
new/usr/src/head/complex.h 1

**
 4839 Thu Oct 9 19:48:51 2014
new/usr/src/head/complex.h
patching complex.h - https://www.illumos.org/issues/3880
patch01 - 693 import Sun Devpro Math Library
patching complex.h - https://www.illumos.org/issues/3880
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 */
24 /*
25 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 #ifndef _COMPLEX_H
30 #define _COMPLEX_H

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 /* #if !defined(__cplusplus) */

38 /*
39 * Compilation environments for Solaris must provide the _Imaginary datatype
40 * and the compiler intrinsics _Complex_I and _Imaginary_I
41 */
42 #if defined(__SUNPRO_C)
43 #define _Complex_I _Complex_I
44 #define _Imaginary_I _Imaginary_I
45 #else
46 #define _Complex_I 1.0fi
47 #define _Imaginary_I 1.0fi
48 #endif
49 #define complex _Complex
50 #define imaginary _Imaginary
51 #undef I
52 #define I _Imaginary_I

54 extern float cabsf(float complex);
55 extern float cargf(float complex);
56 extern float cimagf(float complex);
57 extern float crealf(float complex);
58 extern float complex cacosf(float complex);

new/usr/src/head/complex.h 2

59 extern float complex cacoshf(float complex);
60 extern float complex casinf(float complex);
61 extern float complex casinhf(float complex);
62 extern float complex catanf(float complex);
63 extern float complex catanhf(float complex);
64 extern float complex ccosf(float complex);
65 extern float complex ccoshf(float complex);
66 extern float complex cexpf(float complex);
67 extern float complex clogf(float complex);
68 extern float complex conjf(float complex);
69 extern float complex cpowf(float complex, float complex);
70 extern float complex cprojf(float complex);
71 extern float complex csinf(float complex);
72 extern float complex csinhf(float complex);
73 extern float complex csqrtf(float complex);
74 extern float complex ctanf(float complex);
75 extern float complex ctanhf(float complex);

77 extern double cabs(double complex);
78 extern double carg(double complex);
79 extern double cimag(double complex);
80 extern double creal(double complex);
81 extern double complex cacos(double complex);
82 extern double complex cacosh(double complex);
83 extern double complex casin(double complex);
84 extern double complex casinh(double complex);
85 extern double complex catan(double complex);
86 extern double complex catanh(double complex);
87 extern double complex ccos(double complex);
88 extern double complex ccosh(double complex);
89 extern double complex cexp(double complex);
90 #if defined(__PRAGMA_REDEFINE_EXTNAME)
91 #pragma redefine_extname clog __clog
92 #else
93 #undef clog
94 #define clog __clog
95 #endif
96 extern double complex clog(double complex);
97 extern double complex conj(double complex);
98 extern double complex cpow(double complex, double complex);
99 extern double complex cproj(double complex);
100 extern double complex csin(double complex);
101 extern double complex csinh(double complex);
102 extern double complex csqrt(double complex);
103 extern double complex ctan(double complex);
104 extern double complex ctanh(double complex);

106 extern long double cabsl(long double complex);
107 extern long double cargl(long double complex);
108 extern long double cimagl(long double complex);
109 extern long double creall(long double complex);
110 extern long double complex cacoshl(long double complex);
111 extern long double complex cacosl(long double complex);
112 extern long double complex casinhl(long double complex);
113 extern long double complex casinl(long double complex);
114 extern long double complex catanhl(long double complex);
115 extern long double complex catanl(long double complex);
116 extern long double complex ccoshl(long double complex);
117 extern long double complex ccosl(long double complex);
118 extern long double complex cexpl(long double complex);
119 extern long double complex clogl(long double complex);
120 extern long double complex conjl(long double complex);
121 extern long double complex cpowl(long double complex, long double complex);
122 extern long double complex cprojl(long double complex);
123 extern long double complex csinhl(long double complex);
124 extern long double complex csinl(long double complex);

new/usr/src/head/complex.h 3

125 extern long double complex csqrtl(long double complex);
126 extern long double complex ctanhl(long double complex);
127 extern long double complex ctanl(long double complex);

129 /* #endif */ /* !defined(__cplusplus) */
130 #ifdef __cplusplus
131 }
132 #endif

134 #endif /* _COMPLEX_H */

new/usr/src/head/floatingpoint.h 1

**
 6821 Thu Oct 9 19:48:51 2014
new/usr/src/head/floatingpoint.h
patching floatingpoint.h - https://www.illumos.org/issues/3853
patch01 - 693 import Sun Devpro Math Library
patching floatingpoint.h - https://www.illumos.org/issues/3853
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (C) 1989 AT&T */
22 /* All Rights Reserved */

24 /*
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 */
27 /*
28 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
30 */

32 #ifndef _FLOATINGPOINT_H
33 #define _FLOATINGPOINT_H

35 #ifdef __STDC__
36 #include <stdio_tag.h>
37 #endif
38 #include <sys/ieeefp.h>

40 #ifdef __cplusplus
41 extern "C" {
42 #endif

44 /*
45 * <floatingpoint.h> contains definitions for constants, types, variables,
46 * and functions for:
47 * IEEE floating-point arithmetic base conversion;
48 * IEEE floating-point arithmetic modes;
49 * IEEE floating-point arithmetic exception handling.
50 */

52 #ifndef __P
53 #ifdef __STDC__
54 #define __P(p) p
55 #else
56 #define __P(p) ()
57 #endif
58 #endif /* !defined(__P) */

new/usr/src/head/floatingpoint.h 2

60 #if defined(__STDC__) && !defined(_FILEDEFED)
61 #define _FILEDEFED
62 typedef __FILE FILE;
63 #endif

65 #define N_IEEE_EXCEPTION 5 /* Number of floating-point exceptions. */

67 typedef int sigfpe_code_type; /* Type of SIGFPE code. */

69 typedef void (*sigfpe_handler_type)(); /* Pointer to exception handler */

71 #define SIGFPE_DEFAULT (void (*)())0 /* default exception handling */
72 #define SIGFPE_IGNORE (void (*)())1 /* ignore this exception or code */
73 #define SIGFPE_ABORT (void (*)())2 /* force abort on exception */

75 extern sigfpe_handler_type sigfpe __P((sigfpe_code_type, sigfpe_handler_type));

77 /*
78 * Types for IEEE floating point.
79 */
80 typedef float single;

82 #ifndef _EXTENDED
83 #define _EXTENDED
84 typedef unsigned extended[3];
85 #endif

87 typedef long double quadruple; /* Quadruple-precision type. */

89 typedef unsigned fp_exception_field_type;
90 /*
91 * A field containing fp_exceptions OR’ed
92 * together.
93 */
94 /*
95 * Definitions for base conversion.
96 */
97 #define DECIMAL_STRING_LENGTH 512 /* Size of buffer in decimal_record. */

99 typedef char decimal_string[DECIMAL_STRING_LENGTH];
100 /* Decimal significand. */

102 typedef struct {
103 enum fp_class_type fpclass;
104 int sign;
105 int exponent;
106 decimal_string ds; /* Significand - each char contains an ascii */
107 /* digit, except the string-terminating */
108 /* ascii null. */
109 int more; /* On conversion from decimal to binary, != 0 */
110 /* indicates more non-zero digits following */
111 /* ds. */
112 int ndigits; /* On fixed_form conversion from binary to */
113 /* decimal, contains number of digits */
114 /* required for ds. */
115 } decimal_record;

117 enum decimal_form {
118 fixed_form, /* Fortran F format: ndigits specifies number */
119 /* of digits after point; if negative, */
120 /* specifies rounding to occur to left of */
121 /* point. */
122 floating_form /* Fortran E format: ndigits specifies number */
123 /* of significant digits. */
124 };

new/usr/src/head/floatingpoint.h 3

126 typedef struct {
127 enum fp_direction_type rd;
128 /* Rounding direction. */
129 enum decimal_form df; /* Format for conversion from binary to */
130 /* decimal. */
131 int ndigits; /* Number of digits for conversion. */
132 } decimal_mode;

134 enum decimal_string_form { /* Valid decimal number string formats. */
135 invalid_form, /* Not a valid decimal string format. */
136 whitespace_form, /* All white space - valid in Fortran! */
137 fixed_int_form, /* <digs> */
138 fixed_intdot_form, /* <digs>. */
139 fixed_dotfrac_form, /* .<digs> */
140 fixed_intdotfrac_form, /* <digs>.<frac> */
141 floating_int_form, /* <digs><exp> */
142 floating_intdot_form, /* <digs>.<exp> */
143 floating_dotfrac_form, /* .<digs><exp> */
144 floating_intdotfrac_form, /* <digs>.<digs><exp> */
145 inf_form, /* inf */
146 infinity_form, /* infinity */
147 nan_form, /* nan */
148 nanstring_form /* nan(string) */
149 };

151 extern void single_to_decimal __P((single *, decimal_mode *, decimal_record *,
152 fp_exception_field_type *));
153 extern void double_to_decimal __P((double *, decimal_mode *, decimal_record *,
154 fp_exception_field_type *));
155 extern void extended_to_decimal __P((extended *, decimal_mode *,
156 decimal_record *, fp_exception_field_type *));
157 extern void quadruple_to_decimal __P((quadruple *, decimal_mode *,
158 decimal_record *, fp_exception_field_type *));

160 extern void decimal_to_single __P((single *, decimal_mode *, decimal_record *,
161 fp_exception_field_type *));
162 extern void decimal_to_double __P((double *, decimal_mode *, decimal_record *,
163 fp_exception_field_type *));
164 extern void decimal_to_extended __P((extended *, decimal_mode *,
165 decimal_record *, fp_exception_field_type *));
166 extern void decimal_to_quadruple __P((quadruple *, decimal_mode *,
167 decimal_record *, fp_exception_field_type *));

169 extern void string_to_decimal __P((char **, int, int, decimal_record *,
170 enum decimal_string_form *, char **));
171 extern void func_to_decimal __P((char **, int, int, decimal_record *,
172 enum decimal_string_form *, char **,
173 int (*)(void), int *, int (*)(int)));
174 extern void file_to_decimal __P((char **, int, int, decimal_record *,
175 enum decimal_string_form *, char **,
176 FILE *, int *));

178 extern char *seconvert __P((single *, int, int *, int *, char *));
179 extern char *sfconvert __P((single *, int, int *, int *, char *));
180 extern char *sgconvert __P((single *, int, int, char *));
181 extern char *econvert __P((double, int, int *, int *, char *));
182 extern char *fconvert __P((double, int, int *, int *, char *));
183 extern char *gconvert __P((double, int, int, char *));
184 extern char *qeconvert __P((quadruple *, int, int *, int *, char *));
185 extern char *qfconvert __P((quadruple *, int, int *, int *, char *));
186 extern char *qgconvert __P((quadruple *, int, int, char *));

188 extern char *ecvt __P((double, int, int *, int *));
189 extern char *fcvt __P((double, int, int *, int *));
190 extern char *gcvt __P((double, int, char *));

new/usr/src/head/floatingpoint.h 4

192 #if __cplusplus >= 199711L
193 namespace std {
194 #endif
195 /*
196 * ANSI C Standard says the following entry points should be
197 * prototyped in <stdlib.h>. They are now, but weren’t before.
198 */
199 extern double atof __P((const char *));
200 extern double strtod __P((const char *, char **));
201 #if __cplusplus >= 199711L
202 }

204 using std::atof;
205 using std::strtod;
206 #endif /* end of namespace std */

208 #ifdef __cplusplus
209 }
210 #endif

212 #endif /* _FLOATINGPOINT_H */

new/usr/src/lib/Makefile 1

**
 13589 Thu Oct 9 19:48:51 2014
new/usr/src/lib/Makefile
remove noop change in lib/Makefile
patch01 - 693 import Sun Devpro Math Library
remove noop change in lib/Makefile
patch01 - 693 import Sun Devpro Math Library
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 # Copyright (c) 2013 Gary Mills

28 include ../Makefile.master

30 # Note that libcurses installs commands along with its library.
31 # This is a minor bug which probably should be fixed.
32 # Note also that a few extra libraries are kept in cmd source.
33 #
34 # Certain libraries are linked with, hence depend on, other libraries.
35 #
36 # Although we have historically used .WAIT to express dependencies, it
37 # reduces the amount of parallelism and thus lengthens the time it
38 # takes to build the libraries. Thus, we now require that any new
39 # libraries explicitly call out their dependencies. Eventually, all
40 # the library dependencies will be called out explicitly. See
41 # "Library interdependencies" near the end of this file.
42 #
43 # Aside from explicit dependencies (and legacy .WAITs), all libraries
44 # are built in parallel.
45 #
46 .PARALLEL:

48 SUBDIRS= \
49 common .WAIT \
50 ../cmd/sgs/libconv \
51 ../cmd/sgs/libdl .WAIT

53 SUBDIRS += \
54 libc .WAIT \
55 ../cmd/sgs/libelf .WAIT \
56 c_synonyms \
57 libmd \
58 libmd5 \

new/usr/src/lib/Makefile 2

59 librsm \
60 libmp .WAIT \
61 libnsl \
62 libsecdb .WAIT \
63 librpcsvc \
64 libsocket .WAIT \
65 libsctp \
66 libsip \
67 libcommputil \
68 libresolv \
69 libresolv2 .WAIT \
70 libw .WAIT \
71 libintl .WAIT \
72 ../cmd/sgs/librtld_db \
73 libaio \
74 libast \
75 libdll \
76 libcmd \
77 libshell \
78 libsum \
79 librt \
80 libadm \
81 libctf \
82 libdtrace \
83 libdtrace_jni \
84 libcurses \
85 libtermcap \
86 libgen \
87 libgss \
88 libpam \
89 libuuid \
90 libthread \
91 libpthread .WAIT \
92 libslp \
93 libbsdmalloc \
94 libdoor \
95 libdevinfo \
96 libdladm \
97 libdlpi \
98 libeti \
99 libcrypt \
100 libdns_sd \
101 libefi \
102 libfstyp \
103 libwanboot \
104 libwanbootutil \
105 libcryptoutil \
106 libinetutil \
107 libipadm \
108 libipd \
109 libipmp \
110 libiscsit \
111 libkmf \
112 libkstat \
113 libkvm \
114 liblm \
115 libmalloc \
116 libmapmalloc \
117 libmtmalloc \
118 libnls \
119 libnwam \
120 libsmbios \
121 libtecla \
122 libumem \
123 libnvpair .WAIT \
124 libexacct \

new/usr/src/lib/Makefile 3

125 libsasl \
126 libldap5 \
127 libsldap .WAIT \
128 libbsm \
129 libsys \
130 libsysevent \
131 libnisdb \
132 libpool \
133 libpp \
134 libproc \
135 libproject \
136 libsendfile \
137 nametoaddr \
138 ncad_addr \
139 hbaapi \
140 smhba \
141 sun_fc \
142 sun_sas \
143 gss_mechs/mech_krb5 .WAIT \
144 libkrb5 .WAIT \
145 krb5 .WAIT \
146 libsmbfs \
147 libfcoe \
148 libsrpt \
149 libstmf \
150 libstmfproxy \
151 libnsctl \
152 libunistat \
153 libdscfg \
154 librdc \
155 libinstzones \
156 libpkg \
157 libpcidb \
158 libm1 \
159 libm \
160 libmvec
157 libpcidb

163 SUBDIRS += \
164 passwdutil \
165 pam_modules \
166 crypt_modules \
167 libadt_jni \
168 abi \
169 auditd_plugins \
170 libvolmgt \
171 libdevice \
172 libdevid \
173 libdhcpsvc \
174 libc_db \
175 libndmp \
176 libsec \
177 libtnfprobe \
178 libtnf \
179 libtnfctl \
180 libdhcpagent \
181 libdhcpdu \
182 libdhcputil \
183 libxnet \
184 libipsecutil \
185 nsswitch \
186 print \
187 libuutil \
188 libscf \
189 libinetsvc \

new/usr/src/lib/Makefile 4

190 librestart \
191 libsched \
192 libelfsign \
193 pkcs11 .WAIT \
194 libpctx .WAIT \
195 libcpc \
196 getloginx \
197 watchmalloc \
198 extendedFILE \
199 madv \
200 mpss \
201 libdisasm \
202 libwrap \
203 libxcurses \
204 libxcurses2 \
205 libbrand .WAIT \
206 libzonecfg \
207 libzoneinfo \
208 libzonestat \
209 libtsnet \
210 libtsol \
211 gss_mechs/mech_spnego \
212 gss_mechs/mech_dummy \
213 gss_mechs/mech_dh \
214 rpcsec_gss \
215 libraidcfg .WAIT \
216 librcm .WAIT \
217 libcfgadm .WAIT \
218 libpicl .WAIT \
219 libpicltree .WAIT \
220 raidcfg_plugins \
221 cfgadm_plugins \
222 libmail \
223 lvm \
224 libsmedia \
225 libipp \
226 libdiskmgt \
227 liblgrp \
228 libfsmgt \
229 fm \
230 libavl \
231 libcmdutils \
232 libcontract \
233 ../cmd/sendmail/libmilter \
234 sasl_plugins \
235 udapl \
236 libzpool \
237 libzfs_core \
238 libzfs \
239 libbe \
240 pylibbe \
241 libzfs_jni \
242 pyzfs \
243 pysolaris \
244 libmapid \
245 brand \
246 policykit \
247 hal \
248 libshare \
249 libsqlite \
250 libidmap \
251 libadutils \
252 libipmi \
253 libexacct/demo \
254 libvrrpadm \
255 libvscan \

new/usr/src/lib/Makefile 5

256 libgrubmgmt \
257 smbsrv \
258 libilb \
259 scsi \
260 libima \
261 libsun_ima \
262 mpapi \
263 librstp \
264 libreparse \
265 libhotplug \
266 libfruutils .WAIT \
267 libfru \
268 $($(MACH)_SUBDIRS)

270 i386_SUBDIRS= \
271 libfdisk \
272 libsaveargs

274 sparc_SUBDIRS= .WAIT \
275 efcode \
276 libds \
277 libdscp \
278 libprtdiag .WAIT \
279 libprtdiag_psr \
280 libpri \
281 librsc \
282 storage \
283 libpcp \
284 libtsalarm \
285 libv12n

287 FM_sparc_DEPLIBS= libpri

289 fm: \
290 libexacct \
291 libipmi \
292 libzfs \
293 scsi \
294 $(FM_$(MACH)_DEPLIBS)

296 #
297 # Create a special version of $(SUBDIRS) with no .WAIT’s, for use with the
298 # clean and clobber targets (for more information, see those targets, below).
299 #
300 NOWAIT_SUBDIRS= $(SUBDIRS:.WAIT=)

302 DCSUBDIRS = \
303 lvm

305 MSGSUBDIRS= \
306 abi \
307 auditd_plugins \
308 brand \
309 cfgadm_plugins \
310 gss_mechs/mech_dh \
311 gss_mechs/mech_krb5 \
312 krb5 \
313 libast \
314 libbsm \
315 libc \
316 libcfgadm \
317 libcmd \
318 libcontract \
319 libcurses \
320 libdhcpsvc \
321 libdhcputil \

new/usr/src/lib/Makefile 6

322 libipsecutil \
323 libdiskmgt \
324 libdladm \
325 libdll \
326 libgrubmgmt \
327 libgss \
328 libidmap \
329 libipmp \
330 libilb \
331 libinetutil \
332 libinstzones \
333 libipadm \
334 libnsl \
335 libnwam \
336 libpam \
337 libpicl \
338 libpool \
339 libpkg \
340 libpp \
341 libscf \
342 libsasl \
343 libldap5 \
344 libsecdb \
345 libshare \
346 libshell \
347 libsldap \
348 libslp \
349 libsmbfs \
350 libsmedia \
351 libsum \
352 libtsol \
353 libuutil \
354 libvrrpadm \
355 libvscan \
356 libwanboot \
357 libwanbootutil \
358 libzfs \
359 libzonecfg \
360 lvm \
361 madv \
362 mpss \
363 pam_modules \
364 pyzfs \
365 pysolaris \
366 rpcsec_gss \
367 libreparse
368 MSGSUBDIRS += \
369 $($(MACH)_MSGSUBDIRS)

371 sparc_MSGSUBDIRS= \
372 libprtdiag \
373 libprtdiag_psr

375 i386_MSGSUBDIRS= libfdisk

377 HDRSUBDIRS= \
378 auditd_plugins \
379 libast \
380 libbrand \
381 libbsm \
382 libc \
383 libcmd \
384 libcmdutils \
385 libcommputil \
386 libcontract \
387 libcpc \

new/usr/src/lib/Makefile 7

388 libctf \
389 libcurses \
390 libtermcap \
391 libcryptoutil \
392 libdevice \
393 libdevid \
394 libdevinfo \
395 libdiskmgt \
396 libdladm \
397 libdll \
398 libdlpi \
399 libdhcpagent \
400 libdhcpsvc \
401 libdhcputil \
402 libdisasm \
403 libdns_sd \
404 libdscfg \
405 libdtrace \
406 libdtrace_jni \
407 libelfsign \
408 libeti \
409 libfru \
410 libfstyp \
411 libgen \
412 libipadm \
413 libipd \
414 libipsecutil \
415 libinetsvc \
416 libinetutil \
417 libinstzones \
418 libipmi \
419 libipmp \
420 libipp \
421 libiscsit \
422 libkstat \
423 libkvm \
424 libmail \
425 libmd \
426 libmtmalloc \
427 libndmp \
428 libnvpair \
429 libnsctl \
430 libnsl \
431 libnwam \
432 libpam \
433 libpcidb \
434 libpctx \
435 libpicl \
436 libpicltree \
437 libpool \
438 libpp \
439 libproc \
440 libraidcfg \
441 librcm \
442 librdc \
443 libscf \
444 libsip \
445 libsmbios \
446 librestart \
447 librpcsvc \
448 librsm \
449 librstp \
450 libsasl \
451 libsec \
452 libshell \
453 libslp \

new/usr/src/lib/Makefile 8

454 libsmedia \
455 libsocket \
456 libsqlite \
457 libfcoe \
458 libsrpt \
459 libstmf \
460 libstmfproxy \
461 libsum \
462 libsysevent \
463 libtecla \
464 libtnf \
465 libtnfctl \
466 libtnfprobe \
467 libtsnet \
468 libtsol \
469 libvrrpadm \
470 libvolmgt \
471 libumem \
472 libunistat \
473 libuutil \
474 libwanboot \
475 libwanbootutil \
476 libwrap \
477 libxcurses2 \
478 libzfs \
479 libzfs_core \
480 libzfs_jni \
481 libzoneinfo \
482 libzonestat \
483 hal \
484 policykit \
485 lvm \
486 pkcs11 \
487 passwdutil \
488 ../cmd/sendmail/libmilter \
489 fm \
490 udapl \
491 libmapid \
492 libkrb5 \
493 libsmbfs \
494 libshare \
495 libidmap \
496 libvscan \
497 libgrubmgmt \
498 smbsrv \
499 libilb \
500 scsi \
501 hbaapi \
502 smhba \
503 libima \
504 libsun_ima \
505 mpapi \
506 libreparse \
507 $($(MACH)_HDRSUBDIRS)

509 i386_HDRSUBDIRS= \
510 libfdisk \
511 libsaveargs

513 sparc_HDRSUBDIRS= \
514 libds \
515 libdscp \
516 libpri \
517 libv12n \
518 storage

new/usr/src/lib/Makefile 9

520 all := TARGET= all
521 check := TARGET= check
522 clean := TARGET= clean
523 clobber := TARGET= clobber
524 install := TARGET= install
525 install_h := TARGET= install_h
526 lint := TARGET= lint
527 _dc := TARGET= _dc
528 _msg := TARGET= _msg

530 .KEEP_STATE:

532 #
533 # For the all and install targets, we clearly must respect library
534 # dependencies so that the libraries link correctly. However, for
535 # the remaining targets (check, clean, clobber, install_h, lint, _dc
536 # and _msg), libraries do not have any dependencies on one another
537 # and thus respecting dependencies just slows down the build.
538 # As such, for these rules, we use pattern replacement to explicitly
539 # avoid triggering the dependency information. Note that for clean,
540 # clobber and lint, we must use $(NOWAIT_SUBDIRS) rather than
541 # $(SUBDIRS), to prevent ‘.WAIT’ from expanding to ‘.WAIT-nodepend’.
542 #

544 all: $(SUBDIRS)

546 install: $(SUBDIRS) .WAIT install_extra

548 # extra libraries kept in other source areas
549 install_extra:
550 @cd ../cmd/sgs; pwd; $(MAKE) install_lib
551 @pwd

553 clean clobber lint: $(NOWAIT_SUBDIRS:%=%-nodepend)

555 install_h check: $(HDRSUBDIRS:%=%-nodepend)

557 _msg: $(MSGSUBDIRS:%=%-nodepend) .WAIT _dc

559 _dc: $(DCSUBDIRS:%=%-nodepend)

561 #
562 # Library interdependencies are called out explicitly here
563 #
564 auditd_plugins: libbsm libnsl libsecdb
565 gss_mechs/mech_krb5: libgss libnsl libsocket libresolv pkcs11
566 libadt_jni: libbsm
567 libast: libsocket libm
563 libast: libsocket
568 libadutils: libldap5 libresolv libsocket libnsl
569 nsswitch: libadutils libidmap
570 libbe: libzfs
571 libbsm: libtsol
572 libcmd: libsum libast libsocket libnsl
573 libcmdutils: libavl
574 libcontract: libnvpair
575 libdevid: libdevinfo
576 libdevinfo: libnvpair libsec
577 libdhcpagent: libsocket libdhcputil libuuid libdlpi libcontract
578 libdhcpsvc: libinetutil
579 libdhcputil: libnsl libgen libinetutil libdlpi
580 libdladm: libdevinfo libinetutil libsocket libscf librcm libnvpair \
581 libexacct libnsl libkstat libcurses
582 libdll: libast
583 libdlpi: libinetutil libdladm
584 libds: libsysevent

new/usr/src/lib/Makefile 10

585 libdscfg: libnsctl libunistat libsocket libnsl
586 libdtrace: libproc libgen libctf
587 libdtrace_jni: libuutil libdtrace
588 libefi: libuuid
589 libfstyp: libnvpair
590 libelfsign: libcryptoutil libkmf
591 libidmap: libadutils libldap5 libavl libsldap libuutil
592 libipadm: libnsl libinetutil libsocket libdlpi libnvpair libdhcpagent \
593 libdladm libsecdb
594 libiscsit: libc libnvpair libstmf libuuid libnsl
595 libkmf: libcryptoutil pkcs11
596 libm: libc
597 libm1: libc libm
598 libmvec: libc libm
599 libnsl: libmd5
600 libmapid: libresolv
601 librdc: libsocket libnsl libnsctl libunistat libdscfg
602 libuuid: libdlpi
603 libinetutil: libsocket
604 libipsecutil: libtecla libsocket
605 libinstzones: libzonecfg libcontract
606 libpkg: libwanboot libscf libadm
607 libnwam: libscf
608 libsecdb: libnsl
609 libsasl: libgss libsocket pkcs11 libmd
610 sasl_plugins: pkcs11 libgss libsocket libsasl
611 libsctp: libsocket
612 libshell: libast libcmd libdll libsocket libsecdb libm
605 libshell: libast libcmd libdll libsocket libsecdb
613 libsip: libmd5
614 libsmbfs: libcmdutils libsocket libnsl libkrb5
615 libsocket: libnsl
616 libstmfproxy: libstmf libsocket libnsl libpthread
617 libsum: libast
618 libsysevent: libsecdb
619 libldap5: libsasl libsocket libnsl libmd
620 libsldap: libldap5 libtsol libnsl libc libscf libresolv
621 libpool: libnvpair libexacct
622 libpp: libast
623 libzonecfg: libc libsocket libnsl libuuid libnvpair libsysevent libsec \
624 libbrand libpool libscf
625 libproc: ../cmd/sgs/librtld_db ../cmd/sgs/libelf libctf libsaveargs
626 libproject: libpool libproc libsecdb
627 libtermcap: libcurses
628 libtsnet: libnsl libtsol libsecdb
629 libwrap: libnsl libsocket
630 libwanboot: libnvpair libresolv libnsl libsocket libdevinfo libinetutil \
631 libdhcputil
632 libwanbootutil: libnsl
633 pam_modules: libproject passwdutil smbsrv
634 libscf: libuutil libmd libgen libsmbios libnsl
635 libinetsvc: libscf
636 librestart: libuutil libscf
637 libsaveargs: libdisasm
638 ../cmd/sgs/libdl: ../cmd/sgs/libconv
639 ../cmd/sgs/libelf: ../cmd/sgs/libconv
640 pkcs11: libcryptoutil
641 print: libldap5
642 udapl/udapl_tavor: udapl/libdat
643 libzfs: libdevid libgen libnvpair libuutil \
644 libadm libavl libefi libidmap libmd libzfs_core libm
637 libadm libavl libefi libidmap libmd libzfs_core
645 libzfs_core: libnvpair
646 libzfs_jni: libdiskmgt libnvpair libzfs
647 libzpool: libavl libumem libnvpair libcmdutils
648 libsec: libavl libidmap

new/usr/src/lib/Makefile 11

649 brand: libc libsocket
650 libshare: libscf libzfs libuuid libfsmgt libsecdb libumem libsmbfs
651 libexacct/demo: libexacct libproject libsocket libnsl
652 libtsalarm: libpcp
653 smbsrv: libsocket libnsl libmd libxnet libpthread librt \
654 libshare libidmap pkcs11 libsqlite libcryptoutil \
655 libreparse libcmdutils
656 libv12n: libds libuuid
657 libvrrpadm: libsocket libdladm libscf
658 libvscan: libscf
659 libfru: libfruutils
660 scsi: libnvpair libfru
661 mpapi: libpthread libdevinfo libsysevent libnvpair
662 sun_fc: libdevinfo libsysevent libnvpair
663 libsun_ima: libdevinfo libsysevent libnsl
664 sun_sas: libdevinfo libsysevent libnvpair libkstat libdevid
665 libgrubmgmt: libdevinfo libzfs libfstyp
666 pylibbe: libbe libzfs
667 pyzfs: libnvpair libzfs
668 pysolaris: libsec libidmap
669 libreparse: libnvpair
670 libhotplug: libnvpair
671 cfgadm_plugins: libhotplug
672 libilb: libsocket
673 libipmi: libm
674 libprtdiag: libm
675 libsqlite: libm
676 libstmf: libm
677 libvscan: libm

680 $(INTEL_BUILD)libdiskmgt:libfdisk

682 #
683 # The reason this rule checks for the existence of the
684 # Makefile is that some of the directories do not exist
685 # in certain situations (e.g., exportable source builds,
686 # OpenSolaris).
687 #
688 $(SUBDIRS): FRC
689 @if [-f $@/Makefile]; then \
690 cd $@; pwd; $(MAKE) $(TARGET); \
691 else \
692 true; \
693 fi

695 $(SUBDIRS:%=%-nodepend):
696 @if [-f $(@:%-nodepend=%)/Makefile]; then \
697 cd $(@:%-nodepend=%); pwd; $(MAKE) $(TARGET); \
698 else \
699 true; \
700 fi

702 FRC:

new/usr/src/lib/libm/Makefile.com 1

**
 19628 Thu Oct 9 19:48:52 2014
new/usr/src/lib/libm/Makefile.com
remove -Wno-switch -Wno-parentheses -Wno-unused-variable from libm
remove -Wno-uninitialized for libm
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
remove -Wno-switch -Wno-parentheses -Wno-unused-variable from libm
#4625 add cscope.out to the .gitignore
remove -Wno-uninitialized for libm
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.
10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 LIBRARY = libm.a
17 VERS = .2

19 LIBMDIR = $(SRC)/lib/libm

21 m9xsseOBJS_i386 = \
22 __fex_hdlr.o \
23 __fex_i386.o \
24 __fex_sse.o \
25 __fex_sym.o \
26 fex_log.o

28 m9xsseOBJS = $(m9xsseOBJS_$(TARGET_ARCH))

30 m9xOBJS_amd64 = \
31 __fex_sse.o \
32 feprec.o

34 m9xOBJS_sparc = \
35 lrint.o \
36 lrintf.o \
37 lrintl.o \
38 lround.o \
39 lroundf.o \
40 lroundl.o

42 m9xOBJS_i386 = \
43 __fex_sse.o \
44 feprec.o \
45 lrint.o \
46 lrintf.o \
47 lrintl.o \
48 lround.o \
49 lroundf.o \
50 lroundl.o

52 #
53 # lrint.o, lrintf.o, lrintl.o, lround.o, lroundf.o & lroundl.o are 32-bit only

new/usr/src/lib/libm/Makefile.com 2

54 #
55 m9xOBJS = \
56 $(m9xOBJS_$(TARGET_ARCH)) \
57 __fex_$(MACH).o \
58 __fex_hdlr.o \
59 __fex_sym.o \
60 fdim.o \
61 fdimf.o \
62 fdiml.o \
63 feexcept.o \
64 fenv.o \
65 feround.o \
66 fex_handler.o \
67 fex_log.o \
68 fma.o \
69 fmaf.o \
70 fmal.o \
71 fmax.o \
72 fmaxf.o \
73 fmaxl.o \
74 fmin.o \
75 fminf.o \
76 fminl.o \
77 frexp.o \
78 frexpf.o \
79 frexpl.o \
80 ldexp.o \
81 ldexpf.o \
82 ldexpl.o \
83 llrint.o \
84 llrintf.o \
85 llrintl.o \
86 llround.o \
87 llroundf.o \
88 llroundl.o \
89 modf.o \
90 modff.o \
91 modfl.o \
92 nan.o \
93 nanf.o \
94 nanl.o \
95 nearbyint.o \
96 nearbyintf.o \
97 nearbyintl.o \
98 nexttoward.o \
99 nexttowardf.o \
100 nexttowardl.o \
101 remquo.o \
102 remquof.o \
103 remquol.o \
104 round.o \
105 roundf.o \
106 roundl.o \
107 scalbln.o \
108 scalblnf.o \
109 scalblnl.o \
110 tgamma.o \
111 tgammaf.o \
112 tgammal.o \
113 trunc.o \
114 truncf.o \
115 truncl.o

117 OBJS_M9XSSE = $(m9xsseOBJS:%=pics/%)

119 COBJS_i386 = \

new/usr/src/lib/libm/Makefile.com 3

120 __libx_errno.o

122 COBJS_sparc = \
123 $(COBJS_i386) \
124 _TBL_atan.o \
125 _TBL_exp2.o \
126 _TBL_log.o \
127 _TBL_log2.o \
128 _TBL_tan.o \
129 __tan.o \
130 __tanf.o

132 #
133 # atan2pi.o and sincospi.o is for internal use only
134 #

136 COBJS_amd64 = \
137 _TBL_atan.o \
138 _TBL_exp2.o \
139 _TBL_log.o \
140 _TBL_log2.o \
141 __tan.o \
142 __tanf.o \
143 _TBL_tan.o \
144 copysign.o \
145 exp.o \
146 fabs.o \
147 fmod.o \
148 ilogb.o \
149 isnan.o \
150 nextafter.o \
151 remainder.o \
152 rint.o \
153 scalbn.o

155 COBJS_sparcv9 = $(COBJS_amd64)

157 COBJS = \
158 $(COBJS_$(TARGET_ARCH)) \
159 __cos.o \
160 __lgamma.o \
161 __rem_pio2.o \
162 __rem_pio2m.o \
163 __sin.o \
164 __sincos.o \
165 __xpg6.o \
166 _lib_version.o \
167 _SVID_error.o \
168 _TBL_ipio2.o \
169 _TBL_sin.o \
170 acos.o \
171 acosh.o \
172 asin.o \
173 asinh.o \
174 atan.o \
175 atan2.o \
176 atan2pi.o \
177 atanh.o \
178 cbrt.o \
179 ceil.o \
180 cos.o \
181 cosh.o \
182 erf.o \
183 exp10.o \
184 exp2.o \
185 expm1.o \

new/usr/src/lib/libm/Makefile.com 4

186 floor.o \
187 gamma.o \
188 gamma_r.o \
189 hypot.o \
190 j0.o \
191 j1.o \
192 jn.o \
193 lgamma.o \
194 lgamma_r.o \
195 log.o \
196 log10.o \
197 log1p.o \
198 log2.o \
199 logb.o \
200 matherr.o \
201 pow.o \
202 scalb.o \
203 signgam.o \
204 significand.o \
205 sin.o \
206 sincos.o \
207 sincospi.o \
208 sinh.o \
209 sqrt.o \
210 tan.o \
211 tanh.o

213 #
214 # LSARC/2003/658 adds isnanl
215 #
216 QOBJS_sparc = \
217 _TBL_atanl.o \
218 _TBL_expl.o \
219 _TBL_expm1l.o \
220 _TBL_logl.o \
221 finitel.o \
222 isnanl.o

224 QOBJS_sparcv9 = $(QOBJS_sparc)

226 QOBJS_amd64 = \
227 finitel.o \
228 isnanl.o

230 #
231 # atan2pil.o, ieee_funcl.o, rndintl.o, sinpil.o, sincospil.o
232 # are for internal use only
233 #
234 # LSARC/2003/279 adds the following:
235 # gammal.o 1
236 # gammal_r.o 1
237 # j0l.o 2
238 # j1l.o 2
239 # jnl.o 2
240 # lgammal_r.o 1
241 # scalbl.o 1
242 # significandl.o 1
243 #
244 QOBJS = \
245 $(QOBJS_$(TARGET_ARCH)) \
246 __cosl.o \
247 __lgammal.o \
248 __poly_libmq.o \
249 __rem_pio2l.o \
250 __sincosl.o \
251 __sinl.o \

new/usr/src/lib/libm/Makefile.com 5

252 __tanl.o \
253 _TBL_cosl.o \
254 _TBL_ipio2l.o \
255 _TBL_sinl.o \
256 _TBL_tanl.o \
257 acoshl.o \
258 acosl.o \
259 asinhl.o \
260 asinl.o \
261 atan2l.o \
262 atan2pil.o \
263 atanhl.o \
264 atanl.o \
265 cbrtl.o \
266 copysignl.o \
267 coshl.o \
268 cosl.o \
269 erfl.o \
270 exp10l.o \
271 exp2l.o \
272 expl.o \
273 expm1l.o \
274 fabsl.o \
275 floorl.o \
276 fmodl.o \
277 gammal.o \
278 gammal_r.o \
279 hypotl.o \
280 ieee_funcl.o \
281 ilogbl.o \
282 j0l.o \
283 j1l.o \
284 jnl.o \
285 lgammal.o \
286 lgammal_r.o \
287 log10l.o \
288 log1pl.o \
289 log2l.o \
290 logbl.o \
291 logl.o \
292 nextafterl.o \
293 powl.o \
294 remainderl.o \
295 rintl.o \
296 rndintl.o \
297 scalbl.o \
298 scalbnl.o \
299 signgaml.o \
300 significandl.o \
301 sincosl.o \
302 sincospil.o \
303 sinhl.o \
304 sinl.o \
305 sinpil.o \
306 sqrtl.o \
307 tanhl.o \
308 tanl.o

310 #
311 # LSARC/2003/658 adds isnanf
312 #
313 ROBJS_sparc = \
314 __cosf.o \
315 __sincosf.o \
316 __sinf.o \
317 isnanf.o

new/usr/src/lib/libm/Makefile.com 6

319 ROBJS_sparcv9 = $(ROBJS_sparc)

321 ROBJS_amd64 = \
322 isnanf.o \
323 __cosf.o \
324 __sincosf.o \
325 __sinf.o

327 #
328 # atan2pif.o, sincosf.o, sincospif.o are for internal use only
329 #
330 # LSARC/2003/279 adds the following:
331 # besself.o 6
332 # scalbf.o 1
333 # gammaf.o 1
334 # gammaf_r.o 1
335 # lgammaf_r.o 1
336 # significandf.o 1
337 #
338 ROBJS = \
339 $(ROBJS_$(TARGET_ARCH)) \
340 _TBL_r_atan_.o \
341 acosf.o \
342 acoshf.o \
343 asinf.o \
344 asinhf.o \
345 atan2f.o \
346 atan2pif.o \
347 atanf.o \
348 atanhf.o \
349 besself.o \
350 cbrtf.o \
351 copysignf.o \
352 cosf.o \
353 coshf.o \
354 erff.o \
355 exp10f.o \
356 exp2f.o \
357 expf.o \
358 expm1f.o \
359 fabsf.o \
360 floorf.o \
361 fmodf.o \
362 gammaf.o \
363 gammaf_r.o \
364 hypotf.o \
365 ilogbf.o \
366 lgammaf.o \
367 lgammaf_r.o \
368 log10f.o \
369 log1pf.o \
370 log2f.o \
371 logbf.o \
372 logf.o \
373 nextafterf.o \
374 powf.o \
375 remainderf.o \
376 rintf.o \
377 scalbf.o \
378 scalbnf.o \
379 signgamf.o \
380 significandf.o \
381 sinf.o \
382 sinhf.o \
383 sincosf.o \

new/usr/src/lib/libm/Makefile.com 7

384 sincospif.o \
385 sqrtf.o \
386 tanf.o \
387 tanhf.o

389 #
390 # LSARC/2003/658 adds isnanf/isnanl
391 #

393 SOBJS_sparc = \
394 copysign.o \
395 exp.o \
396 fabs.o \
397 fmod.o \
398 ilogb.o \
399 isnan.o \
400 nextafter.o \
401 remainder.o \
402 rint.o \
403 scalbn.o

