(&version, version_arg, sizeof (int)) != 0) 6235 return (set_errno(EFAULT)); 6236 return (0); 6237 } 6238 6239 /* ARGSUSED */ 6240 long 6241 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6242 { 6243 zone_def zs; 6244 int err; 6245 6246 switch (cmd) { 6247 case ZONE_CREATE: 6248 if (get_udatamodel() == DATAMODEL_NATIVE) { 6249 if (copyin(arg1, &zs, sizeof (zone_def))) { 6250 return (set_errno(EFAULT)); 6251 } 6252 } else { 6253 #ifdef _SYSCALL32_IMPL 6254 zone_def32 zs32; 6255 6256 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6257 return (set_errno(EFAULT)); 6258 } 6259 zs.zone_name = 6260 (const char *)(unsigned long)zs32.zone_name; 6261 zs.zone_root = 6262 (const char *)(unsigned long)zs32.zone_root; 6263 zs.zone_privs = 6264 (const struct priv_set *) 6265 (unsigned long)zs32.zone_privs; 6266 zs.zone_privssz = zs32.zone_privssz; 6267 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6268 zs.rctlbufsz = zs32.rctlbufsz; 6269 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6270 zs.zfsbufsz = zs32.zfsbufsz; 6271 zs.extended_error = 6272 (int *)(unsigned long)zs32.extended_error; 6273 zs.match = zs32.match; 6274 zs.doi = zs32.doi; 6275 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6276 zs.flags = zs32.flags; 6277 #else 6278 panic("get_udatamodel() returned bogus result\n"); 6279 #endif 6280 } 6281 6282 return (zone_create(zs.zone_name, zs.zone_root, 6283 zs.zone_privs, zs.zone_privssz, 6284 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6285 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6286 zs.extended_error, zs.match, zs.doi, 6287 zs.label, zs.flags)); 6288 case ZONE_BOOT: 6289 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6290 case ZONE_DESTROY: 6291 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6292 case ZONE_GETATTR: 6293 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6294 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6295 case ZONE_SETATTR: 6296 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6297 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6298 case ZONE_ENTER: 6299 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6300 case ZONE_LIST: 6301 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6302 case ZONE_SHUTDOWN: 6303 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6304 case ZONE_LOOKUP: 6305 return (zone_lookup((const char *)arg1)); 6306 case ZONE_VERSION: 6307 return (zone_version((int *)arg1)); 6308 case ZONE_ADD_DATALINK: 6309 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6310 (datalink_id_t)(uintptr_t)arg2)); 6311 case ZONE_DEL_DATALINK: 6312 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6313 (datalink_id_t)(uintptr_t)arg2)); 6314 case ZONE_CHECK_DATALINK: { 6315 zoneid_t zoneid; 6316 boolean_t need_copyout; 6317 6318 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6319 return (EFAULT); 6320 need_copyout = (zoneid == ALL_ZONES); 6321 err = zone_check_datalink(&zoneid, 6322 (datalink_id_t)(uintptr_t)arg2); 6323 if (err == 0 && need_copyout) { 6324 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6325 err = EFAULT; 6326 } 6327 return (err == 0 ? 0 : set_errno(err)); 6328 } 6329 case ZONE_LIST_DATALINK: 6330 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6331 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6332 default: 6333 return (set_errno(EINVAL)); 6334 } 6335 } 6336 6337 struct zarg { 6338 zone_t *zone; 6339 zone_cmd_arg_t arg; 6340 }; 6341 6342 static int 6343 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6344 { 6345 char *buf; 6346 size_t buflen; 6347 int error; 6348 6349 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6350 buf = kmem_alloc(buflen, KM_SLEEP); 6351 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6352 error = door_ki_open(buf, doorp); 