new usr/src/cmd/printf/printf.c

R R R R

12863 Thu May 8 09: 00: 23 2014
new usr/src/cmd/printf/printf.c
4854 printf(1l) doesn’t support % and \c proper

LR R R R EY

y
*

Kkkkk Kk kK Kk

OUT OF THE USE OF THI'S SOFTWARE, EVEN | F ADVI SED OF THE PGSSI BI LI TY OF
SUCH DAMAGE.

1/*
2 * Copyright 2014 Garrett D Anpbre <garrett @anore. org>
3 * Copyright 2010 Nexenta Systems, Inc. Al rights reserved.
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. Al rights reserved.
6 *
7 * Redistribution and use in source and binary fornms, with or w thout
8 * nodification, are permitted provided that the follow ng conditions
9 * are net:
10 * 1. Redistributions of source code nust retain the above copyright
11~ notice, this list of conditions and the follow ng disclainer.
12 * 2. Redistributions in binary formnust reproduce the above copyri ght
13 = notice, this list of conditions and the follow ng disclainmer in the
14 = docunentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the nanmes of its contributors
16 * may be used to endorse or pronote products derived fromthis software
17 = wi thout specific prior witten pernission.
18 *
19 * TH'S SOFTWARE | S PROVI DED BY THE REGENTS AND CONTRIBUTORS ‘“AS IS’ AND
20 * ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE
21 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE
22 * ARE DI SCLAI MED. | N NO EVENT SHALL THE REGENTS OR CONTRI BUTORS BE LI ABLE
23 * FOR ANY DI RECT, | NDI RECT, | NClI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
24 * DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
27 * LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING I N ANY WAY
*
*
*

/
32 #include <sys/types. h>

34 #include <err. h>

35 #include <errno. h>
36 #include <inttypes.h>
37 #include <limts.h>
38 #include <stdio.h>
39 #include <stdlib. h>
40 #include <string. h>
41 #incl ude <unistd. h>
42 #include <alloca. h>
43 #include <ctype. h>
44 #incl ude <l ocal e. h>
45 #i ncl ude <note. h>

47 #define warnxl(a, b, c) war nx(a)
48 #define warnx2(a, b, c) war nx(a, b)
49 #define warnx3(a, b, c) warnx(a, b, c)

51 #define PTRDI FF(x, vYy) ((uintptr_t)(x) - (uintptr_t)(y))
53 #define _(x) get text (x)

55 #define PF(f, func) do { \
56 char *b = NULL; \
57 i f (havewi dth) \
58 if (haveprec) \
59 (void) asprintf(&, f, fieldwi dth, precision, func); \
60 el se \
61 (void) asprintf(&, f, fieldw dth, func); \

new usr/src/cmd/printf/printf.c

111

113
114
115
116

118
119
120
121
122
123
124
125
126

P

else if (haveprec)
(void) asprintf(&b, f, precision, func);
el se
(void) asprintf(&b, f, func);
if (b)
(void) fputs(b, stdout);
free(b);
}
_NOTE(CONSTCOND) } while (0)
static int ascii code(void);
static char *dof ormat (char *, int *);
static int escape(char *, int, size_t *);
static int getchr(void);
static int getfl oating(long double *, int);
static int getint(int *);
static int getnun(intmax_t *, uintmax_t *, int);
static const char
*getstr(void);
static char *mknun(char *, char);
static void usage(void);
static const char digits[] = "0123456789";
static int nmyargc;
static char **nyargv;
static char **gargv;
static char **naxargv;
int
mai n(int argc, char *argv[])
size_t len;
int end, rval;
int chopped, end, rval;
char *format, *fnt, *start;
(void) setlocal e(LC_ALL, "");
ar gv++;
argc--;
/*
* POSI X says: Standard utilities that do not accept options,
* but that do accept operands, shall recognize "--" as a
* first argunent to be discarded.
*/
if (argc &&strcnp(argv[o] "--")y == 0) {
arge--;
ar gv++;
}
if (argc < 1) {
usage();
return (1);
}
/'k
* Basic algorithmis to scan the format string for conversion
* specifications -- once one is found, find out if the field
* wdth or precisionis a’'*'; if it is, gather up value. Note,
* format strings are reused as necessary to use up the provided
* argunents, argunents of zero/null string are provided to use
* up the format string.
*/
fm = format = *argv;

new usr/src/cmd/printf/printf.c

127 (void) escape(fnt, 1, & en); /* backsl ash interpretation */
/* backsl ash interpretation */