405 SOBJS_i386 = \
406 __reduction.o \
407 finitef.o \
408 finitel.o \
409 isnanf.o \
410 isnanl.o \
411 $(SOBJS_sparc)

413 SOBJS_amd64 = \
414 __swapFLAGS.o
415 # _xtoll.o \
416 # _xtoull.o \

419 SOBJS = \
420 $(SOBJS_$(TARGET_ARCH))

422 complexOBJS = \
423 cabs.o \
424 cabsf.o \
425 cabsl.o \
426 cacos.o \
427 cacosf.o \
428 cacosh.o \
429 cacoshf.o \
430 cacoshl.o \
431 cacosl.o \
432 carg.o \
433 cargf.o \
434 cargl.o \
435 casin.o \
436 casinf.o \
437 casinh.o \
438 casinhf.o \
439 casinhl.o \
440 casinl.o \
441 catan.o \
442 catanf.o \
443 catanh.o \
444 catanhf.o \
445 catanhl.o \
446 catanl.o \
447 ccos.o \
448 ccosf.o \
449 ccosh.o \

new/usr/src/lib/libm/Makefile.com 8

450 ccoshf.o \
451 ccoshl.o \
452 ccosl.o \
453 cexp.o \
454 cexpf.o \
455 cexpl.o \
456 cimag.o \
457 cimagf.o \
458 cimagl.o \
459 clog.o \
460 clogf.o \
461 clogl.o \
462 conj.o \
463 conjf.o \
464 conjl.o \
465 cpow.o \
466 cpowf.o \
467 cpowl.o \
468 cproj.o \
469 cprojf.o \
470 cprojl.o \
471 creal.o \
472 crealf.o \
473 creall.o \
474 csin.o \
475 csinf.o \
476 csinh.o \
477 csinhf.o \
478 csinhl.o \
479 csinl.o \
480 csqrt.o \
481 csqrtf.o \
482 csqrtl.o \
483 ctan.o \
484 ctanf.o \
485 ctanh.o \
486 ctanhf.o \
487 ctanhl.o \
488 ctanl.o \
489 k_atan2.o \
490 k_atan2l.o \
491 k_cexp.o \
492 k_cexpl.o \
493 k_clog_r.o \
494 k_clog_rl.o

496 OBJECTS = $(COBJS) $(ROBJS) $(QOBJS) $(SOBJS) $(m9xOBJS) $(complexOBJS)

498 include $(SRC)/lib/Makefile.lib
499 include $(LIBMDIR)/Makefile.libm.com
500 include $(SRC)/lib/Makefile.rootfs

502 SRCDIR = ../common/
503 LIBS = $(DYNLIB) $(LINTLIB)

505 LINTERROFF = -erroff=E_FUNC_SET_NOT_USED
506 LINTERROFF += -erroff=E_FUNC_RET_ALWAYS_IGNOR2
507 LINTERROFF += -erroff=E_FUNC_RET_MAYBE_IGNORED2
508 LINTERROFF += -erroff=E_IMPL_CONV_RETURN
509 LINTERROFF += -erroff=E_NAME_MULTIPLY_DEF2
510 LINTFLAGS += $(LINTERROFF)
511 LINTFLAGS64 += $(LINTERROFF)
512 LINTFLAGS64 += -errchk=longptr64

514 CPPFLAGS += -DLIBM_BUILD

new/usr/src/lib/libm/Makefile.com 9

516 CFLAGS += $(C_BIGPICFLAGS)
517 CFLAGS64 += $(C_BIGPICFLAGS)

519 m9x_IL = $(LIBMDIR)/common/m9x/__fenv_$(TARGET_ARCH).il

521 SRCS_LD_i386_amd64 = \
522 ../common/LD/finitel.c \
523 ../common/LD/isnanl.c \
524 ../common/LD/nextafterl.c

526 SRCS_LD = \
527 $(SRCS_LD_i386_$(TARGET_ARCH)) \
528 ../common/LD/__cosl.c \
529 ../common/LD/__lgammal.c \
530 ../common/LD/__poly_libmq.c \
531 ../common/LD/__rem_pio2l.c \
532 ../common/LD/__sincosl.c \
533 ../common/LD/__sinl.c \
534 ../common/LD/__tanl.c \
535 ../common/LD/_TBL_cosl.c \
536 ../common/LD/_TBL_ipio2l.c \
537 ../common/LD/_TBL_sinl.c \
538 ../common/LD/_TBL_tanl.c \
539 ../common/LD/acoshl.c \
540 ../common/LD/asinhl.c \
541 ../common/LD/atan2pil.c \
542 ../common/LD/atanhl.c \
543 ../common/LD/cbrtl.c \
544 ../common/LD/coshl.c \
545 ../common/LD/cosl.c \
546 ../common/LD/erfl.c \
547 ../common/LD/gammal.c \
548 ../common/LD/gammal_r.c \
549 ../common/LD/hypotl.c \
550 ../common/LD/j0l.c \
551 ../common/LD/j1l.c \
552 ../common/LD/jnl.c \
553 ../common/LD/lgammal.c \
554 ../common/LD/lgammal_r.c \
555 ../common/LD/log1pl.c \
556 ../common/LD/logbl.c \
557 ../common/LD/scalbl.c \
558 ../common/LD/signgaml.c \
559 ../common/LD/significandl.c \
560 ../common/LD/sincosl.c \
561 ../common/LD/sincospil.c \
562 ../common/LD/sinhl.c \
563 ../common/LD/sinl.c \
564 ../common/LD/sinpil.c \
565 ../common/LD/tanhl.c \
566 ../common/LD/tanl.c

568 SRCS_LD_i386 = \
569 $(SRCS_LD)

571 SRCS_R_amd64 = \
572 ../common/R/__tanf.c \
573 ../common/R/isnanf.c \
574 ../common/R/__cosf.c \
575 ../common/R/__sincosf.c \
576 ../common/R/__sinf.c \
577 ../common/R/acosf.c \
578 ../common/R/asinf.c \
579 ../common/R/atan2f.c \
580 ../common/R/copysignf.c \
581 ../common/R/exp10f.c \

new/usr/src/lib/libm/Makefile.com 10

582 ../common/R/exp2f.c \
583 ../common/R/expm1f.c \
584 ../common/R/fabsf.c \
585 ../common/R/hypotf.c \
586 ../common/R/ilogbf.c \
587 ../common/R/log10f.c \
588 ../common/R/log2f.c \
589 ../common/R/nextafterf.c \
590 ../common/R/powf.c \
591 ../common/R/rintf.c \
592 ../common/R/scalbnf.c

594 # sparc + sparcv9
595 SRCS_R_sparc = \
596 ../common/R/__tanf.c \
597 ../common/R/__cosf.c \
598 ../common/R/__sincosf.c \
599 ../common/R/__sinf.c \
600 ../common/R/isnanf.c \
601 ../common/R/acosf.c \
602 ../common/R/asinf.c \
603 ../common/R/atan2f.c \
604 ../common/R/copysignf.c \
605 ../common/R/exp10f.c \
606 ../common/R/exp2f.c \
607 ../common/R/expm1f.c \
608 ../common/R/fabsf.c \
609 ../common/R/fmodf.c \
610 ../common/R/hypotf.c \
611 ../common/R/ilogbf.c \
612 ../common/R/log10f.c \
613 ../common/R/log2f.c \
614 ../common/R/nextafterf.c \
615 ../common/R/powf.c \
616 ../common/R/remainderf.c \
617 ../common/R/rintf.c \
618 ../common/R/scalbnf.c

620 SRCS_R = \
621 $(SRCS_R_$(MACH)) \
622 $(SRCS_R_$(TARGET_ARCH)) \
623 ../common/R/_TBL_r_atan_.c \
624 ../common/R/acoshf.c \
625 ../common/R/asinhf.c \
626 ../common/R/atan2pif.c \
627 ../common/R/atanf.c \
628 ../common/R/atanhf.c \
629 ../common/R/besself.c \
630 ../common/R/cbrtf.c \
631 ../common/R/cosf.c \
632 ../common/R/coshf.c \
633 ../common/R/erff.c \
634 ../common/R/expf.c \
635 ../common/R/floorf.c \
636 ../common/R/gammaf.c \
637 ../common/R/gammaf_r.c \
638 ../common/R/lgammaf.c \
639 ../common/R/lgammaf_r.c \
640 ../common/R/log1pf.c \
641 ../common/R/logbf.c \
642 ../common/R/logf.c \
643 ../common/R/scalbf.c \
644 ../common/R/signgamf.c \
645 ../common/R/significandf.c \
646 ../common/R/sinf.c \
647 ../common/R/sinhf.c \

new/usr/src/lib/libm/Makefile.com 11

648 ../common/R/sincosf.c \
649 ../common/R/sincospif.c \
650 ../common/R/sqrtf.c \
651 ../common/R/tanf.c \
652 ../common/R/tanhf.c

654 SRCS_Q = \
655 ../common/Q/_TBL_atanl.c \
656 ../common/Q/_TBL_expl.c \
657 ../common/Q/_TBL_expm1l.c \
658 ../common/Q/_TBL_logl.c \
659 ../common/Q/finitel.c \
660 ../common/Q/isnanl.c \
661 ../common/Q/__cosl.c \
662 ../common/Q/__lgammal.c \
663 ../common/Q/__poly_libmq.c \
664 ../common/Q/__rem_pio2l.c \
665 ../common/Q/__sincosl.c \
666 ../common/Q/__sinl.c \
667 ../common/Q/__tanl.c \
668 ../common/Q/_TBL_cosl.c \
669 ../common/Q/_TBL_ipio2l.c \
670 ../common/Q/_TBL_sinl.c \
671 ../common/Q/_TBL_tanl.c \
672 ../common/Q/acoshl.c \
673 ../common/Q/acosl.c \
674 ../common/Q/asinhl.c \
675 ../common/Q/asinl.c \
676 ../common/Q/atan2l.c \
677 ../common/Q/atan2pil.c \
678 ../common/Q/atanhl.c \
679 ../common/Q/atanl.c \
680 ../common/Q/cbrtl.c \
681 ../common/Q/copysignl.c \
682 ../common/Q/coshl.c \
683 ../common/Q/cosl.c \
684 ../common/Q/erfl.c \
685 ../common/Q/exp10l.c \
686 ../common/Q/exp2l.c \
687 ../common/Q/expl.c \
688 ../common/Q/expm1l.c \
689 ../common/Q/fabsl.c \
690 ../common/Q/floorl.c \
691 ../common/Q/fmodl.c \
692 ../common/Q/gammal.c \
693 ../common/Q/gammal_r.c \
694 ../common/Q/hypotl.c \
695 ../common/Q/ieee_funcl.c \
696 ../common/Q/ilogbl.c \
697 ../common/Q/j0l.c \
698 ../common/Q/j1l.c \
699 ../common/Q/jnl.c \
700 ../common/Q/lgammal.c \
701 ../common/Q/lgammal_r.c \
702 ../common/Q/log10l.c \
703 ../common/Q/log1pl.c \
704 ../common/Q/log2l.c \
705 ../common/Q/logbl.c \
706 ../common/Q/logl.c \
707 ../common/Q/nextafterl.c \
708 ../common/Q/powl.c \
709 ../common/Q/remainderl.c \
710 ../common/Q/rintl.c \
711 ../common/Q/rndintl.c \
712 ../common/Q/scalbl.c \
713 ../common/Q/scalbnl.c \

new/usr/src/lib/libm/Makefile.com 12

714 ../common/Q/signgaml.c \
715 ../common/Q/significandl.c \
716 ../common/Q/sincosl.c \
717 ../common/Q/sincospil.c \
718 ../common/Q/sinhl.c \
719 ../common/Q/sinl.c \
720 ../common/Q/sinpil.c \
721 ../common/Q/sqrtl.c \
722 ../common/Q/tanhl.c \
723 ../common/Q/tanl.c

725 SRCS_Q_sparc = \
726 $(SRCS_Q)

728 SRCS_complex = \
729 ../common/complex/cabs.c \
730 ../common/complex/cabsf.c \
731 ../common/complex/cabsl.c \
732 ../common/complex/cacos.c \
733 ../common/complex/cacosf.c \
734 ../common/complex/cacosh.c \
735 ../common/complex/cacoshf.c \
736 ../common/complex/cacoshl.c \
737 ../common/complex/cacosl.c \
738 ../common/complex/carg.c \
739 ../common/complex/cargf.c \
740 ../common/complex/cargl.c \
741 ../common/complex/casin.c \
742 ../common/complex/casinf.c \
743 ../common/complex/casinh.c \
744 ../common/complex/casinhf.c \
745 ../common/complex/casinhl.c \
746 ../common/complex/casinl.c \
747 ../common/complex/catan.c \
748 ../common/complex/catanf.c \
749 ../common/complex/catanh.c \
750 ../common/complex/catanhf.c \
751 ../common/complex/catanhl.c \
752 ../common/complex/catanl.c \
753 ../common/complex/ccos.c \
754 ../common/complex/ccosf.c \
755 ../common/complex/ccosh.c \
756 ../common/complex/ccoshf.c \
757 ../common/complex/ccoshl.c \
758 ../common/complex/ccosl.c \
759 ../common/complex/cexp.c \
760 ../common/complex/cexpf.c \
761 ../common/complex/cexpl.c \
762 ../common/complex/cimag.c \
763 ../common/complex/cimagf.c \
764 ../common/complex/cimagl.c \
765 ../common/complex/clog.c \
766 ../common/complex/clogf.c \
767 ../common/complex/clogl.c \
768 ../common/complex/conj.c \
769 ../common/complex/conjf.c \
770 ../common/complex/conjl.c \
771 ../common/complex/cpow.c \
772 ../common/complex/cpowf.c \
773 ../common/complex/cpowl.c \
774 ../common/complex/cproj.c \
775 ../common/complex/cprojf.c \
776 ../common/complex/cprojl.c \
777 ../common/complex/creal.c \
778 ../common/complex/crealf.c \
779 ../common/complex/creall.c \

new/usr/src/lib/libm/Makefile.com 13

780 ../common/complex/csin.c \
781 ../common/complex/csinf.c \
782 ../common/complex/csinh.c \
783 ../common/complex/csinhf.c \
784 ../common/complex/csinhl.c \
785 ../common/complex/csinl.c \
786 ../common/complex/csqrt.c \
787 ../common/complex/csqrtf.c \
788 ../common/complex/csqrtl.c \
789 ../common/complex/ctan.c \
790 ../common/complex/ctanf.c \
791 ../common/complex/ctanh.c \
792 ../common/complex/ctanhf.c \
793 ../common/complex/ctanhl.c \
794 ../common/complex/ctanl.c \
795 ../common/complex/k_atan2.c \
796 ../common/complex/k_atan2l.c \
797 ../common/complex/k_cexp.c \
798 ../common/complex/k_cexpl.c \
799 ../common/complex/k_clog_r.c \
800 ../common/complex/k_clog_rl.c

802 SRCS_m9x_i386 = \
803 ../common/m9x/__fex_sse.c \
804 ../common/m9x/feprec.c \
805 ../common/m9x/__fex_i386.c

807 SRCS_m9x_i386_i386 = \
808 ../common/m9x/lroundf.c

810 SRCS_m9x_i386_amd64 = \
811 ../common/m9x/llrint.c \
812 ../common/m9x/llrintf.c \
813 ../common/m9x/llrintl.c \
814 ../common/m9x/nexttowardl.c \
815 ../common/m9x/remquo.c \
816 ../common/m9x/remquof.c \
817 ../common/m9x/round.c \
818 ../common/m9x/roundl.c \
819 ../common/m9x/scalbln.c \
820 ../common/m9x/scalblnf.c \
821 ../common/m9x/scalblnl.c \
822 ../common/m9x/trunc.c \
823 ../common/m9x/truncl.c

825 # sparc
826 SRCS_m9x_sparc_sparc = \
827 ../common/m9x/lrint.c \
828 ../common/m9x/lrintf.c \
829 ../common/m9x/lrintl.c \
830 ../common/m9x/lround.c \
831 ../common/m9x/lroundf.c \
832 ../common/m9x/lroundl.c

834 SRCS_m9x_sparc = \
835 ../common/m9x/__fex_sparc.c \
836 ../common/m9x/llrint.c \
837 ../common/m9x/llrintf.c \
838 ../common/m9x/llrintl.c \
839 ../common/m9x/nexttowardl.c \
840 ../common/m9x/remquo.c \
841 ../common/m9x/remquof.c \
842 ../common/m9x/remquol.c \
843 ../common/m9x/round.c \
844 ../common/m9x/roundl.c \
845 ../common/m9x/scalbln.c \

new/usr/src/lib/libm/Makefile.com 14

846 ../common/m9x/scalblnf.c \
847 ../common/m9x/scalblnl.c \
848 ../common/m9x/trunc.c \
849 ../common/m9x/truncl.c

851 SRCS_m9x = \
852 $(SRCS_m9x_$(MACH)) \
853 $(SRCS_m9x_sparc_$(TARGET_ARCH)) \
854 $(SRCS_m9x_i386_$(TARGET_ARCH)) \
855 ../common/m9x/__fex_hdlr.c \
856 ../common/m9x/__fex_sym.c \
857 ../common/m9x/fdim.c \
858 ../common/m9x/fdimf.c \
859 ../common/m9x/fdiml.c \
860 ../common/m9x/feexcept.c \
861 ../common/m9x/fenv.c \
862 ../common/m9x/feround.c \
863 ../common/m9x/fex_handler.c \
864 ../common/m9x/fex_log.c \
865 ../common/m9x/fma.c \
866 ../common/m9x/fmaf.c \
867 ../common/m9x/fmal.c \
868 ../common/m9x/fmax.c \
869 ../common/m9x/fmaxf.c \
870 ../common/m9x/fmaxl.c \
871 ../common/m9x/fmin.c \
872 ../common/m9x/fminf.c \
873 ../common/m9x/fminl.c \
874 ../common/m9x/frexp.c \
875 ../common/m9x/frexpf.c \
876 ../common/m9x/frexpl.c \
877 ../common/m9x/ldexp.c \
878 ../common/m9x/ldexpf.c \
879 ../common/m9x/ldexpl.c \
880 ../common/m9x/llround.c \
881 ../common/m9x/llroundf.c \
882 ../common/m9x/llroundl.c \
883 ../common/m9x/modf.c \
884 ../common/m9x/modff.c \
885 ../common/m9x/modfl.c \
886 ../common/m9x/nan.c \
887 ../common/m9x/nanf.c \
888 ../common/m9x/nanl.c \
889 ../common/m9x/nearbyint.c \
890 ../common/m9x/nearbyintf.c \
891 ../common/m9x/nearbyintl.c \
892 ../common/m9x/nexttoward.c \
893 ../common/m9x/nexttowardf.c \
894 ../common/m9x/roundf.c \
895 ../common/m9x/tgamma.c \
896 ../common/m9x/tgammaf.c \
897 ../common/m9x/tgammal.c \
898 ../common/m9x/truncf.c

900 SRCS_C_sparc = \
901 ../common/C/__tan.c \
902 ../common/C/_TBL_atan.c \
903 ../common/C/_TBL_exp2.c \
904 ../common/C/_TBL_log.c \
905 ../common/C/_TBL_log2.c \
906 ../common/C/_TBL_tan.c \
907 ../common/C/acos.c \
908 ../common/C/asin.c \
909 ../common/C/atan.c \
910 ../common/C/atan2.c \
911 ../common/C/ceil.c \

new/usr/src/lib/libm/Makefile.com 15

912 ../common/C/cos.c \
913 ../common/C/exp.c \
914 ../common/C/exp10.c \
915 ../common/C/exp2.c \
916 ../common/C/expm1.c \
917 ../common/C/floor.c \
918 ../common/C/fmod.c \
919 ../common/C/hypot.c \
920 ../common/C/ilogb.c \
921 ../common/C/isnan.c \
922 ../common/C/log.c \
923 ../common/C/log10.c \
924 ../common/C/log2.c \
925 ../common/C/pow.c \
926 ../common/C/remainder.c \
927 ../common/C/rint.c \
928 ../common/C/scalbn.c \
929 ../common/C/sin.c \
930 ../common/C/sincos.c \
931 ../common/C/tan.c

933 SRCS_i386_i386 = \
934 ../common/C/__libx_errno.c

936 SRCS_sparc_sparc = \
937 $(SRCS_i386_i386)

939 SRCS_sparc_sparcv9 = \
940 ../common/C/copysign.c \
941 ../common/C/fabs.c \
942 ../common/C/nextafter.c

944 SRCS_i386_amd64 = \
945 ../common/C/_TBL_atan.c \
946 ../common/C/_TBL_exp2.c \
947 ../common/C/_TBL_log.c \
948 ../common/C/_TBL_log2.c \
949 ../common/C/__tan.c \
950 ../common/C/_TBL_tan.c \
951 ../common/C/copysign.c \
952 ../common/C/exp.c \
953 ../common/C/fabs.c \
954 ../common/C/ilogb.c \
955 ../common/C/isnan.c \
956 ../common/C/nextafter.c \
957 ../common/C/rint.c \
958 ../common/C/scalbn.c \
959 ../common/C/acos.c \
960 ../common/C/asin.c \
961 ../common/C/atan.c \
962 ../common/C/atan2.c \
963 ../common/C/ceil.c \
964 ../common/C/cos.c \
965 ../common/C/exp10.c \
966 ../common/C/exp2.c \
967 ../common/C/expm1.c \
968 ../common/C/floor.c \
969 ../common/C/hypot.c \
970 ../common/C/log.c \
971 ../common/C/log10.c \
972 ../common/C/log2.c \
973 ../common/C/pow.c \
974 ../common/C/sin.c \
975 ../common/C/sincos.c \
976 ../common/C/tan.c

new/usr/src/lib/libm/Makefile.com 16

978 SRCS_C = \
979 $(SRCS_C_$(MACH)) \
980 $(SRCS_C_i386_$(TARGET_ARCH)) \
981 ../common/C/__cos.c \
982 ../common/C/__lgamma.c \
983 ../common/C/__rem_pio2.c \
984 ../common/C/__rem_pio2m.c \
985 ../common/C/__sin.c \
986 ../common/C/__sincos.c \
987 ../common/C/__xpg6.c \
988 ../common/C/_lib_version.c \
989 ../common/C/_SVID_error.c \
990 ../common/C/_TBL_ipio2.c \
991 ../common/C/_TBL_sin.c \
992 ../common/C/acosh.c \
993 ../common/C/asinh.c \
994 ../common/C/atan2pi.c \
995 ../common/C/atanh.c \
996 ../common/C/cbrt.c \
997 ../common/C/cosh.c \
998 ../common/C/erf.c \
999 ../common/C/gamma.c \

1000 ../common/C/gamma_r.c \
1001 ../common/C/j0.c \
1002 ../common/C/j1.c \
1003 ../common/C/jn.c \
1004 ../common/C/lgamma.c \
1005 ../common/C/lgamma_r.c \
1006 ../common/C/log1p.c \
1007 ../common/C/logb.c \
1008 ../common/C/matherr.c \
1009 ../common/C/scalb.c \
1010 ../common/C/signgam.c \
1011 ../common/C/significand.c \
1012 ../common/C/sincospi.c \
1013 ../common/C/sinh.c \
1014 ../common/C/sqrt.c \
1015 ../common/C/tanh.c

1017 SRCS = \
1018 $(SRCS_Q_$(MACH)) \
1019 $(SRCS_LD_$(MACH)) \
1020 $(SRCS_R) \
1021 $(SRCS_complex) \
1022 $(SRCS_C)

1024 .KEEP_STATE:

1026 all: $(LIBS)

1028 lint: lintcheck

new/usr/src/lib/libm/amd64/src/libm_inlines.h 1

**
 3962 Thu Oct 9 19:48:52 2014
new/usr/src/lib/libm/amd64/src/libm_inlines.h
review fixes for libm/amd64/src/libm_inlines.h
fix tmpd in copysign()
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
review fixes for libm/amd64/src/libm_inlines.h
fix tmpd in copysign()
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * Copyright 2011, Richard Lowe.
32 */

34 /* Functions in this file are duplicated in locallibm.il. Keep them in sync */

36 #ifndef _LIBM_INLINES_H
37 #define _LIBM_INLINES_H

39 #ifdef __GNUC__

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 #include <sys/types.h>
46 #include <sys/ieeefp.h>

48 extern __inline__ float
49 __inline_sqrtf(float a)
50 {
51 float ret;

53 __asm__ __volatile__("sqrtss %1, %0\n\t" : "=x" (ret) : "x" (a));
54 return (ret);

new/usr/src/lib/libm/amd64/src/libm_inlines.h 2

55 }

57 extern __inline__ double
58 __inline_sqrt(double a)
59 {
60 double ret;

62 __asm__ __volatile__("sqrtsd %1, %0\n\t" : "=x" (ret) : "x" (a));
63 return (ret);
64 }

66 extern __inline__ double
67 __ieee754_sqrt(double a)
68 {
69 return (__inline_sqrt(a));
70 }

72 /*
73 * 00 - 24 bits
74 * 01 - reserved
75 * 10 - 53 bits
76 * 11 - 64 bits
77 */
78 extern __inline__ int
79 __swapRP(int i)
80 {
81 int ret;
82 uint16_t cw;

84 __asm__ __volatile__("fstcw %0\n\t" : "=m" (cw));

86 ret = (cw >> 8) & 0x3;
87 cw = (cw & 0xfcff) | ((i & 0x3) << 8);

89 __asm__ __volatile__("fldcw %0\n\t" : : "m" (cw));

91 return (ret);
92 }

94 /*
95 * 00 - Round to nearest, with even preferred
96 * 01 - Round down
97 * 10 - Round up
98 * 11 - Chop
99 */
100 extern __inline__ enum fp_direction_type
101 __swap87RD(enum fp_direction_type i)
102 {
103 int ret;
104 uint16_t cw;

106 __asm__ __volatile__("fstcw %0\n\t" : "=m" (cw));

108 ret = (cw >> 10) & 0x3;
109 cw = (cw & 0xf3ff) | ((i & 0x3) << 10);

111 __asm__ __volatile__("fldcw %0\n\t" : : "m" (cw));

113 return (ret);
114 }

116 extern __inline__ int
117 abs(int i)
118 {
119 int ret;
120 __asm__ __volatile__(

new/usr/src/lib/libm/amd64/src/libm_inlines.h 3

121 "movl %1, %0\n\t"
122 "negl %1\n\t"
123 "cmovnsl %1, %0\n\t"
124 : "=r" (ret), "+r" (i)
125 :
126 : "cc");
127 return (ret);
128 }

130 extern __inline__ double
131 copysign(double d1, double d2)
132 {
133 double tmpd;

135 __asm__ __volatile__(
136 "movd %3, %1\n\t"
137 "andpd %1, %0\n\t"
138 "andnpd %2, %1\n\t"
139 "orpd %1, %0\n\t"
140 : "+&x" (d1), "=&x" (tmpd)
141 : "x" (d2), "r" (0x7fffffffffffffff));

143 return (d1);
144 }

146 extern __inline__ double
147 fabs(double d)
148 {
149 double tmp;

151 __asm__ __volatile__(
152 "movd %2, %1\n\t"
153 "andpd %1, %0"
154 : "+x" (d), "=&x" (tmp)
155 : "r" (0x7fffffffffffffff));

157 return (d);
158 }

160 extern __inline__ float
161 fabsf(float d)
162 {
163 __asm__ __volatile__(
164 "andpd %1, %0"
165 : "+x" (d)
166 : "x" (0x7fffffff));

168 return (d);
169 }

171 extern __inline__ int
172 finite(double d)
173 {
174 long ret = 0x7fffffffffffffff;
175 uint64_t tmp;

177 __asm__ __volatile__(
178 "movq %2, %1\n\t"
179 "andq %1, %0\n\t"
180 "movq $0x7ff0000000000000, %1\n\t"
181 "subq %1, %0\n\t"
182 "shrq $63, %0\n\t"
183 : "+r" (ret), "=r" (tmp)
184 : "x" (d)
185 : "cc");

new/usr/src/lib/libm/amd64/src/libm_inlines.h 4

187 return (ret);
188 }

190 extern __inline__ int
191 signbit(double d)
192 {
193 long ret;
194 __asm__ __volatile__(
195 "movmskpd %1, %0\n\t"
196 "andq $1, %0\n\t"
197 : "=r" (ret)
198 : "x" (d)
199 : "cc");
200 return (ret);
201 }

203 extern __inline__ double
204 sqrt(double d)
205 {
206 return (__inline_sqrt(d));
207 }

209 extern __inline__ float
210 sqrtf(float f)
211 {
212 return (__inline_sqrtf(f));
213 }

215 #ifdef __cplusplus
216 }
217 #endif

219 #endif /* __GNUC__ */

221 #endif /* _LIBM_INLINES_H */

new/usr/src/lib/libm/common/C/__tan.c 1

**
 5693 Thu Oct 9 19:48:52 2014
new/usr/src/lib/libm/common/C/__tan.c
libm - cstyle fixes
__tan.c
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
libm - cstyle fixes
__tan.c
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /* INDENT OFF */
31 /*
32 * __k_tan(double x; double y; int k)
33 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 * Input y is the tail of x.
36 * Input k indicate -- tan if k=0; else -1/tan
37 *
38 * Table look up algorithm
39 * 1. by tan(-x) = -tan(x), need only to consider positive x
40 * 2. if x < 5/32 = [0x3fc40000, 0] = 0.15625 , then
41 * if x < 2^-27 (hx < 0x3e400000 0), set w=x with inexact if x!= 0
42 * else
43 * z = x*x;
44 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
45 * return (k==0)? w: 1/w;
46 * 3. else
47 * ht = (hx + 0x4000)&0x7fff8000 (round x to a break point t)
48 * lt = 0
49 * i = (hy-0x3fc40000)>>15; (i<=64)
50 * x’ = (x - t)+y (|x’| ~<= 2^-7)
51 * By
52 * tan(t+x’)

new/usr/src/lib/libm/common/C/__tan.c 2

53 * = (tan(t)+tan(x’))/(1-tan(x’)tan(t))
54 * We have
55 * sin(x’)+tan(t)*(tan(t)*sin(x’))
56 * = tan(t) + ------------------------------- for k=0
57 * cos(x’) - tan(t)*sin(x’)
58 *
59 * cos(x’) - tan(t)*sin(x’)
60 * = - -------------------------------------- for k=1
61 * tan(t) + tan(t)*(cos(x’)-1) + sin(x’)
62 *
63 *
64 * where tan(t) is from the table,
65 * sin(x’) = x + pp1*x^3 + pp2*x^5
66 * cos(x’) = 1 + qq1*x^2 + qq2*x^4
67 */

69 #include "libm.h"

71 extern const double _TBL_tan_hi[], _TBL_tan_lo[];
72 static const double q[] = {
73 /* one = */ 1.0,
74 /*
75 * 2 2 -59.56
76 * |sin(x) - pp1*x*(pp2+x *(pp3+x)| <= 2 for |x|<1/64
77 */
78 /* pp1 = */ 8.33326120969096230395312119298978359438478946686e-0003,
79 /* pp2 = */ 1.20001038589438965215025680596868692381425944526e+0002,
80 /* pp3 = */ -2.00001730975089451192161504877731204032897949219e+0001,

82 /*
83 * 2 2 -56.19
84 * |cos(x) - (1+qq1*x (qq2+x))| <= 2 for |x|<=1/128
85 */
86 /* qq1 = */ 4.16665486385721928197511942926212213933467864990e-0002,
87 /* qq2 = */ -1.20000339921340035687080671777948737144470214844e+0001,

89 /*
90 * |tan(x) - PF(x)|
91 * |--------------| <= 2^-58.57 for |x|<0.15625
92 * | x |
93 *
94 * where (let z = x*x)
95 * PF(x) = x + (t1*x*z)(t2 + z(t3 + z))(t4 + z)(t5 + z(t6 + z))
96 */
97 /* t1 = */ 3.71923358986516816929168705030406272271648049355e-0003,
98 /* t2 = */ 6.02645120354857866118436504621058702468872070312e+0000,
99 /* t3 = */ 2.42627327587398156083509093150496482849121093750e+0000,
100 /* t4 = */ 2.44968983934252770851003333518747240304946899414e+0000,
101 /* t5 = */ 6.07089252571767978849948121933266520500183105469e+0000,
102 /* t6 = */ -2.49403756995593761658369658107403665781021118164e+0000,
103 };

106 #define one q[0]
107 #define pp1 q[1]
108 #define pp2 q[2]
109 #define pp3 q[3]
110 #define qq1 q[4]
111 #define qq2 q[5]
112 #define t1 q[6]
113 #define t2 q[7]
114 #define t3 q[8]
115 #define t4 q[9]
116 #define t5 q[10]
117 #define t6 q[11]

new/usr/src/lib/libm/common/C/__tan.c 3

119 /* INDENT ON */

122 double
123 __k_tan(double x, double y, int k) {
124 double a, t, z, w = 0.0L, s, c, r, rh, xh, xl;
125 int i, j, hx, ix;

127 t = one;
128 hx = ((int *) &x)[HIWORD];
129 ix = hx & 0x7fffffff;
130 if (ix < 0x3fc40000) { /* 0.15625 */
131 if (ix < 0x3e400000) { /* 2^-27 */
132 if ((i = (int) x) == 0) /* generate inexact */
133 w = x;
134 t = y;
135 } else {
136 z = x * x;
137 t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) *
138 ((t4 + z) * (t5 + z * (t6 + z)));
139 w = x + t;
140 }
141 if (k == 0)
142 return (w);
143 /*
144 * Compute -1/(x+T) with great care
145 * Let r = -1/(x+T), rh = r chopped to 20 bits.
146 * Also let xh = x+T chopped to 20 bits, xl = (x-xh)+T. Then
147 * -1/(x+T) = rh + (-1/(x+T)-rh) = rh + r*(1+rh*(x+T))
148 * = rh + r*((1+rh*xh)+rh*xl).
149 */
150 rh = r = -one / w;
151 ((int *) &rh)[LOWORD] = 0;
152 xh = w;
153 ((int *) &xh)[LOWORD] = 0;
154 xl = (x - xh) + t;
155 return (rh + r * ((one + rh * xh) + rh * xl));
156 }
157 j = (ix + 0x4000) & 0x7fff8000;
158 i = (j - 0x3fc40000) >> 15;
159 ((int *) &t)[HIWORD] = j;
160 if (hx > 0)
161 x = y - (t - x);
162 else
163 x = -y - (t + x);
164 a = _TBL_tan_hi[i];
165 z = x * x;
166 s = (pp1 * x) * (pp2 + z * (pp3 + z)); /* sin(x) */
167 t = (qq1 * z) * (qq2 + z); /* cos(x) - 1 */
168 if (k == 0) {
169 w = a * s;
170 t = _TBL_tan_lo[i] + (s + a * w) / (one - (w - t));
171 return (hx < 0 ? -a - t : a + t);
172 } else {
173 w = s + a * t;
174 c = w + _TBL_tan_lo[i];
175 t = a * s - t;
176 /*
177 * Now try to compute [(1-T)/(a+c)] accurately
178 *
179 * Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits.
180 * Also let xh = a+c chopped to 20 bits, xl = (a-xh)+c. Then
181 * (1-T)/(a+c) = rh + ((1-T)/(a+c)-rh)
182 * = rh + r*(1-T-rh*(a+c))
183 * = rh + r*((1-T-rh*xh)-rh*xl)
184 * = rh + r*(((1-rh*xh)-T)-rh*xl)

new/usr/src/lib/libm/common/C/__tan.c 4

185 */
186 r = one / (a + c);
187 rh = (one - t) * r;
188 ((int *) &rh)[LOWORD] = 0;
189 xh = a + c;
190 ((int *) &xh)[LOWORD] = 0;
191 xl = (a - xh) + c;
192 z = rh + r * (((one - rh * xh) - t) - rh * xl);
193 return (hx >= 0 ? -z : z);
194 }
195 }

new/usr/src/lib/libm/common/C/acos.c 1

**
 4676 Thu Oct 9 19:48:52 2014
new/usr/src/lib/libm/common/C/acos.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak acos = __acos

32 /* INDENT OFF */
33 /*
34 * acos(x)
35 * Method :
36 * acos(x) = pi/2 - asin(x)
37 * acos(-x) = pi/2 + asin(x)
38 * For |x|<=0.5
39 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
40 * For x>0.5
41 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
42 * = 2asin(sqrt((1-x)/2))
43 * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
44 * = 2f + (2c + 2s*z*R(z))
45 * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
46 * for f so that f+c ~ sqrt(z).
47 * For x<-0.5
48 * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
49 * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
50 *
51 * Special cases:
52 * if x is NaN, return x itself;
53 * if |x|>1, return NaN with invalid signal.
54 *
55 * Function needed: sqrt
56 */
57 /* INDENT ON */

new/usr/src/lib/libm/common/C/acos.c 2

59 #include "libm_synonyms.h" /* __acos, __sqrt, __isnan */
60 #include "libm_protos.h" /* _SVID_libm_error */
61 #include "libm_macros.h"
62 #include <math.h>

64 /* INDENT OFF */
65 static const double xxx[] = {
66 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
67 /* pi */ 3.14159265358979311600e+00, /* 400921FB, 54442D18 */
68 /* pio2_hi */ 1.57079632679489655800e+00, /* 3FF921FB, 54442D18 */
69 /* pio2_lo */ 6.12323399573676603587e-17, /* 3C91A626, 33145C07 */
70 /* pS0 */ 1.66666666666666657415e-01, /* 3FC55555, 55555555 */
71 /* pS1 */ -3.25565818622400915405e-01, /* BFD4D612, 03EB6F7D */
72 /* pS2 */ 2.01212532134862925881e-01, /* 3FC9C155, 0E884455 */
73 /* pS3 */ -4.00555345006794114027e-02, /* BFA48228, B5688F3B */
74 /* pS4 */ 7.91534994289814532176e-04, /* 3F49EFE0, 7501B288 */
75 /* pS5 */ 3.47933107596021167570e-05, /* 3F023DE1, 0DFDF709 */
76 /* qS1 */ -2.40339491173441421878e+00, /* C0033A27, 1C8A2D4B */
77 /* qS2 */ 2.02094576023350569471e+00, /* 40002AE5, 9C598AC8 */
78 /* qS3 */ -6.88283971605453293030e-01, /* BFE6066C, 1B8D0159 */
79 /* qS4 */ 7.70381505559019352791e-02 /* 3FB3B8C5, B12E9282 */
80 };
81 #define one xxx[0]
82 #define pi xxx[1]
83 #define pio2_hi xxx[2]
84 #define pio2_lo xxx[3]
85 #define pS0 xxx[4]
86 #define pS1 xxx[5]
87 #define pS2 xxx[6]
88 #define pS3 xxx[7]
89 #define pS4 xxx[8]
90 #define pS5 xxx[9]
91 #define qS1 xxx[10]
92 #define qS2 xxx[11]
93 #define qS3 xxx[12]
94 #define qS4 xxx[13]
95 /* INDENT ON */

97 double
98 acos(double x) {
99 double z, p, q, r, w, s, c, df;
100 int hx, ix;

102 hx = ((int *) &x)[HIWORD];
103 ix = hx & 0x7fffffff;
104 if (ix >= 0x3ff00000) { /* |x| >= 1 */
105 if (((ix - 0x3ff00000) | ((int *) &x)[LOWORD]) == 0) {
106 /* |x| == 1 */
107 if (hx > 0) /* acos(1) = 0 */
108 return (0.0);
109 else /* acos(-1) = pi */
110 return (pi + 2.0 * pio2_lo);
111 } else if (isnan(x))
112 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
113 return (ix >= 0x7ff80000 ? x : (x - x) / (x - x));
114 /* assumes sparc-like QNaN */
115 #else
116 return (x - x) / (x - x); /* acos(|x|>1) is NaN */
117 #endif
118 else
119 return (_SVID_libm_err(x, x, 1));
120 }
121 if (ix < 0x3fe00000) { /* |x| < 0.5 */
122 if (ix <= 0x3c600000)
123 return (pio2_hi + pio2_lo); /* if |x| < 2**-57 */
124 z = x * x;

new/usr/src/lib/libm/common/C/acos.c 3

125 p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 +
126 z * (pS4 + z * pS5)))));
127 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
128 r = p / q;
129 return (pio2_hi - (x - (pio2_lo - x * r)));
130 } else if (hx < 0) {
131 /* x < -0.5 */
132 z = (one + x) * 0.5;
133 p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 +
134 z * (pS4 + z * pS5)))));
135 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
136 s = sqrt(z);
137 r = p / q;
138 w = r * s - pio2_lo;
139 return (pi - 2.0 * (s + w));
140 } else {
141 /* x > 0.5 */
142 z = (one - x) * 0.5;
143 s = sqrt(z);
144 df = s;
145 ((int *) &df)[LOWORD] = 0;
146 c = (z - df * df) / (s + df);
147 p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 +
148 z * (pS4 + z * pS5)))));
149 q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
150 r = p / q;
151 w = r * s + c;
152 return (2.0 * (df + w));
153 }
154 }

new/usr/src/lib/libm/common/C/acosh.c 1

**
 2619 Thu Oct 9 19:48:52 2014
new/usr/src/lib/libm/common/C/acosh.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak acosh = __acosh

32 /* INDENT OFF */
33 /*
34 * acosh(x)
35 * Method :
36 * Based on
37 * acosh(x) = log [x + sqrt(x*x-1)]
38 * we have
39 * acosh(x) := log(x)+ln2, if x is large; else
40 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x > 2; else
41 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t = x-1.
42 *
43 * Special cases:
44 * acosh(x) is NaN with signal if x < 1.
45 * acosh(NaN) is NaN without signal.
46 */
47 /* INDENT ON */

49 #include "libm_synonyms.h" /* __acosh, __log, __log1p */
50 #include "libm_protos.h" /* _SVID_libm_error */
51 #include "libm_macros.h"
52 #include <math.h>