6353 kmem_free(buf, buflen); 6354 return (error); 6355 } 6356 6357 static void 6358 zone_release_door(door_handle_t *doorp) 6359 { 6360 door_ki_rele(*doorp); 6361 *doorp = NULL; 6362 } 6363 6364 static void 6365 zone_ki_call_zoneadmd(struct zarg *zargp) 6366 { 6367 door_handle_t door = NULL; 6368 door_arg_t darg, save_arg; 6369 char *zone_name; 6370 size_t zone_namelen; 6371 zoneid_t zoneid; 6372 zone_t *zone; 6373 zone_cmd_arg_t arg; 6374 uint64_t uniqid; 6375 size_t size; 6376 int error; 6377 int retry; 6378 6379 zone = zargp->zone; 6380 arg = zargp->arg; 6381 kmem_free(zargp, sizeof (*zargp)); 6382 6383 zone_namelen = strlen(zone->zone_name) + 1; 6384 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6385 bcopy(zone->zone_name, zone_name, zone_namelen); 6386 zoneid = zone->zone_id; 6387 uniqid = zone->zone_uniqid; 6388 /* 6389 * zoneadmd may be down, but at least we can empty out the zone. 6390 * We can ignore the return value of zone_empty() since we're called 6391 * from a kernel thread and know we won't be delivered any signals. 6392 */ 6393 ASSERT(curproc == &p0); 6394 (void) zone_empty(zone); 6395 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6396 zone_rele(zone); 6397 6398 size = sizeof (arg); 6399 darg.rbuf = (char *)&arg; 6400 darg.data_ptr = (char *)&arg; 6401 darg.rsize = size; 6402 darg.data_size = size; 6403 darg.desc_ptr = NULL; 6404 darg.desc_num = 0; 6405 6406 save_arg = darg; 6407 /* 6408 * Since we're not holding a reference to the zone, any number of 6409 * things can go wrong, including the zone disappearing before we get a 6410 * chance to talk to zoneadmd. 6411 */ 6412 for (retry = 0; /* forever */; retry++) { 6413 if (door == NULL && 6414 (error = zone_lookup_door(zone_name, &door)) != 0) { 6415 goto next; 6416 } 6417 ASSERT(door != NULL); 6418 6419 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6420 SIZE_MAX, 0)) == 0) { 6421 break; 6422 } 6423 switch (error) { 6424 case EINTR: 6425 /* FALLTHROUGH */ 6426 case EAGAIN: /* process may be forking */ 6427 /* 6428 * Back off for a bit 6429 */ 6430 break; 6431 case EBADF: 6432 zone_release_door(&door); 6433 if (zone_lookup_door(zone_name, &door) != 0) { 6434 /* 6435 * zoneadmd may be dead, but it may come back to 6436 * life later. 6437 */ 6438 break; 6439 } 6440 break; 6441 default: 6442 cmn_err(CE_WARN, 6443 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6444 error); 6445 goto out; 6446 } 6447 next: 6448 /* 6449 * If this isn't the same zone_t that we originally had in mind, 6450 * then this is the same as if two kadmin requests come in at 6451 * the same time: the first one wins. This means we lose, so we 6452 * bail. 6453 */ 6454 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6455 /* 6456 * Problem is solved. 6457 */ 6458 break; 6459 } 6460 if (zone->zone_uniqid != uniqid) { 6461 /* 6462 * zoneid recycled 6463 */ 6464 zone_rele(zone); 6465 break; 6466 } 6467 /* 6468 * We could zone_status_timedwait(), but there doesn't seem to 6469 * be much point in doing that (plus, it would mean that 6470 * zone_free() isn't called until this thread exits). 6471 */ 6472 zone_rele(zone); 6473 delay(hz); 6474 darg = save_arg; 6475 } 6476 out: 6477 if (door != NULL) { 6478 zone_release_door(&door); 6479 } 6480 kmem_free(zone_name, zone_namelen); 6481 thread_exit(); 6482 } 6483 6484 /* 6485 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6486 * kadmin(). The caller is a process in the zone. 6487 * 6488 * In order to shutdown the zone, we will hand off control to zoneadmd 6489 * (running in the global zone) via a door. We do a half-hearted job at 6490 * killing all processes in the zone, create a kernel thread to contact 6491 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6492 * a form of generation number used to let zoneadmd (as well as 6493 * zone_destroy()) know exactly which zone they're re talking about. 