
new/usr/src/cmd/printf/printf.c 1

**
 12863 Thu May 8 09:00:23 2014
new/usr/src/cmd/printf/printf.c
4854 printf(1) doesn’t support %b and \c properly
**

1 /*
2 * Copyright 2014 Garrett D’Amore <garrett@damore.org>
3 * Copyright 2010 Nexenta Systems, Inc. All rights reserved.
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:

10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */

32 #include <sys/types.h>

34 #include <err.h>
35 #include <errno.h>
36 #include <inttypes.h>
37 #include <limits.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <unistd.h>
42 #include <alloca.h>
43 #include <ctype.h>
44 #include <locale.h>
45 #include <note.h>

47 #define warnx1(a, b, c) warnx(a)
48 #define warnx2(a, b, c) warnx(a, b)
49 #define warnx3(a, b, c) warnx(a, b, c)

51 #define PTRDIFF(x, y) ((uintptr_t)(x) - (uintptr_t)(y))

53 #define _(x) gettext(x)

55 #define PF(f, func) do { \
56 char *b = NULL; \
57 if (havewidth) \
58 if (haveprec) \
59 (void) asprintf(&b, f, fieldwidth, precision, func); \
60 else \
61 (void) asprintf(&b, f, fieldwidth, func); \

new/usr/src/cmd/printf/printf.c 2

62 else if (haveprec) \
63 (void) asprintf(&b, f, precision, func); \
64 else \
65 (void) asprintf(&b, f, func); \
66 if (b) { \
67 (void) fputs(b, stdout); \
68 free(b); \
69 } \
70 _NOTE(CONSTCOND) } while (0)

72 static int asciicode(void);
73 static char *doformat(char *, int *);
74 static int escape(char *, int, size_t *);
75 static int getchr(void);
76 static int getfloating(long double *, int);
77 static int getint(int *);
78 static int getnum(intmax_t *, uintmax_t *, int);
79 static const char
80 *getstr(void);
81 static char *mknum(char *, char);
82 static void usage(void);

84 static const char digits[] = "0123456789";

86 static int myargc;
87 static char **myargv;
88 static char **gargv;
89 static char **maxargv;

91 int
92 main(int argc, char *argv[])
93 {
94 size_t len;
95 int end, rval;
95 int chopped, end, rval;
96 char *format, *fmt, *start;

98 (void) setlocale(LC_ALL, "");

100 argv++;
101 argc--;

103 /*
104 * POSIX says: Standard utilities that do not accept options,
105 * but that do accept operands, shall recognize "--" as a
106 * first argument to be discarded.
107 */
108 if (argc && strcmp(argv[0], "--") == 0) {
109 argc--;
110 argv++;
111 }

113 if (argc < 1) {
114 usage();
115 return (1);
116 }

118 /*
119 * Basic algorithm is to scan the format string for conversion
120 * specifications -- once one is found, find out if the field
121 * width or precision is a ’*’; if it is, gather up value. Note,
122 * format strings are reused as necessary to use up the provided
123 * arguments, arguments of zero/null string are provided to use
124 * up the format string.
125 */
126 fmt = format = *argv;

new/usr/src/cmd/printf/printf.c 3

127 (void) escape(fmt, 1, &len); /* backslash interpretation */
127 chopped = escape(fmt, 1, &len); /* backslash interpretation */
128 rval = end = 0;
129 gargv = ++argv;

131 for (;;) {
132 maxargv = gargv;

134 myargv = gargv;
135 for (myargc = 0; gargv[myargc]; myargc++)
136 /* nop */;
137 start = fmt;
138 while (fmt < format + len) {
139 if (fmt[0] == ’%’) {
140 (void) fwrite(start, 1, PTRDIFF(fmt, start),
141 stdout);
142 if (fmt[1] == ’%’) {
143 /* %% prints a % */
144 (void) putchar(’%’);
145 fmt += 2;
146 } else {
147 fmt = doformat(fmt, &rval);
148 if (fmt == NULL)
149 return (1);
150 end = 0;
151 }
152 start = fmt;
153 } else
154 fmt++;
155 if (gargv > maxargv)
156 maxargv = gargv;
157 }
158 gargv = maxargv;