54 static const double
55 one = 1.0,
56 ln2 = 6.93147180559945286227e-01; /* 3FE62E42, FEFA39EF */

58 double

new/usr/src/lib/libm/common/C/acosh.c 2

59 acosh(double x) {
60 double t;
61 int hx;

63 hx = ((int *) &x)[HIWORD];
64 if (hx < 0x3ff00000) { /* x < 1 */
65 if (isnan(x))
66 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
67 return (hx >= 0xfff80000 ? x : (x - x) / (x - x));
68 /* assumes sparc-like QNaN */
69 #else
70 return (x - x) / (x - x);
71 #endif
72 else
73 return (_SVID_libm_err(x, x, 29));
74 } else if (hx >= 0x41b00000) {
75 /* x > 2**28 */
76 if (hx >= 0x7ff00000) { /* x is inf of NaN */
77 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
78 return (hx >= 0x7ff80000 ? x : x + x);
79 /* assumes sparc-like QNaN */
80 #else
81 return (x + x);
82 #endif
83 } else /* acosh(huge)=log(2x) */
84 return (log(x) + ln2);
85 } else if (((hx - 0x3ff00000) | ((int *) &x)[LOWORD]) == 0) {
86 return (0.0); /* acosh(1) = 0 */
87 } else if (hx > 0x40000000) {
88 /* 2**28 > x > 2 */
89 t = x * x;
90 return (log(2.0 * x - one / (x + sqrt(t - one))));
91 } else {
92 /* 1 < x < 2 */
93 t = x - one;
94 return (log1p(t + sqrt(2.0 * t + t * t)));
95 }
96 }

new/usr/src/lib/libm/common/C/asin.c 1

**
 4878 Thu Oct 9 19:48:52 2014
new/usr/src/lib/libm/common/C/asin.c
libm - more cstyle fixes
In case of |x| < 2**-27 we are talking about x being almost 0.
The graph of arcsine curve shows that arcsin(0) is 0 so we will return 0 if x ==
or return x and generate inexact if x is close to 0.
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
In case of |x| < 2**-27 we are talking about x being almost 0.
The graph of arcsine curve shows that arcsin(0) is 0 so we will return 0 if x ==
or return x and generate inexact if x is close to 0.
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak asin = __asin

32 /* INDENT OFF */
33 /*
34 * asin(x)
35 * Method :
36 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37 * we approximate asin(x) on [0,0.5] by
38 * asin(x) = x + x*x^2*R(x^2)
39 * where
40 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
41 * and its remez error is bounded by
42 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
43 *
44 * For x in [0.5,1]
45 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
46 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
47 * then for x>0.98
48 * asin(x) = pi/2 - 2*(s+s*z*R(z))

new/usr/src/lib/libm/common/C/asin.c 2

49 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
50 * For x<=0.98, let pio4_hi = pio2_hi/2, then
51 * f = hi part of s;
52 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
53 * and
54 * asin(x) = pi/2 - 2*(s+s*z*R(z))
55 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
56 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
57 *
58 * Special cases:
59 * if x is NaN, return x itself;
60 * if |x|>1, return NaN with invalid signal.
61 *
62 */
63 /* INDENT ON */

65 #include "libm_synonyms.h" /* __asin, __sqrt, __isnan */
66 #include "libm_protos.h" /* _SVID_libm_error */
67 #include "libm_macros.h"
68 #include <math.h>

70 /* INDENT OFF */
71 static const double xxx[] = {
72 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
73 /* huge */ 1.000e+300,
74 /* pio2_hi */ 1.57079632679489655800e+00, /* 3FF921FB, 54442D18 */
75 /* pio2_lo */ 6.12323399573676603587e-17, /* 3C91A626, 33145C07 */
76 /* pio4_hi */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
77 /* coefficient for R(x^2) */
78 /* pS0 */ 1.66666666666666657415e-01, /* 3FC55555, 55555555 */
79 /* pS1 */ -3.25565818622400915405e-01, /* BFD4D612, 03EB6F7D */
80 /* pS2 */ 2.01212532134862925881e-01, /* 3FC9C155, 0E884455 */
81 /* pS3 */ -4.00555345006794114027e-02, /* BFA48228, B5688F3B */
82 /* pS4 */ 7.91534994289814532176e-04, /* 3F49EFE0, 7501B288 */
83 /* pS5 */ 3.47933107596021167570e-05, /* 3F023DE1, 0DFDF709 */
84 /* qS1 */ -2.40339491173441421878e+00, /* C0033A27, 1C8A2D4B */
85 /* qS2 */ 2.02094576023350569471e+00, /* 40002AE5, 9C598AC8 */
86 /* qS3 */ -6.88283971605453293030e-01, /* BFE6066C, 1B8D0159 */
87 /* qS4 */ 7.70381505559019352791e-02 /* 3FB3B8C5, B12E9282 */
88 };
89 #define one xxx[0]
90 #define huge xxx[1]
91 #define pio2_hi xxx[2]
92 #define pio2_lo xxx[3]
93 #define pio4_hi xxx[4]
94 #define pS0 xxx[5]
95 #define pS1 xxx[6]
96 #define pS2 xxx[7]
97 #define pS3 xxx[8]
98 #define pS4 xxx[9]
99 #define pS5 xxx[10]
100 #define qS1 xxx[11]
101 #define qS2 xxx[12]
102 #define qS3 xxx[13]
103 #define qS4 xxx[14]
104 /* INDENT ON */

106 double
107 asin(double x) {
108 double t, w, p, q, c, r, s;
109 int hx, ix, i;

111 hx = ((int *) &x)[HIWORD];
112 ix = hx & 0x7fffffff;
113 if (ix >= 0x3ff00000) { /* |x| >= 1 */
114 if (((ix - 0x3ff00000) | ((int *) &x)[LOWORD]) == 0)

new/usr/src/lib/libm/common/C/asin.c 3

115 /* asin(1)=+-pi/2 with inexact */
116 return (x * pio2_hi + x * pio2_lo);
117 else if (isnan(x))
118 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
119 return (ix >= 0x7ff80000 ? x : (x - x) / (x - x));
120 /* assumes sparc-like QNaN */
121 #else
122 return (x - x) / (x - x); /* asin(|x|>1) is NaN */
123 #endif
124 else
125 return (_SVID_libm_err(x, x, 2));
126 } else if (ix < 0x3fe00000) { /* |x| < 0.5 */
127 if (ix < 0x3e400000) { /* if |x| < 2**-27 */
128 if ((i = (int) x) == 0)
129 /* return x with inexact if x != 0 */
130 return (x);
131 }
132 t = x * x;
133 p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 +
134 t * (pS4 + t * pS5)))));
135 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
136 w = p / q;
137 return (x + x * w);
138 }
139 /* 1 > |x| >= 0.5 */
140 w = one - fabs(x);
141 t = w * 0.5;
142 p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
143 q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
144 s = sqrt(t);
145 if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */
146 w = p / q;
147 t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
148 } else {
149 w = s;
150 ((int *) &w)[LOWORD] = 0;
151 c = (t - w * w) / (s + w);
152 r = p / q;
153 p = 2.0 * s * r - (pio2_lo - 2.0 * c);
154 q = pio4_hi - 2.0 * w;
155 t = pio4_hi - (p - q);
156 }
157 return (hx > 0 ? t : -t);
158 }

new/usr/src/lib/libm/common/C/asinh.c 1

**
 2434 Thu Oct 9 19:48:52 2014
new/usr/src/lib/libm/common/C/asinh.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak asinh = __asinh

32 /* INDENT OFF */
33 /*
34 * asinh(x)
35 * Method :
36 * Based on
37 * asinh(x) = sign(x) * log [|x| + sqrt(x*x+1)]
38 * we have
39 * asinh(x) := x if 1+x*x == 1,
40 * := sign(x)*(log(x)+ln2)) for large |x|, else
41 * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x| > 2, else
42 * := sign(x)*log1p(|x|+x^2/(1+sqrt(1+x^2)))
43 */
44 /* INDENT ON */

46 #include "libm_synonyms.h" /* __asinh */
47 #include "libm_macros.h"
48 #include <math.h>

50 static const double xxx[] = {
51 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
52 /* ln2 */ 6.93147180559945286227e-01, /* 3FE62E42, FEFA39EF */
53 /* huge */ 1.00000000000000000000e+300
54 };
55 #define one xxx[0]
56 #define ln2 xxx[1]
57 #define huge xxx[2]

new/usr/src/lib/libm/common/C/asinh.c 2

59 double
60 asinh(double x) {
61 double t, w;
62 int hx, ix;

64 hx = ((int *) &x)[HIWORD];
65 ix = hx & 0x7fffffff;
66 if (ix >= 0x7ff00000)
67 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
68 return (ix >= 0x7ff80000 ? x : x + x);
69 /* assumes sparc-like QNaN */
70 #else
71 return (x + x); /* x is inf or NaN */
72 #endif
73 if (ix < 0x3e300000) { /* |x|<2**-28 */
74 if (huge + x > one)
75 return (x); /* return x inexact except 0 */
76 }
77 if (ix > 0x41b00000) { /* |x| > 2**28 */
78 w = log(fabs(x)) + ln2;
79 } else if (ix > 0x40000000) {
80 /* 2**28 > |x| > 2.0 */
81 t = fabs(x);
82 w = log(2.0 * t + one / (sqrt(x * x + one) + t));
83 } else {
84 /* 2.0 > |x| > 2**-28 */
85 t = x * x;
86 w = log1p(fabs(x) + t / (one + sqrt(one + t)));
87 }
88 return (hx > 0 ? w : -w);
89 }

new/usr/src/lib/libm/common/C/atanh.c 1

**
 2088 Thu Oct 9 19:48:52 2014
new/usr/src/lib/libm/common/C/atanh.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak atanh = __atanh

32 /* INDENT OFF */
33 /*
34 * atanh(x)
35 * Code originated from 4.3bsd.
36 * Modified by K.C. Ng for SUN 4.0 libm.
37 * Method :
38 * 1 2x x
39 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
40 * 2 1 - x 1 - x
41 * Note: to guarantee atanh(-x) = -atanh(x), we use
42 * sign(x) |x|
43 * atanh(x) = ------- * log1p(2*-------).
44 * 2 1 - |x|
45 *
46 * Special cases:
47 * atanh(x) is NaN if |x| > 1 with signal;
48 * atanh(NaN) is that NaN with no signal;
49 * atanh(+-1) is +-INF with signal.
50 */
51 /* INDENT ON */

53 #include "libm.h"
54 #include "libm_synonyms.h"
55 #include "libm_protos.h"
56 #include <math.h>

58 double

new/usr/src/lib/libm/common/C/atanh.c 2

59 atanh(double x) {
60 double t;

62 if (isnan(x))
63 return (x * x); /* switched from x + x for Cheetah */
64 t = fabs(x);
65 if (t > 1.0)
66 return (_SVID_libm_err(x, x, 30)); /* sNaN */
67 if (t == 1.0)
68 return (_SVID_libm_err(x, x, 31)); /* x/0; */
69 t = t / (1.0 - t);
70 return (copysign(0.5, x) * log1p(t + t));
71 }

new/usr/src/lib/libm/common/C/cosh.c 1

**
 2452 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/cosh.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 */
24 /*
25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 #pragma weak cosh = __cosh

31 /* INDENT OFF */
32 /*
33 * cosh(x)
34 * Code originated from 4.3bsd.
35 * Modified by K.C. Ng for SUN 4.0 libm.
36 * Method :
37 * 1. Replace x by |x| (cosh(x) = cosh(-x)).
38 * 2.
39 * [exp(x) - 1]^2
40 * 0 <= x <= 0.3465 : cosh(x) := 1 + -------------------
41 * 2*exp(x)
42 *
43 * exp(x) + 1/exp(x)
44 * 0.3465 <= x <= 22 : cosh(x) := -------------------
45 * 2
46 * 22 <= x <= lnovft : cosh(x) := exp(x)/2
47 * lnovft <= x < INF : cosh(x) := scalbn(exp(x-1024*ln2),1023)
48 *
49 * Note: .3465 is a number near one half of ln2.
50 *
51 * Special cases:
52 * cosh(x) is |x| if x is +INF, -INF, or NaN.
53 * only cosh(0)=1 is exact for finite x.
54 */
55 /* INDENT ON */

57 #include "libm.h"

new/usr/src/lib/libm/common/C/cosh.c 2

59 static const double
60 ln2 = 6.93147180559945286227e-01,
61 ln2hi = 6.93147180369123816490e-01,
62 ln2lo = 1.90821492927058770002e-10,
63 lnovft = 7.09782712893383973096e+02;

65 double
66 cosh(double x) {
67 double t, w;

69 w = fabs(x);
70 if (!finite(w))
71 return (w * w);
72 if (w < 0.3465) {
73 t = expm1(w);
74 w = 1.0 + t;
75 if (w != 1.0)
76 w = 1.0 + (t * t) / (w + w);
77 return (w);
78 } else if (w < 22.0) {
79 t = exp(w);
80 return (0.5 * (t + 1.0 / t));
81 } else if (w <= lnovft) {
82 return (0.5 * exp(w));
83 } else {
84 w = (w - 1024 * ln2hi) - 1024 * ln2lo;
85 if (w >= ln2)
86 return (_SVID_libm_err(x, x, 5));
87 else
88 return (scalbn(exp(w), 1023));
89 }
90 }

new/usr/src/lib/libm/common/C/erf.c 1

**
 13875 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/erf.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak erf = __erf
31 #pragma weak erfc = __erfc

33 /* INDENT OFF */
34 /*
35 * double erf(double x)
36 * double erfc(double x)
37 * x
38 * 2 |\
39 * erf(x) = --------- | exp(-t*t)dt
40 * sqrt(pi) \|
41 * 0
42 *
43 * erfc(x) = 1-erf(x)
44 * Note that
45 * erf(-x) = -erf(x)
46 * erfc(-x) = 2 - erfc(x)
47 *
48 * Method:
49 * 1. For |x| in [0, 0.84375]
50 * erf(x) = x + x*R(x^2)
51 * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
52 * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
53 * where R = P/Q where P is an odd poly of degree 8 and
54 * Q is an odd poly of degree 10.
55 * -57.90
56 * | R - (erf(x)-x)/x | <= 2
57 *
58 *

new/usr/src/lib/libm/common/C/erf.c 2

59 * Remark. The formula is derived by noting
60 * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 +)
61 * and that
62 * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
63 * is close to one. The interval is chosen because the fix
64 * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
65 * near 0.6174), and by some experiment, 0.84375 is chosen to
66 * guarantee the error is less than one ulp for erf.
67 *
68 * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
69 * c = 0.84506291151 rounded to single (24 bits)
70 * erf(x) = sign(x) * (c + P1(s)/Q1(s))
71 * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
72 * 1+(c+P1(s)/Q1(s)) if x < 0
73 * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
74 * Remark: here we use the taylor series expansion at x=1.
75 * erf(1+s) = erf(1) + s*Poly(s)
76 * = 0.845.. + P1(s)/Q1(s)
77 * That is, we use rational approximation to approximate
78 * erf(1+s) - (c = (single)0.84506291151)
79 * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
80 * where
81 * P1(s) = degree 6 poly in s
82 * Q1(s) = degree 6 poly in s
83 *
84 * 3. For x in [1.25,1/0.35(~2.857143)],
85 * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
86 * erf(x) = 1 - erfc(x)
87 * where
88 * R1(z) = degree 7 poly in z, (z=1/x^2)
89 * S1(z) = degree 8 poly in z
90 *
91 * 4. For x in [1/0.35,28]
92 * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
93 * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
94 * = 2.0 - tiny (if x <= -6)
95 * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
96 * erf(x) = sign(x)*(1.0 - tiny)
97 * where
98 * R2(z) = degree 6 poly in z, (z=1/x^2)
99 * S2(z) = degree 7 poly in z
100 *
101 * Note1:
102 * To compute exp(-x*x-0.5625+R/S), let s be a single
103 * precision number and s := x; then
104 * -x*x = -s*s + (s-x)*(s+x)
105 * exp(-x*x-0.5626+R/S) =
106 * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
107 * Note2:
108 * Here 4 and 5 make use of the asymptotic series
109 * exp(-x*x)
110 * erfc(x) ~ ---------- * (1 + Poly(1/x^2))
111 * x*sqrt(pi)
112 * We use rational approximation to approximate
113 * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
114 * Here is the error bound for R1/S1 and R2/S2
115 * |R1/S1 - f(x)| < 2**(-62.57)
116 * |R2/S2 - f(x)| < 2**(-61.52)
117 *
118 * 5. For inf > x >= 28
119 * erf(x) = sign(x) *(1 - tiny) (raise inexact)
120 * erfc(x) = tiny*tiny (raise underflow) if x > 0
121 * = 2 - tiny if x<0
122 *
123 * 7. Special case:
124 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,

new/usr/src/lib/libm/common/C/erf.c 3

125 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
126 * erfc/erf(NaN) is NaN
127 */
128 /* INDENT ON */

130 #include "libm_synonyms.h" /* __erf, __erfc, __exp */
131 #include "libm_macros.h"
132 #include <math.h>

134 static const double xxx[] = {
135 /* tiny */ 1e-300,
136 /* half */ 5.00000000000000000000e-01, /* 3FE00000, 00000000 */
137 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
138 /* two */ 2.00000000000000000000e+00, /* 40000000, 00000000 */
139 /* erx */ 8.45062911510467529297e-01, /* 3FEB0AC1, 60000000 */
140 /*
141 * Coefficients for approximation to erf on [0,0.84375]
142 */
143 /* efx */ 1.28379167095512586316e-01, /* 3FC06EBA, 8214DB69 */
144 /* efx8 */ 1.02703333676410069053e+00, /* 3FF06EBA, 8214DB69 */
145 /* pp0 */ 1.28379167095512558561e-01, /* 3FC06EBA, 8214DB68 */
146 /* pp1 */ -3.25042107247001499370e-01, /* BFD4CD7D, 691CB913 */
147 /* pp2 */ -2.84817495755985104766e-02, /* BF9D2A51, DBD7194F */
148 /* pp3 */ -5.77027029648944159157e-03, /* BF77A291, 236668E4 */
149 /* pp4 */ -2.37630166566501626084e-05, /* BEF8EAD6, 120016AC */
150 /* qq1 */ 3.97917223959155352819e-01, /* 3FD97779, CDDADC09 */
151 /* qq2 */ 6.50222499887672944485e-02, /* 3FB0A54C, 5536CEBA */
152 /* qq3 */ 5.08130628187576562776e-03, /* 3F74D022, C4D36B0F */
153 /* qq4 */ 1.32494738004321644526e-04, /* 3F215DC9, 221C1A10 */
154 /* qq5 */ -3.96022827877536812320e-06, /* BED09C43, 42A26120 */
155 /*
156 * Coefficients for approximation to erf in [0.84375,1.25]
157 */
158 /* pa0 */ -2.36211856075265944077e-03, /* BF6359B8, BEF77538 */
159 /* pa1 */ 4.14856118683748331666e-01, /* 3FDA8D00, AD92B34D */
160 /* pa2 */ -3.72207876035701323847e-01, /* BFD7D240, FBB8C3F1 */
161 /* pa3 */ 3.18346619901161753674e-01, /* 3FD45FCA, 805120E4 */
162 /* pa4 */ -1.10894694282396677476e-01, /* BFBC6398, 3D3E28EC */
163 /* pa5 */ 3.54783043256182359371e-02, /* 3FA22A36, 599795EB */
164 /* pa6 */ -2.16637559486879084300e-03, /* BF61BF38, 0A96073F */
165 /* qa1 */ 1.06420880400844228286e-01, /* 3FBB3E66, 18EEE323 */
166 /* qa2 */ 5.40397917702171048937e-01, /* 3FE14AF0, 92EB6F33 */
167 /* qa3 */ 7.18286544141962662868e-02, /* 3FB2635C, D99FE9A7 */
168 /* qa4 */ 1.26171219808761642112e-01, /* 3FC02660, E763351F */
169 /* qa5 */ 1.36370839120290507362e-02, /* 3F8BEDC2, 6B51DD1C */
170 /* qa6 */ 1.19844998467991074170e-02, /* 3F888B54, 5735151D */
171 /*
172 * Coefficients for approximation to erfc in [1.25,1/0.35]
173 */
174 /* ra0 */ -9.86494403484714822705e-03, /* BF843412, 600D6435 */
175 /* ra1 */ -6.93858572707181764372e-01, /* BFE63416, E4BA7360 */
176 /* ra2 */ -1.05586262253232909814e+01, /* C0251E04, 41B0E726 */
177 /* ra3 */ -6.23753324503260060396e+01, /* C04F300A, E4CBA38D */
178 /* ra4 */ -1.62396669462573470355e+02, /* C0644CB1, 84282266 */
179 /* ra5 */ -1.84605092906711035994e+02, /* C067135C, EBCCABB2 */
180 /* ra6 */ -8.12874355063065934246e+01, /* C0545265, 57E4D2F2 */
181 /* ra7 */ -9.81432934416914548592e+00, /* C023A0EF, C69AC25C */
182 /* sa1 */ 1.96512716674392571292e+01, /* 4033A6B9, BD707687 */
183 /* sa2 */ 1.37657754143519042600e+02, /* 4061350C, 526AE721 */
184 /* sa3 */ 4.34565877475229228821e+02, /* 407B290D, D58A1A71 */
185 /* sa4 */ 6.45387271733267880336e+02, /* 40842B19, 21EC2868 */
186 /* sa5 */ 4.29008140027567833386e+02, /* 407AD021, 57700314 */
187 /* sa6 */ 1.08635005541779435134e+02, /* 405B28A3, EE48AE2C */
188 /* sa7 */ 6.57024977031928170135e+00, /* 401A47EF, 8E484A93 */
189 /* sa8 */ -6.04244152148580987438e-02, /* BFAEEFF2, EE749A62 */
190 /*

new/usr/src/lib/libm/common/C/erf.c 4

191 * Coefficients for approximation to erfc in [1/.35,28]
192 */
193 /* rb0 */ -9.86494292470009928597e-03, /* BF843412, 39E86F4A */
194 /* rb1 */ -7.99283237680523006574e-01, /* BFE993BA, 70C285DE */
195 /* rb2 */ -1.77579549177547519889e+01, /* C031C209, 555F995A */
196 /* rb3 */ -1.60636384855821916062e+02, /* C064145D, 43C5ED98 */
197 /* rb4 */ -6.37566443368389627722e+02, /* C083EC88, 1375F228 */
198 /* rb5 */ -1.02509513161107724954e+03, /* C0900461, 6A2E5992 */
199 /* rb6 */ -4.83519191608651397019e+02, /* C07E384E, 9BDC383F */
200 /* sb1 */ 3.03380607434824582924e+01, /* 403E568B, 261D5190 */
201 /* sb2 */ 3.25792512996573918826e+02, /* 40745CAE, 221B9F0A */
202 /* sb3 */ 1.53672958608443695994e+03, /* 409802EB, 189D5118 */
203 /* sb4 */ 3.19985821950859553908e+03, /* 40A8FFB7, 688C246A */
204 /* sb5 */ 2.55305040643316442583e+03, /* 40A3F219, CEDF3BE6 */
205 /* sb6 */ 4.74528541206955367215e+02, /* 407DA874, E79FE763 */
206 /* sb7 */ -2.24409524465858183362e+01 /* C03670E2, 42712D62 */
207 };

209 #define tiny xxx[0]
210 #define half xxx[1]
211 #define one xxx[2]
212 #define two xxx[3]
213 #define erx xxx[4]
214 /*
215 * Coefficients for approximation to erf on [0,0.84375]
216 */
217 #define efx xxx[5]
218 #define efx8 xxx[6]
219 #define pp0 xxx[7]
220 #define pp1 xxx[8]
221 #define pp2 xxx[9]
222 #define pp3 xxx[10]
223 #define pp4 xxx[11]
224 #define qq1 xxx[12]
225 #define qq2 xxx[13]
226 #define qq3 xxx[14]
227 #define qq4 xxx[15]
228 #define qq5 xxx[16]
229 /*
230 * Coefficients for approximation to erf in [0.84375,1.25]
231 */
232 #define pa0 xxx[17]
233 #define pa1 xxx[18]
234 #define pa2 xxx[19]
235 #define pa3 xxx[20]
236 #define pa4 xxx[21]
237 #define pa5 xxx[22]
238 #define pa6 xxx[23]
239 #define qa1 xxx[24]
240 #define qa2 xxx[25]
241 #define qa3 xxx[26]
242 #define qa4 xxx[27]
243 #define qa5 xxx[28]
244 #define qa6 xxx[29]
245 /*
246 * Coefficients for approximation to erfc in [1.25,1/0.35]
247 */
248 #define ra0 xxx[30]
249 #define ra1 xxx[31]
250 #define ra2 xxx[32]
251 #define ra3 xxx[33]
252 #define ra4 xxx[34]
253 #define ra5 xxx[35]
254 #define ra6 xxx[36]
255 #define ra7 xxx[37]
256 #define sa1 xxx[38]

new/usr/src/lib/libm/common/C/erf.c 5

257 #define sa2 xxx[39]
258 #define sa3 xxx[40]
259 #define sa4 xxx[41]
260 #define sa5 xxx[42]
261 #define sa6 xxx[43]
262 #define sa7 xxx[44]
263 #define sa8 xxx[45]
264 /*
265 * Coefficients for approximation to erfc in [1/.35,28]
266 */
267 #define rb0 xxx[46]
268 #define rb1 xxx[47]
269 #define rb2 xxx[48]
270 #define rb3 xxx[49]
271 #define rb4 xxx[50]
272 #define rb5 xxx[51]
273 #define rb6 xxx[52]
274 #define sb1 xxx[53]
275 #define sb2 xxx[54]
276 #define sb3 xxx[55]
277 #define sb4 xxx[56]
278 #define sb5 xxx[57]
279 #define sb6 xxx[58]
280 #define sb7 xxx[59]

282 double
283 erf(double x) {
284 int hx, ix, i;
285 double R, S, P, Q, s, y, z, r;

287 hx = ((int *) &x)[HIWORD];
288 ix = hx & 0x7fffffff;
289 if (ix >= 0x7ff00000) { /* erf(nan)=nan */
290 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
291 if (ix >= 0x7ff80000) /* assumes sparc-like QNaN */
292 return (x);
293 #endif
294 i = ((unsigned) hx >> 31) << 1;
295 return ((double) (1 - i) + one / x); /* erf(+-inf)=+-1 */
296 }

298 if (ix < 0x3feb0000) { /* |x|<0.84375 */
299 if (ix < 0x3e300000) { /* |x|<2**-28 */
300 if (ix < 0x00800000) /* avoid underflow */
301 return (0.125 * (8.0 * x + efx8 * x));
302 return (x + efx * x);
303 }
304 z = x * x;
305 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
306 s = one +
307 z *(qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
308 y = r / s;
309 return (x + x * y);
310 }
311 if (ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
312 s = fabs(x) - one;
313 P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 +
314 s * (pa5 + s * pa6)))));
315 Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 +
316 s * (qa5 + s * qa6)))));
317 if (hx >= 0)
318 return (erx + P / Q);
319 else
320 return (-erx - P / Q);
321 }
322 if (ix >= 0x40180000) { /* inf > |x| >= 6 */

new/usr/src/lib/libm/common/C/erf.c 6

323 if (hx >= 0)
324 return (one - tiny);
325 else
326 return (tiny - one);
327 }
328 x = fabs(x);
329 s = one / (x * x);
330 if (ix < 0x4006DB6E) { /* |x| < 1/0.35 */
331 R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 +
332 s * (ra5 + s * (ra6 + s * ra7))))));
333 S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 +
334 s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
335 } else { /* |x| >= 1/0.35 */
336 R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 +
337 s * (rb5 + s * rb6)))));
338 S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 +
339 s * (sb5 + s * (sb6 + s * sb7))))));
340 }
341 z = x;
342 ((int *) &z)[LOWORD] = 0;
343 r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S);
344 if (hx >= 0)
345 return (one - r / x);
346 else
347 return (r / x - one);
348 }

350 double
351 erfc(double x) {
352 int hx, ix;
353 double R, S, P, Q, s, y, z, r;

355 hx = ((int *) &x)[HIWORD];
356 ix = hx & 0x7fffffff;
357 if (ix >= 0x7ff00000) { /* erfc(nan)=nan */
358 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
359 if (ix >= 0x7ff80000) /* assumes sparc-like QNaN */
360 return (x);
361 #endif
362 /* erfc(+-inf)=0,2 */
363 return ((double) (((unsigned) hx >> 31) << 1) + one / x);
364 }

366 if (ix < 0x3feb0000) { /* |x| < 0.84375 */
367 if (ix < 0x3c700000) /* |x| < 2**-56 */
368 return (one - x);
369 z = x * x;
370 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
371 s = one +
372 z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
373 y = r / s;
374 if (hx < 0x3fd00000) { /* x < 1/4 */
375 return (one - (x + x * y));
376 } else {
377 r = x * y;
378 r += (x - half);
379 return (half - r);
380 }
381 }
382 if (ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
383 s = fabs(x) - one;
384 P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 +
385 s * (pa5 + s * pa6)))));
386 Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 +
387 s * (qa5 + s * qa6)))));
388 if (hx >= 0) {

new/usr/src/lib/libm/common/C/erf.c 7

389 z = one - erx;
390 return (z - P / Q);
391 } else {
392 z = erx + P / Q;
393 return (one + z);
394 }
395 }
396 if (ix < 0x403c0000) { /* |x|<28 */
397 x = fabs(x);
398 s = one / (x * x);
399 if (ix < 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143 */
400 R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 +
401 s * (ra5 + s * (ra6 + s * ra7))))));
402 S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 +
403 s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
404 } else {
405 /* |x| >= 1/.35 ~ 2.857143 */
406 if (hx < 0 && ix >= 0x40180000)
407 return (two - tiny); /* x < -6 */

409 R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 +
410 s * (rb5 + s * rb6)))));
411 S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 +
412 s * (sb5 + s * (sb6 + s * sb7))))));
413 }
414 z = x;
415 ((int *) &z)[LOWORD] = 0;
416 r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S);
417 if (hx > 0)
418 return (r / x);
419 else
420 return (two - r / x);
421 } else {
422 if (hx > 0)
423 return (tiny * tiny);
424 else
425 return (two - tiny);
426 }
427 }

new/usr/src/lib/libm/common/C/expm1.c 1

**
 8517 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/expm1.c
libm - more cstyle fixes
common/C/expm1.c: cstyle
nextafter.c
log1p.c
It is safe to initialize c with 0 at the beginning.
We will use ’c’ only if (k != 0).
libm/common/C/expm1.c
For |x| <= 0.5 ln2, (k == 0) we don’t need to compute correction (c).
We can initialize c manually with 0, to fix compiler warning.
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
common/C/expm1.c: cstyle
nextafter.c
log1p.c
It is safe to initialize c with 0 at the beginning.
We will use ’c’ only if (k != 0).
libm/common/C/expm1.c
For |x| <= 0.5 ln2, (k == 0) we don’t need to compute correction (c).
We can initialize c manually with 0, to fix compiler warning.
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak expm1 = __expm1

32 /* INDENT OFF */
33 /*
34 * expm1(x)
35 * Returns exp(x)-1, the exponential of x minus 1.
36 *
37 * Method
38 * 1. Arugment reduction:

new/usr/src/lib/libm/common/C/expm1.c 2

39 * Given x, find r and integer k such that
40 *
41 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
42 *
43 * Here a correction term c will be computed to compensate
44 * the error in r when rounded to a floating-point number.
45 *
46 * 2. Approximating expm1(r) by a special rational function on
47 * the interval [0,0.34658]:
48 * Since
49 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
50 * we define R1(r*r) by
51 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
52 * That is,
53 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
54 * = 6/r * (1 + 2.0*(1/(exp(r)-1) - 1/r))
55 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
56 * We use a special Reme algorithm on [0,0.347] to generate
57 * a polynomial of degree 5 in r*r to approximate R1. The
58 * maximum error of this polynomial approximation is bounded
59 * by 2**-61. In other words,
60 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
61 * where Q1 = -1.6666666666666567384E-2,
62 * Q2 = 3.9682539681370365873E-4,
63 * Q3 = -9.9206344733435987357E-6,
64 * Q4 = 2.5051361420808517002E-7,
65 * Q5 = -6.2843505682382617102E-9;
66 * (where z=r*r, and the values of Q1 to Q5 are listed below)
67 * with error bounded by
68 * | 5 | -61
69 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
70 * | |
71 *
72 * expm1(r) = exp(r)-1 is then computed by the following
73 * specific way which minimize the accumulation rounding error:
74 * 2 3
75 * r r [3 - (R1 + R1*r/2)]
76 * expm1(r) = r + --- + --- * [--------------------]
77 * 2 2 [6 - r*(3 - R1*r/2)]
78 *
79 * To compensate the error in the argument reduction, we use
80 * expm1(r+c) = expm1(r) + c + expm1(r)*c
81 * ~ expm1(r) + c + r*c
82 * Thus c+r*c will be added in as the correction terms for
83 * expm1(r+c). Now rearrange the term to avoid optimization
84 * screw up:
85 * (2 2)
86 * ({ (r [R1 - (3 - R1*r/2)]) } r)
87 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - ---)
88 * ({ (2 [6 - r*(3 - R1*r/2)]) } 2)
89 * ()
90 *
91 * = r - E
92 * 3. Scale back to obtain expm1(x):
93 * From step 1, we have
94 * expm1(x) = either 2^k*[expm1(r)+1] - 1
95 * = or 2^k*[expm1(r) + (1-2^-k)]
96 * 4. Implementation notes:
97 * (A). To save one multiplication, we scale the coefficient Qi
98 * to Qi*2^i, and replace z by (x^2)/2.
99 * (B). To achieve maximum accuracy, we compute expm1(x) by
100 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
101 * (ii) if k=0, return r-E
102 * (iii) if k=-1, return 0.5*(r-E)-0.5
103 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
104 * else return 1.0+2.0*(r-E);

new/usr/src/lib/libm/common/C/expm1.c 3

105 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
106 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
107 * (vii) return 2^k(1-((E+2^-k)-r))
108 *
109 * Special cases:
110 * expm1(INF) is INF, expm1(NaN) is NaN;
111 * expm1(-INF) is -1, and
112 * for finite argument, only expm1(0)=0 is exact.
113 *
114 * Accuracy:
115 * according to an error analysis, the error is always less than
116 * 1 ulp (unit in the last place).
117 *
118 * Misc. info.
119 * For IEEE double
120 * if x > 7.09782712893383973096e+02 then expm1(x) overflow
121 *
122 * Constants:
123 * The hexadecimal values are the intended ones for the following
124 * constants. The decimal values may be used, provided that the
125 * compiler will convert from decimal to binary accurately enough
126 * to produce the hexadecimal values shown.
127 */
128 /* INDENT ON */

130 #include "libm_synonyms.h" /* __expm1 */
131 #include "libm_macros.h"
132 #include <math.h>

134 static const double xxx[] = {
135 /* one */ 1.0,
136 /* huge */ 1.0e+300,
137 /* tiny */ 1.0e-300,
138 /* o_threshold */ 7.09782712893383973096e+02, /* 40862E42 FEFA39EF */
139 /* ln2_hi */ 6.93147180369123816490e-01, /* 3FE62E42 FEE00000 */
140 /* ln2_lo */ 1.90821492927058770002e-10, /* 3DEA39EF 35793C76 */
141 /* invln2 */ 1.44269504088896338700e+00, /* 3FF71547 652B82FE */
142 /* scaled coefficients related to expm1 */
143 /* Q1 */ -3.33333333333331316428e-02, /* BFA11111 111110F4 */
144 /* Q2 */ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
145 /* Q3 */ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
146 /* Q4 */ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
147 /* Q5 */ -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */
148 };
149 #define one xxx[0]
150 #define huge xxx[1]
151 #define tiny xxx[2]
152 #define o_threshold xxx[3]
153 #define ln2_hi xxx[4]
154 #define ln2_lo xxx[5]
155 #define invln2 xxx[6]
156 #define Q1 xxx[7]
157 #define Q2 xxx[8]
158 #define Q3 xxx[9]
159 #define Q4 xxx[10]
160 #define Q5 xxx[11]

162 double
163 expm1(double x) {
164 double y, hi, lo, c = 0.0L, t, e, hxs, hfx, r1;
165 int k, xsb;
166 unsigned hx;

168 hx = ((unsigned *) &x)[HIWORD]; /* high word of x */
169 xsb = hx & 0x80000000; /* sign bit of x */
170 if (xsb == 0)

new/usr/src/lib/libm/common/C/expm1.c 4

171 y = x;
172 else
173 y = -x; /* y = |x| */
174 hx &= 0x7fffffff; /* high word of |x| */

176 /* filter out huge and non-finite argument */
177 /* for example exp(38)-1 is approximately 3.1855932e+16 */
178 if (hx >= 0x4043687A) {
179 /* if |x|>=56*ln2 (~38.8162...) */
180 if (hx >= 0x40862E42) { /* if |x|>=709.78... -> inf */
181 if (hx >= 0x7ff00000) {
182 if (((hx & 0xfffff) | ((int *) &x)[LOWORD])
183 != 0)
184 return (x * x); /* + -> * for Cheetah */
185 else
186 /* exp(+-inf)={inf,-1} */
187 return (xsb == 0 ? x : -1.0);
188 }
189 if (x > o_threshold)
190 return (huge * huge); /* overflow */
191 }
192 if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */
193 if (x + tiny < 0.0) /* raise inexact */
194 return (tiny - one); /* return -1 */
195 }
196 }

198 /* argument reduction */
199 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
200 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
201 if (xsb == 0) { /* positive number */
202 hi = x - ln2_hi;
203 lo = ln2_lo;
204 k = 1;
205 } else {
206 /* negative number */
207 hi = x + ln2_hi;
208 lo = -ln2_lo;
209 k = -1;
210 }
211 } else {
212 /* |x| > 1.5 ln2 */
213 k = (int) (invln2 * x + (xsb == 0 ? 0.5 : -0.5));
214 t = k;
215 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
216 lo = t * ln2_lo;
217 }
218 x = hi - lo;
219 c = (hi - x) - lo; /* still at |x| > 0.5 ln2 */
220 } else if (hx < 0x3c900000) {
221 /* when |x|<2**-54, return x */
222 t = huge + x; /* return x w/inexact when x != 0 */
223 return (x - (t - (huge + x)));
224 } else
225 /* |x| <= 0.5 ln2 */
226 k = 0;

228 /* x is now in primary range */
229 hfx = 0.5 * x;
230 hxs = x * hfx;
231 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
232 t = 3.0 - r1 * hfx;
233 e = hxs * ((r1 - t) / (6.0 - x * t));
234 if (k == 0) /* |x| <= 0.5 ln2 */
235 return (x - (x * e - hxs));
236 else { /* |x| > 0.5 ln2 */

new/usr/src/lib/libm/common/C/expm1.c 5

237 e = (x * (e - c) - c);
238 e -= hxs;
239 if (k == -1)
240 return (0.5 * (x - e) - 0.5);
241 if (k == 1) {
242 if (x < -0.25)
243 return (-2.0 * (e - (x + 0.5)));
244 else
245 return (one + 2.0 * (x - e));
246 }
247 if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */
248 y = one - (e - x);
249 ((int *) &y)[HIWORD] += k << 20;
250 return (y - one);
251 }
252 t = one;
253 if (k < 20) {
254 ((int *) &t)[HIWORD] = 0x3ff00000 - (0x200000 >> k);
255 /* t = 1 - 2^-k */
256 y = t - (e - x);
257 ((int *) &y)[HIWORD] += k << 20;
258 } else {
259 ((int *) &t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */
260 y = x - (e + t);
261 y += one;
262 ((int *) &y)[HIWORD] += k << 20;
263 }
264 }
265 return (y);
266 }

new/usr/src/lib/libm/common/C/fabs.c 1

**
 1205 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/fabs.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak fabs = __fabs

32 #include "libm.h"
33 #include "libm_synonyms.h"
34 #include "libm_macros.h"
35 #include <math.h>

37 double
38 fabs(double x) {
39 int *px = (int *) &x;

41 px[HIWORD] &= ~0x80000000;
42 return (x);
43 }

new/usr/src/lib/libm/common/C/j0.c 1

**
 8824 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/j0.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * Floating point Bessel’s function of the first and second kinds
32 * of order zero: j0(x),y0(x);
33 *
34 * Special cases:
35 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
37 */

39 #pragma weak j0 = __j0
40 #pragma weak y0 = __y0

42 #include "libm.h"
43 #include "libm_synonyms.h"
44 #include "libm_protos.h"
45 #include <math.h>
46 #include <values.h>

48 #define GENERIC double
49 static const GENERIC
50 zero = 0.0,
51 small = 1.0e-5,
52 tiny = 1.0e-18,
53 one = 1.0,
54 eight = 8.0,
55 invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
56 tpi = 0.636619772367581343075535053490057448;

