1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 /*
  26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27  * Use is subject to license terms.
  28  */
  29 
  30 #if defined(ELFOBJ)
  31 #pragma weak nearbyint = __nearbyint
  32 #endif
  33 
  34 /*
  35  * nearbyint(x) returns the nearest fp integer to x in the direction
  36  * corresponding to the current rounding direction without raising
  37  * the inexact exception.
  38  *
  39  * nearbyint(x) is x unchanged if x is +/-0 or +/-inf.  If x is NaN,
  40  * nearbyint(x) is also NaN.
  41  */
  42 
  43 #include "libm.h"
  44 #include "fenv_synonyms.h"
  45 #include <fenv.h>
  46 
  47 double
  48 __nearbyint(double x) {
  49         union {
  50                 unsigned i[2];
  51                 double d;
  52         } xx;
  53         unsigned hx, sx, i, frac;
  54         int rm, j;
  55 
  56         xx.d = x;
  57         sx = xx.i[HIWORD] & 0x80000000;
  58         hx = xx.i[HIWORD] & ~0x80000000;
  59 
  60         /* handle trivial cases */
  61         if (hx >= 0x43300000) {      /* x is nan, inf, or already integral */
  62                 if (hx >= 0x7ff00000)        /* x is inf or nan */
  63 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
  64                         return (hx >= 0x7ff80000 ? x : x + x);
  65                         /* assumes sparc-like QNaN */
  66 #else
  67                         return (x + x);
  68 #endif
  69                 return (x);
  70         } else if ((hx | xx.i[LOWORD]) == 0)    /* x is zero */
  71                 return (x);
  72 
  73         /* get the rounding mode */
  74         rm = fegetround();
  75 
  76         /* flip the sense of directed roundings if x is negative */
  77         if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD))
  78                 rm = (FE_UPWARD + FE_DOWNWARD) - rm;
  79 
  80         /* handle |x| < 1 */
  81         if (hx < 0x3ff00000) {
  82                 if (rm == FE_UPWARD || (rm == FE_TONEAREST &&
  83                         (hx >= 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD]))))
  84                         xx.i[HIWORD] = sx | 0x3ff00000;
  85                 else
  86                         xx.i[HIWORD] = sx;
  87                 xx.i[LOWORD] = 0;
  88                 return (xx.d);
  89         }
  90 
  91         /* round x at the integer bit */
  92         j = 0x433 - (hx >> 20);
  93         if (j >= 32) {
  94                 i = 1 << (j - 32);
  95                 frac = ((xx.i[HIWORD] << 1) << (63 - j)) |
  96                         (xx.i[LOWORD] >> (j - 32));
  97                 if (xx.i[LOWORD] & (i - 1))
  98                         frac |= 1;
  99                 if (!frac)
 100                         return (x);
 101                 xx.i[LOWORD] = 0;
 102                 xx.i[HIWORD] &= ~(i - 1);
 103                 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
 104                         ((frac > 0x80000000u) || ((frac == 0x80000000) &&
 105                         (xx.i[HIWORD] & i)))))
 106                         xx.i[HIWORD] += i;
 107         } else {
 108                 i = 1 << j;
 109                 frac = (xx.i[LOWORD] << 1) << (31 - j);
 110                 if (!frac)
 111                         return (x);
 112                 xx.i[LOWORD] &= ~(i - 1);
 113                 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
 114                         (frac > 0x80000000u || ((frac == 0x80000000) &&
 115                         (xx.i[LOWORD] & i))))) {
 116                         xx.i[LOWORD] += i;
 117                         if (xx.i[LOWORD] == 0)
 118                                 xx.i[HIWORD]++;
 119                 }
 120         }
 121         return (xx.d);
 122 }