127 chopped = escape(fnt, 1, &en);
128 rval = end = 0;
129 gargv = ++argv;

131 for (;;) {
132 maxargv = gargv,

134 nmyargv = gargv;

135 for (nyargc = 0; gargv[nyargc]; nyargc++)
136 /* nop */;

137 start = fnt;

138 while (fnt < format + |en)

139 if (fm[O0] == "%)

140 (void) fwite(start, 1, PTRDI FF(fnt,

141 stdout);

142 if (fmt[1] =="%)

143 /* Woprints a %*/
144 (void) putchar(’%);
145 fnt += 2;

146 } else {

147 fm = dofornmat(fnt, &val);

148 if (fnt == NULL)
149 return (1);
150 end = 0;

151 }

152 start = fnt;

153 } else

154 ft ++;

155 if (gargv > maxargv)

156 maxargv = gargv;

157

158 gargv = naxargv,

160 if (end == 1)

{
161 war nx1(_("m ssing format character"), NULL, NULL);

162 return (1);
163 }
164 (
165 i ! gv)

165 i chopped || !*gargv)

166 return (rval);

167 /* Restart at the beginning of the format string.
168 fmt format ;

169 end 1;

170 }

171 /* NOTREACHED */

172 }

175 static char *
176 doformat (char *fnt, int *rval)

177 {

178 static const char skipl[] = "# -+ 0";
179 int fieldw dth, haveprec, havew dth, nod_| dbl, precision;
180 char convch, nextch;

181 char *start;

182 char **fargyv;

183 char *dptr;

184 int |;

186 start = alloca(strlen(fnt) + 1);

188 dptr = start;

189 *dptr++ = "% ;

190 *dptr = 0;

oid) fwite(start, 1, PTRDI FF(fnt, start), stdout);

new usr/src/cmd/printf/printf.c

192 fnt ++;

194 /* look for "n$" field index specifier */
195 | = strspn(fnt, digits);

196 if ((I >0) & (fnt[I] =="9")) {

197 int idx = atoi (fnt);

198 if (idx <= nyargc) {

199 gargv = &nyargv[idx - 1];
200 } else {

201 gargv = &nmyargv[nyargc];
202 }

203 if (gargv > maxargv) {

204 maxargv = gargv;

205 }

206 fm +=1 + 1;

208 /* save format argunent */

209 fargv = gargy;

210 } else {

211 fargv = NULL;

212 }

214 /* skip to field width */

215 while (strchr(skipl, *fnmt) !'= NULL) {
216 *dptr++ = *fnt++;

217 *dptr = 0;

218 }

221 if (*fmt =="*") {

223 ft ++;

224 | = strspn(fnt, digits);

225 if ((I >0) & (fnt[I] =="8%")) {
226 int idx = atoi (fnt);

227 if (idx <= nyargc) {

228 gargv = &nyargv[idx - 1];
229 } else {

230 gargv = &nyargv[nyargc];
231

232 fmt +=1 + 1;

233 }

235 if (getint(&ieldw dth))

236 return (NULL);

237 if (gargv > maxargv) {

238 mexar gv = gargv;

239 }

240 havewi dth = 1;

242 *dptr++ = ' *';

243 *dptr = 0;

244 } else {

245 havewi dth = 0;

247 /* skip to possible ., get follow ng precision */
248 while (isdigit(*fnmt)) {

249 *dptr++ = *fnt++;

250 *dptr = 0;

251 }

252 }

254 if (*fmt =="'.") {

255 /* precision present? */

256 ft ++;