58 static GENERIC pzero(GENERIC), qzero(GENERIC);

new/usr/src/lib/libm/common/C/j0.c 2

59 static const GENERIC r0[4] = { /* [1.e-5, 1.28] */
60 -2.500000000000003622131880894830476755537e-0001,
61 1.095597547334830263234433855932375353303e-0002,
62 -1.819734750463320921799187258987098087697e-0004,
63 9.977001946806131657544212501069893930846e-0007,
64 };
65 static const GENERIC s0[4] = { /* [1.e-5, 1.28] */
66 1.0,
67 1.867609810662950169966782360588199673741e-0002,
68 1.590389206181565490878430827706972074208e-0004,
69 6.520867386742583632375520147714499522721e-0007,
70 };
71 static const GENERIC r1[9] = { /* [1.28,8] */
72 9.999999999999999942156495584397047660949e-0001,
73 -2.389887722731319130476839836908143731281e-0001,
74 1.293359476138939027791270393439493640570e-0002,
75 -2.770985642343140122168852400228563364082e-0004,
76 2.905241575772067678086738389169625218912e-0006,
77 -1.636846356264052597969042009265043251279e-0008,
78 5.072306160724884775085431059052611737827e-0011,
79 -8.187060730684066824228914775146536139112e-0014,
80 5.422219326959949863954297860723723423842e-0017,
81 };
82 static const GENERIC s1[9] = { /* [1.28,8] */
83 1.0,
84 1.101122772686807702762104741932076228349e-0002,
85 6.140169310641649223411427764669143978228e-0005,
86 2.292035877515152097976946119293215705250e-0007,
87 6.356910426504644334558832036362219583789e-0010,
88 1.366626326900219555045096999553948891401e-0012,
89 2.280399586866739522891837985560481180088e-0015,
90 2.801559820648939665270492520004836611187e-0018,
91 2.073101088320349159764410261466350732968e-0021,
92 };

94 GENERIC
95 j0(GENERIC x) {
96 GENERIC z, s, c, ss, cc, r, u, v, ox;
97 int i;

99 if (isnan(x))
100 return (x*x); /* + -> * for Cheetah */
101 ox = x;
102 x = fabs(x);
103 if (x > 8.0) {
104 if (!finite(x))
105 return (zero);
106 s = sin(x);
107 c = cos(x);
108 /*
109 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
110 * where x0 = x-pi/4
111 * Better formula:
112 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
113 * = 1/sqrt(2) * (cos(x) + sin(x))
114 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
115 * = 1/sqrt(2) * (sin(x) - cos(x))
116 * To avoid cancellation, use
117 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
118 * to compute the worse one.
119 */
120 if (x > 8.9e307) { /* x+x may overflow */
121 ss = s-c;
122 cc = s+c;
123 } else if (signbit(s) != signbit(c)) {
124 ss = s - c;

new/usr/src/lib/libm/common/C/j0.c 3

125 cc = -cos(x+x)/ss;
126 } else {
127 cc = s + c;
128 ss = -cos(x+x)/cc;
129 }
130 /*
131 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
132 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
133 */
134 if (x > 1.0e40) z = (invsqrtpi*cc)/sqrt(x);
135 else {
136 u = pzero(x); v = qzero(x);
137 z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
138 }
139 /* force to pass SVR4 even the result is wrong (sign) */
140 if (x > X_TLOSS)
141 return (_SVID_libm_err(ox, z, 34));
142 else
143 return (z);
144 }
145 if (x <= small) {
146 if (x <= tiny)
147 return (one-x);
148 else
149 return (one-x*x*0.25);
150 }
151 z = x*x;
152 if (x <= 1.28) {
153 r = r0[0]+z*(r0[1]+z*(r0[2]+z*r0[3]));
154 s = s0[0]+z*(s0[1]+z*(s0[2]+z*s0[3]));
155 return (one + z*(r/s));
156 } else {
157 for (r = r1[8], s = s1[8], i = 7; i >= 0; i--) {
158 r = r*z + r1[i];
159 s = s*z + s1[i];
160 }
161 return (r/s);
162 }
163 }

165 static const GENERIC u0[13] = {
166 -7.380429510868722526754723020704317641941e-0002,
167 1.772607102684869924301459663049874294814e-0001,
168 -1.524370666542713828604078090970799356306e-0002,
169 4.650819100693891757143771557629924591915e-0004,
170 -7.125768872339528975036316108718239946022e-0006,
171 6.411017001656104598327565004771515257146e-0008,
172 -3.694275157433032553021246812379258781665e-0010,
173 1.434364544206266624252820889648445263842e-0012,
174 -3.852064731859936455895036286874139896861e-0015,
175 7.182052899726138381739945881914874579696e-0018,
176 -9.060556574619677567323741194079797987200e-0021,
177 7.124435467408860515265552217131230511455e-0024,
178 -2.709726774636397615328813121715432044771e-0027,
179 };
180 static const GENERIC v0[5] = {
181 1.0,
182 4.678678931512549002587702477349214886475e-0003,
183 9.486828955529948534822800829497565178985e-0006,
184 1.001495929158861646659010844136682454906e-0008,
185 4.725338116256021660204443235685358593611e-0012,
186 };

188 GENERIC
189 y0(GENERIC x) {
190 GENERIC z, /* d, */ s, c, ss, cc, u, v;

new/usr/src/lib/libm/common/C/j0.c 4

191 int i;

193 if (isnan(x))
194 return (x*x); /* + -> * for Cheetah */
195 if (x <= zero) {
196 if (x == zero)
197 /* d= -one/(x-x); */
198 return (_SVID_libm_err(x, x, 8));
199 else
200 /* d = zero/(x-x); */
201 return (_SVID_libm_err(x, x, 9));
202 }
203 if (x > 8.0) {
204 if (!finite(x))
205 return (zero);
206 s = sin(x);
207 c = cos(x);
208 /*
209 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
210 * where x0 = x-pi/4
211 * Better formula:
212 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
213 * = 1/sqrt(2) * (cos(x) + sin(x))
214 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
215 * = 1/sqrt(2) * (sin(x) - cos(x))
216 * To avoid cancellation, use
217 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
218 * to compute the worse one.
219 */
220 if (x > 8.9e307) { /* x+x may overflow */
221 ss = s-c;
222 cc = s+c;
223 } else if (signbit(s) != signbit(c)) {
224 ss = s - c;
225 cc = -cos(x+x)/ss;
226 } else {
227 cc = s + c;
228 ss = -cos(x+x)/cc;
229 }
230 /*
231 * j0(x) = 1/sqrt(pi*x) * (P(0,x)*cc - Q(0,x)*ss)
232 * y0(x) = 1/sqrt(pi*x) * (P(0,x)*ss + Q(0,x)*cc)
233 */
234 if (x > 1.0e40)
235 z = (invsqrtpi*ss)/sqrt(x);
236 else
237 z = invsqrtpi*(pzero(x)*ss+qzero(x)*cc)/sqrt(x);
238 if (x > X_TLOSS)
239 return (_SVID_libm_err(x, z, 35));
240 else
241 return (z);

243 }
244 if (x <= tiny) {
245 return (u0[0] + tpi*log(x));
246 }
247 z = x*x;
248 for (u = u0[12], i = 11; i >= 0; i--) u = u*z + u0[i];
249 v = v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4])));
250 return (u/v + tpi*(j0(x)*log(x)));
251 }

253 static const GENERIC pr[7] = { /* [8 -- inf] pzero 6550 */
254 .4861344183386052721391238447e5,
255 .1377662549407112278133438945e6,
256 .1222466364088289731869114004e6,

new/usr/src/lib/libm/common/C/j0.c 5

257 .4107070084315176135583353374e5,
258 .5026073801860637125889039915e4,
259 .1783193659125479654541542419e3,
260 .88010344055383421691677564e0,
261 };
262 static const GENERIC ps[7] = { /* [8 -- inf] pzero 6550 */
263 .4861344183386052721414037058e5,
264 .1378196632630384670477582699e6,
265 .1223967185341006542748936787e6,
266 .4120150243795353639995862617e5,
267 .5068271181053546392490184353e4,
268 .1829817905472769960535671664e3,
269 1.0,
270 };
271 static const GENERIC huge = 1.0e10;

273 static GENERIC
274 pzero(GENERIC x) {
275 GENERIC s, r, t, z;
276 int i;
277 if (x > huge)
278 return (one);
279 t = eight/x; z = t*t;
280 r = pr[5]+z*pr[6];
281 s = ps[5]+z;
282 for (i = 4; i >= 0; i--) {
283 r = r*z + pr[i];
284 s = s*z + ps[i];
285 }
286 return (r/s);
287 }

289 static const GENERIC qr[7] = { /* [8 -- inf] qzero 6950 */
290 -.1731210995701068539185611951e3,
291 -.5522559165936166961235240613e3,
292 -.5604935606637346590614529613e3,
293 -.2200430300226009379477365011e3,
294 -.323869355375648849771296746e2,
295 -.14294979207907956223499258e1,
296 -.834690374102384988158918e-2,
297 };
298 static const GENERIC qs[7] = { /* [8 -- inf] qzero 6950 */
299 .1107975037248683865326709645e5,
300 .3544581680627082674651471873e5,
301 .3619118937918394132179019059e5,
302 .1439895563565398007471485822e5,
303 .2190277023344363955930226234e4,
304 .106695157020407986137501682e3,
305 1.0,
306 };

308 static GENERIC
309 qzero(GENERIC x) {
310 GENERIC s, r, t, z;
311 int i;
312 if (x > huge)
313 return (-0.125/x);
314 t = eight/x; z = t*t;
315 r = qr[5]+z*qr[6];
316 s = qs[5]+z;
317 for (i = 4; i >= 0; i--) {
318 r = r*z + qr[i];
319 s = s*z + qs[i];
320 }
321 return (t*(r/s));
322 }

new/usr/src/lib/libm/common/C/j0.c 6

new/usr/src/lib/libm/common/C/j1.c 1

**
 9194 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/j1.c
libm - more cstyle fixes
common/C/j1.c: cstyle
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
common/C/j1.c: cstyle
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * floating point Bessel’s function of the first and second kinds
32 * of order zero: j1(x),y1(x);
33 *
34 * Special cases:
35 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
37 */

39 #pragma weak j1 = __j1
40 #pragma weak y1 = __y1

42 #include "libm.h"
43 #include "libm_synonyms.h"
44 #include "libm_protos.h"
45 #include <math.h>
46 #include <values.h>

48 #define GENERIC double
49 static const GENERIC
50 zero = 0.0,
51 small = 1.0e-5,
52 tiny = 1.0e-20,
53 one = 1.0,
54 invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
55 tpi = 0.636619772367581343075535053490057448;

new/usr/src/lib/libm/common/C/j1.c 2

57 static GENERIC pone(GENERIC), qone(GENERIC);
58 static const GENERIC r0[4] = {
59 -6.250000000000002203053200981413218949548e-0002,
60 1.600998455640072901321605101981501263762e-0003,
61 -1.963888815948313758552511884390162864930e-0005,
62 8.263917341093549759781339713418201620998e-0008,
63 };
64 static const GENERIC s0[7] = {
65 1.0e0,
66 1.605069137643004242395356851797873766927e-0002,
67 1.149454623251299996428500249509098499383e-0004,
68 3.849701673735260970379681807910852327825e-0007,
69 };
70 static const GENERIC r1[12] = {
71 4.999999999999999995517408894340485471724e-0001,
72 -6.003825028120475684835384519945468075423e-0002,
73 2.301719899263321828388344461995355419832e-0003,
74 -4.208494869238892934859525221654040304068e-0005,
75 4.377745135188837783031540029700282443388e-0007,
76 -2.854106755678624335145364226735677754179e-0009,
77 1.234002865443952024332943901323798413689e-0011,
78 -3.645498437039791058951273508838177134310e-0014,
79 7.404320596071797459925377103787837414422e-0017,
80 -1.009457448277522275262808398517024439084e-0019,
81 8.520158355824819796968771418801019930585e-0023,
82 -3.458159926081163274483854614601091361424e-0026,
83 };
84 static const GENERIC s1[5] = {
85 1.0e0,
86 4.923499437590484879081138588998986303306e-0003,
87 1.054389489212184156499666953501976688452e-0005,
88 1.180768373106166527048240364872043816050e-0008,
89 5.942665743476099355323245707680648588540e-0012,
90 };

92 GENERIC
93 j1(GENERIC x) {
94 GENERIC z, d, s, c, ss, cc, r;
95 int i, sgn;

97 if (!finite(x))
98 return (one/x);
99 sgn = signbit(x);
100 x = fabs(x);
101 if (x > 8.00) {
102 s = sin(x);
103 c = cos(x);
104 /*
105 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x0)-q1(x)*sin(x0))
106 * where x0 = x-3pi/4
107 * Better formula:
108 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
109 * = 1/sqrt(2) * (sin(x) - cos(x))
110 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
111 * = -1/sqrt(2) * (cos(x) + sin(x))
112 * To avoid cancellation, use
113 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
114 * to compute the worse one.
115 */
116 if (x > 8.9e307) { /* x+x may overflow */
117 ss = -s-c;
118 cc = s-c;
119 } else if (signbit(s) != signbit(c)) {
120 cc = s - c;
121 ss = cos(x+x)/cc;
122 } else {

new/usr/src/lib/libm/common/C/j1.c 3

123 ss = -s-c;
124 cc = cos(x+x)/ss;
125 }
126 /*
127 * j1(x) = 1/sqrt(pi*x) * (P(1,x)*cc - Q(1,x)*ss)
128 * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q(1,x)*cc)
129 */
130 if (x > 1.0e40)
131 d = (invsqrtpi*cc)/sqrt(x);
132 else
133 d = invsqrtpi*(pone(x)*cc-qone(x)*ss)/sqrt(x);

135 if (x > X_TLOSS) {
136 if (sgn != 0) { d = -d; x = -x; }
137 return (_SVID_libm_err(x, d, 36));
138 } else
139 if (sgn == 0)
140 return (d);
141 else
142 return (-d);
143 }
144 if (x <= small) {
145 if (x <= tiny)
146 d = 0.5*x;
147 else
148 d = x*(0.5-x*x*0.125);
149 if (sgn == 0)
150 return (d);
151 else
152 return (-d);
153 }
154 z = x*x;
155 if (x < 1.28) {
156 r = r0[3];
157 s = s0[3];
158 for (i = 2; i >= 0; i--) {
159 r = r*z + r0[i];
160 s = s*z + s0[i];
161 }
162 d = x*0.5+x*(z*(r/s));
163 } else {
164 r = r1[11];
165 for (i = 10; i >= 0; i--) r = r*z + r1[i];
166 s = s1[0]+z*(s1[1]+z*(s1[2]+z*(s1[3]+z*s1[4])));
167 d = x*(r/s);
168 }
169 if (sgn == 0)
170 return (d);
171 else
172 return (-d);
173 }

175 static const GENERIC u0[4] = {
176 -1.960570906462389461018983259589655961560e-0001,
177 4.931824118350661953459180060007970291139e-0002,
178 -1.626975871565393656845930125424683008677e-0003,
179 1.359657517926394132692884168082224258360e-0005,
180 };
181 static const GENERIC v0[5] = {
182 1.0e0,
183 2.565807214838390835108224713630901653793e-0002,
184 3.374175208978404268650522752520906231508e-0004,
185 2.840368571306070719539936935220728843177e-0006,
186 1.396387402048998277638900944415752207592e-0008,
187 };
188 static const GENERIC u1[12] = {

new/usr/src/lib/libm/common/C/j1.c 4

189 -1.960570906462389473336339614647555351626e-0001,
190 5.336268030335074494231369159933012844735e-0002,
191 -2.684137504382748094149184541866332033280e-0003,
192 5.737671618979185736981543498580051903060e-0005,
193 -6.642696350686335339171171785557663224892e-0007,
194 4.692417922568160354012347591960362101664e-0009,
195 -2.161728635907789319335231338621412258355e-0011,
196 6.727353419738316107197644431844194668702e-0014,
197 -1.427502986803861372125234355906790573422e-0016,
198 2.020392498726806769468143219616642940371e-0019,
199 -1.761371948595104156753045457888272716340e-0022,
200 7.352828391941157905175042420249225115816e-0026,
201 };
202 static const GENERIC v1[5] = {
203 1.0e0,
204 5.029187436727947764916247076102283399442e-0003,
205 1.102693095808242775074856548927801750627e-0005,
206 1.268035774543174837829534603830227216291e-0008,
207 6.579416271766610825192542295821308730206e-0012,
208 };

211 GENERIC
212 y1(GENERIC x) {
213 GENERIC z, d, s, c, ss, cc, u, v;
214 int i;

216 if (isnan(x))
217 return (x*x); /* + -> * for Cheetah */
218 if (x <= zero) {
219 if (x == zero)
220 /* return -one/zero; */
221 return (_SVID_libm_err(x, x, 10));
222 else
223 /* return zero/zero; */
224 return (_SVID_libm_err(x, x, 11));
225 }
226 if (x > 8.0) {
227 if (!finite(x))
228 return (zero);
229 s = sin(x);
230 c = cos(x);
231 /*
232 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x0)-q1(x)*sin(x0))
233 * where x0 = x-3pi/4
234 * Better formula:
235 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
236 * = 1/sqrt(2) * (sin(x) - cos(x))
237 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
238 * = -1/sqrt(2) * (cos(x) + sin(x))
239 * To avoid cancellation, use
240 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
241 * to compute the worse one.
242 */
243 if (x > 8.9e307) { /* x+x may overflow */
244 ss = -s-c;
245 cc = s-c;
246 } else if (signbit(s) != signbit(c)) {
247 cc = s - c;
248 ss = cos(x+x)/cc;
249 } else {
250 ss = -s-c;
251 cc = cos(x+x)/ss;
252 }
253 /*
254 * j1(x) = 1/sqrt(pi*x) * (P(1,x)*cc - Q(1,x)*ss)

new/usr/src/lib/libm/common/C/j1.c 5

255 * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q(1,x)*cc)
256 */
257 if (x > 1.0e91)
258 d = (invsqrtpi*ss)/sqrt(x);
259 else
260 d = invsqrtpi*(pone(x)*ss+qone(x)*cc)/sqrt(x);

262 if (x > X_TLOSS)
263 return (_SVID_libm_err(x, d, 37));
264 else
265 return (d);
266 }
267 if (x <= tiny) {
268 return (-tpi/x);
269 }
270 z = x*x;
271 if (x < 1.28) {
272 u = u0[3]; v = v0[3]+z*v0[4];
273 for (i = 2; i >= 0; i--) {
274 u = u*z + u0[i];
275 v = v*z + v0[i];
276 }
277 } else {
278 for (u = u1[11], i = 10; i >= 0; i--) u = u*z+u1[i];
279 v = v1[0]+z*(v1[1]+z*(v1[2]+z*(v1[3]+z*v1[4])));
280 }
281 return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
282 }

284 static const GENERIC pr0[6] = {
285 -.4435757816794127857114720794e7,
286 -.9942246505077641195658377899e7,
287 -.6603373248364939109255245434e7,
288 -.1523529351181137383255105722e7,
289 -.1098240554345934672737413139e6,
290 -.1611616644324610116477412898e4,
291 };
292 static const GENERIC ps0[6] = {
293 -.4435757816794127856828016962e7,
294 -.9934124389934585658967556309e7,
295 -.6585339479723087072826915069e7,
296 -.1511809506634160881644546358e7,
297 -.1072638599110382011903063867e6,
298 -.1455009440190496182453565068e4,
299 };
300 static const GENERIC huge = 1.0e10;

302 static GENERIC
303 pone(GENERIC x) {
304 GENERIC s, r, t, z;
305 int i;
306 /* assume x > 8 */
307 if (x > huge)
308 return (one);

310 t = 8.0/x; z = t*t;
311 r = pr0[5]; s = ps0[5]+z;
312 for (i = 4; i >= 0; i--) {
313 r = z*r + pr0[i];
314 s = z*s + ps0[i];
315 }
316 return (r/s);
317 }

320 static const GENERIC qr0[6] = {

new/usr/src/lib/libm/common/C/j1.c 6

321 0.3322091340985722351859704442e5,
322 0.8514516067533570196555001171e5,
323 0.6617883658127083517939992166e5,
324 0.1849426287322386679652009819e5,
325 0.1706375429020768002061283546e4,
326 0.3526513384663603218592175580e2,
327 };
328 static const GENERIC qs0[6] = {
329 0.7087128194102874357377502472e6,
330 0.1819458042243997298924553839e7,
331 0.1419460669603720892855755253e7,
332 0.4002944358226697511708610813e6,
333 0.3789022974577220264142952256e5,
334 0.8638367769604990967475517183e3,
335 };

337 static GENERIC
338 qone(GENERIC x) {
339 GENERIC s, r, t, z;
340 int i;
341 if (x > huge)
342 return (0.375/x);

344 t = 8.0/x; z = t*t;
345 /* assume x > 8 */
346 r = qr0[5]; s = qs0[5]+z;
347 for (i = 4; i >= 0; i--) {
348 r = z*r + qr0[i];
349 s = z*s + qs0[i];
350 }
351 return (t*(r/s));
352 }

new/usr/src/lib/libm/common/C/jn.c 1

**
 7423 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/jn.c
libm - more cstyle fixes
common/C/jn.c: cstyle fixes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
common/C/jn.c: cstyle fixes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak jn = __jn
31 #pragma weak yn = __yn

33 /*
34 * floating point Bessel’s function of the 1st and 2nd kind
35 * of order n: jn(n,x),yn(n,x);
36 *
37 * Special cases:
38 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
39 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
40 * Note 2. About jn(n,x), yn(n,x)
41 * For n=0, j0(x) is called,
42 * for n=1, j1(x) is called,
43 * for n<x, forward recursion us used starting
44 * from values of j0(x) and j1(x).
45 * for n>x, a continued fraction approximation to
46 * j(n,x)/j(n-1,x) is evaluated and then backward
47 * recursion is used starting from a supposed value
48 * for j(n,x). The resulting value of j(0,x) is
49 * compared with the actual value to correct the
50 * supposed value of j(n,x).
51 *
52 * yn(n,x) is similar in all respects, except

new/usr/src/lib/libm/common/C/jn.c 2

53 * that forward recursion is used for all
54 * values of n>1.
55 *
56 */

58 #include "libm.h"
59 #include <float.h> /* DBL_MIN */
60 #include <values.h> /* X_TLOSS */
61 #include "xpg6.h" /* __xpg6 */

63 #define GENERIC double

65 static const GENERIC
66 invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
67 two = 2.0,
68 zero = 0.0,
69 one = 1.0;

71 GENERIC
72 jn(int n, GENERIC x) {
73 int i, sgn;
74 GENERIC a, b, temp = 0;
75 GENERIC z, w, ox, on;

77 /*
78 * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
79 * Thus, J(-n,x) = J(n,-x)
80 */
81 ox = x; on = (GENERIC)n;
82 if (n < 0) {
83 n = -n;
84 x = -x;
85 }
86 if (isnan(x))
87 return (x*x); /* + -> * for Cheetah */
88 if (!((int) _lib_version == libm_ieee ||
89 (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
90 if (fabs(x) > X_TLOSS)
91 return (_SVID_libm_err(on, ox, 38));
92 }
93 if (n == 0)
94 return (j0(x));
95 if (n == 1)
96 return (j1(x));
97 if ((n&1) == 0)
98 sgn = 0; /* even n */
99 else
100 sgn = signbit(x); /* old n */
101 x = fabs(x);
102 if (x == zero||!finite(x)) b = zero;
103 else if ((GENERIC)n <= x) {
104 /*
105 * Safe to use
106 * J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
107 */
108 if (x > 1.0e91) {
109 /*
110 * x >> n**2
111 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
112 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
113 * Let s=sin(x), c=cos(x),
114 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
115 *
116 * n sin(xn)*sqt2 cos(xn)*sqt2
117 * ----------------------------------
118 * 0 s-c c+s

new/usr/src/lib/libm/common/C/jn.c 3

119 * 1 -s-c -c+s
120 * 2 -s+c -c-s
121 * 3 s+c c-s
122 */
123 switch (n&3) {
124 case 0: temp = cos(x)+sin(x); break;
125 case 1: temp = -cos(x)+sin(x); break;
126 case 2: temp = -cos(x)-sin(x); break;
127 case 3: temp = cos(x)-sin(x); break;
128 }
129 b = invsqrtpi*temp/sqrt(x);
130 } else {
131 a = j0(x);
132 b = j1(x);
133 for (i = 1; i < n; i++) {
134 temp = b;
135 b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
136 a = temp;
137 }
138 }
139 } else {
140 if (x < 1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */
141 b = pow(0.5*x, (GENERIC) n);
142 if (b != zero) {
143 for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;
144 b = b/a;
145 }
146 } else {
147 /*
148 * use backward recurrence
149 * x x^2 x^2
150 * J(n,x)/J(n-1,x) = ---- ------ ------
151 * 2n - 2(n+1) - 2(n+2)
152 *
153 * 1 1 1
154 * (for large x) = ---- ------ ------
155 * 2n 2(n+1) 2(n+2)
156 * -- - ------ - ------ -
157 * x x x
158 *
159 * Let w = 2n/x and h = 2/x, then the above quotient
160 * is equal to the continued fraction:
161 * 1
162 * = -----------------------
163 * 1
164 * w - -----------------
165 * 1
166 * w+h - ---------
167 * w+2h - ...
168 *
169 * To determine how many terms needed, let
170 * Q(0) = w, Q(1) = w(w+h) - 1,
171 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
172 * When Q(k) > 1e4 good for single
173 * When Q(k) > 1e9 good for double
174 * When Q(k) > 1e17 good for quaduple
175 */
176 /* determin k */
177 GENERIC t, v;
178 double q0, q1, h, tmp; int k, m;
179 w = (n+n)/(double)x; h = 2.0/(double)x;
180 q0 = w; z = w + h; q1 = w*z - 1.0; k = 1;
181 while (q1 < 1.0e9) {
182 k += 1; z += h;
183 tmp = z*q1 - q0;
184 q0 = q1;

new/usr/src/lib/libm/common/C/jn.c 4

185 q1 = tmp;
186 }
187 m = n+n;
188 for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);
189 a = t;
190 b = one;
191 /*
192 * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
193 * hence, if n*(log(2n/x)) > ...
194 * single 8.8722839355e+01
195 * double 7.09782712893383973096e+02
196 * long double 1.1356523406294143949491931077970765006170e+04
197 * then recurrent value may overflow and the result is
198 * likely underflow to zero
199 */
200 tmp = n;
201 v = two/x;
202 tmp = tmp*log(fabs(v*tmp));
203 if (tmp < 7.09782712893383973096e+02) {
204 for (i = n-1; i > 0; i--) {
205 temp = b;
206 b = ((i+i)/x)*b - a;
207 a = temp;
208 }
209 } else {
210 for (i = n-1; i > 0; i--) {
211 temp = b;
212 b = ((i+i)/x)*b - a;
213 a = temp;
214 if (b > 1e100) {
215 a /= b;
216 t /= b;
217 b = 1.0;
218 }
219 }
220 }
221 b = (t*j0(x)/b);
222 }
223 }
224 if (sgn == 1)
225 return (-b);
226 else
227 return (b);
228 }

230 GENERIC
231 yn(int n, GENERIC x) {
232 int i;
233 int sign;
234 GENERIC a, b, temp = 0, ox, on;

236 ox = x; on = (GENERIC)n;
237 if (isnan(x))
238 return (x*x); /* + -> * for Cheetah */
239 if (x <= zero) {
240 if (x == zero) {
241 /* return -one/zero; */
242 return (_SVID_libm_err((GENERIC)n, x, 12));
243 } else {
244 /* return zero/zero; */
245 return (_SVID_libm_err((GENERIC)n, x, 13));
246 }
247 }
248 if (!((int) _lib_version == libm_ieee ||
249 (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
250 if (x > X_TLOSS)

new/usr/src/lib/libm/common/C/jn.c 5

251 return (_SVID_libm_err(on, ox, 39));
252 }
253 sign = 1;
254 if (n < 0) {
255 n = -n;
256 if ((n&1) == 1) sign = -1;
257 }
258 if (n == 0)
259 return (y0(x));
260 if (n == 1)
261 return (sign*y1(x));
262 if (!finite(x))
263 return (zero);

265 if (x > 1.0e91) {
266 /*
267 * x >> n**2
268 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
269 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
270 * Let s = sin(x), c = cos(x),
271 * xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
272 *
273 * n sin(xn)*sqt2 cos(xn)*sqt2
274 * ----------------------------------
275 * 0 s-c c+s
276 * 1 -s-c -c+s
277 * 2 -s+c -c-s
278 * 3 s+c c-s
279 */
280 switch (n&3) {
281 case 0: temp = sin(x)-cos(x); break;
282 case 1: temp = -sin(x)-cos(x); break;
283 case 2: temp = -sin(x)+cos(x); break;
284 case 3: temp = sin(x)+cos(x); break;
285 }
286 b = invsqrtpi*temp/sqrt(x);
287 } else {
288 a = y0(x);
289 b = y1(x);
290 /*
291 * fix 1262058 and take care of non-default rounding
292 */
293 for (i = 1; i < n; i++) {
294 temp = b;
295 b *= (GENERIC) (i + i) / x;
296 if (b <= -DBL_MAX)
297 break;
298 b -= a;
299 a = temp;
300 }
301 }
302 if (sign > 0)
303 return (b);
304 else
305 return (-b);
306 }

new/usr/src/lib/libm/common/C/matherr.c 1

**
 1118 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/matherr.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak matherr = __matherr

32 #include "libm.h"

34 /* ARGSUSED0 */
35 int
36 __matherr(struct exception *x) {
37 return (0);
38 }

new/usr/src/lib/libm/common/C/sinh.c 1

**
 2079 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/sinh.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 */
24 /*
25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 #pragma weak sinh = __sinh

31 /* INDENT OFF */
32 /*
33 * sinh(x)
34 * Code originated from 4.3bsd.
35 * Modified by K.C. Ng for SUN 4.0 libm.
36 * Method :
37 * 1. reduce x to non-negative by sinh(-x) = - sinh(x).
38 * 2.
39 *
40 * expm1(x) + expm1(x)/(expm1(x)+1)
41 * 0 <= x <= lnovft : sinh(x) := --------------------------------
42 * 2
43 * lnovft <= x < INF : sinh(x) := exp(x-1024*ln2)*2**1023
44 *
45 *
46 * Special cases:
47 * sinh(x) is x if x is +INF, -INF, or NaN.
48 * only sinh(0)=0 is exact for finite argument.
49 *
50 */
51 /* INDENT ON */

53 #include "libm.h"

55 static const double
56 ln2hi = 6.93147180369123816490e-01,
57 ln2lo = 1.90821492927058770002e-10,
58 lnovft = 7.09782712893383973096e+02;

new/usr/src/lib/libm/common/C/sinh.c 2

60 double
61 sinh(double x) {
62 double ox, r, t;

64 ox = x;
65 r = fabs(x);
66 if (!finite(x))
67 return (x * r);
68 if (r < lnovft) {
69 t = expm1(r);
70 r = copysign((t + t / (1.0 + t)) * 0.5, x);
71 } else {
72 if (r < 1000.0)
73 x = copysign(exp((r - 1024 * ln2hi) - 1024 * ln2lo), x);
74 r = scalbn(x, 1023);
75 }
76 if (!finite(r))
77 r = _SVID_libm_err(ox, ox, 25);
78 return (r);
79 }

new/usr/src/lib/libm/common/C/tanh.c 1

**
 2521 Thu Oct 9 19:48:53 2014
new/usr/src/lib/libm/common/C/tanh.c
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - more cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #pragma weak tanh = __tanh

32 /* INDENT OFF */
33 /*
34 * TANH(X)
35 * RETURN THE HYPERBOLIC TANGENT OF X
36 * code based on 4.3bsd
37 * Modified by K.C. Ng for sun 4.0, Jan 31, 1987
38 *
39 * Method :
40 * 1. reduce x to non-negative by tanh(-x) = - tanh(x).
41 * 2.
42 * 0 < x <= 1.e-10 : tanh(x) := x
43 * -expm1(-2x)
44 * 1.e-10 < x <= 1 : tanh(x) := --------------
45 * expm1(-2x) + 2
46 * 2
47 * 1 <= x <= 22.0 : tanh(x) := 1 - ---------------
48 * expm1(2x) + 2
49 * 22.0 < x <= INF : tanh(x) := 1.
50 *
51 * Note: 22 was chosen so that fl(1.0+2/(expm1(2*22)+2)) == 1.
52 *
53 * Special cases:
54 * tanh(NaN) is NaN;
55 * only tanh(0)=0 is exact for finite argument.
56 */

58 #include "libm.h"

new/usr/src/lib/libm/common/C/tanh.c 2

59 #include "libm_synonyms.h"
60 #include "libm_protos.h"
61 #include <math.h>

63 static const double
64 one = 1.0,
65 two = 2.0,
66 small = 1.0e-10,
67 big = 1.0e10;
68 /* INDENT ON */

70 double
71 tanh(double x) {
72 double t, y, z;
73 int signx;
74 volatile double dummy;

76 if (isnan(x))
77 return (x * x); /* + -> * for Cheetah */
78 signx = signbit(x);
79 t = fabs(x);
80 z = one;
81 if (t <= 22.0) {
82 if (t > one)
83 z = one - two / (expm1(t + t) + two);
84 else if (t > small) {
85 y = expm1(-t - t);
86 z = -y / (y + two);
87 } else {
88 /* raise the INEXACT flag for non-zero t */
89 dummy = t + big;
90 #ifdef lint
91 dummy = dummy;
92 #endif
93 return (x);
94 }
95 } else if (!finite(t))
96 return (copysign(1.0, x));
97 else
98 return (signx == 1 ? -z + small * small : z - small * small);

100 return (signx == 1 ? -z : z);
101 }

new/usr/src/lib/libm/common/LD/__lgammal.c 1

**
 14555 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/LD/__lgammal.c
libm - cstyle fixes
patch01 - 693 import Sun Devpro Math Library
libm - cstyle fixes
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * long double __k_lgammal(long double x, int *signgamlp);
32 * K.C. Ng, August, 1989.
33 *
34 * We choose [1.5,2.5] to be the primary interval. Our algorithms
35 * are mainly derived from
36 *
37 *
38 * zeta(2)-1 2 zeta(3)-1 3
39 * lgamma(2+s) = s*(1-euler) + --------- * s - --------- * s + ...
40 * 2 3
41 *
42 *
43 * Note 1. Since gamma(1+s)=s*gamma(s), hence
44 * lgamma(1+s) = log(s) + lgamma(s), or
45 * lgamma(s) = lgamma(1+s) - log(s).
46 * When s is really tiny (like roundoff), lgamma(1+s) ~ s(1-enler)
47 * Hence lgamma(s) ~ -log(s) for tiny s
48 *
49 */

51 #include "libm.h"
52 #include "libm_synonyms.h"
53 #include "longdouble.h"

55 static long double neg(long double, int *);
56 static long double poly(long double, const long double *, int);
57 static long double polytail(long double);
58 static long double primary(long double);

new/usr/src/lib/libm/common/LD/__lgammal.c 2

60 static const long double
61 c0 = 0.0L,
62 ch = 0.5L,
63 c1 = 1.0L,
64 c2 = 2.0L,
65 c3 = 3.0L,
66 c4 = 4.0L,
67 c5 = 5.0L,
68 c6 = 6.0L,
69 pi = 3.1415926535897932384626433832795028841971L,
70 tiny = 1.0e-40L;

72 long double
73 __k_lgammal(long double x, int *signgamlp) {
74 long double t, y;
75 int i;

77 /* purge off +-inf, NaN and negative arguments */
78 if (!finitel(x))
79 return (x*x);
80 *signgamlp = 1;
81 if (signbitl(x))
82 return (neg(x, signgamlp));

84 /* for x < 8.0 */
85 if (x < 8.0L) {
86 y = anintl(x);
87 i = (int) y;
88 switch (i) {
89 case 0:
90 if (x < 1.0e-40L)
91 return (-logl(x));
92 else
93 return (primary(x)-log1pl(x))-logl(x);
94 case 1:
95 return (primary(x-y)-logl(x));
96 case 2:
97 return (primary(x-y));
98 case 3:
99 return (primary(x-y)+logl(x-c1));
100 case 4:
101 return (primary(x-y)+logl((x-c1)*(x-c2)));
102 case 5:
103 return (primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)));
104 case 6:
105 return (primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)*(x-c4)));
106 case 7:
107 return (primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)*(x-c4)*(x-c5)));
108 case 8:
109 return primary(x-y)+
110 logl((x-c1)*(x-c2)*(x-c3)*(x-c4)*(x-c5)*(x-c6));
111 }
112 }

114 /* 8.0 <= x < 1.0e40 */
115 if (x < 1.0e40L) {
116 t = logl(x);
117 return (x*(t-c1)-(ch*t-polytail(c1/x)));
118 }

120 /* 1.0e40 <= x <= inf */
121 return (x*(logl(x)-c1));
122 }

124 static const long double an1[] = { /* 20 terms */

new/usr/src/lib/libm/common/LD/__lgammal.c 3

125 -0.0772156649015328606065120900824024309741L,
126 3.224670334241132182362075833230130289059e-0001L,
127 -6.735230105319809513324605383668929964120e-0002L,
128 2.058080842778454787900092432928910226297e-0002L,
129 -7.385551028673985266273054086081102125704e-0003L,
130 2.890510330741523285758867304409628648727e-0003L,
131 -1.192753911703260976581414338096267498555e-0003L,
132 5.096695247430424562831956662855697824035e-0004L,
133 -2.231547584535777978926798502084300123638e-0004L,
134 9.945751278186384670278268034322157947635e-0005L,
135 -4.492623673665547726647838474125147631082e-0005L,
136 2.050721280617796810096993154281561168706e-0005L,
137 -9.439487785617396552092393234044767313568e-0006L,
138 4.374872903516051510689234173139793159340e-0006L,
139 -2.039156676413643091040459825776029327487e-0006L,
140 9.555777181318621470466563543806211523634e-0007L,
141 -4.468344919709630637558538313482398989638e-0007L,
142 2.216738086090045781773004477831059444178e-0007L,
143 -7.472783403418388455860445842543843485916e-0008L,
144 8.777317930927149922056782132706238921648e-0008L,
145 };

147 static const long double an2[] = { /* 20 terms */
148 -.0772156649015328606062692723698127607018L,
149 3.224670334241132182635552349060279118047e-0001L,
150 -6.735230105319809367555642883133994818325e-0002L,
151 2.058080842778459676880822202762143671813e-0002L,
152 -7.385551028672828216011343150077846918930e-0003L,
153 2.890510330762060607399561536905727853178e-0003L,
154 -1.192753911419623262328187532759756368041e-0003L,
155 5.096695278636456678258091134532258618614e-0004L,
156 -2.231547306817535743052975194022893369135e-0004L,
157 9.945771461633313282744264853986643877087e-0005L,
158 -4.492503279458972037926876061257489481619e-0005L,
159 2.051311416812082875492678651369394595613e-0005L,
160 -9.415778282365955203915850761537462941165e-0006L,
161 4.452428829045147098722932981088650055919e-0006L,
162 -1.835024727987632579886951760650722695781e-0006L,
163 1.379783080658545009579060714946381462565e-0006L,
164 2.282637532109775156769736768748402175238e-0007L,
165 1.002577375515900191362119718128149880168e-0006L,
166 5.177028794262638311939991106423220002463e-0007L,
167 3.127947245174847104122426445937830555755e-0007L,
168 };

170 static const long double an3[] = { /* 20 terms */
171 -.0772156649015328227870646417729220690875L,
172 3.224670334241156699881788955959915250365e-0001L,
173 -6.735230105312273571375431059744975563170e-0002L,
174 2.058080842924464587662846071337083809005e-0002L,
175 -7.385551008677271654723604653956131791619e-0003L,
176 2.890510536479782086197110272583833176602e-0003L,
177 -1.192752262076857692740571567808259138697e-0003L,
178 5.096800771149805289371135155128380707889e-0004L,
179 -2.231000836682831335505058492409860123647e-0004L,
180 9.968912171073936803871803966360595275047e-0005L,
181 -4.412020779327746243544387946167256187258e-0005L,
182 2.281374113541454151067016632998630209049e-0005L,
183 -4.028361291428629491824694655287954266830e-0006L,
184 1.470694920619518924598956849226530750139e-0005L,
185 1.381686137617987197975289545582377713772e-0005L,
186 2.012493539265777728944759982054970441601e-0005L,
187 1.723917864208965490251560644681933675799e-0005L,
188 1.202954035243788300138608765425123713395e-0005L,
189 5.079851887558623092776296577030850938146e-0006L,
190 1.220657945824153751555138592006604026282e-0006L,

new/usr/src/lib/libm/common/LD/__lgammal.c 4

191 };

193 static const long double an4[] = { /* 21 terms */
194 -.0772156649015732285350261816697540392371L,
195 3.224670334221752060691751340365212226097e-0001L,
196 -6.735230109744009693977755991488196368279e-0002L,
197 2.058080778913037626909954141611580783216e-0002L,
198 -7.385557567931505621170483708950557506819e-0003L,
199 2.890459838416254326340844289785254883436e-0003L,
200 -1.193059036207136762877351596966718455737e-0003L,
201 5.081914708100372836613371356529568937869e-0004L,
202 -2.289855016133600313131553005982542045338e-0004L,
203 8.053454537980585879620331053833498511491e-0005L,
204 -9.574620532104845821243493405855672438998e-0005L,
205 -9.269085628207107155601445001196317715686e-0005L,
206 -2.183276779859490461716196344776208220180e-0004L,
207 -3.134834305597571096452454999737269668868e-0004L,
208 -3.973878894951937437018305986901392888619e-0004L,
209 -3.953352414899222799161275564386488057119e-0004L,
210 -3.136740932204038779362660900621212816511e-0004L,
211 -1.884502253819634073946130825196078627664e-0004L,
212 -8.192655799958926853585332542123631379301e-0005L,
213 -2.292183750010571062891605074281744854436e-0005L,
214 -3.223980628729716864927724265781406614294e-0006L,
215 };

