1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #include <sys/isa_defs.h> 31 #include <sys/ccompile.h> 32 33 #ifdef _LITTLE_ENDIAN 34 #define HI(x) *(1+(int*)x) 35 #define LO(x) *(unsigned*)x 36 #else 37 #define HI(x) *(int*)x 38 #define LO(x) *(1+(unsigned*)x) 39 #endif 40 41 #ifdef __RESTRICT 42 #define restrict _Restrict 43 #else 44 #define restrict 45 #endif 46 47 extern const double __vlibm_TBL_sincos_hi[], __vlibm_TBL_sincos_lo[]; 48 49 static const double 50 half[2] = { 0.5, -0.5 }, 51 one = 1.0, 52 invpio2 = 0.636619772367581343075535, 53 pio2_1 = 1.570796326734125614166, 54 pio2_2 = 6.077100506303965976596e-11, 55 pio2_3 = 2.022266248711166455796e-21, 56 pio2_3t = 8.478427660368899643959e-32, 57 pp1 = -1.666666666605760465276263943134982554676e-0001, 58 pp2 = 8.333261209690963126718376566146180944442e-0003, 59 qq1 = -4.999999999977710986407023955908711557870e-0001, 60 qq2 = 4.166654863857219350645055881018842089580e-0002, 61 poly1[2]= { -1.666666666666629669805215138920301589656e-0001, 62 -4.999999999999931701464060878888294524481e-0001 }, 63 poly2[2]= { 8.333333332390951295683993455280336376663e-0003, 64 4.166666666394861917535640593963708222319e-0002 }, 65 poly3[2]= { -1.984126237997976692791551778230098403960e-0004, 66 -1.388888552656142867832756687736851681462e-0003 }, 67 poly4[2]= { 2.753403624854277237649987622848330351110e-0006, 68 2.478519423681460796618128289454530524759e-0005 }; 69 70 static const unsigned thresh[2] = { 0x3fc90000, 0x3fc40000 }; 71 72 /* Don't __ the following; acomp will handle it */ 73 extern double fabs( double ); 74 extern void __vlibm_vsin_big( int, double *, int, double *, int, int ); 75 76 void 77 __vsin( int n, double * restrict x, int stridex, double * restrict y, 78 int stridey ) 79 { 80 double x0_or_one[4], x1_or_one[4], x2_or_one[4]; 81 double y0_or_zero[4], y1_or_zero[4], y2_or_zero[4]; 82 double x0, x1, x2, *py0 = 0, *py1 = 0, *py2, *xsave, *ysave; 83 unsigned hx0, hx1, hx2, xsb0, xsb1 = 0, xsb2; 84 int i, biguns, nsave, sxsave, sysave; 85 volatile int v __GNU_UNUSED; 86 nsave = n; 87 xsave = x; 88 sxsave = stridex; 89 ysave = y; 90 sysave = stridey; 91 biguns = 0; 92 93 do 94 { 95 LOOP0: 96 xsb0 = HI(x); 97 hx0 = xsb0 & ~0x80000000; 98 if ( hx0 > 0x3fe921fb ) 99 { 100 biguns = 1; 101 goto MEDIUM; 102 } 103 if ( hx0 < 0x3e400000 ) 104 { 105 v = *x; 106 *y = *x; 107 x += stridex; 108 y += stridey; 109 i = 0; 110 if ( --n <= 0 ) 111 break; 112 goto LOOP0; 113 } 114 x0 = *x; 115 py0 = y; 116 x += stridex; 117 y += stridey; 118 i = 1; 119 if ( --n <= 0 ) 120 break; 121 122 LOOP1: 123 xsb1 = HI(x); 124 hx1 = xsb1 & ~0x80000000; 125 if ( hx1 > 0x3fe921fb ) 126 { 127 biguns = 2; 128 goto MEDIUM; 129 } 130 if ( hx1 < 0x3e400000 ) 131 { 132 v = *x; 133 *y = *x; 134 x += stridex; 135 y += stridey; 136 i = 1; 137 if ( --n <= 0 ) 138 break; 139 goto LOOP1; 140 } 141 x1 = *x; 142 py1 = y; 143 x += stridex; 144 y += stridey; 145 i = 2; 146 if ( --n <= 0 ) 147 break; 148 149 LOOP2: 150 xsb2 = HI(x); 151 hx2 = xsb2 & ~0x80000000; 152 if ( hx2 > 0x3fe921fb ) 153 { 154 biguns = 3; 155 goto MEDIUM; 156 } 157 if ( hx2 < 0x3e400000 ) 158 { 159 v = *x; 160 *y = *x; 161 x += stridex; 162 y += stridey; 163 i = 2; 164 if ( --n <= 0 ) 165 break; 166 goto LOOP2; 167 } 168 x2 = *x; 169 py2 = y; 170 171 i = ( hx0 - 0x3fc90000 ) >> 31; 172 i |= ( ( hx1 - 0x3fc90000 ) >> 30 ) & 2; 173 i |= ( ( hx2 - 0x3fc90000 ) >> 29 ) & 4; 174 switch ( i ) 175 { 176 double a0, a1, a2, w0, w1, w2; 177 double t0, t1, t2, z0, z1, z2; 178 unsigned j0, j1, j2; 179 180 case 0: 181 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 182 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 183 j2 = ( xsb2 + 0x4000 ) & 0xffff8000; 