new usr/src/cmd/printf/printf.c 5 new usr/src/cmd/printf/printf.c
257 *dptr++ = ', ; 323 }
259 if (*fm =="*") { 325 convch = *fnt;
326 nextch = *++fnt;
261 ft ++;
262 | = strspn(fnt, digits); 328 *fmt o ='\0";
263 if ((I >0) & (fmt[l] =="9%")) { 329 switch (convch) {
264 int idx = atoi(fnt); 330 case 'b’:
265 if (idx <= nyargc) { 331 size_t len;
266 gargv = &myargv[idx - 1]; 332 char *p;
267 } else { 333 int getout;
268 gargv = &myargv[nyargc];
269 } 335 p = strdup(get str())
270 fmt +=1 + 1; 336 if (p=
271 } 337 war nx2(%", strerror(ENOVEM, NULL);
338 return (NULL);
273 if (getint(&precision)) 339 }
274 return (NULL); 340 getout = escape(p, 0, &en);
275 if (gargv > maxargv) { 341 (v0| d) fputs(p, st dout) ;
276 maxargv = gargv; 341 *(fmt - 1) s’
277 } 342 PF(st art p)
278 haveprec = 1; 343 B
279 *dptr++ = ’*‘, 342 free(p)
280 *dptr = 0;
281 } else { 344 if (getout)
282 haveprec = 0; 345 exit(*rval);
347 return (fnt);
284 /* skip to conversion char */ 346 br eak;
285 V\,hlle(lsdlglt(frt)) { 347 }
286 dptr++ = *ft++; 348 case '¢c’: {
287 *dptr = O; 349 char p;
288 }
289 } 351 p = getchr();
290 } else 352 PF(start, p);
291 haveprec = 0; 353 br eak;
292 if (1*fmt) { 354 }
293 war nx1(_("missing format character"), NULL, NULL); 355 case 's’: {
294 return (NULL); 356 const char *p;
295 }
296 *dptr++ = *fnt; 358 p = getstr();
297 *dptr = 0; 359 PF(start, p);
360 br eak;
299 /* 361
300 * Look for a length nodifier. POSIX doesn’t have these, so 362 case 'd': case 'i': case '0': case 'uU : case 'x': case’
301 * we only support themfor floating-point conversions, whi ch 363 char *f;
302 * are extensions. This is useful because the L nodifier can 364 intmax_t val;
303 * be used to gain extra range and precision, while onitting 365 ui ntmax_t uval ;
304 * it is nore likely to produce consistent results on different 366 int signedconv;
305 * architectures. This is not so inportant for integers
306 * because overflow is the only bad thing that can happen to 368 si gnedconv = (convch == "d’ || convch == "i");
307 * them but consider the command printf % 1.1 369 if ((f = nknun(start, convch)) == NULL)
308 * 370 return (NULL);
309 f(*fm =="L") { 371 if (getnun{&al, &uval, signedconv))
310 nmod_| dbl = 1; 372 *rval = 1;
311 ft ++; 373 if (signedconv)
312 if (!strchr("aAeEf FgG', *fnt)) { 374 PF(f, val);
313 war nx2(_("bad nodifier L for %8c"), *fmt, NULL); 375 el se
314 return (NULL); 376 PF(f, uval);
315 } 377 br eak;
316 } else { 378 }
317 nmod_| dbl = 0; 379 case 'e’: case 'E:
318 } 380 case 'f’': case 'F:
381 case ’g’ case ’G
320 /* save the current arg offset, and set to the format arg */ 382 case 'a’': case {
321 if (fargv !'= NULL) { 383 Iong doubl e p;
322 gargv = fargv;

new usr/src/cmd/printf/printf.c

385 if (getfloating(&, nod_|dbl))

386 *rval = 1;

387 if (rod_|dbl)

388 PF(start, p);

389 el se

390 PF(start, (double)p);

391 br eak;

392 }

393 defaul t:

394 war nx2(_("illegal format character 9%"), convch, NULL);
395 return (NULL);

396 }

397 *fmt = nextch;

399 /* return the gargv to the next elenment */
400 return (fnt);

401 }

__unchanged_portion_onitted_

429 static int

430 escape(char *fnt, int percent, size_t *len)
431 {

432 char *save, *store, c;

433 int val ue;

435 for (save = store = fnt; ((c = *fnt) !'= 0); ++fnt, ++store) {
436 if (c!="\\") {

437 *store = c;

438 conti nue;

439 }

440 switch (*++fnt) {

441 case '\0': /* ECS, user error */
442 *store = "\\’;

443 *++store = '\0";

444 *len = PTRDI FF(store, save);

445 return (0);

446 case '\\': /* backsl ash */

447 case '\’ /* single quote */
448 *store = *fnt;

449 break;

450 case 'a’: /* bell/alert */
451 *store = '\a’;

452 break;

453 case 'b’: /* backspace */

454 *store = '\b’;

455 br eak;

456 case 'c’':

457 if (!percent) {

458 *store = '\0";

459 *l en = PTRDI FF(store, save);
460 return (1);

461 }

462 *store = '¢’;

463 br eak;