217 static const long double ap1[] = { /* 19 terms */
218 -0.0772156649015328606065120900824024296961L,
219 3.224670334241132182362075833230047956465e-0001L,
220 -6.735230105319809513324605382963943777301e-0002L,
221 2.058080842778454787900092126606252375465e-0002L,
222 -7.385551028673985266272518231365020063941e-0003L,
223 2.890510330741523285681704570797770736423e-0003L,
224 -1.192753911703260971285304221165990244515e-0003L,
225 5.096695247430420878696018188830886972245e-0004L,
226 -2.231547584535654004647639737841526025095e-0004L,
227 9.945751278137201960636098805852315982919e-0005L,
228 -4.492623672777606053587919463929044226280e-0005L,
229 2.050721258703289487603702670753053765201e-0005L,
230 -9.439485626565616989352750672499008021041e-0006L,
231 4.374838162403994645138200419356844574219e-0006L,
232 -2.038979492862555348577006944451002161496e-0006L,
233 9.536763152382263548086981191378885102802e-0007L,
234 -4.426111214332434049863595231916564014913e-0007L,
235 1.911148847512947464234633846270287546882e-0007L,
236 -5.788673944861923038157839080272303519671e-0008L,
237 };

239 static const long double ap2[] = { /* 19 terms */
240 -0.077215664901532860606428624449354836087L,
241 3.224670334241132182271948744265855440139e-0001L,
242 -6.735230105319809467356126599005051676203e-0002L,
243 2.058080842778453315716389815213496002588e-0002L,
244 -7.385551028673653323064118422580096222959e-0003L,
245 2.890510330735923572088003424849289006039e-0003L,
246 -1.192753911629952368606185543945790688144e-0003L,
247 5.096695239806718875364547587043220998766e-0004L,
248 -2.231547520600616108991867127392089144886e-0004L,
249 9.945746913898151120612322833059416008973e-0005L,
250 -4.492599307461977003570224943054585729684e-0005L,
251 2.050609891889165453592046505651759999090e-0005L,
252 -9.435329866734193796540515247917165988579e-0006L,
253 4.362267138522223236241016136585565144581e-0006L,
254 -2.008556356653246579300491601497510230557e-0006L,
255 8.961498103387207161105347118042844354395e-0007L,
256 -3.614187228330216282235692806488341157741e-0007L,

new/usr/src/lib/libm/common/LD/__lgammal.c 5

257 1.136978988247816860500420915014777753153e-0007L,
258 -2.000532786387196664019286514899782691776e-0008L,
259 };

261 static const long double ap3[] = { /* 19 terms */
262 -0.077215664901532859888521470795348856446L,
263 3.224670334241131733364048614484228443077e-0001L,
264 -6.735230105319676541660495145259038151576e-0002L,
265 2.058080842775975461837768839015444273830e-0002L,
266 -7.385551028347615729728618066663566606906e-0003L,
267 2.890510327517954083379032008643080256676e-0003L,
268 -1.192753886919470728001821137439430882603e-0003L,
269 5.096693728898932234814903769146577482912e-0004L,
270 -2.231540055048827662528594010961874258037e-0004L,
271 9.945446210018649311491619999438833843723e-0005L,
272 -4.491608206598064519190236245753867697750e-0005L,
273 2.047939071322271016498065052853746466669e-0005L,
274 -9.376824046522786006677541036631536790762e-0006L,
275 4.259329829498149111582277209189150127347e-0006L,
276 -1.866064770421594266702176289764212873428e-0006L,
277 7.462066721137579592928128104534957135669e-0007L,
278 -2.483546217529077735074007138457678727371e-0007L,
279 5.915166576378161473299324673649144297574e-0008L,
280 -7.334139641706988966966252333759604701905e-0009L,
281 };

283 static const long double ap4[] = { /* 19 terms */
284 -0.0772156649015326785569313252637238673675L,
285 3.224670334241051435008842685722468344822e-0001L,
286 -6.735230105302832007479431772160948499254e-0002L,
287 2.058080842553481183648529360967441889912e-0002L,
288 -7.385551007602909242024706804659879199244e-0003L,
289 2.890510182473907253939821312248303471206e-0003L,
290 -1.192753098427856770847894497586825614450e-0003L,
291 5.096659636418811568063339214203693550804e-0004L,
292 -2.231421144004355691166194259675004483639e-0004L,
293 9.942073842343832132754332881883387625136e-0005L,
294 -4.483809261973204531263252655050701205397e-0005L,
295 2.033260142610284888319116654931994447173e-0005L,
296 -9.153539544026646699870528191410440585796e-0006L,
297 3.988460469925482725894144688699584997971e-0006L,
298 -1.609692980087029172567957221850825977621e-0006L,
299 5.634916377249975825399706694496688803488e-0007L,
300 -1.560065465929518563549083208482591437696e-0007L,
301 2.961350193868935325526962209019387821584e-0008L,
302 -2.834602215195368130104649234505033159842e-0009L,
303 };

305 static long double
306 primary(long double s) { /* assume |s|<=0.5 */
307 int i;

309 i = (int) (8.0L * (s + 0.5L));
310 switch (i) {
311 case 0: return ch*s+s*poly(s, an4, 21);
312 case 1: return ch*s+s*poly(s, an3, 20);
313 case 2: return ch*s+s*poly(s, an2, 20);
314 case 3: return ch*s+s*poly(s, an1, 20);
315 case 4: return ch*s+s*poly(s, ap1, 19);
316 case 5: return ch*s+s*poly(s, ap2, 19);
317 case 6: return ch*s+s*poly(s, ap3, 19);
318 case 7: return ch*s+s*poly(s, ap4, 19);
319 }
320 /* NOTREACHED */
321 return (0.0L);
322 }

new/usr/src/lib/libm/common/LD/__lgammal.c 6

324 static long double
325 poly(long double s, const long double *p, int n) {
326 long double y;
327 int i;
328 y = p[n-1];
329 for (i = n-2; i >= 0; i--) y = p[i]+s*y;
330 return (y);
331 }

333 static const long double pt[] = {
334 9.189385332046727417803297364056176804663e-0001L,
335 8.333333333333333333333333333331286969123e-0002L,
336 -2.777777777777777777777777553194796036402e-0003L,
337 7.936507936507936507927283071433584248176e-0004L,
338 -5.952380952380952362351042163192634108297e-0004L,
339 8.417508417508395661774286645578379460131e-0004L,
340 -1.917526917525263651186066417934685675649e-0003L,
341 6.410256409395203164659292973142293199083e-0003L,
342 -2.955065327248303301763594514012418438188e-0002L,
343 1.796442830099067542945998615411893822886e-0001L,
344 -1.392413465829723742489974310411118662919e+0000L,
345 1.339984238037267658352656597960492029261e+0001L,
346 -1.564707657605373662425785904278645727813e+0002L,
347 2.156323807499211356127813962223067079300e+0003L,
348 -3.330486427626223184647299834137041307569e+0004L,
349 5.235535072011889213611369254140123518699e+0005L,
350 -7.258160984602220710491988573430212593080e+0006L,
351 7.316526934569686459641438882340322673357e+0007L,
352 -3.806450279064900548836571789284896711473e+0008L,
353 };

355 static long double
356 polytail(long double s) {
357 long double t, z;
358 int i;
359 z = s*s;
360 t = pt[18];
361 for (i = 17; i >= 1; i--) t = pt[i]+z*t;
362 return (pt[0]+s*t);
363 }

365 static long double
366 neg(long double z, int *signgamlp) {
367 long double t, p;

369 /*
370 * written by K.C. Ng, Feb 2, 1989.
371 *
372 * Since
373 * -z*G(-z)*G(z) = pi/sin(pi*z),
374 * we have
375 * G(-z) = -pi/(sin(pi*z)*G(z)*z)
376 * = pi/(sin(pi*(-z))*G(z)*z)
377 * Algorithm
378 * z = |z|
379 * t = sinpi(z); ...note that when z>2**112, z is an int
380 * and hence t=0.
381 *
382 * if(t==0.0) return 1.0/0.0;
383 * if(t< 0.0) *signgamlp = -1; else t= -t;
384 * if(z<1.0e-40) ...tiny z
385 * return -log(z);
386 * else
387 * return log(pi/(t*z))-lgamma(z);
388 *

new/usr/src/lib/libm/common/LD/__lgammal.c 7

389 */

391 t = sinpil(z); /* t := sin(pi*z) */
392 if (t == c0) /* return 1.0/0.0 = +INF */
393 return (c1/c0);

395 z = -z;
396 if (z <= tiny)
397 p = -logl(z);
398 else
399 p = logl(pi/(fabsl(t)*z)) - __k_lgammal(z, signgamlp);
400 if (t < c0) *signgamlp = -1;
401 return (p);
402 }

new/usr/src/lib/libm/common/LD/asinhl.c 1

**
 1637 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/LD/asinhl.c
fix lint warnings in LD/asinhl.c and LD/tanhl.c
asinhl.c
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
fix lint warnings in LD/asinhl.c and LD/tanhl.c
asinhl.c
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak asinhl = __asinhl
32 #endif

34 #include "libm.h"

36 static const long double
37 ln2 = 6.931471805599453094172321214581765680755e-0001L,
38 one = 1.0L,
39 big = 1.0e+20L,
40 tiny = 1.0e-20L;

42 long double
43 asinhl(long double x) {
44 long double t, w;
45 #ifndef lint
46 volatile long double dummy;
47 #endif

49 w = fabsl(x);
50 if (isnanl(x))
51 return (x + x); /* x is NaN */
52 if (w < tiny) {

new/usr/src/lib/libm/common/LD/asinhl.c 2

53 #ifndef lint
54 dummy = x + big; /* inexact if x != 0 */
55 #endif
56 return (x); /* tiny x */
57 } else if (w < big) {
58 t = one / w;
59 return (copysignl(log1pl(w + w / (t + sqrtl(one + t * t))), x));
60 } else
61 return (copysignl(logl(w) + ln2, x));
62 }

new/usr/src/lib/libm/common/LD/j0l.c 1

**
 27946 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/LD/j0l.c
libm - cstyle fixes
minor changes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
libm - cstyle fixes
minor changes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * Floating point Bessel’s function of the first and second kinds
32 * of order zero: j0(x),y0(x);
33 *
34 * Special cases:
35 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
37 */

39 #pragma weak j0l = __j0l
40 #pragma weak y0l = __y0l

42 #include "libm.h"
43 #include "libm_synonyms.h"

45 #include "longdouble.h"

47 #include <math.h>
48 #if defined(__SUNPRO_C)
49 #include <sunmath.h>
50 #endif

new/usr/src/lib/libm/common/LD/j0l.c 2

52 #define GENERIC long double
53 static GENERIC
54 zero = 0.0L,
55 small = 1.0e-9L,
56 tiny = 1.0e-38L,
57 one = 1.0L,
58 five = 5.0L,
59 eight = 8.0L,
60 invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
61 tpi = 0.636619772367581343075535053490057448L;

63 static GENERIC pzero(), qzero();
64 static GENERIC r0[7] = {
65 -2.499999999999999999999999999999998934492e-0001L,
66 1.272657927360049786327618451133763714880e-0002L,
67 -2.694499763712963276900636693400659600898e-0004L,
68 2.724877475058977576903234070919616447883e-0006L,
69 -1.432617103214330236967477495393076320281e-0008L,
70 3.823248804080079168706683540513792224471e-0011L,
71 -4.183174277567983647337568504286313665065e-0014L,
72 };
73 static GENERIC s0[7] = {
74 1.0e0L,
75 1.159368290559800854689526195462884666395e-0002L,
76 6.629397597394973383009743876169946772559e-0005L,
77 2.426779981394054406305431142501735094340e-0007L,
78 6.097663491248511069094400469635449749883e-0010L,
79 1.017019133340929220238747413216052224036e-0012L,
80 9.012593179306197579518374581969371278481e-0016L,
81 };

83 GENERIC
84 j0l(x) GENERIC x; {
85 GENERIC z, s, c, ss, cc, r, u, v;
86 int i;

88 if (isnanl(x))
89 return (x+x);
90 x = fabsl(x);
91 if (x > 1.28L) {
92 if (!finitel(x))
93 return (zero);
94 s = sinl(x);
95 c = cosl(x);
96 /*
97 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
98 * where x0 = x-pi/4
99 * Better formula:
100 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
101 * = 1/sqrt(2) * (cos(x) + sin(x))
102 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
103 * = 1/sqrt(2) * (sin(x) - cos(x))
104 * To avoid cancellation, use
105 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
106 * to compute the worse one.
107 */
108 if (x > 1.0e2450L) { /* x+x may overflow */
109 ss = s-c;
110 cc = s+c;
111 } else if (signbitl(s) != signbitl(c)) {
112 ss = s - c;
113 cc = -cosl(x+x)/ss;
114 } else {
115 cc = s + c;
116 ss = -cosl(x+x)/cc;

new/usr/src/lib/libm/common/LD/j0l.c 3

117 }
118 /*
119 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
120 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
121 */
122 if (x > 1.0e120L)
123 return (invsqrtpi*cc)/sqrtl(x);
124 u = pzero(x); v = qzero(x);
125 return (invsqrtpi*(u*cc-v*ss)/sqrtl(x));
126 }
127 if (x <= small) {
128 if (x <= tiny)
129 return (one-x);
130 else
131 return (one-x*x*0.25L);
132 }
133 z = x*x;
134 r = r0[6]; s = s0[6];
135 for (i = 5; i >= 0; i--) {
136 r = r*z + r0[i];
137 s = s*z + s0[i];
138 }
139 return (one+z*(r/s));
140 }

142 static GENERIC u0[8] = {
143 -7.380429510868722527434392794848301631220e-0002L,
144 1.766855559625940791857536949301981816513e-0001L,
145 -1.386470722701047923235553251240162839408e-0002L,
146 3.520149242724811578636970811631224862615e-0004L,
147 -3.978599663243790049853642275624951870025e-0006L,
148 2.228801153263957224547222556806915479763e-0008L,
149 -6.121246764298785018658597179498837316177e-0011L,
150 6.677103629722678833475965810525587396596e-0014L,
151 };
152 static GENERIC v0[8] = {
153 1.0e0L,
154 1.247164416539111311571676766127767127970e-0002L,
155 7.829144749639791500052900281489367443576e-0005L,
156 3.247126540422245330511218321013360336606e-0007L,
157 9.750516724789499678567062572549568447869e-0010L,
158 2.156713223173591212250543390258458098776e-0012L,
159 3.322169561597890004231482431236452752624e-0015L,
160 2.821213295314000924252226486305726805093e-0018L,
161 };

163 GENERIC
164 y0l(x) GENERIC x; {
165 GENERIC z, d, s, c, ss, cc, u, v;
166 int i;

168 if (isnanl(x))
169 return (x+x);
170 if (x <= zero) {
171 if (x == zero)
172 d = -one/(x-x);
173 else
174 d = zero/(x-x);
175 }
176 if (x > 1.28L) {
177 if (!finitel(x))
178 return (zero);
179 s = sinl(x);
180 c = cosl(x);
181 /*
182 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))

new/usr/src/lib/libm/common/LD/j0l.c 4

183 * where x0 = x-pi/4
184 * Better formula:
185 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
186 * = 1/sqrt(2) * (cos(x) + sin(x))
187 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
188 * = 1/sqrt(2) * (sin(x) - cos(x))
189 * To avoid cancellation, use
190 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
191 * to compute the worse one.
192 */
193 if (x > 1.0e2450L) { /* x+x may overflow */
194 ss = s-c;
195 cc = s+c;
196 } else if (signbitl(s) != signbitl(c)) {
197 ss = s - c;
198 cc = -cosl(x+x)/ss;
199 } else {
200 cc = s + c;
201 ss = -cosl(x+x)/cc;
202 }
203 /*
204 * j0(x) = 1/sqrt(pi*x) * (P(0,x)*cc - Q(0,x)*ss)
205 * y0(x) = 1/sqrt(pi*x) * (P(0,x)*ss + Q(0,x)*cc)
206 */
207 if (x > 1.0e120L)
208 return (invsqrtpi*ss)/sqrtl(x);
209 return (invsqrtpi*(pzero(x)*ss+qzero(x)*cc)/sqrtl(x));

211 }
212 if (x <= tiny) {
213 return (u0[0] + tpi*logl(x));
214 }
215 z = x*x;
216 u = u0[7]; v = v0[7];
217 for (i = 6; i >= 0; i--) {
218 u = u*z + u0[i];
219 v = v*z + v0[i];
220 }
221 return (u/v + tpi*(j0l(x)*logl(x)));
222 }

224 static GENERIC pr0[12] = { /* [16 -- inf] */
225 9.999999999999999999999999999999999997515e-0001L,
226 1.065981615377273376425365823967550598358e+0003L,
227 4.390991200927588978306374718984240719130e+0005L,
228 9.072086218607986711847069407339321363103e+0007L,
229 1.022552886177375367408408501046461671528e+0010L,
230 6.420766912243658241570635854089597269031e+0011L,
231 2.206451725126933913591080211081242266908e+0013L,
232 3.928369596816895077363705478743346298368e+0014L,
233 3.258159928874124597286701119721482876596e+0015L,
234 1.025715808134188978860679130140685101348e+0016L,
235 7.537170874795721255796001687024031280685e+0015L,
236 -1.579413901450157332307745586004207687796e+0014L,
237 };
238 static GENERIC ps0[11] = {
239 1.0e0L,
240 1.066051927877273376425365823967550512687e+0003L,
241 4.391739647168381592399173804329266353038e+0005L,
242 9.075162261801343671805658294123888867884e+0007L,
243 1.023186118519904751819581912075985995058e+0010L,
244 6.427861860414223746340515376512730275061e+0011L,
245 2.210861503237823589735481303627993406235e+0013L,
246 3.943247335784292905915956840901818177989e+0014L,
247 3.283720976777545142150200110647270004481e+0015L,
248 1.045346918812754048903645641538728986759e+0016L,

new/usr/src/lib/libm/common/LD/j0l.c 5

249 8.043455468065618900750599584291193680463e+0015L,
250 };
251 static GENERIC pr1[12] = { /* [8 -- 16] */
252 9.999999999999999999999784422701108683618e-0001L,
253 6.796098532948334207755488692777907062894e+0002L,
254 1.840036112605722168824530758797169836042e+0005L,
255 2.598490483191916637264894340635847598122e+0007L,
256 2.105774863242707025525730249472054578523e+0009L,
257 1.015822044230542426666314997796944979959e+0011L,
258 2.931557457008110436764077699944189071875e+0012L,
259 4.962885121125457633655259224179322808824e+0013L,
260 4.705424055148223269155430598563351566279e+0014L,
261 2.294439854910747229152056080910427001110e+0015L,
262 4.905531843137486691500950019322475458629e+0015L,
263 3.187543169710339218793442542845735994565e+0015L,
264 };
265 static GENERIC ps1[14] = {
266 1.0e0L,
267 6.796801657948334207754571576066758180288e+0002L,
268 1.840512891201300567325421059826676366447e+0005L,
269 2.599777028312918975306252167127695075221e+0007L,
270 2.107582572771047636846811284634244892537e+0009L,
271 1.017275794694156108975782763889979940348e+0011L,
272 2.938487645192463845428059755454762316011e+0012L,
273 4.982512164735557054521042916182317924466e+0013L,
274 4.737639900153703274792677468264564361437e+0014L,
275 2.323398719123742743524249528275097100646e+0015L,
276 5.033419107069210577868909797896984419391e+0015L,
277 3.409036105931068609601317076759804716059e+0015L,
278 7.505655364352679737585745147753521662166e+0013L,
279 -9.976837153983688250780198248297109118313e+0012L,
280 };
281 static GENERIC pr2[12] = { /* [5 -- 8] */
282 9.999999999999999937857236789277366320220e-0001L,
283 3.692848765268649571651602420376358849214e+0002L,
284 5.373022067535476576926715900057760985410e+0004L,
285 4.038738891191314969971504035057219430725e+0006L,
286 1.728285706306940523397385566659762646999e+0008L,
287 4.375400819645889911158688737206054788534e+0009L,
288 6.598950418204912408375591217782088567076e+0010L,
289 5.827182039183238492480275401520072793783e+0011L,
290 2.884222642913492390887572414999490975844e+0012L,
291 7.373278873797767721932837830628688632775e+0012L,
292 8.338295457568973761205077964397969230489e+0012L,
293 2.911383183467288345772308817209806922143e+0012L,
294 };
295 static GENERIC ps2[14] = {
296 1.0e0L,
297 3.693551890268649477288896267171993213102e+0002L,
298 5.375607880998361502474715133828068514297e+0004L,
299 4.042477764024108249744998862572786367328e+0006L,
300 1.731069838737016956685839588670132939513e+0008L,
301 4.387147674049898778738226585935491417728e+0009L,
302 6.628058659620653765349556940567715258165e+0010L,
303 5.869659904164177740471685856367322160664e+0011L,
304 2.919839445622817017058977559638969436383e+0012L,
305 7.535314897696671402628203718612309253907e+0012L,
306 8.696355561452933775773309859748610658935e+0012L,
307 3.216155103141537221173601557697083216257e+0012L,
308 4.756857081068942248246880159213789086363e+0010L,
309 -3.496356619666608032231074866481472824067e+0009L,
310 };
311 static GENERIC pr3[13] = { /* [3.5 -- 5] */
312 9.999999999999916693107285612398196588247e-0001L,
313 2.263975921282917721194425320484974336945e+0002L,
314 1.994358386744245848889492762781484199966e+0004L,

new/usr/src/lib/libm/common/LD/j0l.c 6

315 8.980067458430542243559962493831661323168e+0005L,
316 2.282213787521372663705567756420087553508e+0007L,
317 3.409784374889063618250288699908375135923e+0008L,
318 3.024380857401448589254343517589811711108e+0009L,
319 1.571110368046740246895071721443082286379e+0010L,
320 4.603187020243604632153685300463160593768e+0010L,
321 7.087196453409712719449549280664058793403e+0010L,
322 5.046196021776346356803687409644239065041e+0010L,
323 1.287758439080165765709154276618854799932e+0010L,
324 5.900679773415023433787846658096813590784e+0008L,
325 };
326 static GENERIC ps3[13] = {
327 1.0e0L,
328 2.264679046282855061328604619231774747116e+0002L,
329 1.995939523988944553755653255389812103448e+0004L,
330 8.993853144706348727038389967490183236820e+0005L,
331 2.288326099634588843906989983704795468773e+0007L,
332 3.424967100255240885169240956804790118282e+0008L,
333 3.046311797972463991368023759640028910016e+0009L,
334 1.589614961932826812790222479700797224003e+0010L,
335 4.692406624527744816497089139325073939927e+0010L,
336 7.320486495902008912866462849073108323948e+0010L,
337 5.345945972828978289935309597742981360994e+0010L,
338 1.444033091910423754121309915092247171008e+0010L,
339 7.987714685115314668378957273824383610525e+0008L,
340 };
341 static GENERIC pr4[13] = { /* [2.5 , 3.5] */
342 9.999999999986736677961118722747757712260e-0001L,
343 1.453824980703800559037873123568378845663e+0002L,
344 8.097327216430682288267610447006508661032e+0003L,
345 2.273847252038264370231169686380192662135e+0005L,
346 3.561056728046211111354759998976985449622e+0006L,
347 3.244933588800096378434627029369680378599e+0007L,
348 1.740112392860717950376210038908476792588e+0008L,
349 5.426170187455893285197878563881579269524e+0008L,
350 9.490107486454362321004377336020526281371e+0008L,
351 8.688872439428470049801714121070005313806e+0008L,
352 3.673315853166437222811910656900123215515e+0008L,
353 5.577770470359303305164877446339693270239e+0007L,
354 1.540438642031689641308197880181291865714e+0006L,
355 };
356 static GENERIC ps4[13] = { /* [2.5 , 3.5] */
357 1.0e0L,
358 1.454528105698159439773035951959131799816e+0002L,
359 8.107442215200392397172179900434987859618e+0003L,
360 2.279390393778242887574177096606328994140e+0005L,
361 3.576251625592252008424781111770934135844e+0006L,
362 3.267909499056932631405942058670933813863e+0007L,
363 1.760021515330805537499778238099704648805e+0008L,
364 5.525553787667353981242060222587465726729e+0008L,
365 9.769870295912820457889384082671269328511e+0008L,
366 9.110582071004774279226905629624018008454e+0008L,
367 3.981857678621955599371967680343918454345e+0008L,
368 6.482404686230769399073192961667697036706e+0007L,
369 2.210046943095878402443535460329391782298e+0006L,
370 };
371 static GENERIC pr5[13] = { /* [1.777..., 2.5] */
372 9.999999999114986107951817871144655880699e-0001L,
373 9.252583736048588342568344570315435947614e+0001L,
374 3.218726757856078715214631502407386264637e+0003L,
375 5.554009964621111656479588505862577040831e+0004L,
376 5.269993115643664338253196944523510290175e+0005L,
377 2.874613773778430691192912190618220544575e+0006L,
378 9.133538151103658353874146919613442436035e+0006L,
379 1.673067041410338922825193013077354249193e+0007L,
380 1.706913873848398011744790289200151840498e+0007L,

new/usr/src/lib/libm/common/LD/j0l.c 7

381 9.067766583853288534551600235576747618679e+0006L,
382 2.216746733457884568532695355036338655872e+0006L,
383 1.945753880802872541235703812722344514405e+0005L,
384 3.132374412921948071539195638885330951749e+0003L,
385 };
386 static GENERIC ps5[13] = { /* [1.777..., 2.5] */
387 1.0e0L,
388 9.259614983862181118883831670990340052982e+0001L,
389 3.225125275462903384842124075132609290304e+0003L,
390 5.575705362829101545292760055941855246492e+0004L,
391 5.306049863037087855496170121958448492522e+0005L,
392 2.907060758873509564309729903109018597215e+0006L,
393 9.298059206584995898298257827131208539289e+0006L,
394 1.720391071006963176836108026556547062980e+0007L,
395 1.782614812922865190479394509487941920612e+0007L,
396 9.708016389605273153536452032839879950155e+0006L,
397 2.476495084688170096480215640962175140027e+0006L,
398 2.363200660365585759668077790194604917187e+0005L,
399 4.803239569848196077121203575704356936731e+0003L,
400 };
401 static GENERIC pr6[13] = { /* [1.28, 1.777...] */
402 9.999999969777095495998606925524322559556e-0001L,
403 5.825486719466194430503283824096872219216e+0001L,
404 1.248155491637757281915184824965379905380e+0003L,
405 1.302093199842358609321338417071710477615e+0004L,
406 7.353835804186292782840961999810543016039e+0004L,
407 2.356471661113686180549195092555751341757e+0005L,
408 4.350553267429009581632987060942780847101e+0005L,
409 4.588762661876600638719159826652389418235e+0005L,
410 2.675796398548523436544221045225290128611e+0005L,
411 8.077649557108971388298292919988449940464e+0004L,
412 1.117640459221306873519068741664054573776e+0004L,
413 5.544400072396814695175787511557757885585e+0002L,
414 5.072550541191480498431289089905822910718e+0000L,
415 };
416 static GENERIC ps6[13] = { /* [1.28, 1.777...] */
417 1.0e0L,
418 5.832517925357165050639075848183613063291e+0001L,
419 1.252144364743592128171256104364976466898e+0003L,
420 1.310300234342216813579118022415585740772e+0004L,
421 7.434667697093812197817292154032863632923e+0004L,
422 2.398706595587719165726469002404004614711e+0005L,
423 4.472737517625103157004869372427480602511e+0005L,
424 4.786313523337761975294171429067037723611e+0005L,
425 2.851161872872731228472536061865365370192e+0005L,
426 8.891648269899148412331918021801385815586e+0004L,
427 1.297097489535351517572978123584751042287e+0004L,
428 7.096761640545975756202184143400469812618e+0002L,
429 8.378049338590233325977702401733340820351e+0000L,
430 };
431 static GENERIC sixteen = 16.0L;
432 static GENERIC huge = 1.0e30L;

434 static GENERIC pzero(x)
435 GENERIC x;
436 {
437 GENERIC s, r, t, z;
438 int i;
439 if (x > huge)
440 return (one);
441 t = one/x; z = t*t;
442 if (x > sixteen) {
443 r = z*pr0[11]+pr0[10]; s = ps0[10];
444 for (i = 9; i >= 0; i--) {
445 r = z*r + pr0[i];
446 s = z*s + ps0[i];

new/usr/src/lib/libm/common/LD/j0l.c 8

447 }
448 } else if (x > eight) {
449 r = pr1[11]; s = ps1[11]+z*(ps1[12]+z*ps1[13]);
450 for (i = 10; i >= 0; i--) {
451 r = z*r + pr1[i];
452 s = z*s + ps1[i];
453 }
454 } else if (x > five) { /* x > 5.0 */
455 r = pr2[11]; s = ps2[11]+z*(ps2[12]+z*ps2[13]);
456 for (i = 10; i >= 0; i--) {
457 r = z*r + pr2[i];
458 s = z*s + ps2[i];
459 }
460 } else if (x > 3.5L) {
461 r = pr3[12]; s = ps3[12];
462 for (i = 11; i >= 0; i--) {
463 r = z*r + pr3[i];
464 s = z*s + ps3[i];
465 }
466 } else if (x > 2.5L) {
467 r = pr4[12]; s = ps4[12];
468 for (i = 11; i >= 0; i--) {
469 r = z*r + pr4[i];
470 s = z*s + ps4[i];
471 }
472 } else if (x > (1.0L/0.5625L)) {
473 r = pr5[12]; s = ps5[12];
474 for (i = 11; i >= 0; i--) {
475 r = z*r + pr5[i];
476 s = z*s + ps5[i];
477 }
478 } else { /* assume x > 1.28 */
479 r = pr6[12]; s = ps6[12];
480 for (i = 11; i >= 0; i--) {
481 r = z*r + pr6[i];
482 s = z*s + ps6[i];
483 }
484 }
485 return (r/s);
486 }

489 static GENERIC qr0[12] = { /* [16, inf] */
490 -1.249999999999999999999999999999999972972e-0001L,
491 -1.425179595545670577414395762503991596897e+0002L,
492 -6.312499645625970845534460257936222407219e+0004L,
493 -1.411374326457208384315121243698814446848e+0007L,
494 -1.735034212758873581410984757860787252842e+0009L,
495 -1.199777647512789489421826342485055280680e+0011L,
496 -4.596025334081655714499860409699100373644e+0012L,
497 -9.262525628201284107792924477031653399187e+0013L,
498 -8.858394728685039245344398842180662867639e+0014L,
499 -3.267527953687534887623740622709505972113e+0015L,
500 -2.664222971186311967587129347029450062019e+0015L,
501 3.442464060723987869585180095344504100204e+0014L,
502 };
503 static GENERIC qs0[11] = {
504 1.0e0L,
505 1.140729613936536461931516610003185687881e+0003L,
506 5.056665510442299351009198186490085803580e+0005L,
507 1.132041763825642787943941650522718199115e+0008L,
508 1.394570111872581606392620678214246479767e+0010L,
509 9.677945218152264789534431079563744378421e+0011L,
510 3.731140327851536828225143058896348502096e+0013L,
511 7.612785951064869291722846681020881676410e+0014L,
512 7.476077016406764891730191004811863975940e+0015L,

new/usr/src/lib/libm/common/LD/j0l.c 9

513 2.951246482613592035421503427100393831709e+0016L,
514 3.108361803691811711136854587074302034901e+0016L,
515 };
516 static GENERIC qr1[12] = { /* [8, 16] */
517 -1.249999999999999999997949010383433818157e-0001L,
518 -9.051215166393822640636752244895124126934e+0001L,
519 -2.620782703428148837671179031904208303947e+0004L,
520 -3.975571261553504457766177974508785790884e+0006L,
521 -3.479029330759311306270072218074074994090e+0008L,
522 -1.823955008124268573036216746186239829089e+0010L,
523 -5.765932697111801375765156029221568664435e+0011L,
524 -1.079843680798742592954002192417934779114e+0013L,
525 -1.146893630504592739082205764611581332897e+0014L,
526 -6.367016059683898464936104447282880704182e+0014L,
527 -1.583109041961213490464459111903484209098e+0015L,
528 -1.230149555764242473103128650135795639412e+0015L,
529 };
530 static GENERIC qs1[14] = {
531 1.0e0L,
532 7.246831508115058112438579847778014458432e+0002L,
533 2.100854184439168518399383786306927037611e+0005L,
534 3.192636418837951507430188285940994235122e+0007L,
535 2.801558443383354674538443461124434216152e+0009L,
536 1.475026997664373739293483927250653467487e+0011L,
537 4.694486824913954608552363821799927145318e+0012L,
538 8.890350100919200250838438709601547334021e+0013L,
539 9.626844429082905144874701068760469752067e+0014L,
540 5.541110744600460773528263862687521642140e+0015L,
541 1.486500494789452556727470329232123096563e+0016L,
542 1.415840104845959400365430773732093899210e+0016L,
543 1.780866095241517418081312567239682336483e+0015L,
544 -2.359230917384889357887631544079990129494e+0014L,
545 };
546 static GENERIC qr2[12] = { /* [5, 8] */
547 -1.249999999999999531937744362527772181614e-0001L,
548 -4.944373897356969774839375977239241573966e+0001L,
549 -7.728449175433465285314261650078450473909e+0003L,
550 -6.262574329612752346336901434651220705903e+0005L,
551 -2.900948220220943306027235217424380672732e+0007L,
552 -7.988719647634192770463917157562874119535e+0008L,
553 -1.318228171927181389547760026626357012375e+0010L,
554 -1.282439773983029245309263271945424928196e+0011L,
555 -7.050925570827818040186149940257918845138e+0011L,
556 -2.021751882573871990004205616874202684429e+0012L,
557 -2.592939962400668552384333900573812635658e+0012L,
558 -1.038267109518891262840601514932972850326e+0012L,
559 };
560 static GENERIC qs2[14] = {
561 1.0e0L,
562 3.961358492885570003202784022894248952116e+0002L,
563 6.205788738864701882828752634586510926968e+0004L,
564 5.045715603932670286550673813011764406749e+0006L,
565 2.349248611362658323353343389430968751429e+0008L,
566 6.520244524415828635917683553721880063911e+0009L,
567 1.089111211223507719337067159886281887722e+0011L,
568 1.080406000905359867958779409414903018610e+0012L,
569 6.135645280895514703514154680623769562148e+0012L,
570 1.862433040246625874245867151368643668215e+0013L,
571 2.667780805786648888840777888702193708994e+0013L,
572 1.394401107289087774765300711809313112824e+0013L,
573 1.093247500616320375562898297156722445484e+0012L,
574 -7.228875530378928722826604216491493780775e+0010L,
575 };
576 static GENERIC qr3[13] = { /* [3.5 5] */
577 -1.249999999999473067748420379578481661075e-0001L,
578 -3.044549048635289351913574324803250977998e+0001L,

new/usr/src/lib/libm/common/LD/j0l.c 10

579 -2.890081140649769078496693003524681440869e+0003L,
580 -1.404922456817202235879343275330529107684e+0005L,
581 -3.862746614385573443518177403617349281869e+0006L,
582 -6.257517309110249049201133708911155047689e+0007L,
583 -6.031451330920839916987079782727323477520e+0008L,
584 -3.411542405173830611454025765755854382346e+0009L,
585 -1.089392478149726672133014498723021526099e+0010L,
586 -1.824934078420210941290140903415956782726e+0010L,
587 -1.400780278304358710423481070486939531139e+0010L,
588 -3.716484136064917363926635716743771092093e+0009L,
589 -1.397591075296425529970434890954904331580e+0008L,
590 };
591 static GENERIC qs3[13] = {
592 1.0e0L,
593 2.441498613904962049391000187014945858042e+0002L,
594 2.326188882072370711500164222341514337043e+0004L,
595 1.137138213121231338494977104659239578165e+0006L,
596 3.152918070735662728722998452605364253517e+0007L,
597 5.172877993426507259314270488444013595108e+0008L,
598 5.083086439731669807455961078856470774115e+0009L,
599 2.961842732066434123119325521139476909941e+0010L,
600 9.912185866862440735829781856081353151390e+0010L,
601 1.793560561251622234430564181567297983598e+0011L,
602 1.577090119341228122525265108497940403073e+0011L,
603 5.509910306780166194333889999985463681636e+0010L,
604 4.761691134078874491202320181517936758141e+0009L,
605 };
606 static GENERIC qr4[13] = { /* [2.5 3.5] */
607 -1.249999999928567734339745043490705340835e-0001L,
608 -1.967201748731419063051601624435565528481e+0001L,
609 -1.186329146714562236407099740615528170707e+0003L,
610 -3.607736959222941810356301491152457934060e+0004L,
611 -6.119200717978104904932828468575194267125e+0005L,
612 -6.037847781158358226670305078652205586384e+0006L,
613 -3.503558153336140359700536720393565984740e+0007L,
614 -1.180196478268225718757218523746787309773e+0008L,
615 -2.221860232085134915841426363505169680528e+0008L,
616 -2.173372505452747585296176761701746236760e+0008L,
617 -9.649364865061237558517730539506568013963e+0007L,
618 -1.465429227847933034546039640094862650385e+0007L,
619 -3.083003197920262085170581866246663380607e+0005L,
620 };
621 static GENERIC qs4[13] = { /* [2.5 3.5] */
622 1.0e0L,
623 1.579620773732259142752614142139986854055e+0002L,
624 9.581372220329138733203879503753685054968e+0003L,
625 2.939598672379108095776114131010825885308e+0005L,
626 5.052183049314542218630341818692588448168e+0006L,
627 5.083497695595206639433839326338971980149e+0007L,
628 3.036385361800553388049719014005099206516e+0008L,
629 1.067826481452753409910563785161661492137e+0009L,
630 2.145644125557118044720741775125319669272e+0009L,
631 2.324115615959719949363946673491552216799e+0009L,
632 1.223262962112070757966959855619847011146e+0009L,
633 2.569765553318495423738478585947110270709e+0008L,
634 1.354744744299227127897905787732636565504e+0007L,
635 };
636 static GENERIC qr5[13] = { /* [1.777.., 2.5] */
637 -1.249999995936639697637680428174576069971e-0001L,
638 -1.260846055371311453485891923426489068315e+0001L,
639 -4.772398467544467480801174330290141578895e+0002L,
640 -8.939852599990298486613760833996490599724e+0003L,
641 -9.184070787149542050979542226446134243197e+0004L,
642 -5.406038945018274458362637897739280435171e+0005L,
643 -1.845896544705190261018653728678171084418e+0006L,
644 -3.613616990680809501878667570653308071547e+0006L,

new/usr/src/lib/libm/common/LD/j0l.c 11

645 -3.908782978135693252252557720414348623779e+0006L,
646 -2.173711022517323927109138170588442768176e+0006L,
647 -5.431253130679918485836408549007856244495e+0005L,
648 -4.591098546452684510082591587275940765959e+0004L,
649 -5.244711364168207806835520057792229646578e+0002L,
650 };
651 static GENERIC qs5[13] = { /* [1.777.., 2.5] */
652 1.0e0L,
653 1.014536210851290878350892750972474861447e+0002L,
654 3.875547510687135314064434160096139681076e+0003L,
655 7.361913122670079814955259281995617732580e+0004L,
656 7.720288944218771126581086539585529314636e+0005L,
657 4.681529554446752496404431433608306558038e+0006L,
658 1.667882621940503925455031252308367745820e+0007L,
659 3.469403153761399881888272620855305156241e+0007L,
660 4.096992047964210711867089384719947863019e+0007L,
661 2.596804755829217449311530735959560630554e+0007L,
662 7.983933774697889238154465064019410763845e+0006L,
663 9.818133816979900819087242425280757938152e+0005L,
664 3.061083930868694396013541535670745443560e+0004L,
665 };

667 static GENERIC qr6[13] = { /* [1.28, 1.777..] */
668 -1.249999881577289001807137282824929082771e-0001L,
669 -7.998273510053110759610810594119533619282e+0000L,
670 -1.872481955335172543369089617771565632719e+0002L,
671 -2.122116786726300805079874003303799646812e+0003L,
672 -1.293850285839529282503178263484773478457e+0004L,
673 -4.445024742266316181033354192262529356093e+0004L,
674 -8.730161378334357767668344467356505347070e+0004L,
675 -9.706222895172078442801444972505315054736e+0004L,
676 -5.896325518259858270165531513618195321041e+0004L,
677 -1.823172034368108822276420827074668832233e+0004L,
678 -2.509304178635055926638833040337472387175e+0003L,
679 -1.156608965715779237316769828941729964099e+0002L,
680 -7.028005789650731396887346826397785210442e-0001L,
681 };
682 static GENERIC qs6[13] = { /* [1.28, 1.777..] */
683 1.0e0L,
684 6.457211085058064845601261321277721075900e+0001L,
685 1.534005216588011210342824555136008682950e+0003L,
686 1.777217999176441782593357660462379097171e+0004L,
687 1.118372652642469468091084810263231199696e+0005L,
688 4.015242433858461813142365748386473605294e+0005L,
689 8.377081045517098645448616514388280497673e+0005L,
690 1.011495020008010352575398009604164287337e+0006L,
691 6.886722075290430568652227875200208955970e+0005L,
692 2.504735189948021472047157148613171956537e+0005L,
693 4.408138920171044846941001844352009817062e+0004L,
694 3.105572178072115145673058722853640854884e+0003L,
695 5.588294821118916113437396504573817033678e+0001L,
696 };
697 static GENERIC qzero(x)
698 GENERIC x;
699 {
700 GENERIC s, r, t, z;
701 int i;
702 if (x > huge)
703 return (-0.125L/x);
704 t = one/x; z = t*t;
705 if (x > sixteen) {
706 r = z*qr0[11]+qr0[10]; s = qs0[10];
707 for (i = 9; i >= 0; i--) {
708 r = z*r + qr0[i];
709 s = z*s + qs0[i];
710 }

new/usr/src/lib/libm/common/LD/j0l.c 12

711 } else if (x > eight) {
712 r = qr1[11]; s = qs1[11]+z*(qs1[12]+z*qs1[13]);
713 for (i = 10; i >= 0; i--) {
714 r = z*r + qr1[i];
715 s = z*s + qs1[i];
716 }
717 } else if (x > five) { /* assume x > 5.0 */
718 r = qr2[11]; s = qs2[11]+z*(qs2[12]+z*qs2[13]);
719 for (i = 10; i >= 0; i--) {
720 r = z*r + qr2[i];
721 s = z*s + qs2[i];
722 }
723 } else if (x > 3.5L) {
724 r = qr3[12]; s = qs3[12];
725 for (i = 11; i >= 0; i--) {
726 r = z*r + qr3[i];
727 s = z*s + qs3[i];
728 }
729 } else if (x > 2.5L) {
730 r = qr4[12]; s = qs4[12];
731 for (i = 11; i >= 0; i--) {
732 r = z*r + qr4[i];
733 s = z*s + qs4[i];
734 }
735 } else if (x > (1.0L/0.5625L)) {
736 r = qr5[12]; s = qs5[12];
737 for (i = 11; i >= 0; i--) {
738 r = z*r + qr5[i];
739 s = z*s + qs5[i];
740 }
741 } else { /* assume x > 1.28 */
742 r = qr6[12]; s = qs6[12];
743 for (i = 11; i >= 0; i--) {
744 r = z*r + qr6[i];
745 s = z*s + qs6[i];
746 }
747 }
748 return (t*(r/s));
749 }

new/usr/src/lib/libm/common/LD/j1l.c 1

**
 28298 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/LD/j1l.c
libm - cstyle fixes
minor changes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
libm - cstyle fixes
minor changes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * floating point Bessel’s function of the first and second kinds
32 * of order zero: j1(x),y1(x);
33 *
34 * Special cases:
35 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
36 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
37 */