6494 */ 6495 int 6496 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6497 { 6498 struct zarg *zargp; 6499 zone_cmd_t zcmd; 6500 zone_t *zone; 6501 6502 zone = curproc->p_zone; 6503 ASSERT(getzoneid() != GLOBAL_ZONEID); 6504 6505 switch (cmd) { 6506 case A_SHUTDOWN: 6507 switch (fcn) { 6508 case AD_HALT: 6509 case AD_POWEROFF: 6510 zcmd = Z_HALT; 6511 break; 6512 case AD_BOOT: 6513 zcmd = Z_REBOOT; 6514 break; 6515 case AD_IBOOT: 6516 case AD_SBOOT: 6517 case AD_SIBOOT: 6518 case AD_NOSYNC: 6519 return (ENOTSUP); 6520 default: 6521 return (EINVAL); 6522 } 6523 break; 6524 case A_REBOOT: 6525 zcmd = Z_REBOOT; 6526 break; 6527 case A_FTRACE: 6528 case A_REMOUNT: 6529 case A_FREEZE: 6530 case A_DUMP: 6531 case A_CONFIG: 6532 return (ENOTSUP); 6533 default: 6534 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6535 return (EINVAL); 6536 } 6537 6538 if (secpolicy_zone_admin(credp, B_FALSE)) 6539 return (EPERM); 6540 mutex_enter(&zone_status_lock); 6541 6542 /* 6543 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6544 * is in the zone. 6545 */ 6546 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6547 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6548 /* 6549 * This zone is already on its way down. 6550 */ 6551 mutex_exit(&zone_status_lock); 6552 return (0); 6553 } 6554 /* 6555 * Prevent future zone_enter()s 6556 */ 6557 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6558 mutex_exit(&zone_status_lock); 6559 6560 /* 6561 * Kill everyone now and call zoneadmd later. 6562 * zone_ki_call_zoneadmd() will do a more thorough job of this 6563 * later. 6564 */ 6565 killall(zone->zone_id); 6566 /* 6567 * Now, create the thread to contact zoneadmd and do the rest of the 6568 * work. This thread can't be created in our zone otherwise 6569 * zone_destroy() would deadlock. 6570 */ 6571 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6572 zargp->arg.cmd = zcmd; 6573 zargp->arg.uniqid = zone->zone_uniqid; 6574 zargp->zone = zone; 6575 (void) strcpy(zargp->arg.locale, "C"); 6576 /* mdep was already copied in for us by uadmin */ 6577 if (mdep != NULL) 6578 (void) strlcpy(zargp->arg.bootbuf, mdep, 6579 sizeof (zargp->arg.bootbuf)); 6580 zone_hold(zone); 6581 6582 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6583 TS_RUN, minclsyspri); 6584 exit(CLD_EXITED, 0); 6585 6586 return (EINVAL); 6587 } 6588 6589 /* 6590 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6591 * status to ZONE_IS_SHUTTING_DOWN. 6592 * 6593 * This function also shuts down all running zones to ensure that they won't 6594 * fork new processes. 6595 */ 6596 void 6597 zone_shutdown_global(void) 6598 { 6599 zone_t *current_zonep; 6600 6601 ASSERT(INGLOBALZONE(curproc)); 6602 mutex_enter(&zonehash_lock); 6603 mutex_enter(&zone_status_lock); 6604 6605 /* Modify the global zone's status first. */ 6606 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6607 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6608 6609 /* 6610 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6611 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6612 * could cause assertions to fail (e.g., assertions about a zone's 6613 * state during initialization, readying, or booting) or produce races. 6614 * We'll let threads continue to initialize and ready new zones: they'll 6615 * fail to boot the new zones when they see that the global zone is 6616 * shutting down. 6617 */ 6618 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6619 current_zonep = list_next(&zone_active, current_zonep)) { 6620 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6621 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6622 } 6623 mutex_exit(&zone_status_lock); 6624 mutex_exit(&zonehash_lock); 6625 } 6626 6627 /* 6628 * Returns true if the named dataset is visible in the current zone. 6629 * The 'write' parameter is set to 1 if the dataset is also writable. 