184 HI(&t0) = j0; 185 HI(&t1) = j1; 186 HI(&t2) = j2; 187 LO(&t0) = 0; 188 LO(&t1) = 0; 189 LO(&t2) = 0; 190 x0 -= t0; 191 x1 -= t1; 192 x2 -= t2; 193 z0 = x0 * x0; 194 z1 = x1 * x1; 195 z2 = x2 * x2; 196 t0 = z0 * ( qq1 + z0 * qq2 ); 197 t1 = z1 * ( qq1 + z1 * qq2 ); 198 t2 = z2 * ( qq1 + z2 * qq2 ); 199 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 200 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 201 w2 = x2 * ( one + z2 * ( pp1 + z2 * pp2 ) ); 202 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 203 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 204 j2 = ( ( ( j2 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 205 xsb0 = ( xsb0 >> 30 ) & 2; 206 xsb1 = ( xsb1 >> 30 ) & 2; 207 xsb2 = ( xsb2 >> 30 ) & 2; 208 a0 = __vlibm_TBL_sincos_hi[j0+xsb0]; 209 a1 = __vlibm_TBL_sincos_hi[j1+xsb1]; 210 a2 = __vlibm_TBL_sincos_hi[j2+xsb2]; 211 t0 = ( __vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+xsb0]; 212 t1 = ( __vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+xsb1]; 213 t2 = ( __vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2 ) + __vlibm_TBL_sincos_lo[j2+xsb2]; 214 *py0 = a0 + t0; 215 *py1 = a1 + t1; 216 *py2 = a2 + t2; 217 break; 218 219 case 1: 220 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 221 j2 = ( xsb2 + 0x4000 ) & 0xffff8000; 222 HI(&t1) = j1; 223 HI(&t2) = j2; 224 LO(&t1) = 0; 225 LO(&t2) = 0; 226 x1 -= t1; 227 x2 -= t2; 228 z0 = x0 * x0; 229 z1 = x1 * x1; 230 z2 = x2 * x2; 231 t0 = z0 * ( poly3[0] + z0 * poly4[0] ); 232 t1 = z1 * ( qq1 + z1 * qq2 ); 233 t2 = z2 * ( qq1 + z2 * qq2 ); 234 t0 = z0 * ( poly1[0] + z0 * ( poly2[0] + t0 ) ); 235 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 236 w2 = x2 * ( one + z2 * ( pp1 + z2 * pp2 ) ); 237 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 238 j2 = ( ( ( j2 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 239 xsb1 = ( xsb1 >> 30 ) & 2; 240 xsb2 = ( xsb2 >> 30 ) & 2; 241 a1 = __vlibm_TBL_sincos_hi[j1+xsb1]; 242 a2 = __vlibm_TBL_sincos_hi[j2+xsb2]; 243 t0 = x0 + x0 * t0; 244 t1 = ( __vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+xsb1]; 245 t2 = ( __vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2 ) + __vlibm_TBL_sincos_lo[j2+xsb2]; 246 *py0 = t0; 247 *py1 = a1 + t1; 248 *py2 = a2 + t2; 249 break; 250 251 case 2: 252 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 253 j2 = ( xsb2 + 0x4000 ) & 0xffff8000; 254 HI(&t0) = j0; 255 HI(&t2) = j2; 256 LO(&t0) = 0; 257 LO(&t2) = 0; 258 x0 -= t0; 259 x2 -= t2; 260 z0 = x0 * x0; 261 z1 = x1 * x1; 262 z2 = x2 * x2; 263 t0 = z0 * ( qq1 + z0 * qq2 ); 264 t1 = z1 * ( poly3[0] + z1 * poly4[0] ); 265 t2 = z2 * ( qq1 + z2 * qq2 ); 266 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 267 t1 = z1 * ( poly1[0] + z1 * ( poly2[0] + t1 ) ); 268 w2 = x2 * ( one + z2 * ( pp1 + z2 * pp2 ) ); 269 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 270 j2 = ( ( ( j2 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 271 xsb0 = ( xsb0 >> 30 ) & 2; 272 xsb2 = ( xsb2 >> 30 ) & 2; 273 a0 = __vlibm_TBL_sincos_hi[j0+xsb0]; 274 a2 = __vlibm_TBL_sincos_hi[j2+xsb2]; 275 t0 = ( __vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+xsb0]; 276 t1 = x1 + x1 * t1; 277 t2 = ( __vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2 ) + __vlibm_TBL_sincos_lo[j2+xsb2]; 278 *py0 = a0 + t0; 279 *py1 = t1; 280 *py2 = a2 + t2; 281 break; 282 283 case 3: 284 j2 = ( xsb2 + 0x4000 ) & 0xffff8000; 285 HI(&t2) = j2; 286 LO(&t2) = 0; 287 x2 -= t2; 288 z0 = x0 * x0; 289 z1 = x1 * x1; 290 z2 = x2 * x2; 291 t0 = z0 * ( poly3[0] + z0 * poly4[0] ); 292 t1 = z1 * ( poly3[0] + z1 * poly4[0] ); 293 t2 = z2 * ( qq1 + z2 * qq2 ); 294 t0 = z0 * ( poly1[0] + z0 * ( poly2[0] + t0 ) ); 295 t1 = z1 * ( poly1[0] + z1 * ( poly2[0] + t1 ) ); 296 w2 = x2 * ( one + z2 * ( pp1 + z2 * pp2 ) ); 297 j2 = ( ( ( j2 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 298 xsb2 = ( xsb2 >> 30 ) & 2; 299 a2 = __vlibm_TBL_sincos_hi[j2+xsb2]; 300 t0 = x0 + x0 * t0; 301 t1 = x1 + x1 * t1; 302 t2 = ( __vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2 ) + __vlibm_TBL_sincos_lo[j2+xsb2]; 303 *py0 = t0; 304 *py1 = t1; 305 *py2 = a2 + t2; 306 break; 307 308 case 4: 309 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 310 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 311 HI(&t0) = j0; 312 HI(&t1) = j1; 313 LO(&t0) = 0; 314 LO(&t1) = 0; 315 x0 -= t0; 316 x1 -= t1; 317 z0 = x0 * x0; 318 z1 = x1 * x1; 319 z2 = x2 * x2; 320 t0 = z0 * ( qq1 + z0 * qq2 ); 321 t1 = z1 * ( qq1 + z1 * qq2 ); 322 t2 = z2 * ( poly3[0] + z2 * poly4[0] ); 323 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 324 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 325 t2 = z2 * ( poly1[0] + z2 * ( poly2[0] + t2 ) ); 326 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 327 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 328 xsb0 = ( xsb0 >> 30 ) & 2; 329 xsb1 = ( xsb1 >> 30 ) & 2; 330 a0 = __vlibm_TBL_sincos_hi[j0+xsb0]; 331 a1 = __vlibm_TBL_sincos_hi[j1+xsb1]; 332 t0 = ( __vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+xsb0]; 333 t1 = ( __vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+xsb1]; 334 t2 = x2 + x2 * t2; 335 *py0 = a0 + t0; 336 *py1 = a1 + t1; 337 *py2 = t2; 338 break; 339 340 case 5: 341 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 342 HI(&t1) = j1; 343 LO(&t1) = 0; 344 x1 -= t1; 345 z0 = x0 * x0; 346 z1 = x1 * x1; 347 z2 = x2 * x2; 348 t0 = z0 * ( poly3[0] + z0 * poly4[0] ); 349 t1 = z1 * ( qq1 + z1 * qq2 ); 350 t2 = z2 * ( poly3[0] + z2 * poly4[0] ); 351 t0 = z0 * ( poly1[0] + z0 * ( poly2[0] + t0 ) ); 352 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 353 t2 = z2 * ( poly1[0] + z2 * ( poly2[0] + t2 ) ); 354 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 355 xsb1 = ( xsb1 >> 30 ) & 2; 356 a1 = __vlibm_TBL_sincos_hi[j1+xsb1]; 357 t0 = x0 + x0 * t0; 358 t1 = ( __vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+xsb1]; 359 t2 = x2 + x2 * t2; 360 *py0 = t0; 361 *py1 = a1 + t1; 362 *py2 = t2; 363 break; 364 365 case 6: 366 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 367 HI(&t0) = j0; 368 LO(&t0) = 0; 369 x0 -= t0; 370 z0 = x0 * x0; 371 z1 = x1 * x1; 372 z2 = x2 * x2; 373 t0 = z0 * ( qq1 + z0 * qq2 ); 374 t1 = z1 * ( poly3[0] + z1 * poly4[0] ); 375 t2 = z2 * ( poly3[0] + z2 * poly4[0] ); 376 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 377 t1 = z1 * ( poly1[0] + z1 * ( poly2[0] + t1 ) ); 378 t2 = z2 * ( poly1[0] + z2 * ( poly2[0] + t2 ) ); 379 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 380 xsb0 = ( xsb0 >> 30 ) & 2; 381 a0 = __vlibm_TBL_sincos_hi[j0+xsb0]; 382 t0 = ( __vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+xsb0]; 383 t1 = x1 + x1 * t1; 384 t2 = x2 + x2 * t2; 385 *py0 = a0 + t0; 386 *py1 = t1; 387 *py2 = t2; 388 break; 389 390 case 7: 391 z0 = x0 * x0; 392 z1 = x1 * x1; 393 z2 = x2 * x2; 394 t0 = z0 * ( poly3[0] + z0 * poly4[0] ); 395 t1 = z1 * ( poly3[0] + z1 * poly4[0] ); 396 t2 = z2 * ( poly3[0] + z2 * poly4[0] ); 397 t0 = z0 * ( poly1[0] + z0 * ( poly2[0] + t0 ) ); 398 t1 = z1 * ( poly1[0] + z1 * ( poly2[0] + t1 ) ); 399 t2 = z2 * ( poly1[0] + z2 * ( poly2[0] + t2 ) ); 400 t0 = x0 + x0 * t0; 401 t1 = x1 + x1 * t1; 402 t2 = x2 + x2 * t2; 403 *py0 = t0; 404 *py1 = t1; 405 *py2 = t2; 406 break; 407 } 408 409 x += stridex; 410 y += stridey; 411 i = 0; 412 } while ( --n > 0 ); 413 414 if ( i > 0 ) 415 { 416 double a0, a1, w0, w1; 