39 #pragma weak j1l = __j1l
40 #pragma weak y1l = __y1l

42 #include "libm.h"
43 #include "libm_synonyms.h"
44 #include "longdouble.h"
45 #include <math.h>
46 #if defined(__SUNPRO_C)
47 #include <sunmath.h>
48 #endif

50 #define GENERIC long double

new/usr/src/lib/libm/common/LD/j1l.c 2

51 static GENERIC
52 zero = 0.0L,
53 small = 1.0e-9L,
54 tiny = 1.0e-38L,
55 one = 1.0L,
56 five = 5.0L,
57 invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
58 tpi = 0.636619772367581343075535053490057448L;

60 static GENERIC pone(), qone();
61 static GENERIC r0[7] = {
62 -6.249999999999999999999999999999999627320e-0002L,
63 1.940606727194041716205384618494641565464e-0003L,
64 -3.005630423155733701856481469986459043883e-0005L,
65 2.345586219403918667468341047369572169358e-0007L,
66 -9.976809285885253587529010109133336669724e-0010L,
67 2.218743258363623946078958783775107473381e-0012L,
68 -2.071079656218700604767650924103578046280e-0015L,
69 };
70 static GENERIC s0[7] = {
71 1.0e0L,
72 1.061695903156199920738051277075003059555e-0002L,
73 5.521860513111180371566951179398862692060e-0005L,
74 1.824214367413754193524107877084979441407e-0007L,
75 4.098957778439576834818838198039029353925e-0010L,
76 6.047735079699666389853240090925264056197e-0013L,
77 4.679044728878836197247923279512047035041e-0016L,
78 };

80 GENERIC
81 j1l(x) GENERIC x; {
82 GENERIC z, d, s, c, ss, cc, r;
83 int i, sgn;

85 if (!finitel(x))
86 return (one/x);
87 sgn = signbitl(x);
88 x = fabsl(x);
89 if (x > 1.28L) {
90 s = sinl(x);
91 c = cosl(x);
92 /*
93 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x0)-q1(x)*sin(x0))
94 * where x0 = x-3pi/4
95 * Better formula:
96 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
97 * = 1/sqrt(2) * (sin(x) - cos(x))
98 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
99 * = -1/sqrt(2) * (cos(x) + sin(x))
100 * To avoid cancellation, use
101 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
102 * to compute the worse one.
103 */
104 if (x > 1.0e2450L) { /* x+x may overflow */
105 ss = -s-c;
106 cc = s-c;
107 } else if (signbitl(s) != signbitl(c)) {
108 cc = s - c;
109 ss = cosl(x+x)/cc;
110 } else {
111 ss = -s-c;
112 cc = cosl(x+x)/ss;
113 }
114 /*
115 * j1(x) = 1/sqrt(pi*x) * (P(1,x)*cc - Q(1,x)*ss)
116 * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q(1,x)*cc)

new/usr/src/lib/libm/common/LD/j1l.c 3

117 */
118 if (x > 1.0e120L)
119 return (invsqrtpi*cc)/sqrtl(x);
120 d = invsqrtpi*(pone(x)*cc-qone(x)*ss)/sqrtl(x);
121 if (sgn == 0)
122 return (d);
123 else
124 return (-d);
125 }
126 if (x <= small) {
127 if (x <= tiny) d = 0.5L*x;
128 else d = x*(0.5L-x*x*0.125L);
129 if (sgn == 0)
130 return (d);
131 else
132 return (-d);
133 }
134 z = x*x;
135 r = r0[6];
136 s = s0[6];
137 for (i = 5; i >= 0; i--) {
138 r = r*z + r0[i];
139 s = s*z + s0[i];
140 }
141 d = x*0.5L+x*(z*(r/s));
142 if (sgn == 0)
143 return (d);
144 else
145 return (-d);
146 }

148 static GENERIC u0[7] = {
149 -1.960570906462389484060557273467558703503e-0001L,
150 5.166389353148318460304315890665450006495e-0002L,
151 -2.229699464105910913337190798743451115604e-0003L,
152 3.625437034548863342715657067759078267158e-0005L,
153 -2.689902826993117212255524537353883987171e-0007L,
154 9.304570592456930912969387719010256018466e-0010L,
155 -1.234878126794286643318321347997500346131e-0012L,
156 };
157 static GENERIC v0[8] = {
158 1.0e0L,
159 1.369394302535807332517110204820556695644e-0002L,
160 9.508438148097659501433367062605935379588e-0005L,
161 4.399007309420092056052714797296467565655e-0007L,
162 1.488083087443756398305819693177715000787e-0009L,
163 3.751609832625793536245746965768587624922e-0012L,
164 6.680926434086257291872903276124244131448e-0015L,
165 6.676602383908906988160099057991121446058e-0018L,
166 };

168 GENERIC
169 y1l(x) GENERIC x; {
170 GENERIC z, s, c, ss, cc, u, v;
171 int i;

173 if (isnanl(x))
174 return (x+x);
175 if (x <= zero) {
176 if (x == zero)
177 return (-one/zero);
178 else
179 return (zero/zero);
180 }
181 if (x > 1.28L) {
182 if (!finitel(x))

new/usr/src/lib/libm/common/LD/j1l.c 4

183 return (zero);
184 s = sinl(x);
185 c = cosl(x);
186 /*
187 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x0)-q1(x)*sin(x0))
188 * where x0 = x-3pi/4
189 * Better formula:
190 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
191 * = 1/sqrt(2) * (sin(x) - cos(x))
192 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
193 * = -1/sqrt(2) * (cos(x) + sin(x))
194 * To avoid cancellation, use
195 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
196 * to compute the worse one.
197 */
198 if (x > 1.0e2450L) { /* x+x may overflow */
199 ss = -s-c;
200 cc = s-c;
201 } else if (signbitl(s) != signbitl(c)) {
202 cc = s - c;
203 ss = cosl(x+x)/cc;
204 } else {
205 ss = -s-c;
206 cc = cosl(x+x)/ss;
207 }
208 /*
209 * j1(x) = 1/sqrt(pi*x) * (P(1,x)*cc - Q(1,x)*ss)
210 * y1(x) = 1/sqrt(pi*x) * (P(1,x)*ss + Q(1,x)*cc)
211 */
212 if (x > 1.0e91L)
213 return (invsqrtpi*ss)/sqrtl(x);
214 return (invsqrtpi*(pone(x)*ss+qone(x)*cc)/sqrtl(x));
215 }
216 if (x <= tiny) {
217 return (-tpi/x);
218 }
219 z = x*x;
220 u = u0[6]; v = v0[6]+z*v0[7];
221 for (i = 5; i >= 0; i--) {
222 u = u*z + u0[i];
223 v = v*z + v0[i];
224 }
225 return (x*(u/v) + tpi*(j1l(x)*logl(x)-one/x));
226 }

228 static GENERIC pr0[12] = {
229 1.000000000000000000000000000000000000267e+0000L,
230 1.060717875045891455602180843276758003035e+0003L,
231 4.344347542892127024446687712181105852335e+0005L,
232 8.915680220724007016377924252717410457094e+0007L,
233 9.969502259938406062809873257569171272819e+0009L,
234 6.200290193138613035646510338707386316595e+0011L,
235 2.105978548788015119851815854422247330118e+0013L,
236 3.696635772784601239371730810311998368948e+0014L,
237 3.015913097920694682057958412534134515156e+0015L,
238 9.370298471339353098123277427328592725921e+0015L,
239 7.190349005196335967340799265074029443057e+0015L,
240 2.736097786240689996880391074927552517982e+0014L,
241 };
242 static GENERIC ps0[11] = {
243 1.0e0L,
244 1.060600687545891455602180843276758095107e+0003L,
245 4.343106093416975589147153906505338900961e+0005L,
246 8.910605869002176566582072242244353399059e+0007L,
247 9.959122058635087888690713917622056540190e+0009L,
248 6.188744967234948231792482949171041843894e+0011L,

new/usr/src/lib/libm/common/LD/j1l.c 5

249 2.098863976953783506401759873801990304907e+0013L,
250 3.672870357018063196746729751479938908450e+0014L,
251 2.975538419246824921049011529574385888420e+0015L,
252 9.063657659995043205018686029284479837091e+0015L,
253 6.401953344314747916729366441508892711691e+0015L,
254 };
255 static GENERIC pr1[12] = {
256 1.000000000000000000000023667524130660984e+0000L,
257 6.746154419979618754354803488126452971204e+0002L,
258 1.811210781083390154857018330296145970502e+0005L,
259 2.533098390379924268038005329095287842244e+0007L,
260 2.029683619805342145252338570875424600729e+0009L,
261 9.660859662192711465301069401598929980319e+0010L,
262 2.743396238644831519934098967716621316316e+0012L,
263 4.553097354140854377931023170263455246288e+0013L,
264 4.210245069852219757476169864974870720374e+0014L,
265 1.987334056229596485076645967176169801727e+0015L,
266 4.067120052787096893838970455751338930462e+0015L,
267 2.486539606380406398310845264910691398133e+0015L,
268 };
269 static GENERIC ps1[14] = {
270 1.0e0L,
271 6.744982544979618754355808680196859521782e+0002L,
272 1.810421795396966762032155290441364740350e+0005L,
273 2.530986460644310651529583759699988435573e+0007L,
274 2.026743276048023121360249288818290224145e+0009L,
275 9.637461924407405935245269407052641341836e+0010L,
276 2.732378628423766417402292797028314160831e+0012L,
277 4.522345274960527124354844364012184278488e+0013L,
278 4.160650668341743132685335758415469856545e+0014L,
279 1.943730242988858208243492424892435901211e+0015L,
280 3.880228532692127989901131618598067450001e+0015L,
281 2.178020816161154615841000173683302999728e+0015L,
282 -8.994062666842225551554346698171600634173e+0013L,
283 1.368520368508851253495764806934619574990e+0013L,
284 };
285 static GENERIC pr2[12] = {
286 1.000000000000000006938651621840396237282e+0000L,
287 3.658416291850404981407101077037948144698e+0002L,
288 5.267073772170356547709794670602812447537e+0004L,
289 3.912012101226837463014925210735894620442e+0006L,
290 1.651295648974103957193874928714180765625e+0008L,
291 4.114901144480797609972484998142146783499e+0009L,
292 6.092524309766036681542980572526335147672e+0010L,
293 5.263913178071282616719249969074134570577e+0011L,
294 2.538408581124324223367341020538081330994e+0012L,
295 6.288607929360291027895126983015365677648e+0012L,
296 6.848330048211148419047055075386525945280e+0012L,
297 2.290309646838867941423178163991423244690e+0012L,
298 };
299 static GENERIC ps2[14] = {
300 1.0e0L,
301 3.657244416850405086459410165762319861856e+0002L,
302 5.262802358425023243992387075861237306312e+0004L,
303 3.905896813959919648136295861661483848364e+0006L,
304 1.646791907791461220742694842108202772763e+0008L,
305 4.096132803064256022224954120208201437344e+0009L,
306 6.046665195915950447544429445730680236759e+0010L,
307 5.198061739781991313414052212328653295168e+0011L,
308 2.484233851814333966401527626421254279796e+0012L,
309 6.047868806925315879339651539434315255940e+0012L,
310 6.333103831254091652501642567294101813354e+0012L,
311 1.875143098754284994467609936924685024968e+0012L,
312 -5.238330920563392692965412762508813601534e+0010L,
313 4.656888609439364725427789198383779259957e+0009L,
314 };

new/usr/src/lib/libm/common/LD/j1l.c 6

315 static GENERIC pr3[13] = {
316 1.000000000000009336887318068056137842897e+0000L,
317 2.242719942728459588488051572002835729183e+0002L,
318 1.955450611382026550266257737331095691092e+0004L,
319 8.707143293993619899395400562409175590739e+0005L,
320 2.186267894487004565948324289010954505316e+0007L,
321 3.224328510541957792360691585667502864688e+0008L,
322 2.821057355151380597331792896882741364897e+0009L,
323 1.445371387295422404365584793796028979840e+0010L,
324 4.181743160669891357783011002656658107864e+0010L,
325 6.387371088767993119325536137794535513922e+0010L,
326 4.575619999412716078064070587767416436396e+0010L,
327 1.228415651211639160620284441690503550842e+0010L,
328 7.242170349875563053436050532153112882072e+0008L,
329 };
330 static GENERIC ps3[13] = {
331 1.0e0L,
332 2.241548067728529551049804610486061401070e+0002L,
333 1.952838216795552145132137932931237181307e+0004L,
334 8.684574926493185744628127341069974575526e+0005L,
335 2.176357771067037962940853412819852189164e+0007L,
336 3.199958682356132977319258783167122100567e+0008L,
337 2.786218931525334687844675219914201872570e+0009L,
338 1.416283776951741549631417572317916039767e+0010L,
339 4.042962659271567948735676834609348842922e+0010L,
340 6.028168462646694510083847222968444402161e+0010L,
341 4.118410226794641413833887606580085281111e+0010L,
342 9.918735736297038430744161253338202230263e+0009L,
343 4.092967198238098023219124487437130332038e+0008L,
344 };
345 static GENERIC pr4[13] = {
346 1.000000000001509220978157399042059553390e+0000L,
347 1.437551868378147851133499996323782607787e+0002L,
348 7.911335537418177296041518061404505428004e+0003L,
349 2.193710939115317214716518908935756104804e+0005L,
350 3.390662495136730962513489796538274984382e+0006L,
351 3.048655347929348891006070609293884274789e+0007L,
352 1.613781633489496606354045161527450975195e+0008L,
353 4.975089835037230277110156150038482159988e+0008L,
354 8.636047087015115403880904418339566323264e+0008L,
355 7.918202912328366140110671223076949101509e+0008L,
356 3.423294665798984733439650311722794853294e+0008L,
357 5.621904953441963961040503934782662613621e+0007L,
358 2.086303543310240260758670404509484499793e+0006L,
359 };
360 static GENERIC ps4[13] = {
361 1.0e0L,
362 1.436379993384532371670493319591847362304e+0002L,
363 7.894647154785430678061053848847436659499e+0003L,
364 2.184659753392097529008981741550878586174e+0005L,
365 3.366109083305465176803513738147049499361e+0006L,
366 3.011911545968996817697665866587226343186e+0007L,
367 1.582262913779689851316760148459414895301e+0008L,
368 4.819268809494937919217938589530138201770e+0008L,
369 8.201355762990450679702837123432527154830e+0008L,
370 7.268232093982510937417446421282341425212e+0008L,
371 2.950911909015572933262131323934036480462e+0008L,
372 4.242839924305934423010858966540621219396e+0007L,
373 1.064387620445090779182117666330405186866e+0006L,
374 };
375 static GENERIC pr5[13] = {
376 1.000000000102434805241171427253847353861e+0000L,
377 9.129332257083629259060502249025963234821e+0001L,
378 3.132238483586953037576119377504557191413e+0003L,
379 5.329782528269307971278943122454171107861e+0004L,
380 4.988460157184117790692873002103052944145e+0005L,

new/usr/src/lib/libm/common/LD/j1l.c 7

381 2.686602071615786816147010334256047469378e+0006L,
382 8.445418526028961197703799808701268301831e+0006L,
383 1.536575358646141157475725889907900827390e+0007L,
384 1.568405818236523821796862770586544811945e+0007L,
385 8.450876239888770102387618667362302173547e+0006L,
386 2.154414900139567328424026827163203446077e+0006L,
387 2.105656926565043898888460254808062352205e+0005L,
388 4.739165011023396507022134303736862812975e+0003L,
389 };
390 static GENERIC ps5[13] = {
391 1.0e0L,
392 9.117613509595327476509152673394703847793e+0001L,
393 3.121697972484015639301279229281770795147e+0003L,
394 5.294447222735893568040911873834576440255e+0004L,
395 4.930368882192772335798256684110887882807e+0005L,
396 2.634854685641165298302167435798357437768e+0006L,
397 8.185462775400326393555896157031818280918e+0006L,
398 1.462417423080215192609668642663030667086e+0007L,
399 1.450624993985851675982860844153954896015e+0007L,
400 7.460467647561995283219086567162006113864e+0006L,
401 1.754210981405612478869227142579056338965e+0006L,
402 1.463286721155271971526264914524746699596e+0005L,
403 2.155894725796702015341211116579827039459e+0003L,
404 };
405 static GENERIC pr6[13] = {
406 1.000000003564855546741735920315743157129e+0000L,
407 5.734003934862540458119423509909510288366e+0001L,
408 1.209572491935850486086559692291796887976e+0003L,
409 1.243398391422281247933674779163660286838e+0004L,
410 6.930996755181437937258220998601708278787e+0004L,
411 2.198067659532757598646722249966767620099e+0005L,
412 4.033659432712058633933179115820576858455e+0005L,
413 4.257759657219008027016047206574574358678e+0005L,
414 2.511917395876004349480721277445763916389e+0005L,
415 7.813756153070623654178731651381881953552e+0004L,
416 1.152069173381127881385588092905864352891e+0004L,
417 6.548580782804088553777816037551523398082e+0002L,
418 8.668725370116906132327542766127938496880e+0000L,
419 };
420 static GENERIC ps6[13] = {
421 1.0e0L,
422 5.722285236357114566499221525736286205184e+0001L,
423 1.203010842878317935444582950620339570506e+0003L,
424 1.230058335378583550155825502172435371208e+0004L,
425 6.800998550607861288865300438648089894412e+0004L,
426 2.130767829599304262987769347536850885921e+0005L,
427 3.840483466643916681759936972992155310026e+0005L,
428 3.947432373459225542861819148108081160393e+0005L,
429 2.237816239393081111481588434457838526738e+0005L,
430 6.545820495124419723398946273790921540774e+0004L,
431 8.729563630320892741500726213278834737196e+0003L,
432 4.130762660291894753450174794196998813709e+0002L,
433 3.480368898672684645130335786015075595598e+0000L,
434 };
435 static GENERIC sixteen = 16.0L;
436 static GENERIC eight = 8.0L;
437 static GENERIC huge = 1.0e30L;

439 static GENERIC pone(x)
440 GENERIC x;
441 {
442 GENERIC s, r, t, z;
443 int i;
444 if (x > huge)
445 return (one);
446 t = one/x; z = t*t;

new/usr/src/lib/libm/common/LD/j1l.c 8

447 if (x > sixteen) {
448 r = z*pr0[11]+pr0[10]; s = ps0[10];
449 for (i = 9; i >= 0; i--) {
450 r = z*r + pr0[i];
451 s = z*s + ps0[i];
452 }
453 } else if (x > eight) {
454 r = pr1[11]; s = ps1[11]+z*(ps1[12]+z*ps1[13]);
455 for (i = 10; i >= 0; i--) {
456 r = z*r + pr1[i];
457 s = z*s + ps1[i];
458 }
459 } else if (x > five) {
460 r = pr2[11]; s = ps2[11]+z*(ps2[12]+z*ps2[13]);
461 for (i = 10; i >= 0; i--) {
462 r = z*r + pr2[i];
463 s = z*s + ps2[i];
464 }
465 } else if (x > 3.5L) {
466 r = pr3[12]; s = ps3[12];
467 for (i = 11; i >= 0; i--) {
468 r = z*r + pr3[i];
469 s = z*s + ps3[i];
470 }
471 } else if (x > 2.5L) {
472 r = pr4[12]; s = ps4[12];
473 for (i = 11; i >= 0; i--) {
474 r = z*r + pr4[i];
475 s = z*s + ps4[i];
476 }
477 } else if (x > (1.0L/0.5625L)) {
478 r = pr5[12]; s = ps5[12];
479 for (i = 11; i >= 0; i--) {
480 r = z*r + pr5[i];
481 s = z*s + ps5[i];
482 }
483 } else { /* assume x > 1.28 */
484 r = pr6[12]; s = ps6[12];
485 for (i = 11; i >= 0; i--) {
486 r = z*r + pr6[i];
487 s = z*s + ps6[i];
488 }
489 }
490 return (r/s);
491 }

494 static GENERIC qr0[12] = {
495 3.749999999999999999999999999999999971033e-0001L,
496 4.256726035237050601607682277433094262226e+0002L,
497 1.875976490812878489192409978945401066066e+0005L,
498 4.170314268048041914273603680317745592790e+0007L,
499 5.092750132543855817293451118974555746551e+0009L,
500 3.494749676278488654103505795794139483404e+0011L,
501 1.327062148257437316997667817096694173709e+0013L,
502 2.648993138273427226907503742066551150490e+0014L,
503 2.511695665909547412222430494473998127684e+0015L,
504 9.274694506662289043224310499164702306096e+0015L,
505 8.150904170663663829331320302911792892002e+0015L,
506 -5.001918733707662355772037829620388765122e+0014L,
507 };
508 static GENERIC qs0[11] = {
509 1.0e0L,
510 1.135400380229880160428715273982155760093e+0003L,
511 5.005701183877126164326765545516590744360e+0005L,
512 1.113444200113712167984337603933040102987e+0008L,

new/usr/src/lib/libm/common/LD/j1l.c 9

513 1.361074819925223062778717565699039471124e+0010L,
514 9.355750985802849484438933905325982809653e+0011L,
515 3.563462786008988825003965543857998084828e+0013L,
516 7.155145113900094163648726863803802910454e+0014L,
517 6.871266835834472758055559013851843654113e+0015L,
518 2.622030899226736712644974988157345234092e+0016L,
519 2.602912729172876330650077021706139707746e+0016L,
520 };
521 static GENERIC qr1[12] = {
522 3.749999999999999999997762458207284405806e-0001L,
523 2.697883998881706839929255517498189980485e+0002L,
524 7.755195925781028489386938870473834411019e+0004L,
525 1.166777762104017777198211072895528968355e+0007L,
526 1.011504772984321168320010084520261069362e+0009L,
527 5.246007703574156853577754571720205550010e+0010L,
528 1.637692549885592683166116551691266537647e+0012L,
529 3.022303623698185669912990310925039382495e+0013L,
530 3.154769927290655684846107030265909987946e+0014L,
531 1.715819913441554770089730934808123360921e+0015L,
532 4.165044355759732622273534445131736188510e+0015L,
533 3.151381420874174705643100381708086287596e+0015L,
534 };
535 static GENERIC qs1[14] = {
536 1.0e0L,
537 7.197091705351218239785633172408276982828e+0002L,
538 2.070012799599548685544883041297609861055e+0005L,
539 3.117014815317656221871840152778458754516e+0007L,
540 2.705719678902554974863325877025902971727e+0009L,
541 1.406113614727345726925060648750867264098e+0011L,
542 4.403777536067131320363005978631674817359e+0012L,
543 8.170725690209322283061499386703167242894e+0013L,
544 8.609458844975495289227794126964431210566e+0014L,
545 4.766766367015473481257280600694952920204e+0015L,
546 1.202286587943342194863557940888115641650e+0016L,
547 1.012474328306200909525063936061756024120e+0016L,
548 6.183552022678917858273222879615824070703e+0014L,
549 -9.756731548558226997573737400988225722740e+0013L,
550 };
551 static GENERIC qr2[12] = {
552 3.749999999999999481245647262226994293189e-0001L,
553 1.471366807289771354491181140167359026735e+0002L,
554 2.279432486768448220142080962843526951250e+0004L,
555 1.828943048523771225163804043356958285893e+0006L,
556 8.379828388647823135832220596417725010837e+0007L,
557 2.279814029335044024585393671278378022053e+0009L,
558 3.711653952257118120832817785271466441420e+0010L,
559 3.557650914518554549916730572553105048068e+0011L,
560 1.924583483146095896259774329498934160650e+0012L,
561 5.424386256063736390759567088291887140278e+0012L,
562 6.839325621241776786206509704671746841737e+0012L,
563 2.702169563144001166291686452305436313971e+0012L,
564 };
565 static GENERIC qs2[14] = {
566 1.0e0L,
567 3.926379194439388135703211933895203191089e+0002L,
568 6.089148804106598297488336063007609312276e+0004L,
569 4.893546162973278583711376356041614150645e+0006L,
570 2.247571119114497845046388801813832219404e+0008L,
571 6.137635663350177751290469334200757872645e+0009L,
572 1.005115019784102856424493519524998953678e+0011L,
573 9.725664462014503832860151384604677240620e+0011L,
574 5.345525100485511116148634192844434636072e+0012L,
575 1.549944007398946691720862738173956994779e+0013L,
576 2.067148441178952625710302124163264760362e+0013L,
577 9.401565402641963611295119487242595462301e+0012L,
578 3.548217088622398274748837287769709374385e+0011L,

new/usr/src/lib/libm/common/LD/j1l.c 10

579 -2.934470341719047120076509938432417352365e+0010L,
580 };
581 static GENERIC qr3[13] = {
582 3.749999999999412724084579833297451472091e-0001L,
583 9.058478580291706212422978492938435582527e+0001L,
584 8.524056033161038750461083666711724381171e+0003L,
585 4.105967158629109427753434569223631014730e+0005L,
586 1.118326603378531348259783091972623333657e+0007L,
587 1.794636683403578918528064904714132329343e+0008L,
588 1.714314157463635959556133236004368896724e+0009L,
589 9.622092032236084846572067257267661456030e+0009L,
590 3.057759524485859159957762858780768355020e+0010L,
591 5.129306780754798531609621454415938890020e+0010L,
592 3.999122002794961070680636194346316041352e+0010L,
593 1.122298454643493485989721564358100345388e+0010L,
594 5.603981987645989709668830968522362582221e+0008L,
595 };
596 static GENERIC qs3[13] = {
597 1.0e0L,
598 2.418328663076578169836155170053634419922e+0002L,
599 2.279620205900121042587523541281272875520e+0004L,
600 1.100984222585729521470129014992217092794e+0006L,
601 3.010743223679247091004262516286654516282e+0007L,
602 4.860925542827367817289619265215599433996e+0008L,
603 4.686668111035348691982715864307839581243e+0009L,
604 2.668701788405102017427214705946730894074e+0010L,
605 8.677395746106802640390580944836650584903e+0010L,
606 1.511936455574951790658498795945106643036e+0011L,
607 1.260845604432623478002018696873608353093e+0011L,
608 4.052692278419853853911440231600864589805e+0010L,
609 2.965516519212226064983267822243329694729e+0009L,
610 };
611 static GENERIC qr4[13] = {
612 3.749999999919234164154669754440123072618e-0001L,
613 5.844218580776819864791168253485055101858e+0001L,
614 3.489273514092912982675669411371435670220e+0003L,
615 1.050523637774575684509663430018995479594e+0005L,
616 1.764549172059701565500717319792780115289e+0006L,
617 1.725532438844133795028063102681497371154e+0007L,
618 9.938114847359778539965140247590176334874e+0007L,
619 3.331710808184595545396883770200772842314e+0008L,
620 6.271970557641881511609560444872797282698e+0008L,
621 6.188529798677357075020774923903737913285e+0008L,
622 2.821905302742849974509982167877885011629e+0008L,
623 4.615467358646911976773290256984329814896e+0007L,
624 1.348140608731546467396685802693380693275e+0006L,
625 };
626 static GENERIC qs4[13] = {
627 1.0e0L,
628 1.561192663112345185261418296389902133372e+0002L,
629 9.346678031144098270547225423124213083072e+0003L,
630 2.825851246482293547838023847601704751590e+0005L,
631 4.776572711622156091710902891124911556293e+0006L,
632 4.715106953717135402977938048006267859302e+0007L,
633 2.753962350894311316439652227611209035193e+0008L,
634 9.428501434615463207768964787500411575223e+0008L,
635 1.832650858775206787088236896454141572617e+0009L,
636 1.901697378939743226948920874296595242257e+0009L,
637 9.433322226854293780627188599226380812725e+0008L,
638 1.808520540608671608680284520798858587370e+0008L,
639 7.983342331736662753157217446919462398008e+0006L,
640 };
641 static GENERIC qr5[13] = {
642 3.749999995331364437028988850515190446719e-0001L,
643 3.739356381766559882677514593041627547911e+0001L,
644 1.399562500629413529355265462912819802551e+0003L,

new/usr/src/lib/libm/common/LD/j1l.c 11

645 2.594154053098947925345332218062210111753e+0004L,
646 2.640149879297408640394163979394594318371e+0005L,
647 1.542471854873199142031889093591449397995e+0006L,
648 5.242272868972053374067572098992335425895e+0006L,
649 1.025834487769410221329633071426044839935e+0007L,
650 1.116553924239448940142230579060124209622e+0007L,
651 6.318076065595910176374916303525884653514e+0006L,
652 1.641218086168640408527639735915512881785e+0006L,
653 1.522369793529178644168813882912134706444e+0005L,
654 2.526530541062297200914180060208669584055e+0003L,
655 };
656 static GENERIC qs5[13] = {
657 1.0e0L,
658 9.998960735935075380397545659016287506660e+0001L,
659 3.758767417842043742686475060540416737562e+0003L,
660 7.013652806952306520121959742519780781653e+0004L,
661 7.208949808818615099246529616211730446850e+0005L,
662 4.272753927109614455417836186072202009252e+0006L,
663 1.482524411356470699336129814111025434703e+0007L,
664 2.988750366665678233425279237627700803473e+0007L,
665 3.396957890261080492694709150553619185065e+0007L,
666 2.050652487738593004111578091156304540386e+0007L,
667 5.900504120811732547616511555946279451316e+0006L,
668 6.563391409260160897024498082273183468347e+0005L,
669 1.692629845012790205348966731477187041419e+0004L,
670 };
671 static GENERIC qr6[13] = {
672 3.749999861516664133157566870858975421296e-0001L,
673 2.367863756747764863120797431599473468918e+0001L,
674 5.476715802114976248882067325630793143777e+0002L,
675 6.143190357869842894025012945444096170251e+0003L,
676 3.716250534677997850513733595140463851730e+0004L,
677 1.270883463823876752138326905022875657430e+0005L,
678 2.495301449636814481646371665429083801388e+0005L,
679 2.789578988212952248340486296254398601942e+0005L,
680 1.718247946911109055931819087137397324634e+0005L,
681 5.458973214011665714330326732204106364229e+0004L,
682 7.912102686687948786048943339759596652813e+0003L,
683 4.077961006160866935722030715149087938091e+0002L,
684 3.765206972770245085551057237882528510428e+0000L,
685 };
686 static GENERIC qs6[13] = {
687 1.0e0L,
688 6.341646532940517305641893852673926809601e+0001L,
689 1.477058277414040790932597537920671025359e+0003L,
690 1.674406564031044491436044253393536487604e+0004L,
691 1.028516501369755949895050806908994650768e+0005L,
692 3.593620042532885295087463507733285434207e+0005L,
693 7.267924991381020915185873399453724799625e+0005L,
694 8.462277510768818399961191426205006083088e+0005L,
695 5.514399892230892163373611895645500250514e+0005L,
696 1.898084241009259353540620272932188102299e+0005L,
697 3.102941242117739015721984123081026253068e+0004L,
698 1.958971184431466907681440650181421086143e+0003L,
699 2.878853357310495087181721613889455121867e+0001L,
700 };
701 static GENERIC qone(x)
702 GENERIC x;
703 {
704 GENERIC s, r, t, z;
705 int i;
706 if (x > huge)
707 return (0.375L/x);
708 t = one/x; z = t*t;
709 if (x > sixteen) {
710 r = z*qr0[11]+qr0[10]; s = qs0[10];

new/usr/src/lib/libm/common/LD/j1l.c 12

711 for (i = 9; i >= 0; i--) {
712 r = z*r + qr0[i];
713 s = z*s + qs0[i];
714 }
715 } else if (x > eight) {
716 r = qr1[11]; s = qs1[11]+z*(qs1[12]+z*qs1[13]);
717 for (i = 10; i >= 0; i--) {
718 r = z*r + qr1[i];
719 s = z*s + qs1[i];
720 }
721 } else if (x > five) { /* x > 5.0 */
722 r = qr2[11]; s = qs2[11]+z*(qs2[12]+z*qs2[13]);
723 for (i = 10; i >= 0; i--) {
724 r = z*r + qr2[i];
725 s = z*s + qs2[i];
726 }
727 } else if (x > 3.5L) {
728 r = qr3[12]; s = qs3[12];
729 for (i = 11; i >= 0; i--) {
730 r = z*r + qr3[i];
731 s = z*s + qs3[i];
732 }
733 } else if (x > 2.5L) {
734 r = qr4[12]; s = qs4[12];
735 for (i = 11; i >= 0; i--) {
736 r = z*r + qr4[i];
737 s = z*s + qs4[i];
738 }
739 } else if (x > (1.0L/0.5625L)) {
740 r = qr5[12]; s = qs5[12];
741 for (i = 11; i >= 0; i--) {
742 r = z*r + qr5[i];
743 s = z*s + qs5[i];
744 }
745 } else { /* assume x > 1.28 */
746 r = qr6[12]; s = qs6[12];
747 for (i = 11; i >= 0; i--) {
748 r = z*r + qr6[i];
749 s = z*s + qs6[i];
750 }
751 }
752 return (t*(r/s));
753 }

new/usr/src/lib/libm/common/LD/jnl.c 1

**
 6912 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/LD/jnl.c
common/LD/jnl.c: cstyle fixes
minor changes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
common/LD/jnl.c: cstyle fixes
minor changes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak jnl = __jnl
32 #pragma weak ynl = __ynl
33 #endif

35 /*
36 * floating point Bessel’s function of the 1st and 2nd kind
37 * of order n: jn(n,x),yn(n,x);
38 *
39 * Special cases:
40 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
41 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
42 * Note 2. About jn(n,x), yn(n,x)
43 * For n=0, j0(x) is called,
44 * for n=1, j1(x) is called,
45 * for n<x, forward recursion us used starting
46 * from values of j0(x) and j1(x).
47 * for n>x, a continued fraction approximation to
48 * j(n,x)/j(n-1,x) is evaluated and then backward
49 * recursion is used starting from a supposed value
50 * for j(n,x). The resulting value of j(0,x) is

new/usr/src/lib/libm/common/LD/jnl.c 2

51 * compared with the actual value to correct the
52 * supposed value of j(n,x).
53 *
54 * yn(n,x) is similar in all respects, except
55 * that forward recursion is used for all
56 * values of n>1.
57 *
58 */

60 #include "libm.h"
61 #include "longdouble.h"
62 #include <float.h> /* LDBL_MAX */

64 #define GENERIC long double

66 static const GENERIC
67 invsqrtpi = 5.641895835477562869480794515607725858441e-0001L,
68 two = 2.0L,
69 zero = 0.0L,
70 one = 1.0L;

72 GENERIC
73 jnl(n, x) int n; GENERIC x; {
74 int i, sgn;
75 GENERIC a, b, temp = 0, z, w;

77 /*
78 * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
79 * Thus, J(-n,x) = J(n,-x)
80 */
81 if (n < 0) {
82 n = -n;
83 x = -x;
84 }
85 if (n == 0) return (j0l(x));
86 if (n == 1) return (j1l(x));
87 if (x != x) return x+x;
88 if ((n&1) == 0)
89 sgn = 0; /* even n */
90 else
91 sgn = signbitl(x); /* old n */
92 x = fabsl(x);
93 if (x == zero || !finitel(x)) b = zero;
94 else if ((GENERIC)n <= x) {
95 /*
96 * Safe to use
97 * J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
98 */
99 if (x > 1.0e91L) {
100 /*
101 * x >> n**2
102 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
103 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
104 * Let s=sin(x), c=cos(x),
105 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
106 *
107 * n sin(xn)*sqt2 cos(xn)*sqt2
108 * ----------------------------------
109 * 0 s-c c+s
110 * 1 -s-c -c+s
111 * 2 -s+c -c-s
112 * 3 s+c c-s
113 */
114 switch (n&3) {
115 case 0: temp = cosl(x)+sinl(x); break;
116 case 1: temp = -cosl(x)+sinl(x); break;

new/usr/src/lib/libm/common/LD/jnl.c 3

117 case 2: temp = -cosl(x)-sinl(x); break;
118 case 3: temp = cosl(x)-sinl(x); break;
119 }
120 b = invsqrtpi*temp/sqrtl(x);
121 } else {
122 a = j0l(x);
123 b = j1l(x);
124 for (i = 1; i < n; i++) {
125 temp = b;
126 b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
127 a = temp;
128 }
129 }
130 } else {
131 if (x < 1e-17L) { /* use J(n,x) = 1/n!*(x/2)^n */
132 b = powl(0.5L*x, (GENERIC) n);
133 if (b != zero) {
134 for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;
135 b = b/a;
136 }
137 } else {
138 /*
139 * use backward recurrence
140 * x x^2 x^2
141 * J(n,x)/J(n-1,x) = ---- ------ ------
142 * 2n - 2(n+1) - 2(n+2)
143 *
144 * 1 1 1
145 * (for large x) = ---- ------ ------
146 * 2n 2(n+1) 2(n+2)
147 * -- - ------ - ------ -
148 * x x x
149 *
150 * Let w = 2n/x and h=2/x, then the above quotient
151 * is equal to the continued fraction:
152 * 1
153 * = -----------------------
154 * 1
155 * w - -----------------
156 * 1
157 * w+h - ---------
158 * w+2h - ...
159 *
160 * To determine how many terms needed, let
161 * Q(0) = w, Q(1) = w(w+h) - 1,
162 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
163 * When Q(k) > 1e4 good for single
164 * When Q(k) > 1e9 good for double
165 * When Q(k) > 1e17 good for quaduple
166 */
167 /* determin k */
168 GENERIC t, v;
169 double q0, q1, h, tmp; int k, m;
170 w = (n+n)/(double)x; h = 2.0/(double)x;
171 q0 = w; z = w+h; q1 = w*z - 1.0; k = 1;
172 while (q1 < 1.0e17) {
173 k += 1; z += h;
174 tmp = z*q1 - q0;
175 q0 = q1;
176 q1 = tmp;
177 }
178 m = n+n;
179 for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);
180 a = t;
181 b = one;
182 /*

new/usr/src/lib/libm/common/LD/jnl.c 4

183 * Estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
184 * hence, if n*(log(2n/x)) > ...
185 * single 8.8722839355e+01
186 * double 7.09782712893383973096e+02
187 * long double 1.135652340629414394949193107797076500617
188 * then recurrent value may overflow and the result is
189 * likely underflow to zero.
190 */
191 tmp = n;
192 v = two/x;
193 tmp = tmp*logl(fabsl(v*tmp));
194 if (tmp < 1.1356523406294143949491931077970765e+04L) {
195 for (i = n-1; i > 0; i--) {
196 temp = b;
197 b = ((i+i)/x)*b - a;
198 a = temp;
199 }
200 } else {
201 for (i = n-1; i > 0; i--) {
202 temp = b;
203 b = ((i+i)/x)*b - a;
204 a = temp;
205 if (b > 1e1000L) {
206 a /= b;
207 t /= b;
208 b = 1.0;
209 }
210 }
211 }
212 b = (t*j0l(x)/b);
213 }
214 }
215 if (sgn == 1)
216 return -b;
217 else
218 return b;
219 }

221 GENERIC
222 ynl(n, x) int n; GENERIC x; {
223 int i;
224 int sign;
225 GENERIC a, b, temp = 0;

227 if (x != x)
228 return x+x;
229 if (x <= zero) {
230 if (x == zero)
231 return -one/zero;
232 else
233 return zero/zero;
234 }
235 sign = 1;
236 if (n < 0) {
237 n = -n;
238 if ((n&1) == 1) sign = -1;
239 }
240 if (n == 0) return (y0l(x));
241 if (n == 1) return (sign*y1l(x));
242 if (!finitel(x)) return zero;