6630 */ 6631 int 6632 zone_dataset_visible(const char *dataset, int *write) 6633 { 6634 static int zfstype = -1; 6635 zone_dataset_t *zd; 6636 size_t len; 6637 zone_t *zone = curproc->p_zone; 6638 const char *name = NULL; 6639 vfs_t *vfsp = NULL; 6640 6641 if (dataset[0] == '\0') 6642 return (0); 6643 6644 /* 6645 * Walk the list once, looking for datasets which match exactly, or 6646 * specify a dataset underneath an exported dataset. If found, return 6647 * true and note that it is writable. 6648 */ 6649 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6650 zd = list_next(&zone->zone_datasets, zd)) { 6651 6652 len = strlen(zd->zd_dataset); 6653 if (strlen(dataset) >= len && 6654 bcmp(dataset, zd->zd_dataset, len) == 0 && 6655 (dataset[len] == '\0' || dataset[len] == '/' || 6656 dataset[len] == '@')) { 6657 if (write) 6658 *write = 1; 6659 return (1); 6660 } 6661 } 6662 6663 /* 6664 * Walk the list a second time, searching for datasets which are parents 6665 * of exported datasets. These should be visible, but read-only. 6666 * 6667 * Note that we also have to support forms such as 'pool/dataset/', with 6668 * a trailing slash. 6669 */ 6670 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6671 zd = list_next(&zone->zone_datasets, zd)) { 6672 6673 len = strlen(dataset); 6674 if (dataset[len - 1] == '/') 6675 len--; /* Ignore trailing slash */ 6676 if (len < strlen(zd->zd_dataset) && 6677 bcmp(dataset, zd->zd_dataset, len) == 0 && 6678 zd->zd_dataset[len] == '/') { 6679 if (write) 6680 *write = 0; 6681 return (1); 6682 } 6683 } 6684 6685 /* 6686 * We reach here if the given dataset is not found in the zone_dataset 6687 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6688 * instead of delegation. For this we search for the dataset in the 6689 * zone_vfslist of this zone. If found, return true and note that it is 6690 * not writable. 6691 */ 6692 6693 /* 6694 * Initialize zfstype if it is not initialized yet. 6695 */ 6696 if (zfstype == -1) { 6697 struct vfssw *vswp = vfs_getvfssw("zfs"); 6698 zfstype = vswp - vfssw; 6699 vfs_unrefvfssw(vswp); 6700 } 6701 6702 vfs_list_read_lock(); 6703 vfsp = zone->zone_vfslist; 6704 do { 6705 ASSERT(vfsp); 6706 if (vfsp->vfs_fstype == zfstype) { 6707 name = refstr_value(vfsp->vfs_resource); 6708 6709 /* 6710 * Check if we have an exact match. 6711 */ 6712 if (strcmp(dataset, name) == 0) { 6713 vfs_list_unlock(); 6714 if (write) 6715 *write = 0; 6716 return (1); 6717 } 6718 /* 6719 * We need to check if we are looking for parents of 6720 * a dataset. These should be visible, but read-only. 6721 */ 6722 len = strlen(dataset); 6723 if (dataset[len - 1] == '/') 6724 len--; 6725 6726 if (len < strlen(name) && 6727 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6728 vfs_list_unlock(); 6729 if (write) 6730 *write = 0; 6731 return (1); 6732 } 6733 } 6734 vfsp = vfsp->vfs_zone_next; 6735 } while (vfsp != zone->zone_vfslist); 6736 6737 vfs_list_unlock(); 6738 return (0); 6739 } 6740 6741 /* 6742 * zone_find_by_any_path() - 6743 * 6744 * kernel-private routine similar to zone_find_by_path(), but which 6745 * effectively compares against zone paths rather than zonerootpath 6746 * (i.e., the last component of zonerootpaths, which should be "root/", 6747 * are not compared.) This is done in order to accurately identify all 6748 * paths, whether zone-visible or not, including those which are parallel 6749 * to /root/, such as /dev/, /home/, etc... 6750 * 6751 * If the specified path does not fall under any zone path then global 6752 * zone is returned. 