160 if (end == 1) {
161 warnx1(_("missing format character"), NULL, NULL);
162 return (1);
163 }
164 (void) fwrite(start, 1, PTRDIFF(fmt, start), stdout);
165 if (!*gargv)
165 if (chopped || !*gargv)
166 return (rval);
167 /* Restart at the beginning of the format string. */
168 fmt = format;
169 end = 1;
170 }
171 /* NOTREACHED */
172 }

175 static char *
176 doformat(char *fmt, int *rval)
177 {
178 static const char skip1[] = "#’-+ 0";
179 int fieldwidth, haveprec, havewidth, mod_ldbl, precision;
180 char convch, nextch;
181 char *start;
182 char **fargv;
183 char *dptr;
184 int l;

186 start = alloca(strlen(fmt) + 1);

188 dptr = start;
189 *dptr++ = ’%’;
190 *dptr = 0;

new/usr/src/cmd/printf/printf.c 4

192 fmt++;

194 /* look for "n$" field index specifier */
195 l = strspn(fmt, digits);
196 if ((l > 0) && (fmt[l] == ’$’)) {
197 int idx = atoi(fmt);
198 if (idx <= myargc) {
199 gargv = &myargv[idx - 1];
200 } else {
201 gargv = &myargv[myargc];
202 }
203 if (gargv > maxargv) {
204 maxargv = gargv;
205 }
206 fmt += l + 1;

208 /* save format argument */
209 fargv = gargv;
210 } else {
211 fargv = NULL;
212 }

214 /* skip to field width */
215 while (strchr(skip1, *fmt) != NULL) {
216 *dptr++ = *fmt++;
217 *dptr = 0;
218 }

221 if (*fmt == ’*’) {

223 fmt++;
224 l = strspn(fmt, digits);
225 if ((l > 0) && (fmt[l] == ’$’)) {
226 int idx = atoi(fmt);
227 if (idx <= myargc) {
228 gargv = &myargv[idx - 1];
229 } else {
230 gargv = &myargv[myargc];
231 }
232 fmt += l + 1;
233 }

235 if (getint(&fieldwidth))
236 return (NULL);
237 if (gargv > maxargv) {
238 maxargv = gargv;
239 }
240 havewidth = 1;

242 *dptr++ = ’*’;
243 *dptr = 0;
244 } else {
245 havewidth = 0;

247 /* skip to possible ’.’, get following precision */
248 while (isdigit(*fmt)) {
249 *dptr++ = *fmt++;
250 *dptr = 0;
251 }
252 }

254 if (*fmt == ’.’) {
255 /* precision present? */
256 fmt++;

new/usr/src/cmd/printf/printf.c 5

257 *dptr++ = ’.’;

259 if (*fmt == ’*’) {

261 fmt++;
262 l = strspn(fmt, digits);
263 if ((l > 0) && (fmt[l] == ’$’)) {
264 int idx = atoi(fmt);
265 if (idx <= myargc) {
266 gargv = &myargv[idx - 1];
267 } else {
268 gargv = &myargv[myargc];
269 }
270 fmt += l + 1;
271 }

273 if (getint(&precision))
274 return (NULL);
275 if (gargv > maxargv) {
276 maxargv = gargv;
277 }
278 haveprec = 1;
279 *dptr++ = ’*’;
280 *dptr = 0;
281 } else {
282 haveprec = 0;

284 /* skip to conversion char */
285 while (isdigit(*fmt)) {
286 *dptr++ = *fmt++;
287 *dptr = 0;
288 }
289 }
290 } else
291 haveprec = 0;
292 if (!*fmt) {
293 warnx1(_("missing format character"), NULL, NULL);
294 return (NULL);
295 }
296 *dptr++ = *fmt;
297 *dptr = 0;