244 if (x > 1.0e91L) {
245 /*
246 * x >> n**2
247 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
248 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)

new/usr/src/lib/libm/common/LD/jnl.c 5

249 * Let s=sin(x), c=cos(x),
250 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
251 *
252 * n sin(xn)*sqt2 cos(xn)*sqt2
253 * ----------------------------------
254 * 0 s-c c+s
255 * 1 -s-c -c+s
256 * 2 -s+c -c-s
257 * 3 s+c c-s
258 */
259 switch (n&3) {
260 case 0: temp = sinl(x)-cosl(x); break;
261 case 1: temp = -sinl(x)-cosl(x); break;
262 case 2: temp = -sinl(x)+cosl(x); break;
263 case 3: temp = sinl(x)+cosl(x); break;
264 }
265 b = invsqrtpi*temp/sqrtl(x);
266 } else {
267 a = y0l(x);
268 b = y1l(x);
269 /*
270 * fix 1262058 and take care of non-default rounding
271 */
272 for (i = 1; i < n; i++) {
273 temp = b;
274 b *= (GENERIC) (i + i) / x;
275 if (b <= -LDBL_MAX)
276 break;
277 b -= a;
278 a = temp;
279 }
280 }
281 if (sign > 0)
282 return b;
283 else
284 return -b;
285 }

new/usr/src/lib/libm/common/LD/tanhl.c 1

**
 2628 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/LD/tanhl.c
fix lint warnings in LD/asinhl.c and LD/tanhl.c
libm/common/R/tanf.c
libm/common/R/sinf.c
libm/common/R/sincosf.c
libm/common/R/cosf.c
libm/common/Q/tanhl.c
libm/common/Q/asinl.c
libm/common/Q/asinhl.c
tanhl.c
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
fix lint warnings in LD/asinhl.c and LD/tanhl.c
libm/common/R/tanf.c
libm/common/R/sinf.c
libm/common/R/sincosf.c
libm/common/R/cosf.c
libm/common/Q/tanhl.c
libm/common/Q/asinl.c
libm/common/Q/asinhl.c
tanhl.c
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak tanhl = __tanhl
32 #endif

34 /*
35 * tanhl(x) returns the hyperbolic tangent of x
36 *

new/usr/src/lib/libm/common/LD/tanhl.c 2

37 * Method :
38 * 1. reduce x to non-negative: tanhl(-x) = - tanhl(x).
39 * 2.
40 * 0 < x <= small : tanhl(x) := x
41 * -expm1l(-2x)
42 * small < x <= 1 : tanhl(x) := --------------
43 * expm1l(-2x) + 2
44 * 2
45 * 1 <= x <= threshold : tanhl(x) := 1 - ---------------
46 * expm1l(2x) + 2
47 * threshold < x <= INF : tanhl(x) := 1.
48 *
49 * where
50 * single : small = 1.e-5 threshold = 11.0
51 * double : small = 1.e-10 threshold = 22.0
52 * quad : small = 1.e-20 threshold = 45.0
53 *
54 * Note: threshold was chosen so that
55 * fl(1.0+2/(expm1(2*threshold)+2)) == 1.
56 *
57 * Special cases:
58 * tanhl(NaN) is NaN;
59 * only tanhl(0.0)=0.0 is exact for finite argument.
60 */

62 #include "libm.h"
63 #include "longdouble.h"

65 static const long double small = 1.0e-20L, one = 1.0, two = 2.0,
66 #ifndef lint
67 big = 1.0e+20L,
68 #endif
69 threshold = 45.0L;

71 long double
72 tanhl(long double x) {
73 long double t, y, z;
74 int signx;
75 #ifndef lint
76 volatile long double dummy;
77 #endif

79 if (isnanl(x))
80 return (x + x); /* x is NaN */
81 signx = signbitl(x);
82 t = fabsl(x);
83 z = one;
84 if (t <= threshold) {
85 if (t > one)
86 z = one - two / (expm1l(t + t) + two);
87 else if (t > small) {
88 y = expm1l(-t - t);
89 z = -y / (y + two);
90 } else {
91 #ifndef lint
92 dummy = t + big;
93 /* inexact if t != 0 */
94 #endif
95 return (x);
96 }
97 } else if (!finitel(t))
98 return (copysignl(one, x));
99 else
100 return (signx ? -z + small * small : z - small * small);
101 return (signx ? -z : z);
102 }

new/usr/src/lib/libm/common/LD/tanhl.c 3

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 1

**
 12633 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/m9x/fenv_inlines.h
fixes for %1 +x in common/m9x/fenv_inlines.h
fix fsincos in common/m9x/fenv_inlines.h
patch05 - fixed amd64 issues with LIBM
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
fixes for %1 +x in common/m9x/fenv_inlines.h
fix fsincos in common/m9x/fenv_inlines.h
patch05 - fixed amd64 issues with LIBM
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */

12 /*
13 * Copyright 2011, Richard Lowe
14 */

16 #ifndef _FENV_INLINES_H
17 #define _FENV_INLINES_H

19 #ifdef __GNUC__

21 #ifdef __cplusplus
22 extern "C" {
23 #endif

25 #include <sys/types.h>

27 #if defined(__x86)

29 /*
30 * Floating point Control Word and Status Word
31 * Definition should actually be shared with x86
32 * (much of this ’amd64’ code can be, in fact.)
33 */
34 union fp_cwsw {
35 uint32_t cwsw;
36 struct {
37 uint16_t cw;
38 uint16_t sw;
39 } words;
40 };

42 extern __inline__ void
43 __fenv_getcwsw(unsigned int *value)
44 {
45 union fp_cwsw *u = (union fp_cwsw *)value;

47 __asm__ __volatile__(
48 "fstsw %0\n\t"
49 "fstcw %1\n\t"
50 : "=m" (u->words.cw), "=m" (u->words.sw));
51 }

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 2

53 extern __inline__ void
54 __fenv_setcwsw(const unsigned int *value)
55 {
56 union fp_cwsw cwsw;
57 short fenv[16];

59 cwsw.cwsw = *value;

61 __asm__ __volatile__(
62 "fstenv %0\n\t"
63 "movw %4,%1\n\t"
64 "movw %3,%2\n\t"
65 "fldenv %0\n\t"
66 "fwait\n\t"
67 : "=m" (fenv), "=m" (fenv[0]), "=m" (fenv[2])
68 : "r" (cwsw.words.cw), "r" (cwsw.words.sw)
69 /* For practical purposes, we clobber the whole FPU */
70 : "cc", "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)",
71 "st(6)", "st(7)");
72 }

74 extern __inline__ void
75 __fenv_getmxcsr(unsigned int *value)
76 {
77 __asm__ __volatile__("stmxcsr %0" : "=m" (*value));
78 }

80 extern __inline__ void
81 __fenv_setmxcsr(const unsigned int *value)
82 {
83 __asm__ __volatile__("ldmxcsr %0" : : "m" (*value));
84 }

86 extern __inline__ long double
87 f2xm1(long double x)
88 {
89 long double ret;

91 __asm__ __volatile__("f2xm1" : "=t" (ret) : "0" (x) : "cc");
92 return (ret);
93 }

95 extern __inline__ long double
96 fyl2x(long double y, long double x)
97 {
98 long double ret;

100 __asm__ __volatile__("fyl2x"
101 : "=t" (ret)
102 : "0" (x), "u" (y)
103 : "st(1)", "cc");
104 return (ret);
105 }

107 extern __inline__ long double
108 fptan(long double x)
109 {
110 /*
111 * fptan pushes 1.0 then the result on completion, so we want to pop
112 * the FP stack twice, so we need a dummy value into which to pop it.
113 */
114 long double ret;
115 long double dummy;

117 __asm__ __volatile__("fptan"
118 : "=t" (dummy), "=u" (ret)

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 3

119 : "0" (x)
120 : "cc");
121 return (ret);
122 }

124 extern __inline__ long double
125 fpatan(long double x, long double y)
126 {
127 long double ret;

129 __asm__ __volatile__("fpatan"
130 : "=t" (ret)
131 : "0" (y), "u" (x)
132 : "st(1)", "cc");
133 return (ret);
134 }

136 extern __inline__ long double
137 fxtract(long double x)
138 {
139 __asm__ __volatile__("fxtract" : "+t" (x) : : "cc");
140 return (x);
141 }

143 extern __inline__ long double
144 fprem1(long double idend, long double div)
145 {
146 __asm__ __volatile__("fprem1" : "+t" (div) : "u" (idend) : "cc");
147 return (div);
148 }

150 extern __inline__ long double
151 fprem(long double idend, long double div)
152 {
153 __asm__ __volatile__("fprem" : "+t" (div) : "u" (idend) : "cc");
154 return (div);
155 }

157 extern __inline__ long double
158 fyl2xp1(long double y, long double x)
159 {
160 long double ret;

162 __asm__ __volatile__("fyl2xp1"
163 : "=t" (ret)
164 : "0" (x), "u" (y)
165 : "st(1)", "cc");
166 return (ret);
167 }

169 extern __inline__ long double
170 fsqrt(long double x)
171 {
172 __asm__ __volatile__("fsqrt" : "+t" (x) : : "cc");
173 return (x);
174 }

176 extern __inline__ long double
177 fsincos(long double x)
178 {
179 long double dummy;

181 __asm__ __volatile__("fsincos" : "+t" (x), "=u" (dummy) : : "cc");
182 return (x);
183 }

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 4

185 extern __inline__ long double
186 frndint(long double x)
187 {
188 __asm__ __volatile__("frndint" : "+t" (x) : : "cc");
189 return (x);
190 }

192 extern __inline__ long double
193 fscale(long double x, long double y)
194 {
195 long double ret;

197 __asm__ __volatile__("fscale" : "=t" (ret) : "0" (y), "u" (x) : "cc");
198 return (ret);
199 }

201 extern __inline__ long double
202 fsin(long double x)
203 {
204 __asm__ __volatile__("fsin" : "+t" (x) : : "cc");
205 return (x);
206 }

208 extern __inline__ long double
209 fcos(long double x)
210 {
211 __asm__ __volatile__("fcos" : "+t" (x) : : "cc");
212 return (x);
213 }

215 extern __inline__ void
216 sse_cmpeqss(float *f1, float *f2, int *i1)
217 {
218 __asm__ __volatile__(
219 "cmpeqss %2, %1\n\t"
220 "movss %1, %0"
221 : "=m" (*i1), "+x" (*f1)
222 : "x" (*f2)
223 : "cc");
224 }

226 extern __inline__ void
227 sse_cmpltss(float *f1, float *f2, int *i1)
228 {
229 __asm__ __volatile__(
230 "cmpltss %2, %1\n\t"
231 "movss %1, %0"
232 : "=m" (*i1), "+x" (*f1)
233 : "x" (*f2)
234 : "cc");
235 }

237 extern __inline__ void
238 sse_cmpless(float *f1, float *f2, int *i1)
239 {
240 __asm__ __volatile__(
241 "cmpless %2, %1\n\t"
242 "movss %1, %0"
243 : "=m" (*i1), "+x" (*f1)
244 : "x" (*f2)
245 : "cc");
246 }

248 extern __inline__ void
249 sse_cmpunordss(float *f1, float *f2, int *i1)
250 {

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 5

251 __asm__ __volatile__(
252 "cmpunordss %2, %1\n\t"
253 "movss %1, %0"
254 : "=m" (*i1), "+x" (*f1)
255 : "x" (*f2)
256 : "cc");
257 }

259 extern __inline__ void
260 sse_minss(float *f1, float *f2, float *f3)
261 {
262 __asm__ __volatile__(
263 "minss %2, %1\n\t"
264 "movss %1, %0"
265 : "=m" (*f3), "+x" (*f1)
266 : "x" (*f2));
267 }

269 extern __inline__ void
270 sse_maxss(float *f1, float *f2, float *f3)
271 {
272 __asm__ __volatile__(
273 "maxss %2, %1\n\t"
274 "movss %1, %0"
275 : "=m" (*f3), "+x" (*f1)
276 : "x" (*f2));
277 }

279 extern __inline__ void
280 sse_addss(float *f1, float *f2, float *f3)
281 {
282 __asm__ __volatile__(
283 "addss %2, %1\n\t"
284 "movss %1, %0"
285 : "=m" (*f3), "+x" (*f1)
286 : "x" (*f2));
287 }

289 extern __inline__ void
290 sse_subss(float *f1, float *f2, float *f3)
291 {
292 __asm__ __volatile__(
293 "subss %2, %1\n\t"
294 "movss %1, %0"
295 : "=m" (*f3), "+x" (*f1)
296 : "x" (*f2));
297 }

299 extern __inline__ void
300 sse_mulss(float *f1, float *f2, float *f3)
301 {
302 __asm__ __volatile__(
303 "mulss %2, %1\n\t"
304 "movss %1, %0"
305 : "=m" (*f3), "+x" (*f1)
306 : "x" (*f2));
307 }

309 extern __inline__ void
310 sse_divss(float *f1, float *f2, float *f3)
311 {
312 __asm__ __volatile__(
313 "divss %2, %1\n\t"
314 "movss %1, %0"
315 : "=m" (*f3), "+x" (*f1)
316 : "x" (*f2));

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 6

317 }

319 extern __inline__ void
320 sse_sqrtss(float *f1, float *f2)
321 {
322 double tmp;

324 __asm__ __volatile__(
325 "sqrtss %2, %1\n\t"
326 "movss %1, %0"
327 : "=m" (*f2), "=x" (tmp)
328 : "m" (*f1));
329 }

331 extern __inline__ void
332 sse_ucomiss(float *f1, float *f2)
333 {
334 __asm__ __volatile__("ucomiss %1, %0" : : "x" (*f1), "x" (*f2));

336 }

338 extern __inline__ void
339 sse_comiss(float *f1, float *f2)
340 {
341 __asm__ __volatile__("comiss %1, %0" : : "x" (*f1), "x" (*f2));
342 }

344 extern __inline__ void
345 sse_cvtss2sd(float *f1, double *d1)
346 {
347 double tmp;

349 __asm__ __volatile__(
350 "cvtss2sd %2, %1\n\t"
351 "movsd %1, %0"
352 : "=m" (*d1), "=x" (tmp)
353 : "m" (*f1));
354 }

356 extern __inline__ void
357 sse_cvtsi2ss(int *i1, float *f1)
358 {
359 double tmp;

361 __asm__ __volatile__(
362 "cvtsi2ss %2, %1\n\t"
363 "movss %1, %0"
364 : "=m" (*f1), "=x" (tmp)
365 : "m" (*i1));
366 }

368 extern __inline__ void
369 sse_cvttss2si(float *f1, int *i1)
370 {
371 int tmp;

373 __asm__ __volatile__(
374 "cvttss2si %2, %1\n\t"
375 "movl %1, %0"
376 : "=m" (*i1), "=r" (tmp)
377 : "m" (*f1));
378 }

380 extern __inline__ void
381 sse_cvtss2si(float *f1, int *i1)
382 {

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 7

383 int tmp;

385 __asm__ __volatile__(
386 "cvtss2si %2, %1\n\t"
387 "movl %1, %0"
388 : "=m" (*i1), "=r" (tmp)
389 : "m" (*f1));
390 }

392 #if defined(__amd64)
393 extern __inline__ void
394 sse_cvtsi2ssq(long long *ll1, float *f1)
395 {
396 double tmp;

398 __asm__ __volatile__(
399 "cvtsi2ssq %2, %1\n\t"
400 "movss %1, %0"
401 : "=m" (*f1), "=x" (tmp)
402 : "m" (*ll1));
403 }

405 extern __inline__ void
406 sse_cvttss2siq(float *f1, long long *ll1)
407 {
408 uint64_t tmp;

410 __asm__ __volatile__(
411 "cvttss2siq %2, %1\n\t"
412 "movq %1, %0"
413 : "=m" (*ll1), "=r" (tmp)
414 : "m" (*f1));
415 }

417 extern __inline__ void
418 sse_cvtss2siq(float *f1, long long *ll1)
419 {
420 uint64_t tmp;

422 __asm__ __volatile__(
423 "cvtss2siq %2, %1\n\t"
424 "movq %1, %0"
425 : "=m" (*ll1), "=r" (tmp)
426 : "m" (*f1));
427 }

429 #endif

431 extern __inline__ void
432 sse_cmpeqsd(double *d1, double *d2, long long *ll1)
433 {
434 __asm__ __volatile__(
435 "cmpeqsd %2,%1\n\t"
436 "movsd %1,%0"
437 : "=m" (*ll1), "+x" (*d1)
438 : "x" (*d2));
439 }

441 extern __inline__ void
442 sse_cmpltsd(double *d1, double *d2, long long *ll1)
443 {
444 __asm__ __volatile__(
445 "cmpltsd %2,%1\n\t"
446 "movsd %1,%0"
447 : "=m" (*ll1), "+x" (*d1)
448 : "x" (*d2));

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 8

449 }

451 extern __inline__ void
452 sse_cmplesd(double *d1, double *d2, long long *ll1)
453 {
454 __asm__ __volatile__(
455 "cmplesd %2,%1\n\t"
456 "movsd %1,%0"
457 : "=m" (*ll1), "+x" (*d1)
458 : "x" (*d2));
459 }

461 extern __inline__ void
462 sse_cmpunordsd(double *d1, double *d2, long long *ll1)
463 {
464 __asm__ __volatile__(
465 "cmpunordsd %2,%1\n\t"
466 "movsd %1,%0"
467 : "=m" (*ll1), "+x" (*d1)
468 : "x" (*d2));
469 }

472 extern __inline__ void
473 sse_minsd(double *d1, double *d2, double *d3)
474 {
475 __asm__ __volatile__(
476 "minsd %2,%1\n\t"
477 "movsd %1,%0"
478 : "=m" (*d3), "+x" (*d1)
479 : "x" (*d2));
480 }

482 extern __inline__ void
483 sse_maxsd(double *d1, double *d2, double *d3)
484 {
485 __asm__ __volatile__(
486 "maxsd %2,%1\n\t"
487 "movsd %1,%0"
488 : "=m" (*d3), "+x" (*d1)
489 : "x" (*d2));
490 }

492 extern __inline__ void
493 sse_addsd(double *d1, double *d2, double *d3)
494 {
495 __asm__ __volatile__(
496 "addsd %2,%1\n\t"
497 "movsd %1,%0"
498 : "=m" (*d3), "+x" (*d1)
499 : "x" (*d2));
500 }

502 extern __inline__ void
503 sse_subsd(double *d1, double *d2, double *d3)
504 {
505 __asm__ __volatile__(
506 "subsd %2,%1\n\t"
507 "movsd %1,%0"
508 : "=m" (*d3), "+x" (*d1)
509 : "x" (*d2));
510 }

512 extern __inline__ void
513 sse_mulsd(double *d1, double *d2, double *d3)
514 {

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 9

515 __asm__ __volatile__(
516 "mulsd %2,%1\n\t"
517 "movsd %1,%0"
518 : "=m" (*d3), "+x" (*d1)
519 : "x" (*d2));
520 }

522 extern __inline__ void
523 sse_divsd(double *d1, double *d2, double *d3)
524 {
525 __asm__ __volatile__(
526 "divsd %2,%1\n\t"
527 "movsd %1,%0"
528 : "=m" (*d3), "+x" (*d1)
529 : "x" (*d2));
530 }

532 extern __inline__ void
533 sse_sqrtsd(double *d1, double *d2)
534 {
535 double tmp;

537 __asm__ __volatile__(
538 "sqrtsd %2, %1\n\t"
539 "movsd %1, %0"
540 : "=m" (*d2), "=x" (tmp)
541 : "m" (*d1));
542 }

544 extern __inline__ void
545 sse_ucomisd(double *d1, double *d2)
546 {
547 __asm__ __volatile__("ucomisd %1, %0" : : "x" (*d1), "x" (*d2));
548 }

550 extern __inline__ void
551 sse_comisd(double *d1, double *d2)
552 {
553 __asm__ __volatile__("comisd %1, %0" : : "x" (*d1), "x" (*d2));
554 }

556 extern __inline__ void
557 sse_cvtsd2ss(double *d1, float *f1)
558 {
559 double tmp;

561 __asm__ __volatile__(
562 "cvtsd2ss %2,%1\n\t"
563 "movss %1,%0"
564 : "=m" (*f1), "=x" (tmp)
565 : "m" (*d1));
566 }

568 extern __inline__ void
569 sse_cvtsi2sd(int *i1, double *d1)
570 {
571 double tmp;
572 __asm__ __volatile__(
573 "cvtsi2sd %2,%1\n\t"
574 "movsd %1,%0"
575 : "=m" (*d1), "=x" (tmp)
576 : "m" (*i1));
577 }

579 extern __inline__ void
580 sse_cvttsd2si(double *d1, int *i1)

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 10

581 {
582 int tmp;

584 __asm__ __volatile__(
585 "cvttsd2si %2,%1\n\t"
586 "movl %1,%0"
587 : "=m" (*i1), "=r" (tmp)
588 : "m" (*d1));
589 }

591 extern __inline__ void
592 sse_cvtsd2si(double *d1, int *i1)
593 {
594 int tmp;

596 __asm__ __volatile__(
597 "cvtsd2si %2,%1\n\t"
598 "movl %1,%0"
599 : "=m" (*i1), "=r" (tmp)
600 : "m" (*d1));
601 }

603 #if defined(__amd64)
604 extern __inline__ void
605 sse_cvtsi2sdq(long long *ll1, double *d1)
606 {
607 double tmp;

609 __asm__ __volatile__(
610 "cvtsi2sdq %2,%1\n\t"
611 "movsd %1,%0"
612 : "=m" (*d1), "=x" (tmp)
613 : "m" (*ll1));
614 }

616 extern __inline__ void
617 sse_cvttsd2siq(double *d1, long long *ll1)
618 {
619 uint64_t tmp;

621 __asm__ __volatile__(
622 "cvttsd2siq %2,%1\n\t"
623 "movq %1,%0"
624 : "=m" (*ll1), "=r" (tmp)
625 : "m" (*d1));
626 }

628 extern __inline__ void
629 sse_cvtsd2siq(double *d1, long long *ll1)
630 {
631 uint64_t tmp;

633 __asm__ __volatile__(
634 "cvtsd2siq %2,%1\n\t"
635 "movq %1,%0"
636 : "=m" (*ll1), "=r" (tmp)
637 : "m" (*d1));
638 }
639 #endif

641 #elif defined(__sparc)
642 extern __inline__ void
643 __fenv_getfsr(unsigned long *l)
644 {
645 __asm__ __volatile__(
646 #if defined(__sparcv9)

new/usr/src/lib/libm/common/m9x/fenv_inlines.h 11

647 "stx %%fsr,%0\n\t"
648 #else
649 "st %%fsr,%0\n\t"
650 #endif
651 : "=m" (*l));
652 }

654 extern __inline__ void
655 __fenv_setfsr(const unsigned long *l)
656 {
657 __asm__ __volatile__(
658 #if defined(__sparcv9)
659 "ldx %0,%%fsr\n\t"
660 #else
661 "ld %0,%%fsr\n\t"
662 #endif
663 : : "m" (*l) : "cc");
664 }

666 extern __inline__ void
667 __fenv_getfsr32(unsigned int *l)
668 {
669 __asm__ __volatile__("st %%fsr,%0\n\t" : "=m" (*l));
670 }

672 extern __inline__ void
673 __fenv_setfsr32(const unsigned int *l)
674 {
675 __asm__ __volatile__("ld %0,%%fsr\n\t" : : "m" (*l));
676 }
677 #else
678 #error "GCC FENV inlines not implemented for this platform"
679 #endif

681 #ifdef __cplusplus
682 }
683 #endif

685 #endif /* __GNUC__ */

687 #endif /* _FENV_INLINES_H */

new/usr/src/lib/libm/common/m9x/nearbyint.c 1

**
 3216 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/m9x/nearbyint.c
remove unused code from common/m9x/nearbyint.c
minor changes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch05 - fixed amd64 issues with LIBM
patch01 - 693 import Sun Devpro Math Library
remove unused code from common/m9x/nearbyint.c
minor changes
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch05 - fixed amd64 issues with LIBM
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak nearbyint = __nearbyint
32 #endif

34 /*
35 * nearbyint(x) returns the nearest fp integer to x in the direction
36 * corresponding to the current rounding direction without raising
37 * the inexact exception.
38 *
39 * nearbyint(x) is x unchanged if x is +/-0 or +/-inf. If x is NaN,
40 * nearbyint(x) is also NaN.
41 */

43 #include "libm.h"
44 #include "fenv_synonyms.h"
45 #include <fenv.h>

47 double
48 __nearbyint(double x) {
49 union {
50 unsigned i[2];

new/usr/src/lib/libm/common/m9x/nearbyint.c 2

51 double d;
52 } xx;
53 unsigned hx, sx, i, frac;
54 int rm, j;

56 xx.d = x;
57 sx = xx.i[HIWORD] & 0x80000000;
58 hx = xx.i[HIWORD] & ~0x80000000;

60 /* handle trivial cases */
61 if (hx >= 0x43300000) { /* x is nan, inf, or already integral */
62 if (hx >= 0x7ff00000) /* x is inf or nan */
63 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
64 return (hx >= 0x7ff80000 ? x : x + x);
65 /* assumes sparc-like QNaN */
66 #else
67 return (x + x);
68 #endif
69 return (x);
70 } else if ((hx | xx.i[LOWORD]) == 0) /* x is zero */
71 return (x);

73 /* get the rounding mode */
74 rm = fegetround();

76 /* flip the sense of directed roundings if x is negative */
77 if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD))
78 rm = (FE_UPWARD + FE_DOWNWARD) - rm;

80 /* handle |x| < 1 */
81 if (hx < 0x3ff00000) {
82 if (rm == FE_UPWARD || (rm == FE_TONEAREST &&
83 (hx >= 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD]))))
84 xx.i[HIWORD] = sx | 0x3ff00000;
85 else
86 xx.i[HIWORD] = sx;
87 xx.i[LOWORD] = 0;
88 return (xx.d);
89 }

91 /* round x at the integer bit */
92 j = 0x433 - (hx >> 20);
93 if (j >= 32) {
94 i = 1 << (j - 32);
95 frac = ((xx.i[HIWORD] << 1) << (63 - j)) |
96 (xx.i[LOWORD] >> (j - 32));
97 if (xx.i[LOWORD] & (i - 1))
98 frac |= 1;
99 if (!frac)
100 return (x);
101 xx.i[LOWORD] = 0;
102 xx.i[HIWORD] &= ~(i - 1);
103 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
104 ((frac > 0x80000000u) || ((frac == 0x80000000) &&
105 (xx.i[HIWORD] & i)))))
106 xx.i[HIWORD] += i;
107 } else {
108 i = 1 << j;
109 frac = (xx.i[LOWORD] << 1) << (31 - j);
110 if (!frac)
111 return (x);
112 xx.i[LOWORD] &= ~(i - 1);
113 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
114 (frac > 0x80000000u || ((frac == 0x80000000) &&
115 (xx.i[LOWORD] & i))))) {
116 xx.i[LOWORD] += i;

new/usr/src/lib/libm/common/m9x/nearbyint.c 3

117 if (xx.i[LOWORD] == 0)
118 xx.i[HIWORD]++;
119 }
120 }
121 return (xx.d);
122 }

new/usr/src/lib/libm/common/m9x/scalblnl.c 1

**
 2431 Thu Oct 9 19:48:54 2014
new/usr/src/lib/libm/common/m9x/scalblnl.c
remove -Wno-switch -Wno-parentheses -Wno-unused-variable from libm
rollback ISINFNANL in libm/common/m9x/scalblnl.c
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
remove -Wno-switch -Wno-parentheses -Wno-unused-variable from libm
rollback ISINFNANL in libm/common/m9x/scalblnl.c
patch07 - removed dead code with mtsk.h
patch06 - libm: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #if defined(ELFOBJ)
31 #pragma weak scalblnl = __scalblnl
32 #endif

34 #include "libm.h"
35 #include <float.h> /* LDBL_MAX, LDBL_MIN */

37 #if defined(__sparc)
38 #define XSET_EXP(k, x) ((int *) &x)[0] = (((int *) &x)[0] & ~0x7fff0000) | \
39 (k << 16)
40 #define ISINFNANL(k, x) (k == 0x7fff)
41 #define XTWOT_OFFSET 113
42 static const long double xtwot = 10384593717069655257060992658440192.0L,
43 /* 2^113 */
44 twomtm1 = 4.814824860968089632639944856462318296E-35L; /* 2^-114 */
45 #elif defined(__x86)
46 #define XSET_EXP(k, x) ((int *) &x)[2] = (((int *) &x)[2] & ~0x7fff) | k
47 #if defined(HANDLE_UNSUPPORTED)
48 #define ISINFNANL(k, x) (k == 0x7fff || \
49 (k != 0 && (((int *) &x)[1] & 0x80000000) == 0))
50 #else
51 #define ISINFNANL(k, x) (k == 0x7fff)
52 #endif

new/usr/src/lib/libm/common/m9x/scalblnl.c 2

53 #define XTWOT_OFFSET 64
54 static const long double xtwot = 18446744073709551616.0L, /* 2^64 */
55 twomtm1 = 2.7105054312137610850186E-20L; /* 2^-65 */
56 #endif

58 long double
59 scalblnl(long double x, long n) {
60 int k = XBIASED_EXP(x);

62 if (ISINFNANL(k, x))
63 return (x + x);
64 if (ISZEROL(x) || n == 0)
65 return (x);
66 if (k == 0) {
67 x *= xtwot;
68 k = XBIASED_EXP(x) - XTWOT_OFFSET;
69 }
70 k += (int) n;
71 if (n > 50000 || k > 0x7ffe)
72 return (LDBL_MAX * copysignl(LDBL_MAX, x));
73 if (n < -50000 || k <= -XTWOT_OFFSET - 1)
74 return (LDBL_MIN * copysignl(LDBL_MIN, x));
75 if (k > 0) {
76 XSET_EXP(k, x);
77 return (x);
78 }
79 k += XTWOT_OFFSET + 1;
80 XSET_EXP(k, x);
81 return (x * twomtm1);
82 }

new/usr/src/lib/libm/i386/src/libm_inlines.h 1

**
 7012 Thu Oct 9 19:48:55 2014
new/usr/src/lib/libm/i386/src/libm_inlines.h
libm/i386/src/libm_inlines.h - ceil()
libm/i386/src/libm_inlines.h use xorl %0, %0 to get a 0
i386/src/libm_inlines.h isnan() was missing
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
libm/i386/src/libm_inlines.h - ceil()
libm/i386/src/libm_inlines.h use xorl %0, %0 to get a 0
i386/src/libm_inlines.h isnan() was missing
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2011, Richard Lowe
29 */

31 /* Functions in this file are duplicated in locallibm.il. Keep them in sync */

33 #ifndef _LIBM_INLINES_H
34 #define _LIBM_INLINES_H

36 #ifdef __GNUC__

38 #ifdef __cplusplus
39 extern "C" {
40 #endif

42 #include <sys/types.h>
43 #include <sys/ieeefp.h>

45 #define _LO_WORD(x) ((uint32_t *)&x)[0]
46 #define _HI_WORD(x) ((uint32_t *)&x)[1]
47 #define _HIER_WORD(x) ((uint32_t *)&x)[2]

49 extern __inline__ double
50 __inline_sqrt(double a)
51 {
52 double ret;

new/usr/src/lib/libm/i386/src/libm_inlines.h 2

54 __asm__ __volatile__("fsqrt\n\t" : "=t" (ret) : "0" (a) : "cc");
55 return (ret);
56 }

58 extern __inline__ double
59 __ieee754_sqrt(double a)
60 {
61 return (__inline_sqrt(a));
62 }

64 extern __inline__ float
65 __inline_sqrtf(float a)
66 {
67 float ret;

69 __asm__ __volatile__("fsqrt\n\t" : "=t" (ret) : "0" (a) : "cc");
70 return (ret);
71 }

73 extern __inline__ double
74 __inline_rint(double a)
75 {
76 __asm__ __volatile__(
77 "andl $0x7fffffff,%1\n\t"
78 "cmpl $0x43300000,%1\n\t"
79 "jae 1f\n\t"
80 "frndint\n\t"
81 "1: fwait\n\t"
82 : "+t" (a), "+&r" (_HI_WORD(a))
83 :
84 : "cc");

86 return (a);
87 }

89 /*
90 * 00 - 24 bits
91 * 01 - reserved
92 * 10 - 53 bits
93 * 11 - 64 bits
94 */
95 extern __inline__ int
96 __swapRP(int i)
97 {
98 int ret;
99 uint16_t cw;

101 __asm__ __volatile__("fstcw %0\n\t" : "=m" (cw));

103 ret = (cw >> 8) & 0x3;
104 cw = (cw & 0xfcff) | ((i & 0x3) << 8);

106 __asm__ __volatile__("fldcw %0\n\t" : : "m" (cw));

108 return (ret);
109 }

111 /*
112 * 00 - Round to nearest, with even preferred
113 * 01 - Round down
114 * 10 - Round up
115 * 11 - Chop
116 */
117 extern __inline__ enum fp_direction_type
118 __swap87RD(enum fp_direction_type i)

new/usr/src/lib/libm/i386/src/libm_inlines.h 3

119 {
120 int ret;
121 uint16_t cw;

123 __asm__ __volatile__("fstcw %0\n\t" : "=m" (cw));

125 ret = (cw >> 10) & 0x3;
126 cw = (cw & 0xf3ff) | ((i & 0x3) << 10);

128 __asm__ __volatile__("fldcw %0\n\t" : : "m" (cw));

130 return (ret);
131 }

133 extern __inline__ double
134 ceil(double d)
135 {
136 /*
137 * Let’s set a Rounding Control (RC) bits from x87 FPU Control Word
138 * to fp_positive and save old bits in rd.
139 */
140 short rd = __swap87RD(fp_positive);

142 /*
143 * The FRNDINT instruction returns a floating-point value that is the
144 * integral value closest to the source value in the direction of the
145 * rounding mode specified in the RC field of the x87 FPU control word.
146 *
147 * Rounds the source value in the ST(0) register to the nearest
148 * integral value, depending on the current rounding mode
149 * (setting of the RC field of the FPU control word),
150 * and stores the result in ST(0).
151 */
152 __asm__ __volatile__("frndint" : "+t" (d) : : "cc");

154 /* restore old RC bits */
155 __swap87RD(rd);

157 return (d);
158 }

160 extern __inline__ double
161 copysign(double d1, double d2)
162 {
163 __asm__ __volatile__(
164 "andl $0x7fffffff,%0\n\t" /* %0 <-- hi_32(abs(d)) */
165 "andl $0x80000000,%1\n\t" /* %1[31] <-- sign_bit(d2) */
166 "orl %1,%0\n\t" /* %0 <-- hi_32(copysign(x,y)) */
167 : "+&r" (_HI_WORD(d1)), "+r" (_HI_WORD(d2))
168 :
169 : "cc");

171 return (d1);
172 }

174 extern __inline__ double
175 fabs(double d)
176 {
177 __asm__ __volatile__("fabs\n\t" : "+t" (d) : : "cc");
178 return (d);
179 }

181 extern __inline__ float
182 fabsf(float d)
183 {
184 __asm__ __volatile__("fabs\n\t" : "+t" (d) : : "cc");

new/usr/src/lib/libm/i386/src/libm_inlines.h 4

185 return (d);
186 }

188 extern __inline__ long double
189 fabsl(long double d)
190 {
191 __asm__ __volatile__("fabs\n\t" : "+t" (d) : : "cc");
192 return (d);
193 }

195 extern __inline__ int
196 finite(double d)
197 {
198 int ret = _HI_WORD(d);

200 __asm__ __volatile__(
201 "notl %0\n\t"
202 "andl $0x7ff00000,%0\n\t"
203 "negl %0\n\t"
204 "shrl $31,%0\n\t"
205 : "+r" (ret)
206 :
207 : "cc");
208 return (ret);
209 }

211 extern __inline__ double
212 floor(double d)
213 {
214 short rd = __swap87RD(fp_negative);

216 __asm__ __volatile__("frndint" : "+t" (d), "+r" (rd) : : "cc");
217 __swap87RD(rd);

219 return (d);
220 }

222 /*
223 * branchless __isnan
224 * ((0x7ff00000-[((lx|-lx)>>31)&1]|ahx)>>31)&1 = 1 iff x is NaN
225 */
226 extern __inline__ int
227 isnan(double d)
228 {
229 int ret;

231 __asm__ __volatile__(
232 "movl %1,%%ecx\n\t"
233 "negl %%ecx\n\t" /* ecx <-- -lo_32(x) */
234 "orl %%ecx,%1\n\t"
235 "shrl $31,%1\n\t" /* 1 iff lx != 0 */
236 "andl $0x7fffffff,%2\n\t" /* ecx <-- hi_32(abs(x)) */
237 "orl %2,%1\n\t"
238 "subl $0x7ff00000,%1\n\t"
239 "negl %1\n\t"
240 "shrl $31,%1\n\t"
241 : "=r" (ret)
242 : "0" (_HI_WORD(d)), "r" (_LO_WORD(d))
243 : "ecx");

245 return (ret);
246 }

248 extern __inline__ int
249 isnanf(float f)
250 {

new/usr/src/lib/libm/i386/src/libm_inlines.h 5

251 __asm__ __volatile__(
252 "andl $0x7fffffff,%0\n\t"
253 "negl %0\n\t"
254 "addl $0x7f800000,%0\n\t"
255 "shrl $31,%0\n\t"
256 : "+r" (f)
257 :
258 : "cc");

260 return (f);
261 }

263 extern __inline__ double
264 rint(double a) {
265 return (__inline_rint(a));
266 }

268 extern __inline__ double
269 scalbn(double d, int n)
270 {
271 double dummy;

273 __asm__ __volatile__(
274 "fildl %2\n\t" /* Convert N to extended */
275 "fxch\n\t"
276 "fscale\n\t"
277 : "+t" (d), "=u" (dummy)
278 : "m" (n)
279 : "cc");

281 return (d);
282 }

284 extern __inline__ int
285 signbit(double d)
286 {
287 return (_HI_WORD(d) >> 31);
288 }

290 extern __inline__ int
291 signbitf(float f)
292 {
293 return ((*(uint32_t *)&f) >> 31);
294 }

296 extern __inline__ double
297 sqrt(double d)
298 {
299 return (__inline_sqrt(d));
300 }

302 extern __inline__ float
303 sqrtf(float f)
304 {
305 return (__inline_sqrtf(f));
306 }

308 extern __inline__ long double
309 sqrtl(long double ld)
310 {
311 __asm__ __volatile__("fsqrt" : "+t" (ld) : : "cc");
312 return (ld);
313 }

315 extern __inline__ int
316 isnanl(long double ld)

new/usr/src/lib/libm/i386/src/libm_inlines.h 6

317 {
318 int ret = _HIER_WORD(ld);

320 __asm__ __volatile__(
321 "andl $0x00007fff,%0\n\t"
322 "jz 1f\n\t" /* jump if exp is all 0 */
323 "xorl $0x00007fff,%0\n\t"
324 "jz 2f\n\t" /* jump if exp is all 1 */
325 "testl $0x80000000,%1\n\t"
326 "jz 3f\n\t" /* jump if leading bit is 0 */
327 "xorl %0,%0\n\t"
328 "jmp 1f\n\t"
329 "2:\n\t" /* note that %0 = 0 from before */
330 "cmpl $0x80000000,%1\n\t" /* what is first half of significand? */
331 "jnz 3f\n\t" /* jump if not equal to 0x80000000 */
332 "testl $0xffffffff,%2\n\t" /* is second half of significand 0? */
333 "jnz 3f\n\t" /* jump if not equal to 0 */
334 "jmp 1f\n\t"
335 "3:\n\t"
336 "movl $1,%0\n\t"
337 "1:\n\t"
338 : "+&r" (ret)
339 : "r" (_HI_WORD(ld)), "r" (_LO_WORD(ld))
340 : "cc");

342 return (ret);
343 }

345 #ifdef __cplusplus
346 }
347 #endif

349 #endif /* __GNUC__ */

351 #endif /* _LIBM_INLINES_H */

new/usr/src/lib/libm/sparc/src/libm_inlines.h 1

**
 7033 Thu Oct 9 19:48:55 2014
new/usr/src/lib/libm/sparc/src/libm_inlines.h
libm/sparc/src/libm_inlines.h - __swapTE()
libm/sparc/src/libm_inlines.h - __swapEX()
libm/sparc/src/libm_inlines.h - fixes part 1
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
libm/sparc/src/libm_inlines.h - fixes part 1
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2011, Richard Lowe.
29 */

31 /* Functions in this file are duplicated in locallibm.il. Keep them in sync */

33 #ifndef _LIBM_INLINES_H
34 #define _LIBM_INLINES_H

36 #ifdef __GNUC__

38 #include <sys/types.h>
39 #include <sys/ieeefp.h>

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 extern __inline__ double
46 __inline_sqrt(double d)
47 {
48 double ret;

50 __asm__ __volatile__("fsqrtd %1,%0\n\t" : "=e" (ret) : "e" (d));
51 return (ret);
52 }

54 extern __inline__ float

new/usr/src/lib/libm/sparc/src/libm_inlines.h 2

55 __inline_sqrtf(float f)
56 {
57 float ret;

59 __asm__ __volatile__("fsqrts %1,%0\n\t" : "=f" (ret) : "f" (f));
60 return (ret);
61 }

63 extern __inline__ enum fp_class_type
64 fp_classf(float f)
65 {
66 enum fp_class_type ret;
67 uint32_t tmp;