6753 * 6754 * The treat_abs parameter indicates whether the path should be treated as 6755 * an absolute path although it does not begin with "/". (This supports 6756 * nfs mount syntax such as host:any/path.) 6757 * 6758 * The caller is responsible for zone_rele of the returned zone. 6759 */ 6760 zone_t * 6761 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6762 { 6763 zone_t *zone; 6764 int path_offset = 0; 6765 6766 if (path == NULL) { 6767 zone_hold(global_zone); 6768 return (global_zone); 6769 } 6770 6771 if (*path != '/') { 6772 ASSERT(treat_abs); 6773 path_offset = 1; 6774 } 6775 6776 mutex_enter(&zonehash_lock); 6777 for (zone = list_head(&zone_active); zone != NULL; 6778 zone = list_next(&zone_active, zone)) { 6779 char *c; 6780 size_t pathlen; 6781 char *rootpath_start; 6782 6783 if (zone == global_zone) /* skip global zone */ 6784 continue; 6785 6786 /* scan backwards to find start of last component */ 6787 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6788 do { 6789 c--; 6790 } while (*c != '/'); 6791 6792 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6793 rootpath_start = (zone->zone_rootpath + path_offset); 6794 if (strncmp(path, rootpath_start, pathlen) == 0) 6795 break; 6796 } 6797 if (zone == NULL) 6798 zone = global_zone; 6799 zone_hold(zone); 6800 mutex_exit(&zonehash_lock); 6801 return (zone); 6802 } 6803 6804 /* 6805 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6806 * zone_dl_t pointer if found, and NULL otherwise. 6807 */ 6808 static zone_dl_t * 6809 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6810 { 6811 zone_dl_t *zdl; 6812 6813 ASSERT(mutex_owned(&zone->zone_lock)); 6814 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6815 zdl = list_next(&zone->zone_dl_list, zdl)) { 6816 if (zdl->zdl_id == linkid) 6817 break; 6818 } 6819 return (zdl); 6820 } 6821 6822 static boolean_t 6823 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6824 { 6825 boolean_t exists; 6826 6827 mutex_enter(&zone->zone_lock); 6828 exists = (zone_find_dl(zone, linkid) != NULL); 6829 mutex_exit(&zone->zone_lock); 6830 return (exists); 6831 } 6832 6833 /* 6834 * Add an data link name for the zone. 6835 */ 6836 static int 6837 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6838 { 6839 zone_dl_t *zdl; 6840 zone_t *zone; 6841 zone_t *thiszone; 6842 6843 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6844 return (set_errno(ENXIO)); 6845 6846 /* Verify that the datalink ID doesn't already belong to a zone. */ 6847 mutex_enter(&zonehash_lock); 6848 for (zone = list_head(&zone_active); zone != NULL; 6849 zone = list_next(&zone_active, zone)) { 6850 if (zone_dl_exists(zone, linkid)) { 6851 mutex_exit(&zonehash_lock); 6852 zone_rele(thiszone); 6853 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6854 } 6855 } 6856 6857 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6858 zdl->zdl_id = linkid; 6859 zdl->zdl_net = NULL; 6860 mutex_enter(&thiszone->zone_lock); 6861 list_insert_head(&thiszone->zone_dl_list, zdl); 6862 mutex_exit(&thiszone->zone_lock); 6863 mutex_exit(&zonehash_lock); 6864 zone_rele(thiszone); 6865 return (0); 6866 } 6867 6868 static int 6869 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6870 { 6871 zone_dl_t *zdl; 6872 zone_t *zone; 6873 int err = 0; 6874 6875 if ((zone = zone_find_by_id(zoneid)) == NULL) 6876 return (set_errno(EINVAL)); 6877 6878 mutex_enter(&zone->zone_lock); 6879 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6880 err = ENXIO; 6881 } else { 6882 list_remove(&zone->zone_dl_list, zdl); 6883 if (zdl->zdl_net != NULL) 6884 nvlist_free(zdl->zdl_net); 6885 kmem_free(zdl, sizeof (zone_dl_t)); 6886 } 6887 mutex_exit(&zone->zone_lock); 6888 zone_rele(zone); 6889 return (err == 0 ? 