299 /*
300 * Look for a length modifier. POSIX doesn’t have these, so
301 * we only support them for floating-point conversions, which
302 * are extensions. This is useful because the L modifier can
303 * be used to gain extra range and precision, while omitting
304 * it is more likely to produce consistent results on different
305 * architectures. This is not so important for integers
306 * because overflow is the only bad thing that can happen to
307 * them, but consider the command printf %a 1.1
308 */
309 if (*fmt == ’L’) {
310 mod_ldbl = 1;
311 fmt++;
312 if (!strchr("aAeEfFgG", *fmt)) {
313 warnx2(_("bad modifier L for %%%c"), *fmt, NULL);
314 return (NULL);
315 }
316 } else {
317 mod_ldbl = 0;
318 }

320 /* save the current arg offset, and set to the format arg */
321 if (fargv != NULL) {
322 gargv = fargv;

new/usr/src/cmd/printf/printf.c 6

323 }

325 convch = *fmt;
326 nextch = *++fmt;

328 *fmt = ’\0’;
329 switch (convch) {
330 case ’b’: {
331 size_t len;
332 char *p;
333 int getout;

335 p = strdup(getstr());
336 if (p == NULL) {
337 warnx2("%s", strerror(ENOMEM), NULL);
338 return (NULL);
339 }
340 getout = escape(p, 0, &len);
341 (void) fputs(p, stdout);
341 *(fmt - 1) = ’s’;
342 PF(start, p);
343 *(fmt - 1) = ’b’;
342 free(p);

344 if (getout)
345 exit(*rval);
347 return (fmt);
346 break;
347 }
348 case ’c’: {
349 char p;

351 p = getchr();
352 PF(start, p);
353 break;
354 }
355 case ’s’: {
356 const char *p;

358 p = getstr();
359 PF(start, p);
360 break;
361 }
362 case ’d’: case ’i’: case ’o’: case ’u’: case ’x’: case ’X’: {
363 char *f;
364 intmax_t val;
365 uintmax_t uval;
366 int signedconv;

368 signedconv = (convch == ’d’ || convch == ’i’);
369 if ((f = mknum(start, convch)) == NULL)
370 return (NULL);
371 if (getnum(&val, &uval, signedconv))
372 *rval = 1;
373 if (signedconv)
374 PF(f, val);
375 else
376 PF(f, uval);
377 break;
378 }
379 case ’e’: case ’E’:
380 case ’f’: case ’F’:
381 case ’g’: case ’G’:
382 case ’a’: case ’A’: {
383 long double p;

new/usr/src/cmd/printf/printf.c 7

385 if (getfloating(&p, mod_ldbl))
386 *rval = 1;
387 if (mod_ldbl)
388 PF(start, p);
389 else
390 PF(start, (double)p);
391 break;
392 }
393 default:
394 warnx2(_("illegal format character %c"), convch, NULL);
395 return (NULL);
396 }
397 *fmt = nextch;

399 /* return the gargv to the next element */
400 return (fmt);
401 }

______unchanged_portion_omitted_

429 static int
430 escape(char *fmt, int percent, size_t *len)
431 {
432 char *save, *store, c;
433 int value;

435 for (save = store = fmt; ((c = *fmt) != 0); ++fmt, ++store) {
436 if (c != ’\\’) {
437 *store = c;
438 continue;
439 }
440 switch (*++fmt) {
441 case ’\0’: /* EOS, user error */
442 *store = ’\\’;
443 *++store = ’\0’;
444 *len = PTRDIFF(store, save);
445 return (0);
446 case ’\\’: /* backslash */
447 case ’\’’: /* single quote */
448 *store = *fmt;
449 break;
450 case ’a’: /* bell/alert */
451 *store = ’\a’;
452 break;
453 case ’b’: /* backspace */
454 *store = ’\b’;
455 break;
456 case ’c’:
457 if (!percent) {
458 *store = ’\0’;
459 *len = PTRDIFF(store, save);
460 return (1);
461 }
462 *store = ’c’;
463 break;
464 case ’f’: /* form-feed */
465 *store = ’\f’;
466 break;
467 case ’n’: /* newline */
468 *store = ’\n’;
469 break;
470 case ’r’: /* carriage-return */
471 *store = ’\r’;
472 break;
473 case ’t’: /* horizontal tab */
474 *store = ’\t’;
475 break;