464 case 'f': /* formfeed */

465 *store = "\f’;

466 break;

467 case 'n’: /* newine */

468 *store = '\n’;

469 break;

470 case 'r’: /* carriage-return */
471 *store = "\r’;

472 br eak;

473 case 't’: /* horizontal tab */
474 *store = "\t’;

475 br eak;

new usr/src/cnmd/printf/printf.c

476 case 'Vv': /* vertical tab */
477 *store = "\v’';

478 br eak;

479 /* octal constant
480 case '0’': case '1': case '2’': case '3":
481 case '4’: case '5’': case '6’: case '7':
482 c = (!percent && *fmt =='0") ? 4 :
483 for (value = O;

484 c-- && *fnt >='0 && *fnt <='7";
485 val ue <<= 3;

486 value += *fm - "0 ;

487 }

488 --fnt;

489 if (percent &% value =="'%) {
490 *store++ = ' 9% ;

491 *store = "%;

492 } else

493 *store = (char)val ue;

494 break;

495 defaul t:

496 *store = *fnt;

497 br eak;

498 }

499 }

500 *store = '\0";

501 *| en = PTRDI FF(store, save);

502 return (0);

503 }

__unchanged_portion_omtted_

new usr/src/test/ Makefile

R R R R

613 Thu May 8 09:00: 23 2014
new usr/src/test/ Makefile

4854 printf(1l) doesn’t support % and \c properly
* ok ok ok ok ok ok ok

P R

HHFH HHBFHFHHFHHR

Kkkkk Kk kK Kk

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

Copyright (c) 2012 by Del phix. Al rights reserved.
Copyright 2014 Garrett D Anpre <garrett @anore. org>

. PARALLEL: $(SUBDI RS)

SUBDI RS

os-tests test-runner util-tests zfs-tests

SUBDI RS = os-tests test-runner zfs-tests

i ncl ude Makefile.com

new usr/src/test/util-tests/tests/printf/printf_test.ksh 1 new usr/src/test/util-tests/tests/printf/printf_test.ksh

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 97 tests 09 desc] ="ITLI|tI Varlable pOSItIOn Wdth and prec's'on"
4477 Thu May 8 09:00:23 2014 98 tests[09][format] =" %2$*1$. *3$s’
new usr/src/test/util-tests/tests/printf/printf_test.ksh 99 tests[09][args]="10 abcdef 3 5 xyz 1"
4854 printf(1) doesn’t support % and \c properly 100 tests[09][result]= abc X’
LEEE R R R R EE SRR EEEEEEEEEEE RS SRR EEEEEEEEEEEEREEREEEEEEEEESE]
__unchanged_portion_onitted_ 102 typeset -A tests[10]=()
103 tests[10][desc] ="deci mal from hex"
28 test_fail () { 104 tests[10][format] =" % ’
2 print "TEST FAIL: ${1}: ${2}" 105 tests[10][args] ="0x1000 OXA"
30 exit -1 106 tests[10][result]="4096 10 ’
30 # exit -1
31} 108 typeset -A tests[ll] =()
__unchanged_portion_omtted_ 109 tests[11][desc] ="negative dec (64-bit)"
110 tests[11 fOI’rTB'[]"OO(
45 typeset -A tests=() 111 tests[11][args]="-1"
112 tests[11][resul t]="ffffffffffffffff’
48 typeset -A tests[01]=() 114 typeset -A tests[12]=()
49 tests[01][desc] ="hexadeci nal | owercase" 115 tests[12][desc] ="float (basic)"
50 tests[01][format] = %94x’ 116 tests[12 forr'rat]—'%’
51 tests[O01][args]="255" 117 tests[12][args] ="3. 14"
52 tests[O01][result]="00ff" 118 tests[12][resul t]="3.140000’
54 typeset -A tests[02]=() 120 typeset -A tests[12]=()
55 tests[02][desc] ="hexadeci mal 32-bit" 121 tests[12][desc]="fl oat precision"
56 tests[02 format]-‘0 8x’ 122 tests[12][format] =" % 2f’
57 tests[02][args] =" 65537’ 123 tests[12][args] ="3.14159"
58 tests[02][resul t]=00010001 124 tests[12][result]="3.14
60 typeset -A tests[03]=() 126 typeset -A tests[13]=()
61 tests[03][desc]="multiple argunments” 127 tests[13][desc]="left justify"
62 tests[03][format] =" % % °’ 128 tests[13][format] =" % 5d’
63 tests[03][args]="1 one 2 two 3 three" 129 tests[13][args]="45"
64 tests[03][result]="1 one 2 two 3 three ’ 130 tests[13][result] =45 ’
66 typeset -A tests[04]=() 132 typeset -A tests[14]=()
67 tests[04][desc]="variable position paraneters" 133 tests[14][desc] ="new i nes"
68 tests[04][format] = %@$s % $d ° 134 tests[14][format] =" %\ n%\ nY%s’
69 tests[04][args]="1 one 2 two 3 three" 135 tests[14][args] ="one two three"
70 tests[04][result]="one 1 two 2 three 3’ 136 tests[14][result] =" one
137 two
72 typeset -A tests[05]=() 138 three’
73 tests[05][desc]="w dth"
74 tests[05][format] =" %d0s’ 140 typeset -A tests[15]=()
75 tests[05][args] ="abcdef" 141 tests[15][desc] ="enbedded octal escape"”
76 tests[O5][result]= abcdef’ 142 tests[15][format] =" %\ 41%’
143 tests[15][args] ="one two"
78 typeset -A tests[06]=() 144 tests[15][result]="one!two’
79 tests[06][desc]="wi dth and precision"
80 tests[06][fornmat]="9%0. 3s’ 146 typeset -A tests[16]=()
81 tests[06][args]="abcdef" 147 tests[16][desc] =" backsl ash string (%)"
82 tests[06][result]= abc’ 148 tests[16][format] =
149 tests[16][args] '\0101\0102\0103’
84 typeset -A tests[07]=() 150 tests[16][result]=" A
85 tests[07][desc]="variable width and precision" 146 # this is not yet supported
86 tests[07][format] =" %.*s’ 147 #typeset -A tests[16]=()
87 tests[07][args]="10 3 abcdef" 148 #t ests[16] [desc] ="backsl ash string (%)"
88 tests[07][result]= abc’ 149 #tests[16][format] =" %’
150 #tests[16][args] ’\0101\ 0102\ 0103’
90 typeset -A tests[08]=() 151 #tests[16][result] =" AB
91 tests[08][desc]="variable position wi dth and precision"
92 tests[08][fornmat] =" %2$*1$. *3$s’ 152 typeset -A tests[17]=()