0 : set_errno(err)); 6890 } 6891 6892 /* 6893 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6894 * the linkid. Otherwise we just check if the specified zoneidp has been 6895 * assigned the supplied linkid. 6896 */ 6897 int 6898 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6899 { 6900 zone_t *zone; 6901 int err = ENXIO; 6902 6903 if (*zoneidp != ALL_ZONES) { 6904 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6905 if (zone_dl_exists(zone, linkid)) 6906 err = 0; 6907 zone_rele(zone); 6908 } 6909 return (err); 6910 } 6911 6912 mutex_enter(&zonehash_lock); 6913 for (zone = list_head(&zone_active); zone != NULL; 6914 zone = list_next(&zone_active, zone)) { 6915 if (zone_dl_exists(zone, linkid)) { 6916 *zoneidp = zone->zone_id; 6917 err = 0; 6918 break; 6919 } 6920 } 6921 mutex_exit(&zonehash_lock); 6922 return (err); 6923 } 6924 6925 /* 6926 * Get the list of datalink IDs assigned to a zone. 6927 * 6928 * On input, *nump is the number of datalink IDs that can fit in the supplied 6929 * idarray. Upon return, *nump is either set to the number of datalink IDs 6930 * that were placed in the array if the array was large enough, or to the 6931 * number of datalink IDs that the function needs to place in the array if the 6932 * array is too small. 6933 */ 6934 static int 6935 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6936 { 6937 uint_t num, dlcount; 6938 zone_t *zone; 6939 zone_dl_t *zdl; 6940 datalink_id_t *idptr = idarray; 6941 6942 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6943 return (set_errno(EFAULT)); 6944 if ((zone = zone_find_by_id(zoneid)) == NULL) 6945 return (set_errno(ENXIO)); 6946 6947 num = 0; 6948 mutex_enter(&zone->zone_lock); 6949 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6950 zdl = list_next(&zone->zone_dl_list, zdl)) { 6951 /* 6952 * If the list is bigger than what the caller supplied, just 6953 * count, don't do copyout. 6954 */ 6955 if (++num > dlcount) 6956 continue; 6957 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6958 mutex_exit(&zone->zone_lock); 6959 zone_rele(zone); 6960 return (set_errno(EFAULT)); 6961 } 6962 idptr++; 6963 } 6964 mutex_exit(&zone->zone_lock); 6965 zone_rele(zone); 6966 6967 /* Increased or decreased, caller should be notified. */ 6968 if (num != dlcount) { 6969 if (copyout(&num, nump, sizeof (num)) != 0) 6970 return (set_errno(EFAULT)); 6971 } 6972 return (0); 6973 } 6974 6975 /* 6976 * Public interface for looking up a zone by zoneid. It's a customized version 6977 * for netstack_zone_create(). It can only be called from the zsd create 6978 * callbacks, since it doesn't have reference on the zone structure hence if 6979 * it is called elsewhere the zone could disappear after the zonehash_lock 6980 * is dropped. 6981 * 6982 * Furthermore it 6983 * 1. Doesn't check the status of the zone. 6984 * 2. It will be called even before zone_init is called, in that case the 6985 * address of zone0 is returned directly, and netstack_zone_create() 6986 * will only assign a value to zone0.zone_netstack, won't break anything. 6987 * 3. Returns without the zone being held. 6988 */ 6989 zone_t * 6990 zone_find_by_id_nolock(zoneid_t zoneid) 6991 { 6992 zone_t *zone; 6993 6994 mutex_enter(&zonehash_lock); 6995 if (zonehashbyid == NULL) 6996 zone = &zone0; 6997 else 6998 zone = zone_find_all_by_id(zoneid); 6999 mutex_exit(&zonehash_lock); 7000 return (zone); 7001 } 7002 7003 /* 7004 * Walk the datalinks for a given zone 7005 */ 7006 int 7007 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7008 void *data) 7009 { 7010 zone_t *zone; 7011 zone_dl_t *zdl; 7012 datalink_id_t *idarray; 7013 uint_t idcount = 0; 7014 int i, ret = 0; 7015 7016 if ((zone = zone_find_by_id(zoneid)) == NULL) 7017 return (ENOENT); 7018 7019 /* 7020 * We first build an array of linkid's so that we can walk these and 7021 * execute the callback with the zone_lock dropped. 