new/usr/src/cmd/printf/printf.c 8

476 case ’v’: /* vertical tab */
477 *store = ’\v’;
478 break;
479 /* octal constant */
480 case ’0’: case ’1’: case ’2’: case ’3’:
481 case ’4’: case ’5’: case ’6’: case ’7’:
482 c = (!percent && *fmt == ’0’) ? 4 : 3;
483 for (value = 0;
484 c-- && *fmt >= ’0’ && *fmt <= ’7’; ++fmt) {
485 value <<= 3;
486 value += *fmt - ’0’;
487 }
488 --fmt;
489 if (percent && value == ’%’) {
490 *store++ = ’%’;
491 *store = ’%’;
492 } else
493 *store = (char)value;
494 break;
495 default:
496 *store = *fmt;
497 break;
498 }
499 }
500 *store = ’\0’;
501 *len = PTRDIFF(store, save);
502 return (0);
503 }

______unchanged_portion_omitted_

new/usr/src/test/Makefile 1

**
 613 Thu May 8 09:00:23 2014
new/usr/src/test/Makefile
4854 printf(1) doesn’t support %b and \c properly
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
15 #

17 .PARALLEL: $(SUBDIRS)

19 SUBDIRS = os-tests test-runner util-tests zfs-tests
18 SUBDIRS = os-tests test-runner zfs-tests

21 include Makefile.com

new/usr/src/test/util-tests/tests/printf/printf_test.ksh 1

**
 4477 Thu May 8 09:00:23 2014
new/usr/src/test/util-tests/tests/printf/printf_test.ksh
4854 printf(1) doesn’t support %b and \c properly
**
______unchanged_portion_omitted_

28 test_fail() {
29 print "TEST FAIL: ${1}: ${2}"
30 exit -1
30 # exit -1
31 }

______unchanged_portion_omitted_

45 typeset -A tests=()

48 typeset -A tests[01]=()
49 tests[01][desc]="hexadecimal lowercase"
50 tests[01][format]=’%04x’
51 tests[01][args]="255"
52 tests[01][result]="00ff"

54 typeset -A tests[02]=()
55 tests[02][desc]="hexadecimal 32-bit"
56 tests[02][format]=’%08x’
57 tests[02][args]=’65537’
58 tests[02][result]=00010001

60 typeset -A tests[03]=()
61 tests[03][desc]="multiple arguments"
62 tests[03][format]=’%d %s ’
63 tests[03][args]="1 one 2 two 3 three"
64 tests[03][result]=’1 one 2 two 3 three ’

66 typeset -A tests[04]=()
67 tests[04][desc]="variable position parameters"
68 tests[04][format]=’%2$s %1$d ’
69 tests[04][args]="1 one 2 two 3 three"
70 tests[04][result]=’one 1 two 2 three 3 ’

72 typeset -A tests[05]=()
73 tests[05][desc]="width"
74 tests[05][format]=’%10s’
75 tests[05][args]="abcdef"
76 tests[05][result]=’ abcdef’

78 typeset -A tests[06]=()
79 tests[06][desc]="width and precision"
80 tests[06][format]=’%10.3s’
81 tests[06][args]="abcdef"
82 tests[06][result]=’ abc’

84 typeset -A tests[07]=()
85 tests[07][desc]="variable width and precision"
86 tests[07][format]=’%*.*s’
87 tests[07][args]="10 3 abcdef"
88 tests[07][result]=’ abc’

90 typeset -A tests[08]=()
91 tests[08][desc]="variable position width and precision"
92 tests[08][format]=’%2$*1$.*3$s’
93 tests[08][args]="10 abcdef 3"
94 tests[08][result]=’ abc’

96 typeset -A tests[09]=()

new/usr/src/test/util-tests/tests/printf/printf_test.ksh 2

97 tests[09][desc]="multi variable position width and precision"
98 tests[09][format]=’%2$*1$.*3$s’
99 tests[09][args]="10 abcdef 3 5 xyz 1"
100 tests[09][result]=’ abc x’