93 tests[08][args]="10 abcdef 3" 153 tests[17][desc] ="backslash ¢ in %"
94 tests[08][result]= abc’ 154 tests[17][format] =" %%’

155 tests[17][args] ="\ 0101\ cone two’
96 typeset -A tests[09]=() 156 tests[17][result]=" A

new usr/src/test/util-tests/tests/printf/printf_test.ksh

153
154
155
156
157
158

158
159
160
161
162

164
165
166
167
168

170
171
172
173
174

176

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

nor is
#t ypeset
#tests[1
#tests[1
#tests[1
#tests[1

typeset

tests[18
tests[18
tests[18
tests[18

typeset
tests[19
tests[19
tests[19
tests[19

typeset
tests[20
tests[20
tests[20
tests[20

#debug=y

for i in

done

this
-A tests[17] =()
7] [desc] ="backsl ash c in %"

7][format] = %%’
7] [args] ="\ 0101\ cone two’
7][result]="A

-A tests[18]=()

desc] ="backsl ash octal in format"
format] =" HI'\ 1120K\ 0112t abbed\ 11agai n’
args] =

result]="H JOK 2t abbed agai n’

-A tests[19] =()

desc] ="backsl ash octal in %"
format] =" %"

args] =" H\0112K\ 011t abbed’
result] =" H JK tabbed’

-A tests[20]=()

desc]="nuneric % and ASCI| conversions"
format] =" % °’

args]="3 +3 -3 \"3 \"+ '-"

result]="3 3 -3 51 43 45’
es

"${!tests[@}"; do
t=test_$i
desc=${tests[$i][desc]}
format=${tests[S$i][format]}
args="${tests[$i][args]}"
resul t=${tests[$i][result]}

test_start $t "${tests[$i][desc]}"

[[-n "$debug"”]] && echo $PRINTF "$fornmat"
conp=$($PRINTF "$format" ${args[@})
checkrv $t

[[-n "$debug"]] && echo "got [$conp]”
good=$resul t

conpare $t "$conp" "$good"

test _pass $t

"${args[@}"