7022 */ 7023 mutex_enter(&zone->zone_lock); 7024 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7025 zdl = list_next(&zone->zone_dl_list, zdl)) { 7026 idcount++; 7027 } 7028 7029 if (idcount == 0) { 7030 mutex_exit(&zone->zone_lock); 7031 zone_rele(zone); 7032 return (0); 7033 } 7034 7035 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7036 if (idarray == NULL) { 7037 mutex_exit(&zone->zone_lock); 7038 zone_rele(zone); 7039 return (ENOMEM); 7040 } 7041 7042 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7043 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7044 idarray[i] = zdl->zdl_id; 7045 } 7046 7047 mutex_exit(&zone->zone_lock); 7048 7049 for (i = 0; i < idcount && ret == 0; i++) { 7050 if ((ret = (*cb)(idarray[i], data)) != 0) 7051 break; 7052 } 7053 7054 zone_rele(zone); 7055 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7056 return (ret); 7057 } 7058 7059 static char * 7060 zone_net_type2name(int type) 7061 { 7062 switch (type) { 7063 case ZONE_NETWORK_ADDRESS: 7064 return (ZONE_NET_ADDRNAME); 7065 case ZONE_NETWORK_DEFROUTER: 7066 return (ZONE_NET_RTRNAME); 7067 default: 7068 return (NULL); 7069 } 7070 } 7071 7072 static int 7073 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7074 { 7075 zone_t *zone; 7076 zone_dl_t *zdl; 7077 nvlist_t *nvl; 7078 int err = 0; 7079 uint8_t *new = NULL; 7080 char *nvname; 7081 int bufsize; 7082 datalink_id_t linkid = znbuf->zn_linkid; 7083 7084 if (secpolicy_zone_config(CRED()) != 0) 7085 return (set_errno(EPERM)); 7086 7087 if (zoneid == GLOBAL_ZONEID) 7088 return (set_errno(EINVAL)); 7089 7090 nvname = zone_net_type2name(znbuf->zn_type); 7091 bufsize = znbuf->zn_len; 7092 new = znbuf->zn_val; 7093 if (nvname == NULL) 7094 return (set_errno(EINVAL)); 7095 7096 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7097 return (set_errno(EINVAL)); 7098 } 7099 7100 mutex_enter(&zone->zone_lock); 7101 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7102 err = ENXIO; 7103 goto done; 7104 } 7105 if ((nvl = zdl->zdl_net) == NULL) { 7106 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7107 err = ENOMEM; 7108 goto done; 7109 } else { 7110 zdl->zdl_net = nvl; 7111 } 7112 } 7113 if (nvlist_exists(nvl, nvname)) { 7114 err = EINVAL; 7115 goto done; 7116 } 7117 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7118 ASSERT(err == 0); 7119 done: 7120 mutex_exit(&zone->zone_lock); 7121 zone_rele(zone); 7122 if (err != 0) 7123 return (set_errno(err)); 7124 else 7125 return (0); 7126 } 7127 7128 static int 7129 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7130 { 7131 zone_t *zone; 7132 zone_dl_t *zdl; 7133 nvlist_t *nvl; 7134 uint8_t *ptr; 7135 uint_t psize; 7136 int err = 0; 7137 char *nvname; 7138 int bufsize; 7139 void *buf; 7140 datalink_id_t linkid = znbuf->zn_linkid; 7141 7142 if (zoneid == GLOBAL_ZONEID) 7143 return (set_errno(EINVAL)); 7144 7145 nvname = zone_net_type2name(znbuf->zn_type); 7146 bufsize = znbuf->zn_len; 7147 buf = znbuf->zn_val; 7148 7149 if (nvname == NULL) 7150 return (set_errno(EINVAL)); 7151 if ((zone = zone_find_by_id(zoneid)) == NULL) 7152 return (set_errno(EINVAL)); 7153 7154 mutex_enter(&zone->zone_lock); 7155 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7156 err = ENXIO; 7157 goto done; 7158 } 7159 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7160 err = ENOENT; 7161 goto done; 7162 } 7163 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7164 ASSERT(err == 0); 7165 7166 if (psize > bufsize) { 7167 err = ENOBUFS; 7168 goto done; 7169 } 7170 znbuf->zn_len = psize; 7171 bcopy(ptr, buf, psize); 7172 done: 7173 mutex_exit(&zone->zone_lock); 7174 zone_rele(zone); 7175 if (err != 0) 7176 return (set_errno(err)); 7177 else 7178 return (0); 7179 }