102 typeset -A tests[10]=()
103 tests[10][desc]="decimal from hex"
104 tests[10][format]=’%d ’
105 tests[10][args]="0x1000 0XA"
106 tests[10][result]=’4096 10 ’

108 typeset -A tests[11]=()
109 tests[11][desc]="negative dec (64-bit)"
110 tests[11][format]=’%x’
111 tests[11][args]="-1"
112 tests[11][result]=’ffffffffffffffff’

114 typeset -A tests[12]=()
115 tests[12][desc]="float (basic)"
116 tests[12][format]=’%f’
117 tests[12][args]="3.14"
118 tests[12][result]=’3.140000’

120 typeset -A tests[12]=()
121 tests[12][desc]="float precision"
122 tests[12][format]=’%.2f’
123 tests[12][args]="3.14159"
124 tests[12][result]=’3.14’

126 typeset -A tests[13]=()
127 tests[13][desc]="left justify"
128 tests[13][format]=’%-5d’
129 tests[13][args]="45"
130 tests[13][result]=’45 ’

132 typeset -A tests[14]=()
133 tests[14][desc]="newlines"
134 tests[14][format]=’%s\n%s\n%s’
135 tests[14][args]="one two three"
136 tests[14][result]=’one
137 two
138 three’

140 typeset -A tests[15]=()
141 tests[15][desc]="embedded octal escape"
142 tests[15][format]=’%s\41%s’
143 tests[15][args]="one two"
144 tests[15][result]=’one!two’

146 typeset -A tests[16]=()
147 tests[16][desc]="backslash string (%b)"
148 tests[16][format]=’%b’
149 tests[16][args]=’\0101\0102\0103’
150 tests[16][result]=’ABC’
146 # this is not yet supported
147 #typeset -A tests[16]=()
148 #tests[16][desc]="backslash string (%b)"
149 #tests[16][format]=’%b’
150 #tests[16][args]=’\0101\0102\0103’
151 #tests[16][result]=’ABC’

152 typeset -A tests[17]=()
153 tests[17][desc]="backslash c in %b"
154 tests[17][format]=’%b%s’
155 tests[17][args]=’\0101\cone two’
156 tests[17][result]=’A’

new/usr/src/test/util-tests/tests/printf/printf_test.ksh 3

153 # nor is this
154 #typeset -A tests[17]=()
155 #tests[17][desc]="backslash c in %b"
156 #tests[17][format]=’%b%s’
157 #tests[17][args]=’\0101\cone two’
158 #tests[17][result]=’A’

158 typeset -A tests[18]=()
159 tests[18][desc]="backslash octal in format"
160 tests[18][format]=’HI\1120K\0112tabbed\11again’
161 tests[18][args]=
162 tests[18][result]=’HIJ0K 2tabbed again’

164 typeset -A tests[19]=()
165 tests[19][desc]="backslash octal in %b"
166 tests[19][format]="%b"
167 tests[19][args]=’HI\0112K\011tabbed’
168 tests[19][result]=’HIJK tabbed’

170 typeset -A tests[20]=()
171 tests[20][desc]="numeric %d and ASCII conversions"
172 tests[20][format]=’%d ’
173 tests[20][args]="3 +3 -3 \"3 \"+ ’-"
174 tests[20][result]=’3 3 -3 51 43 45 ’

176 #debug=yes

178 for i in "${!tests[@]}"; do
179 t=test_$i
180 desc=${tests[$i][desc]}
181 format=${tests[$i][format]}
182 args="${tests[$i][args]}"
183 result=${tests[$i][result]}
184
185 test_start $t "${tests[$i][desc]}"
186 [[-n "$debug"]] && echo $PRINTF "$format" "${args[@]}"
187 comp=$($PRINTF "$format" ${args[@]})
188 checkrv $t
189 [[-n "$debug"]] && echo "got [$comp]"
190 good=$result
191 compare $t "$comp" "$good"
192 test_pass $t
193 done