417 double t0, t1, z0, z1; 418 unsigned j0, j1; 419 420 if ( i > 1 ) 421 { 422 if ( hx1 < 0x3fc90000 ) 423 { 424 z1 = x1 * x1; 425 t1 = z1 * ( poly3[0] + z1 * poly4[0] ); 426 t1 = z1 * ( poly1[0] + z1 * ( poly2[0] + t1 ) ); 427 t1 = x1 + x1 * t1; 428 *py1 = t1; 429 } 430 else 431 { 432 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 433 HI(&t1) = j1; 434 LO(&t1) = 0; 435 x1 -= t1; 436 z1 = x1 * x1; 437 t1 = z1 * ( qq1 + z1 * qq2 ); 438 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 439 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 440 xsb1 = ( xsb1 >> 30 ) & 2; 441 a1 = __vlibm_TBL_sincos_hi[j1+xsb1]; 442 t1 = ( __vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+xsb1]; 443 *py1 = a1 + t1; 444 } 445 } 446 if ( hx0 < 0x3fc90000 ) 447 { 448 z0 = x0 * x0; 449 t0 = z0 * ( poly3[0] + z0 * poly4[0] ); 450 t0 = z0 * ( poly1[0] + z0 * ( poly2[0] + t0 ) ); 451 t0 = x0 + x0 * t0; 452 *py0 = t0; 453 } 454 else 455 { 456 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 457 HI(&t0) = j0; 458 LO(&t0) = 0; 459 x0 -= t0; 460 z0 = x0 * x0; 461 t0 = z0 * ( qq1 + z0 * qq2 ); 462 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 463 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 464 xsb0 = ( xsb0 >> 30 ) & 2; 465 a0 = __vlibm_TBL_sincos_hi[j0+xsb0]; 466 t0 = ( __vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+xsb0]; 467 *py0 = a0 + t0; 468 } 469 } 470 471 return; 472 473 /* 474 * MEDIUM RANGE PROCESSING 475 * Jump here at first sign of medium range argument. We are a bit 476 * confused due to the jump.. fix up several variables and jump into 477 * the nth loop, same as was being processed above. 478 */ 479 480 MEDIUM: 481 482 x0_or_one[1] = 1.0; 483 x1_or_one[1] = 1.0; 484 x2_or_one[1] = 1.0; 485 x0_or_one[3] = -1.0; 486 x1_or_one[3] = -1.0; 487 x2_or_one[3] = -1.0; 488 y0_or_zero[1] = 0.0; 489 y1_or_zero[1] = 0.0; 490 y2_or_zero[1] = 0.0; 491 y0_or_zero[3] = 0.0; 492 y1_or_zero[3] = 0.0; 493 y2_or_zero[3] = 0.0; 494 495 if ( biguns == 3 ) 496 { 497 biguns = 0; 498 xsb0 = xsb0 >> 31; 499 xsb1 = xsb1 >> 31; 500 goto loop2; 501 } 502 else if ( biguns == 2 ) 503 { 504 xsb0 = xsb0 >> 31; 505 biguns = 0; 506 goto loop1; 507 } 508 biguns = 0; 509 510 do 511 { 512 double fn0, fn1, fn2, a0, a1, a2, w0, w1, w2, y0, y1, y2; 513 unsigned hx; 514 int n0, n1, n2; 515 516 loop0: 517 hx = HI(x); 518 xsb0 = hx >> 31; 519 hx &= ~0x80000000; 520 if ( hx < 0x3e400000 ) 521 { 522 v = *x; 523 *y = *x; 524 x += stridex; 525 y += stridey; 526 i = 0; 527 if ( --n <= 0 ) 528 break; 529 goto loop0; 530 } 531 if ( hx > 0x413921fb ) 532 { 533 if ( hx >= 0x7ff00000 ) 534 { 535 x0 = *x; 536 *y = x0 - x0; 537 } 538 else 539 biguns = 1; 540 x += stridex; 541 y += stridey; 542 i = 0; 543 if ( --n <= 0 ) 544 break; 545 goto loop0; 546 } 547 x0 = *x; 548 py0 = y; 549 x += stridex; 550 y += stridey; 551 i = 1; 552 if ( --n <= 0 ) 553 break; 554 555 loop1: 556 hx = HI(x); 557 xsb1 = hx >> 31; 558 hx &= ~0x80000000; 559 if ( hx < 0x3e400000 ) 560 { 561 v = *x; 562 *y = *x; 563 x += stridex; 564 y += stridey; 565 i = 1; 566 if ( --n <= 0 ) 567 break; 568 goto loop1; 569 } 570 if ( hx > 0x413921fb ) 571 { 572 if ( hx >= 0x7ff00000 ) 573 { 574 x1 = *x; 575 *y = x1 - x1; 576 } 577 else 578 biguns = 1; 579 x += stridex; 580 y += stridey; 581 i = 1; 582 if ( --n <= 0 ) 583 break; 584 goto loop1; 585 } 586 x1 = *x; 587 py1 = y; 588 x += stridex; 589 y += stridey; 590 i = 2; 591 if ( --n <= 0 ) 592 break; 593 594 loop2: 595 hx = HI(x); 596 xsb2 = hx >> 31; 597 hx &= ~0x80000000; 598 if ( hx < 0x3e400000 ) 599 { 600 v = *x; 601 *y = *x; 602 x += stridex; 603 y += stridey; 604 i = 2; 605 if ( --n <= 0 ) 606 break; 607 goto loop2; 608 } 609 if ( hx > 0x413921fb ) 610 { 611 if ( hx >= 0x7ff00000 ) 612 { 613 x2 = *x; 614 *y = x2 - x2; 615 } 616 else 617 biguns = 1; 618 x += stridex; 619 y += stridey; 620 i = 2; 621 if ( --n <= 0 ) 622 break; 623 goto loop2; 624 } 625 x2 = *x; 626 py2 = y; 627 628 n0 = (int) ( x0 * invpio2 + half[xsb0] ); 629 n1 = (int) ( x1 * invpio2 + half[xsb1] ); 630 n2 = (int) ( x2 * invpio2 + half[xsb2] ); 631 fn0 = (double) n0; 632 fn1 = (double) n1; 633 fn2 = (double) n2; 634 n0 &= 3; 635 n1 &= 3; 636 n2 &= 3; 637 a0 = x0 - fn0 * pio2_1; 638 a1 = x1 - fn1 * pio2_1; 639 a2 = x2 - fn2 * pio2_1; 640 w0 = fn0 * pio2_2; 641 w1 = fn1 * pio2_2; 642 w2 = fn2 * pio2_2; 643 x0 = a0 - w0; 644 x1 = a1 - w1; 645 x2 = a2 - w2; 646 y0 = ( a0 - x0 ) - w0; 647 y1 = ( a1 - x1 ) - w1; 648 y2 = ( a2 - x2 ) - w2; 649 a0 = x0; 650 a1 = x1; 651 a2 = x2; 652 w0 = fn0 * pio2_3 - y0; 653 w1 = fn1 * pio2_3 - y1; 654 w2 = fn2 * pio2_3 - y2; 655 x0 = a0 - w0; 656 x1 = a1 - w1; 657 x2 = a2 - w2; 658 y0 = ( a0 - x0 ) - w0; 659 y1 = ( a1 - x1 ) - w1; 660 y2 = ( a2 - x2 ) - w2; 661 a0 = x0; 662 a1 = x1; 663 a2 = x2; 664 w0 = fn0 * pio2_3t - y0; 665 w1 = fn1 * pio2_3t - y1; 666 w2 = fn2 * pio2_3t - y2; 667 x0 = a0 - w0; 668 x1 = a1 - w1; 669 x2 = a2 - w2; 670 y0 = ( a0 - x0 ) - w0; 671 y1 = ( a1 - x1 ) - w1; 672 y2 = ( a2 - x2 ) - w2; 673 xsb0 = HI(&x0); 674 i = ( ( xsb0 & ~0x80000000 ) - thresh[n0&1] ) >> 31; 675 xsb1 = HI(&x1); 676 i |= ( ( ( xsb1 & ~0x80000000 ) - thresh[n1&1] ) >> 30 ) & 2; 677 xsb2 = HI(&x2); 678 i |= ( ( ( xsb2 & ~0x80000000 ) - thresh[n2&1] ) >> 29 ) & 4; 679 switch ( i ) 680 { 681 double t0, t1, t2, z0, z1, z2; 682 unsigned j0, j1, j2; 683 684 case 0: 685 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 686 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 687 j2 = ( xsb2 + 0x4000 ) & 0xffff8000; 688 HI(&t0) = j0; 689 HI(&t1) = j1; 690 HI(&t2) = j2; 691 LO(&t0) = 0; 692 LO(&t1) = 0; 693 LO(&t2) = 0; 694 x0 = ( x0 - t0 ) + y0; 695 x1 = ( x1 - t1 ) + y1; 696 x2 = ( x2 - t2 ) + y2; 697 z0 = x0 * x0; 698 z1 = x1 * x1; 699 z2 = x2 * x2; 700 t0 = z0 * ( qq1 + z0 * qq2 ); 701 t1 = z1 * ( qq1 + z1 * qq2 ); 702 t2 = z2 * ( qq1 + z2 * qq2 ); 703 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 704 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 705 w2 = x2 * ( one + z2 * ( pp1 + z2 * pp2 ) ); 706 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 707 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 708 j2 = ( ( ( j2 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 709 xsb0 = ( xsb0 >> 30 ) & 2; 710 xsb1 = ( xsb1 >> 30 ) & 2; 711 xsb2 = ( xsb2 >> 30 ) & 2; 712 n0 ^= ( xsb0 & ~( n0 << 1 ) ); 713 n1 ^= ( xsb1 & ~( n1 << 1 ) ); 714 n2 ^= ( xsb2 & ~( n2 << 1 ) ); 715 xsb0 |= 1; 716 xsb1 |= 1; 717 xsb2 |= 1; 718 a0 = __vlibm_TBL_sincos_hi[j0+n0]; 719 a1 = __vlibm_TBL_sincos_hi[j1+n1]; 720 a2 = __vlibm_TBL_sincos_hi[j2+n2]; 721 t0 = ( __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+n0]; 722 t1 = ( __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+n1]; 723 t2 = ( __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2 * t2 ) + __vlibm_TBL_sincos_lo[j2+n2]; 724 *py0 = ( a0 + t0 ); 725 *py1 = ( a1 + t1 ); 726 *py2 = ( a2 + t2 ); 727 break; 728 729 case 1: 730 j0 = n0 & 1; 731 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 732 j2 = ( xsb2 + 0x4000 ) & 0xffff8000; 733 HI(&t1) = j1; 734 HI(&t2) = j2; 735 LO(&t1) = 0; 736 LO(&t2) = 0; 737 x0_or_one[0] = x0; 738 x0_or_one[2] = -x0; 739 y0_or_zero[0] = y0; 740 y0_or_zero[2] = -y0; 741 x1 = ( x1 - t1 ) + y1; 742 x2 = ( x2 - t2 ) + y2; 743 z0 = x0 * x0; 744 z1 = x1 * x1; 745 z2 = x2 * x2; 746 t0 = z0 * ( poly3[j0] + z0 * poly4[j0] ); 747 t1 = z1 * ( qq1 + z1 * qq2 ); 748 t2 = z2 * ( qq1 + z2 * qq2 ); 749 t0 = z0 * ( poly1[j0] + z0 * ( poly2[j0] + t0 ) ); 750 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 751 w2 = x2 * ( one + z2 * ( pp1 + z2 * pp2 ) ); 752 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 753 j2 = ( ( ( j2 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 754 xsb1 = ( xsb1 >> 30 ) & 2; 755 xsb2 = ( xsb2 >> 30 ) & 2; 756 n1 ^= ( xsb1 & ~( n1 << 1 ) ); 757 n2 ^= ( xsb2 & ~( n2 << 1 ) ); 758 xsb1 |= 1; 759 xsb2 |= 1; 760 a1 = __vlibm_TBL_sincos_hi[j1+n1]; 761 a2 = __vlibm_TBL_sincos_hi[j2+n2]; 762 t0 = x0_or_one[n0] + ( y0_or_zero[n0] + x0_or_one[n0] * t0 ); 763 t1 = ( __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+n1]; 764 t2 = ( __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2 * t2 ) + __vlibm_TBL_sincos_lo[j2+n2]; 765 *py0 = t0; 766 *py1 = ( a1 + t1 ); 767 *py2 = ( a2 + t2 ); 768 break; 769 770 case 2: 771 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 772 j1 = n1 & 1; 773 j2 = ( xsb2 + 0x4000 ) & 0xffff8000; 774 HI(&t0) = j0; 775 HI(&t2) = j2; 776 LO(&t0) = 0; 777 LO(&t2) = 0; 778 x1_or_one[0] = x1; 779 x1_or_one[2] = -x1; 780 x0 = ( x0 - t0 ) + y0; 781 y1_or_zero[0] = y1; 782 y1_or_zero[2] = -y1; 783 x2 = ( x2 - t2 ) + y2; 784 z0 = x0 * x0; 785 z1 = x1 * x1; 786 z2 = x2 * x2; 787 t0 = z0 * ( qq1 + z0 * qq2 ); 788 t1 = z1 * ( poly3[j1] + z1 * poly4[j1] ); 789 t2 = z2 * ( qq1 + z2 * qq2 ); 790 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 791 t1 = z1 * ( poly1[j1] + z1 * ( poly2[j1] + t1 ) ); 792 w2 = x2 * ( one + z2 * ( pp1 + z2 * pp2 ) ); 793 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 794 j2 = ( ( ( j2 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 795 xsb0 = ( xsb0 >> 30 ) & 2; 796 xsb2 = ( xsb2 >> 30 ) & 2; 797 n0 ^= ( xsb0 & ~( n0 << 1 ) ); 798 n2 ^= ( xsb2 & ~( n2 << 1 ) ); 799 xsb0 |= 1; 800 xsb2 |= 1; 801 a0 = __vlibm_TBL_sincos_hi[j0+n0]; 802 a2 = __vlibm_TBL_sincos_hi[j2+n2]; 803 t0 = ( __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+n0]; 804 t1 = x1_or_one[n1] + ( y1_or_zero[n1] + x1_or_one[n1] * t1 ); 805 t2 = ( __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2 * t2 ) + __vlibm_TBL_sincos_lo[j2+n2]; 806 *py0 = ( a0 + t0 ); 807 *py1 = t1; 808 *py2 = ( a2 + t2 ); 809 break; 810 811 case 3: 812 j0 = n0 & 1; 813 j1 = n1 & 1; 814 j2 = ( xsb2 + 0x4000 ) & 0xffff8000; 815 HI(&t2) = j2; 816 LO(&t2) = 0; 817 x0_or_one[0] = x0; 818 x0_or_one[2] = -x0; 819 x1_or_one[0] = x1; 820 x1_or_one[2] = -x1; 821 y0_or_zero[0] = y0; 822 y0_or_zero[2] = -y0; 823 y1_or_zero[0] = y1; 824 y1_or_zero[2] = -y1; 825 x2 = ( x2 - t2 ) + y2; 826 z0 = x0 * x0; 827 z1 = x1 * x1; 828 z2 = x2 * x2; 829 t0 = z0 * ( poly3[j0] + z0 * poly4[j0] ); 830 t1 = z1 * ( poly3[j1] + z1 * poly4[j1] ); 831 t2 = z2 * ( qq1 + z2 * qq2 ); 832 t0 = z0 * ( poly1[j0] + z0 * ( poly2[j0] + t0 ) ); 833 t1 = z1 * ( poly1[j1] + z1 * ( poly2[j1] + t1 ) ); 834 w2 = x2 * ( one + z2 * ( pp1 + z2 * pp2 ) ); 835 j2 = ( ( ( j2 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 836 xsb2 = ( xsb2 >> 30 ) & 2; 837 n2 ^= ( xsb2 & ~( n2 << 1 ) ); 838 xsb2 |= 1; 839 a2 = __vlibm_TBL_sincos_hi[j2+n2]; 840 t0 = x0_or_one[n0] + ( y0_or_zero[n0] + x0_or_one[n0] * t0 ); 841 t1 = x1_or_one[n1] + ( y1_or_zero[n1] + x1_or_one[n1] * t1 ); 842 t2 = ( __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2 * t2 ) + __vlibm_TBL_sincos_lo[j2+n2]; 843 *py0 = t0; 844 *py1 = t1; 845 *py2 = ( a2 + t2 ); 846 break; 847 848 case 4: 849 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 850 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 851 j2 = n2 & 1; 852 HI(&t0) = j0; 853 HI(&t1) = j1; 854 LO(&t0) = 0; 855 LO(&t1) = 0; 856 x2_or_one[0] = x2; 857 x2_or_one[2] = -x2; 858 x0 = ( x0 - t0 ) + y0; 859 x1 = ( x1 - t1 ) + y1; 860 y2_or_zero[0] = y2; 861 y2_or_zero[2] = -y2; 862 z0 = x0 * x0; 863 z1 = x1 * x1; 864 z2 = x2 * x2; 865 t0 = z0 * ( qq1 + z0 * qq2 ); 866 t1 = z1 * ( qq1 + z1 * qq2 ); 867 t2 = z2 * ( poly3[j2] + z2 * poly4[j2] ); 868 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 869 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 870 t2 = z2 * ( poly1[j2] + z2 * ( poly2[j2] + t2 ) ); 871 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 872 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 873 xsb0 = ( xsb0 >> 30 ) & 2; 874 xsb1 = ( xsb1 >> 30 ) & 2; 875 n0 ^= ( xsb0 & ~( n0 << 1 ) ); 876 n1 ^= ( xsb1 & ~( n1 << 1 ) ); 877 xsb0 |= 1; 878 xsb1 |= 1; 879 a0 = __vlibm_TBL_sincos_hi[j0+n0]; 880 a1 = __vlibm_TBL_sincos_hi[j1+n1]; 881 t0 = ( __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+n0]; 882 t1 = ( __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+n1]; 883 t2 = x2_or_one[n2] + ( y2_or_zero[n2] + x2_or_one[n2] * t2 ); 884 *py0 = ( a0 + t0 ); 885 *py1 = ( a1 + t1 ); 886 *py2 = t2; 887 break; 888 889 case 5: 890 j0 = n0 & 1; 891 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 892 j2 = n2 & 1; 893 HI(&t1) = j1; 894 LO(&t1) = 0; 895 x0_or_one[0] = x0; 896 x0_or_one[2] = -x0; 897 x2_or_one[0] = x2; 898 x2_or_one[2] = -x2; 899 y0_or_zero[0] = y0; 900 y0_or_zero[2] = -y0; 901 x1 = ( x1 - t1 ) + y1; 902 y2_or_zero[0] = y2; 903 y2_or_zero[2] = -y2; 904 z0 = x0 * x0; 905 z1 = x1 * x1; 906 z2 = x2 * x2; 907 t0 = z0 * ( poly3[j0] + z0 * poly4[j0] ); 908 t1 = z1 * ( qq1 + z1 * qq2 ); 909 t2 = z2 * ( poly3[j2] + z2 * poly4[j2] ); 910 t0 = z0 * ( poly1[j0] + z0 * ( poly2[j0] + t0 ) ); 911 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 912 t2 = z2 * ( poly1[j2] + z2 * ( poly2[j2] + t2 ) ); 913 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 914 xsb1 = ( xsb1 >> 30 ) & 2; 915 n1 ^= ( xsb1 & ~( n1 << 1 ) ); 916 xsb1 |= 1; 917 a1 = __vlibm_TBL_sincos_hi[j1+n1]; 918 t0 = x0_or_one[n0] + ( y0_or_zero[n0] + x0_or_one[n0] * t0 ); 919 t1 = ( __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+n1]; 920 t2 = x2_or_one[n2] + ( y2_or_zero[n2] + x2_or_one[n2] * t2 ); 921 *py0 = t0; 922 *py1 = ( a1 + t1 ); 923 *py2 = t2; 924 break; 925 926 case 6: 927 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 928 j1 = n1 & 1; 929 j2 = n2 & 1; 930 HI(&t0) = j0; 931 LO(&t0) = 0; 932 x1_or_one[0] = x1; 933 x1_or_one[2] = -x1; 934 x2_or_one[0] = x2; 935 x2_or_one[2] = -x2; 936 x0 = ( x0 - t0 ) + y0; 937 y1_or_zero[0] = y1; 938 y1_or_zero[2] = -y1; 939 y2_or_zero[0] = y2; 940 y2_or_zero[2] = -y2; 941 z0 = x0 * x0; 942 z1 = x1 * x1; 943 z2 = x2 * x2; 944 t0 = z0 * ( qq1 + z0 * qq2 ); 945 t1 = z1 * ( poly3[j1] + z1 * poly4[j1] ); 946 t2 = z2 * ( poly3[j2] + z2 * poly4[j2] ); 947 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 948 t1 = z1 * ( poly1[j1] + z1 * ( poly2[j1] + t1 ) ); 949 t2 = z2 * ( poly1[j2] + z2 * ( poly2[j2] + t2 ) ); 950 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 951 xsb0 = ( xsb0 >> 30 ) & 2; 952 n0 ^= ( xsb0 & ~( n0 << 1 ) ); 953 xsb0 |= 1; 954 a0 = __vlibm_TBL_sincos_hi[j0+n0]; 955 t0 = ( __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+n0]; 956 t1 = x1_or_one[n1] + ( y1_or_zero[n1] + x1_or_one[n1] * t1 ); 957 t2 = x2_or_one[n2] + ( y2_or_zero[n2] + x2_or_one[n2] * t2 ); 958 *py0 = ( a0 + t0 ); 959 *py1 = t1; 960 *py2 = t2; 961 break; 962 963 case 7: 964 j0 = n0 & 1; 965 j1 = n1 & 1; 966 j2 = n2 & 1; 967 x0_or_one[0] = x0; 968 x0_or_one[2] = -x0; 969 x1_or_one[0] = x1; 970 x1_or_one[2] = -x1; 971 x2_or_one[0] = x2; 972 x2_or_one[2] = -x2; 973 y0_or_zero[0] = y0; 974 y0_or_zero[2] = -y0; 975 y1_or_zero[0] = y1; 976 y1_or_zero[2] = -y1; 977 y2_or_zero[0] = y2; 978 y2_or_zero[2] = -y2; 979 z0 = x0 * x0; 980 z1 = x1 * x1; 981 z2 = x2 * x2; 982 t0 = z0 * ( poly3[j0] + z0 * poly4[j0] ); 983 t1 = z1 * ( poly3[j1] + z1 * poly4[j1] ); 984 t2 = z2 * ( poly3[j2] + z2 * poly4[j2] ); 985 t0 = z0 * ( poly1[j0] + z0 * ( poly2[j0] + t0 ) ); 986 t1 = z1 * ( poly1[j1] + z1 * ( poly2[j1] + t1 ) ); 987 t2 = z2 * ( poly1[j2] + z2 * ( poly2[j2] + t2 ) ); 988 t0 = x0_or_one[n0] + ( y0_or_zero[n0] + x0_or_one[n0] * t0 ); 989 t1 = x1_or_one[n1] + ( y1_or_zero[n1] + x1_or_one[n1] * t1 ); 990 t2 = x2_or_one[n2] + ( y2_or_zero[n2] + x2_or_one[n2] * t2 ); 991 *py0 = t0; 992 *py1 = t1; 993 *py2 = t2; 994 break; 995 } 996 997 x += stridex; 998 y += stridey; 999 i = 0; 1000 } while ( --n > 0 ); 1001 1002 if ( i > 0 ) 1003 { 1004 double fn0, fn1, a0, a1, w0, w1, y0, y1; 1005 double t0, t1, z0, z1; 1006 unsigned j0, j1; 1007 int n0, n1; 1008 1009 if ( i > 1 ) 1010 { 1011 n1 = (int) ( x1 * invpio2 + half[xsb1] ); 1012 fn1 = (double) n1; 1013 n1 &= 3; 1014 a1 = x1 - fn1 * pio2_1; 1015 w1 = fn1 * pio2_2; 1016 x1 = a1 - w1; 1017 y1 = ( a1 - x1 ) - w1; 1018 a1 = x1; 1019 w1 = fn1 * pio2_3 - y1; 1020 x1 = a1 - w1; 1021 y1 = ( a1 - x1 ) - w1; 1022 a1 = x1; 1023 w1 = fn1 * pio2_3t - y1; 1024 x1 = a1 - w1; 1025 y1 = ( a1 - x1 ) - w1; 1026 xsb1 = HI(&x1); 1027 if ( ( xsb1 & ~0x80000000 ) < thresh[n1&1] ) 1028 { 1029 j1 = n1 & 1; 1030 x1_or_one[0] = x1; 1031 x1_or_one[2] = -x1; 1032 y1_or_zero[0] = y1; 1033 y1_or_zero[2] = -y1; 1034 z1 = x1 * x1; 1035 t1 = z1 * ( poly3[j1] + z1 * poly4[j1] ); 1036 t1 = z1 * ( poly1[j1] + z1 * ( poly2[j1] + t1 ) ); 1037 t1 = x1_or_one[n1] + ( y1_or_zero[n1] + x1_or_one[n1] * t1 ); 1038 *py1 = t1; 1039 } 1040 else 1041 { 1042 j1 = ( xsb1 + 0x4000 ) & 0xffff8000; 1043 HI(&t1) = j1; 1044 LO(&t1) = 0; 1045 x1 = ( x1 - t1 ) + y1; 1046 z1 = x1 * x1; 1047 t1 = z1 * ( qq1 + z1 * qq2 ); 1048 w1 = x1 * ( one + z1 * ( pp1 + z1 * pp2 ) ); 1049 j1 = ( ( ( j1 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 1050 xsb1 = ( xsb1 >> 30 ) & 2; 1051 n1 ^= ( xsb1 & ~( n1 << 1 ) ); 1052 xsb1 |= 1; 1053 a1 = __vlibm_TBL_sincos_hi[j1+n1]; 1054 t1 = ( __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1 * t1 ) + __vlibm_TBL_sincos_lo[j1+n1]; 1055 *py1 = ( a1 + t1 ); 1056 } 1057 } 1058 n0 = (int) ( x0 * invpio2 + half[xsb0] ); 1059 fn0 = (double) n0; 1060 n0 &= 3; 1061 a0 = x0 - fn0 * pio2_1; 1062 w0 = fn0 * pio2_2; 1063 x0 = a0 - w0; 1064 y0 = ( a0 - x0 ) - w0; 1065 a0 = x0; 1066 w0 = fn0 * pio2_3 - y0; 1067 x0 = a0 - w0; 1068 y0 = ( a0 - x0 ) - w0; 1069 a0 = x0; 1070 w0 = fn0 * pio2_3t - y0; 1071 x0 = a0 - w0; 1072 y0 = ( a0 - x0 ) - w0; 1073 xsb0 = HI(&x0); 1074 if ( ( xsb0 & ~0x80000000 ) < thresh[n0&1] ) 1075 { 1076 j0 = n0 & 1; 1077 x0_or_one[0] = x0; 1078 x0_or_one[2] = -x0; 1079 y0_or_zero[0] = y0; 1080 y0_or_zero[2] = -y0; 1081 z0 = x0 * x0; 1082 t0 = z0 * ( poly3[j0] + z0 * poly4[j0] ); 1083 t0 = z0 * ( poly1[j0] + z0 * ( poly2[j0] + t0 ) ); 1084 t0 = x0_or_one[n0] + ( y0_or_zero[n0] + x0_or_one[n0] * t0 ); 1085 *py0 = t0; 1086 } 1087 else 1088 { 1089 j0 = ( xsb0 + 0x4000 ) & 0xffff8000; 1090 HI(&t0) = j0; 1091 LO(&t0) = 0; 1092 x0 = ( x0 - t0 ) + y0; 1093 z0 = x0 * x0; 1094 t0 = z0 * ( qq1 + z0 * qq2 ); 1095 w0 = x0 * ( one + z0 * ( pp1 + z0 * pp2 ) ); 1096 j0 = ( ( ( j0 & ~0x80000000 ) - 0x3fc40000 ) >> 13 ) & ~0x3; 1097 xsb0 = ( xsb0 >> 30 ) & 2; 1098 n0 ^= ( xsb0 & ~( n0 << 1 ) ); 1099 xsb0 |= 1; 1100 a0 = __vlibm_TBL_sincos_hi[j0+n0]; 1101 t0 = ( __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0 * t0 ) + __vlibm_TBL_sincos_lo[j0+n0]; 1102 *py0 = ( a0 + t0 ); 1103 } 1104 } 1105 1106 if ( biguns ) 1107 __vlibm_vsin_big( nsave, xsave, sxsave, ysave, sysave, 0x413921fb ); 1108 }