69 /* XXX: Separate input and output */
70 __asm__ __volatile__(
71 "sethi %%hi(0x80000000),%1\n\t"
72 "andncc %2,%1,%0\n\t"
73 "bne 1f\n\t"
74 "nop\n\t"
75 "mov 0,%0\n\t"
76 "ba 2f\n\t" /* x is 0 */
77 "nop\n\t"
78 "1:\n\t"
79 "sethi %%hi(0x7f800000),%1\n\t"
80 "andcc %0,%1,%%g0\n\t"
81 "bne 1f\n\t"
82 "nop\n\t"
83 "mov 1,%0\n\t"
84 "ba 2f\n\t" /* x is subnormal */
85 "nop\n\t"
86 "1:\n\t"
87 "cmp %0,%1\n\t"
88 "bge 1f\n\t"
89 "nop\n\t"
90 "mov 2,%0\n\t"
91 "ba 2f\n\t" /* x is normal */
92 "nop\n\t"
93 "1:\n\t"
94 "bg 1f\n\t"
95 "nop\n\t"
96 "mov 3,%0\n\t"
97 "ba 2f\n\t" /* x is __infinity */
98 "nop\n\t"
99 "1:\n\t"
100 "sethi %%hi(0x00400000),%1\n\t"
101 "andcc %0,%1,%%g0\n\t"
102 "mov 4,%0\n\t" /* x is quiet NaN */
103 "bne 2f\n\t"
104 "nop\n\t"
105 "mov 5,%0\n\t" /* x is signaling NaN */
106 "2:\n\t"
107 : "=r" (ret), "=&r" (tmp)
108 : "r" (f)
109 : "cc");
110 return (ret);
111 }

113 #define _HI_WORD(x) ((uint32_t *)&x)[0]
114 #define _LO_WORD(x) ((uint32_t *)&x)[1]

116 extern __inline__ enum fp_class_type
117 fp_class(double d)
118 {
119 enum fp_class_type ret;
120 uint32_t tmp;

new/usr/src/lib/libm/sparc/src/libm_inlines.h 3

122 __asm__ __volatile__(
123 "sethi %%hi(0x80000000),%1\n\t" /* %1 gets 80000000 */
124 "andn %2,%1,%0\n\t" /* %2-%0 gets abs(x) */
125 "orcc %0,%3,%%g0\n\t" /* set cc as x is zero/nonzero *
126 "bne 1f\n\t" /* branch if x is nonzero */
127 "nop\n\t"
128 "mov 0,%0\n\t"
129 "ba 2f\n\t" /* x is 0 */
130 "nop\n\t"
131 "1:\n\t"
132 "sethi %%hi(0x7ff00000),%1\n\t" /* %1 gets 7ff00000 */
133 "andcc %0,%1,%%g0\n\t" /* cc set by __exp field of x */
134 "bne 1f\n\t" /* branch if normal or max __exp
135 "nop\n\t"
136 "mov 1,%0\n\t"
137 "ba 2f\n\t" /* x is subnormal */
138 "nop\n\t"
139 "1:\n\t"
140 "cmp %0,%1\n\t"
141 "bge 1f\n\t" /* branch if x is max __exp */
142 "nop\n\t"
143 "mov 2,%0\n\t"
144 "ba 2f\n\t" /* x is normal */
145 "nop\n\t"
146 "1:\n\t"
147 "andn %0,%1,%0\n\t" /* o0 gets msw __significand fie
148 "orcc %0,%3,%%g0\n\t" /* set cc by OR __significand */
149 "bne 1f\n\t" /* Branch if __nan */
150 "nop\n\t"
151 "mov 3,%0\n\t"
152 "ba 2f\n\t" /* x is __infinity */
153 "nop\n\t"
154 "1:\n\t"
155 "sethi %%hi(0x00080000),%1\n\t"
156 "andcc %0,%1,%%g0\n\t" /* set cc by quiet/sig bit */
157 "be 1f\n\t" /* Branch if signaling */
158 "nop\n\t"
159 "mov 4,%0\n\t" /* x is quiet NaN */
160 "ba 2f\n\t"
161 "nop\n\t"
162 "1:\n\t"
163 "mov 5,%0\n\t" /* x is signaling NaN */
164 "2:\n\t"
165 : "=&r" (ret), "=&r" (tmp)
166 : "r" (_HI_WORD(d)), "r" (_LO_WORD(d))
167 : "cc");

169 return (ret);
170 }

172 extern __inline__ int
173 __swapEX(int i)
174 {
175 int ret;
176 uint32_t fsr;
177 uint32_t tmp1, tmp2;

179 __asm__ __volatile__(
180 "and %4,0x1f,%2\n\t" /* tmp1 = %2 = %o1 */
181 "sll %2,5,%2\n\t" /* shift input to aexc bit location */
182 ".volatile\n\t"
183 "st %%fsr,%1\n\t"
184 "ld %1,%0\n\t" /* %0 = fsr */
185 "andn %0,0x3e0,%3\n\t" /* tmp2 = %3 = %o2 */
186 "or %2,%3,%2\n\t" /* %2 = new fsr */

new/usr/src/lib/libm/sparc/src/libm_inlines.h 4

187 "st %2,%1\n\t"
188 "ld %1,%%fsr\n\t"
189 "srl %0,5,%0\n\t"
190 "and %0,0x1f,%0\n\t" /* %0 = ret = %o0 */
191 ".nonvolatile\n\t"
192 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2)
193 : "r" (i)
194 : "cc");

196 return (ret);
197 }

199 /*
200 * On the SPARC, __swapRP is a no-op; always return 0 for backward
201 * compatibility
202 */
203 /* ARGSUSED */
204 extern __inline__ enum fp_precision_type
205 __swapRP(enum fp_precision_type i)
206 {
207 return (0);
208 }

210 extern __inline__ enum fp_direction_type
211 __swapRD(enum fp_direction_type d)
212 {
213 enum fp_direction_type ret;
214 uint32_t fsr;
215 uint32_t tmp1, tmp2, tmp3;

217 __asm__ __volatile__(
218 "and %5,0x3,%0\n\t"
219 "sll %0,30,%2\n\t" /* shift input to RD bit location */
220 ".volatile\n\t"
221 "st %%fsr,%1\n\t"
222 "ld %1,%0\n\t" /* %0 = fsr */
223 "set 0xc0000000,%4\n\t" /* mask of rounding direction bits */
224 "andn %0,%4,%3\n\t"
225 "or %2,%3,%2\n\t" /* %2 = new fsr */
226 "st %2,%1\n\t"
227 "ld %1,%%fsr\n\t"
228 "srl %0,30,%0\n\t"
229 "and %0,0x3,%0\n\t"
230 ".nonvolatile\n\t"
231 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3)
232 : "r" (d)
233 : "cc");

235 return (ret);
236 }

238 extern __inline__ int
239 __swapTE(int i)
240 {
241 int ret;
242 uint32_t fsr, tmp1, tmp2;

244 __asm__ __volatile__(
245 "and %4,0x1f,%0\n\t"
246 "sll %0,23,%2\n\t" /* shift input to TEM bit location */
247 ".volatile\n\t"
248 "st %%fsr,%1\n\t"
249 "ld %1,%0\n\t" /* %0 = fsr */
250 "set 0x0f800000,%3\n\t" /* mask of TEM (Trap Enable Mode bits) *
251 "andn %0,%3,%3\n\t"
252 "or %2,%3,%2\n\t" /* %2 = new fsr */

new/usr/src/lib/libm/sparc/src/libm_inlines.h 5

253 "st %2,%1\n\t"
254 "ld %1,%%fsr\n\t"
255 "srl %0,23,%0\n\t"
256 "and %0,0x1f,%0\n\t"
257 ".nonvolatile\n\t"
258 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2)
259 : "r" (i)
260 : "cc");

262 return (ret);
263 }

265 extern __inline__ double
266 sqrt(double d)
267 {
268 return (__inline_sqrt(d));
269 }

271 extern __inline__ float
272 sqrtf(float f)
273 {
274 return (__inline_sqrtf(f));
275 }

277 extern __inline__ double
278 fabs(double d)
279 {
280 double ret;

282 __asm__ __volatile__("fabsd %1,%0\n\t" : "=e" (ret) : "e" (d));
283 return (ret);
284 }

286 extern __inline__ float
287 fabsf(float f)
288 {
289 float ret;

291 __asm__ __volatile__("fabss %1,%0\n\t" : "=f" (ret) : "f" (f));
292 return (ret);
293 }

295 #ifdef __cplusplus
296 }
297 #endif

299 #endif /* __GNUC */

301 #endif /* _LIBM_INLINES_H */

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 1

**
 6475 Thu Oct 9 19:48:55 2014
new/usr/src/lib/libm/sparcv9/src/libm_inlines.h
libm/sparcv9/src/libm_inlines.h - fabss/fabsd register should be listed as read
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2011, Richard Lowe.
29 */

31 /* Functions in this file are duplicated in locallibm.il. Keep them in sync */

33 #ifndef _LIBM_INLINES_H
34 #define _LIBM_INLINES_H

36 #ifdef __GNUC__

38 #include <sys/types.h>
39 #include <sys/ieeefp.h>

41 #ifdef __cplusplus
42 extern "C" {
43 #endif

45 extern __inline__ enum fp_class_type
46 fp_classf(float f)
47 {
48 enum fp_class_type ret;
49 int fint; /* scratch for f as int */
50 uint64_t tmp;

52 __asm__ __volatile__(
53 "fabss %3,%3\n\t"
54 "st %3,%1\n\t"
55 "ld %1,%0\n\t"
56 "orcc %%g0,%0,%%g0\n\t"
57 "be,pn %%icc,2f\n\t"

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 2

58 "nop\n\t"
59 "1:\n\t"
60 "sethi %%hi(0x7f800000),%2\n\t"
61 "andcc %0,%2,%%g0\n\t"
62 "bne,pt %%icc,1f\n\t"
63 "nop\n\t"
64 "or %%g0,1,%0\n\t"
65 "ba 2f\n\t" /* subnormal */
66 "nop\n\t"
67 "1:\n\t"
68 "subcc %0,%2,%%g0\n\t"
69 "bge,pn %%icc,1f\n\t"
70 "nop\n\t"
71 "or %%g0,2,%0\n\t"
72 "ba 2f\n\t" /* normal */
73 "nop\n\t"
74 "1:\n\t"
75 "bg,pn %%icc,1f\n\t"
76 "nop\n\t"
77 "or %%g0,3,%0\n\t"
78 "ba 2f\n\t" /* infinity */
79 "nop\n\t"
80 "1:\n\t"
81 "sethi %%hi(0x00400000),%2\n\t"
82 "andcc %0,%2,%%g0\n\t"
83 "or %%g0,4,%0\n\t"
84 "bne,pt %%icc,2f\n\t" /* quiet NaN */
85 "nop\n\t"
86 "or %%g0,5,%0\n\t" /* signalling NaN */
87 "2:\n\t"
88 : "=r" (ret), "=m" (fint), "=r" (tmp), "+f" (f)
89 :
90 : "cc");

92 return (ret);
93 }

95 extern __inline__ enum fp_class_type
96 fp_class(double d)
97 {
98 enum fp_class_type ret;
99 uint64_t dint; /* Scratch for d-as-long */
100 uint64_t tmp;

102 __asm__ __volatile__(
103 "fabsd %3,%3\n\t"
104 "std %3,%1\n\t"
105 "ldx %1,%0\n\t"
106 "orcc %%g0,%0,%%g0\n\t"
107 "be,pn %%xcc,2f\n\t"
108 "nop\n\t"
109 "sethi %%hi(0x7ff00000),%2\n\t"
110 "sllx %2,32,%2\n\t"
111 "andcc %0,%2,%%g0\n\t"
112 "bne,pt %%xcc,1f\n\t"
113 "nop\n\t"
114 "or %%g0,1,%0\n\t"
115 "ba 2f\n\t"
116 "nop\n\t"
117 "1:\n\t"
118 "subcc %0,%2,%%g0\n\t"
119 "bge,pn %%xcc,1f\n\t"
120 "nop\n\t"
121 "or %%g0,2,%0\n\t"
122 "ba 2f\n\t"
123 "nop\n\t"

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 3

124 "1:\n\t"
125 "andncc %0,%2,%0\n\t"
126 "bne,pn %%xcc,1f\n\t"
127 "nop\n\t"
128 "or %%g0,3,%0\n\t"
129 "ba 2f\n\t"
130 "nop\n\t"
131 "1:\n\t"
132 "sethi %%hi(0x00080000),%2\n\t"
133 "sllx %2,32,%2\n\t"
134 "andcc %0,%2,%%g0\n\t"
135 "or %%g0,4,%0\n\t"
136 "bne,pt %%xcc,2f\n\t"
137 "nop\n\t"
138 "or %%g0,5,%0\n\t"
139 "2:\n\t"
140 : "=r" (ret), "=m" (dint), "=r" (tmp), "+e" (d)
141 :
142 : "cc");

144 return (ret);
145 }

147 extern __inline__ float
148 __inline_sqrtf(float f)
149 {
150 float ret;

152 __asm__ __volatile__("fsqrts %1,%0\n\t" : "=f" (ret) : "f" (f));
153 return (ret);
154 }

156 extern __inline__ double
157 __inline_sqrt(double d)
158 {
159 double ret;

161 __asm__ __volatile__("fsqrtd %1,%0\n\t" : "=f" (ret) : "f" (d));
162 return (ret);
163 }

165 extern __inline__ int
166 __swapEX(int i)
167 {
168 int ret;
169 uint32_t fsr;
170 uint64_t tmp1, tmp2;

172 __asm__ __volatile__(
173 "and %4,0x1f,%2\n\t"
174 "sll %2,5,%2\n\t" /* shift input to aexc bit location */
175 ".volatile\n\t"
176 "st %%fsr,%1\n\t"
177 "ld %1,%0\n\t" /* %0 = fsr */
178 "andn %0,0x3e0,%3\n\t"
179 "or %2,%3,%2\n\t" /* %2 = new fsr */
180 "st %2,%1\n\t"
181 "ld %1,%%fsr\n\t"
182 "srl %0,5,%0\n\t"
183 "and %0,0x1f,%0\n\t"
184 ".nonvolatile\n\t"
185 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2)
186 : "r" (i)
187 : "cc");

189 return (ret);

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 4

190 }

192 /*
193 * On the SPARC, __swapRP is a no-op; always return 0 for backward
194 * compatibility
195 */
196 /* ARGSUSED */
197 extern __inline__ enum fp_precision_type
198 __swapRP(enum fp_precision_type i)
199 {
200 return (0);
201 }

203 extern __inline__ enum fp_direction_type
204 __swapRD(enum fp_direction_type d)
205 {
206 enum fp_direction_type ret;
207 uint32_t fsr;
208 uint64_t tmp1, tmp2, tmp3;

210 __asm__ __volatile__(
211 "and %5,0x3,%0\n\t"
212 "sll %0,30,%2\n\t" /* shift input to RD bit location */
213 ".volatile\n\t"
214 "st %%fsr,%1\n\t"
215 "ld %1,%0\n\t" /* %0 = fsr */
216 /* mask of rounding direction bits */
217 "sethi %%hi(0xc0000000),%4\n\t"
218 "andn %0,%4,%3\n\t"
219 "or %2,%3,%2\n\t" /* %2 = new fsr */
220 "st %2,%1\n\t"
221 "ld %1,%%fsr\n\t"
222 "srl %0,30,%0\n\t"
223 "and %0,0x3,%0\n\t"
224 ".nonvolatile\n\t"
225 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3)
226 : "r" (d)
227 : "cc");

229 return (ret);
230 }

232 extern __inline__ int
233 __swapTE(int i)
234 {
235 int ret;
236 uint32_t fsr;
237 uint64_t tmp1, tmp2, tmp3;

239 __asm__ __volatile__(
240 "and %5,0x1f,%0\n\t"
241 "sll %0,23,%2\n\t" /* shift input to TEM bit location */
242 ".volatile\n\t"
243 "st %%fsr,%1\n\t"
244 "ld %1,%0\n\t" /* %0 = fsr */
245 /* mask of TEM (Trap Enable Mode bits) */
246 "sethi %%hi(0x0f800000),%4\n\t"
247 "andn %0,%4,%3\n\t"
248 "or %2,%3,%2\n\t" /* %2 = new fsr */
249 "st %2,%1\n\t"
250 "ld %1,%%fsr\n\t"
251 "srl %0,23,%0\n\t"
252 "and %0,0x1f,%0\n\t"
253 ".nonvolatile\n\t"
254 : "=r" (ret), "=m" (fsr), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3)
255 : "r" (i)

new/usr/src/lib/libm/sparcv9/src/libm_inlines.h 5

256 : "cc");

258 return (ret);
259 }

262 extern __inline__ double
263 sqrt(double d)
264 {
265 return (__inline_sqrt(d));
266 }

268 extern __inline__ float
269 sqrtf(float f)
270 {
271 return (__inline_sqrtf(f));
272 }

274 extern __inline__ double
275 fabs(double d)
276 {
277 double ret;

279 __asm__ __volatile__("fabsd %1,%0\n\t" : "=e" (ret) : "e" (d));
280 return (ret);
281 }

283 extern __inline__ float
284 fabsf(float f)
285 {
286 float ret;

288 __asm__ __volatile__("fabss %1,%0\n\t" : "=f" (ret) : "f" (f));
289 return (ret);
290 }

292 #ifdef __cplusplus
293 }
294 #endif

296 #endif /* __GNUC__ */

298 #endif /* _LIBM_INLINES_H */

new/usr/src/lib/libmvec/Makefile.com 1

**
 5733 Thu Oct 9 19:48:55 2014
new/usr/src/lib/libmvec/Makefile.com
libmvec - remove -Wno-parentheses and -Wno-unused-variable
comment in tgamma*.c
libm/common/m9x/tgamma.c
remove -Wno-uninitialized in libmvec
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
comment in tgamma*.c
libm/common/m9x/tgamma.c
remove -Wno-uninitialized in libmvec
libm fixes from richlowe - richlowe.net/webrevs/il_keith
patch01 - 693 import Sun Devpro Math Library
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.
10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

16 LIBMDIR = $(SRC)/lib/libm

18 mvecOBJS = \
19 __vTBL_atan1.o \
20 __vTBL_atan2.o \
21 __vTBL_rsqrt.o \
22 __vTBL_sincos.o \
23 __vTBL_sincos2.o \
24 __vTBL_sqrtf.o \
25 __vatan.o \
26 __vatan2.o \
27 __vatan2f.o \
28 __vatanf.o \
29 __vc_abs.o \
30 __vc_exp.o \
31 __vc_log.o \
32 __vc_pow.o \
33 __vcos.o \
34 __vcosbig.o \
35 __vcosbigf.o \
36 __vcosf.o \
37 __vexp.o \
38 __vexpf.o \
39 __vhypot.o \
40 __vhypotf.o \
41 __vlog.o \
42 __vlogf.o \
43 __vpow.o \
44 __vpowf.o \
45 __vrem_pio2m.o \
46 __vrhypot.o \
47 __vrhypotf.o \
48 __vrsqrt.o \
49 __vrsqrtf.o \
50 __vsin.o \
51 __vsinbig.o \

new/usr/src/lib/libmvec/Makefile.com 2

52 __vsinbigf.o \
53 __vsincos.o \
54 __vsincosbig.o \
55 __vsincosbigf.o \
56 __vsincosf.o \
57 __vsinf.o \
58 __vsqrt.o \
59 __vsqrtf.o \
60 __vz_abs.o \
61 __vz_exp.o \
62 __vz_log.o \
63 __vz_pow.o \
64 vatan2_.o \
65 vatan2f_.o \
66 vatan_.o \
67 vatanf_.o \
68 vc_abs_.o \
69 vc_exp_.o \
70 vc_log_.o \
71 vc_pow_.o \
72 vcos_.o \
73 vcosf_.o \
74 vexp_.o \
75 vexpf_.o \
76 vhypot_.o \
77 vhypotf_.o \
78 vlog_.o \
79 vlogf_.o \
80 vpow_.o \
81 vpowf_.o \
82 vrhypot_.o \
83 vrhypotf_.o \
84 vrsqrt_.o \
85 vrsqrtf_.o \
86 vsin_.o \
87 vsincos_.o \
88 vsincosf_.o \
89 vsinf_.o \
90 vsqrt_.o \
91 vsqrtf_.o \
92 vz_abs_.o \
93 vz_exp_.o \
94 vz_log_.o \
95 vz_pow_.o \
96 #end

98 mvecvisCOBJS = \
99 __vTBL_atan1.o \
100 __vTBL_atan2.o \
101 __vTBL_rsqrt.o \
102 __vTBL_sincos.o \
103 __vTBL_sincos2.o \
104 __vTBL_sqrtf.o \
105 __vcosbig.o \
106 __vcosbigf.o \
107 __vrem_pio2m.o \
108 __vsinbig.o \
109 __vsinbigf.o \
110 __vsincosbig.o \
111 __vsincosbigf.o \
112 #end

114 mvecvisSOBJS = \
115 __vatan.o \
116 __vatan2.o \
117 __vatan2f.o \

new/usr/src/lib/libmvec/Makefile.com 3

118 __vatanf.o \
119 __vcos.o \
120 __vcosf.o \
121 __vexp.o \
122 __vexpf.o \
123 __vhypot.o \
124 __vhypotf.o \
125 __vlog.o \
126 __vlogf.o \
127 __vpow.o \
128 __vpowf.o \
129 __vrhypot.o \
130 __vrhypotf.o \
131 __vrsqrt.o \
132 __vrsqrtf.o \
133 __vsin.o \
134 __vsincos.o \
135 __vsincosf.o \
136 __vsinf.o \
137 __vsqrt.o \
138 __vsqrtf.o \
139 #end

141 mvecvis2COBJS = \
142 __vTBL_sincos.o \
143 __vTBL_sincos2.o \
144 __vTBL_sqrtf.o \
145 __vcosbig.o \
146 __vcosbig_ultra3.o \
147 __vrem_pio2m.o \
148 __vsinbig.o \
149 __vsinbig_ultra3.o \
150 #end

152 mvecvis2SOBJS = \
153 __vcos_ultra3.o \
154 __vlog_ultra3.o \
155 __vsin_ultra3.o \
156 __vsqrtf_ultra3.o \
157 #end

159 include $(SRC)/lib/Makefile.lib
160 include $(SRC)/lib/Makefile.rootfs
161 include $(LIBMDIR)/Makefile.libm.com

163 LIBS = $(DYNLIB)
164 SRCDIR = ../common/
165 DYNFLAGS += -zignore

167 LINTERROFF = -erroff=E_FP_DIVISION_BY_ZERO
168 LINTERROFF += -erroff=E_FP_INVALID
169 LINTERROFF += -erroff=E_BAD_PTR_CAST_ALIGN
170 LINTERROFF += -erroff=E_ASSIGMENT_CAUSE_LOSS_PREC
171 LINTERROFF += -erroff=E_FUNC_SET_NOT_USED

173 LINTFLAGS += $(LINTERROFF)
174 LINTFLAGS64 += $(LINTERROFF)
175 LINTFLAGS64 += -errchk=longptr64

177 CLAGS += $(LINTERROFF)
178 CFLAGS64 += $(LINTERROFF)

180 ASDEF += -DLIBMVEC_SO_BUILD

182 FLTRPATH_sparc = $$ORIGIN/cpu/$$ISALIST/libmvec_isa.so.1
183 FLTRPATH_sparcv9 = $$ORIGIN/../cpu/$$ISALIST/sparcv9/libmvec_isa.so.1

new/usr/src/lib/libmvec/Makefile.com 4

184 FLTRPATH_i386 = $$ORIGIN/libmvec/$$HWCAP
185 FLTRPATH = $(FLTRPATH_$(TARGET_ARCH))

187 sparc_CFLAGS += -_cc=-W0,-xintrinsic
188 sparcv9_CFLAGS += -_cc=-W0,-xintrinsic
189 CPPFLAGS_i386 += -Dfabs=__fabs

191 CPPFLAGS += -DLIBMVEC_SO_BUILD

193 SRCS_mvec_i386 = \
194 ../common/__vsqrtf.c \
195 #end

197 SRCS_mvec_sparc = \
198 $(SRCS_mvec_i386) \
199 #end
200 SRCS_mvec_sparcv9 = \
201 $(SRCS_mvec_i386) \
202 #end

204 SRCS_mvec = \
205 $(SRCS_mvec_$(TARGETMACH)) \
206 ../common/__vTBL_atan1.c \
207 ../common/__vTBL_atan2.c \
208 ../common/__vTBL_rsqrt.c \
209 ../common/__vTBL_sincos.c \
210 ../common/__vTBL_sincos2.c \
211 ../common/__vTBL_sqrtf.c \
212 ../common/__vatan.c \
213 ../common/__vatan2.c \
214 ../common/__vatan2f.c \
215 ../common/__vatanf.c \
216 ../common/__vc_abs.c \
217 ../common/__vc_exp.c \
218 ../common/__vc_log.c \
219 ../common/__vc_pow.c \
220 ../common/__vcos.c \
221 ../common/__vcosbig.c \
222 ../common/__vcosbigf.c \
223 ../common/__vcosf.c \
224 ../common/__vexp.c \
225 ../common/__vexpf.c \
226 ../common/__vhypot.c \
227 ../common/__vhypotf.c \
228 ../common/__vlog.c \
229 ../common/__vlogf.c \
230 ../common/__vpow.c \
231 ../common/__vpowf.c \
232 ../common/__vrem_pio2m.c \
233 ../common/__vrhypot.c \
234 ../common/__vrhypotf.c \
235 ../common/__vrsqrt.c \
236 ../common/__vrsqrtf.c \
237 ../common/__vsin.c \
238 ../common/__vsinbig.c \
239 ../common/__vsinbigf.c \
240 ../common/__vsincos.c \
241 ../common/__vsincosbig.c \
242 ../common/__vsincosbigf.c \
243 ../common/__vsincosf.c \
244 ../common/__vsinf.c \
245 ../common/__vsqrt.c \
246 ../common/__vz_abs.c \
247 ../common/__vz_exp.c \
248 ../common/__vz_log.c \
249 ../common/__vz_pow.c \

new/usr/src/lib/libmvec/Makefile.com 5

250 ../common/vatan2_.c \
251 ../common/vatan2f_.c \
252 ../common/vatan_.c \
253 ../common/vatanf_.c \
254 ../common/vc_abs_.c \
255 ../common/vc_exp_.c \
256 ../common/vc_log_.c \
257 ../common/vc_pow_.c \
258 ../common/vcos_.c \
259 ../common/vcosf_.c \
260 ../common/vexp_.c \
261 ../common/vexpf_.c \
262 ../common/vhypot_.c \
263 ../common/vhypotf_.c \
264 ../common/vlog_.c \
265 ../common/vlogf_.c \
266 ../common/vpow_.c \
267 ../common/vpowf_.c \
268 ../common/vrhypot_.c \
269 ../common/vrhypotf_.c \
270 ../common/vrsqrt_.c \
271 ../common/vrsqrtf_.c \
272 ../common/vsin_.c \
273 ../common/vsincos_.c \
274 ../common/vsincosf_.c \
275 ../common/vsinf_.c \
276 ../common/vsqrt_.c \
277 ../common/vsqrtf_.c \
278 ../common/vz_abs_.c \
279 ../common/vz_exp_.c \
280 ../common/vz_log_.c \
281 ../common/vz_pow_.c \
282 #end

284 .KEEP_STATE:

286 all: $(LIBS)

288 lint: lintcheck

290 pics/%.o: ../$(TARGET_ARCH)/src/%.S
291 $(COMPILE.s) -o $@ $<
292 $(POST_PROCESS_O)

294 pics/%.o: ../common/$$(CHIP)/%.S
295 $(COMPILE.s) -o $@ $<
296 $(POST_PROCESS_O)

new/usr/src/lib/libmvec/common/__vcos.c 1

**
 29767 Thu Oct 9 19:48:55 2014
new/usr/src/lib/libmvec/common/__vcos.c
Revert "remove unused v from libmvec"
This reverts commit e853d278ee4b7f2a8c2117cc598cfc68b4e3f29b.
fix system-library-math.mf
update libm manifests
14071:dece9aafe99a - fix build problems on sparc
remove unused v from libmvec
fix for patch09 - use __GNU_UNUSED
patch12 - math.h: Align things with GCC
patch11 - added LIBM man pages
patch09 - update libmvec: fix build issues by gcc46
patch08 - libmvec: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
Revert "remove unused v from libmvec"
This reverts commit e853d278ee4b7f2a8c2117cc598cfc68b4e3f29b.
fix system-library-math.mf
update libm manifests
14071:dece9aafe99a - fix build problems on sparc
remove unused v from libmvec
fix for patch09 - use __GNU_UNUSED
patch12 - math.h: Align things with GCC
patch11 - added LIBM man pages
patch09 - update libmvec: fix build issues by gcc46
patch08 - libmvec: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #include <sys/isa_defs.h>
31 #include <sys/ccompile.h>

33 #ifdef _LITTLE_ENDIAN
34 #define HI(x) *(1+(int*)x)
35 #define LO(x) *(unsigned*)x
36 #else
37 #define HI(x) *(int*)x
38 #define LO(x) *(1+(unsigned*)x)

new/usr/src/lib/libmvec/common/__vcos.c 2

39 #endif

41 #ifdef __RESTRICT
42 #define restrict _Restrict
43 #else
44 #define restrict
45 #endif

47 /*
48 * vcos.1.c
49 *
50 * Vector cosine function. Just slight modifications to vsin.8.c, mainly
51 * in the primary range part.
52 *
53 * Modification to primary range processing. If an argument that does not
54 * fall in the primary range is encountered, then processing is continued
55 * in the medium range.
56 *
57 */

59 extern const double __vlibm_TBL_sincos_hi[], __vlibm_TBL_sincos_lo[];

61 static const double
62 half[2] = { 0.5, -0.5 },
63 one = 1.0,
64 invpio2 = 0.636619772367581343075535, /* 53 bits of pi/2 */
65 pio2_1 = 1.570796326734125614166, /* first 33 bits of pi/2 */
66 pio2_2 = 6.077100506303965976596e-11, /* second 33 bits of pi/2 */
67 pio2_3 = 2.022266248711166455796e-21, /* third 33 bits of pi/2 */
68 pio2_3t = 8.478427660368899643959e-32, /* pi/2 - pio2_3 */
69 pp1 = -1.666666666605760465276263943134982554676e-0001,
70 pp2 = 8.333261209690963126718376566146180944442e-0003,
71 qq1 = -4.999999999977710986407023955908711557870e-0001,
72 qq2 = 4.166654863857219350645055881018842089580e-0002,
73 poly1[2]= { -1.666666666666629669805215138920301589656e-0001,
74 -4.999999999999931701464060878888294524481e-0001
75 poly2[2]= { 8.333333332390951295683993455280336376663e-0003,
76 4.166666666394861917535640593963708222319e-0002
77 poly3[2]= { -1.984126237997976692791551778230098403960e-0004,
78 -1.388888552656142867832756687736851681462e-0003
79 poly4[2]= { 2.753403624854277237649987622848330351110e-0006,
80 2.478519423681460796618128289454530524759e-0005

82 static const unsigned thresh[2] = { 0x3fc90000, 0x3fc40000 };

84 /* Don’t __ the following; acomp will handle it */
85 extern double fabs(double);
86 extern void __vlibm_vcos_big(int, double *, int, double *, int, int);

88 /*
89 * y[i*stridey] := cos(x[i*stridex]), for i = 0..n.
90 *
91 * Calls __vlibm_vcos_big to handle all elts which have abs >~ 1.647e+06.
92 * Argument reduction is done here for elts pi/4 < arg < 1.647e+06.
93 *
94 * elts < 2^-27 use the approximation 1.0 ~ cos(x).
95 */
96 void
97 __vcos(int n, double * restrict x, int stridex, double * restrict y,
98 int stridey)
99 {
100 double x0_or_one[4], x1_or_one[4], x2_or_one[4];
101 double y0_or_zero[4], y1_or_zero[4], y2_or_zero[4];
102 double x0, x1, x2, *py0 = 0, *py1 = 0, *py2, *xsave, *ysave;
103 unsigned hx0, hx1, hx2, xsb0, xsb1 = 0, xsb2;
104 int i, biguns, nsave, sxsave, sysave;

new/usr/src/lib/libmvec/common/__vcos.c 3

105 volatile int v __GNU_UNUSED;
106 nsave = n;
107 xsave = x;
108 sxsave = stridex;
109 ysave = y;
110 sysave = stridey;
111 biguns = 0;

113 do /* MAIN LOOP */
114 {
115 /* Gotos here so _break_ exits MAIN LOOP. */
116 LOOP0: /* Find first arg in right range. */
117 xsb0 = HI(x); /* get most significant word */
118 hx0 = xsb0 & ~0x80000000; /* mask off sign bit */
119 if (hx0 > 0x3fe921fb) {
120 /* Too big: arg reduction needed, so leave for second pa
121 biguns = 1;
122 goto MEDIUM;
123 }
124 if (hx0 < 0x3e400000) {
125 /* Too small. cos x ~ 1. */
126 v = *x;
127 *y = 1.0;
128 x += stridex;
129 y += stridey;
130 i = 0;
131 if (--n <= 0)
132 break;
133 goto LOOP0;
134 }
135 x0 = *x;
136 py0 = y;
137 x += stridex;
138 y += stridey;
139 i = 1;
140 if (--n <= 0)
141 break;

143 LOOP1: /* Get second arg, same as above. */
144 xsb1 = HI(x);
145 hx1 = xsb1 & ~0x80000000;
146 if (hx1 > 0x3fe921fb)
147 {
148 biguns = 2;
149 goto MEDIUM;
150 }
151 if (hx1 < 0x3e400000)
152 {
153 v = *x;
154 *y = 1.0;
155 x += stridex;
156 y += stridey;
157 i = 1;
158 if (--n <= 0)
159 break;
160 goto LOOP1;
161 }
162 x1 = *x;
163 py1 = y;
164 x += stridex;
165 y += stridey;
166 i = 2;
167 if (--n <= 0)
168 break;

170 LOOP2: /* Get third arg, same as above. */

new/usr/src/lib/libmvec/common/__vcos.c 4

171 xsb2 = HI(x);
172 hx2 = xsb2 & ~0x80000000;
173 if (hx2 > 0x3fe921fb)
174 {
175 biguns = 3;
176 goto MEDIUM;
177 }
178 if (hx2 < 0x3e400000)
179 {
180 v = *x;
181 *y = 1.0;
182 x += stridex;
183 y += stridey;
184 i = 2;
185 if (--n <= 0)
186 break;
187 goto LOOP2;
188 }
189 x2 = *x;
190 py2 = y;

192 /*
193 * 0x3fc40000 = 5/32 ~ 0.15625
194 * Get msb after subtraction. Will be 1 only if
195 * hx0 - 5/32 is negative.
196 */
197 i = (hx0 - 0x3fc40000) >> 31;
198 i |= ((hx1 - 0x3fc40000) >> 30) & 2;
199 i |= ((hx2 - 0x3fc40000) >> 29) & 4;
200 switch (i)
201 {
202 double a0, a1, a2, w0, w1, w2;
203 double t0, t1, t2, z0, z1, z2;
204 unsigned j0, j1, j2;

206 case 0: /* All are > 5/32 */
207 j0 = (xsb0 + 0x4000) & 0xffff8000;
208 j1 = (xsb1 + 0x4000) & 0xffff8000;
209 j2 = (xsb2 + 0x4000) & 0xffff8000;
210 HI(&t0) = j0;
211 HI(&t1) = j1;
212 HI(&t2) = j2;
213 LO(&t0) = 0;
214 LO(&t1) = 0;
215 LO(&t2) = 0;
216 x0 -= t0;
217 x1 -= t1;
218 x2 -= t2;
219 z0 = x0 * x0;
220 z1 = x1 * x1;
221 z2 = x2 * x2;
222 t0 = z0 * (qq1 + z0 * qq2);
223 t1 = z1 * (qq1 + z1 * qq2);
224 t2 = z2 * (qq1 + z2 * qq2);
225 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
226 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
227 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
228 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
229 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
230 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
231 xsb0 = (xsb0 >> 30) & 2;
232 xsb1 = (xsb1 >> 30) & 2;
233 xsb2 = (xsb2 >> 30) & 2;
234 a0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
235 a1 = __vlibm_TBL_sincos_hi[j1+1];
236 a2 = __vlibm_TBL_sincos_hi[j2+1];

new/usr/src/lib/libmvec/common/__vcos.c 5

237 /* cos_lo(t) sin_hi(t) */
238 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
239 t1 = __vlibm_TBL_sincos_lo[j1+1] - (__vlibm_TBL_sincos_
240 t2 = __vlibm_TBL_sincos_lo[j2+1] - (__vlibm_TBL_sincos_

242 *py0 = a0 + t0;
243 *py1 = a1 + t1;
244 *py2 = a2 + t2;
245 break;

247 case 1:
248 j1 = (xsb1 + 0x4000) & 0xffff8000;
249 j2 = (xsb2 + 0x4000) & 0xffff8000;
250 HI(&t1) = j1;
251 HI(&t2) = j2;
252 LO(&t1) = 0;
253 LO(&t2) = 0;
254 x1 -= t1;
255 x2 -= t2;
256 z0 = x0 * x0;
257 z1 = x1 * x1;
258 z2 = x2 * x2;
259 t0 = z0 * (poly3[1] + z0 * poly4[1]);
260 t1 = z1 * (qq1 + z1 * qq2);
261 t2 = z2 * (qq1 + z2 * qq2);
262 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
263 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
264 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
265 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
266 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
267 xsb1 = (xsb1 >> 30) & 2;
268 xsb2 = (xsb2 >> 30) & 2;
269 a1 = __vlibm_TBL_sincos_hi[j1+1];
270 a2 = __vlibm_TBL_sincos_hi[j2+1];
271 t1 = __vlibm_TBL_sincos_lo[j1+1] - (__vlibm_TBL_sincos_
272 t2 = __vlibm_TBL_sincos_lo[j2+1] - (__vlibm_TBL_sincos_
273 *py0 = one + t0;
274 *py1 = a1 + t1;
275 *py2 = a2 + t2;
276 break;

278 case 2:
279 j0 = (xsb0 + 0x4000) & 0xffff8000;
280 j2 = (xsb2 + 0x4000) & 0xffff8000;
281 HI(&t0) = j0;
282 HI(&t2) = j2;
283 LO(&t0) = 0;
284 LO(&t2) = 0;
285 x0 -= t0;
286 x2 -= t2;
287 z0 = x0 * x0;
288 z1 = x1 * x1;
289 z2 = x2 * x2;
290 t0 = z0 * (qq1 + z0 * qq2);
291 t1 = z1 * (poly3[1] + z1 * poly4[1]);
292 t2 = z2 * (qq1 + z2 * qq2);
293 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
294 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
295 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
296 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
297 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
298 xsb0 = (xsb0 >> 30) & 2;
299 xsb2 = (xsb2 >> 30) & 2;
300 a0 = __vlibm_TBL_sincos_hi[j0+1];
301 a2 = __vlibm_TBL_sincos_hi[j2+1];
302 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_

new/usr/src/lib/libmvec/common/__vcos.c 6

303 t2 = __vlibm_TBL_sincos_lo[j2+1] - (__vlibm_TBL_sincos_
304 *py0 = a0 + t0;
305 *py1 = one + t1;
306 *py2 = a2 + t2;
307 break;

309 case 3:
310 j2 = (xsb2 + 0x4000) & 0xffff8000;
311 HI(&t2) = j2;
312 LO(&t2) = 0;
313 x2 -= t2;
314 z0 = x0 * x0;
315 z1 = x1 * x1;
316 z2 = x2 * x2;
317 t0 = z0 * (poly3[1] + z0 * poly4[1]);
318 t1 = z1 * (poly3[1] + z1 * poly4[1]);
319 t2 = z2 * (qq1 + z2 * qq2);
320 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
321 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
322 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
323 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
324 xsb2 = (xsb2 >> 30) & 2;
325 a2 = __vlibm_TBL_sincos_hi[j2+1];
326 t2 = __vlibm_TBL_sincos_lo[j2+1] - (__vlibm_TBL_sincos_
327 *py0 = one + t0;
328 *py1 = one + t1;
329 *py2 = a2 + t2;
330 break;

332 case 4:
333 j0 = (xsb0 + 0x4000) & 0xffff8000;
334 j1 = (xsb1 + 0x4000) & 0xffff8000;
335 HI(&t0) = j0;
336 HI(&t1) = j1;
337 LO(&t0) = 0;
338 LO(&t1) = 0;
339 x0 -= t0;
340 x1 -= t1;
341 z0 = x0 * x0;
342 z1 = x1 * x1;
343 z2 = x2 * x2;
344 t0 = z0 * (qq1 + z0 * qq2);
345 t1 = z1 * (qq1 + z1 * qq2);
346 t2 = z2 * (poly3[1] + z2 * poly4[1]);
347 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
348 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
349 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
350 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
351 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
352 xsb0 = (xsb0 >> 30) & 2;
353 xsb1 = (xsb1 >> 30) & 2;
354 a0 = __vlibm_TBL_sincos_hi[j0+1];
355 a1 = __vlibm_TBL_sincos_hi[j1+1];
356 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
357 t1 = __vlibm_TBL_sincos_lo[j1+1] - (__vlibm_TBL_sincos_
358 *py0 = a0 + t0;
359 *py1 = a1 + t1;
360 *py2 = one + t2;
361 break;

363 case 5:
364 j1 = (xsb1 + 0x4000) & 0xffff8000;
365 HI(&t1) = j1;
366 LO(&t1) = 0;
367 x1 -= t1;
368 z0 = x0 * x0;

new/usr/src/lib/libmvec/common/__vcos.c 7

369 z1 = x1 * x1;
370 z2 = x2 * x2;
371 t0 = z0 * (poly3[1] + z0 * poly4[1]);
372 t1 = z1 * (qq1 + z1 * qq2);
373 t2 = z2 * (poly3[1] + z2 * poly4[1]);
374 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
375 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
376 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
377 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
378 xsb1 = (xsb1 >> 30) & 2;
379 a1 = __vlibm_TBL_sincos_hi[j1+1];
380 t1 = __vlibm_TBL_sincos_lo[j1+1] - (__vlibm_TBL_sincos_
381 *py0 = one + t0;
382 *py1 = a1 + t1;
383 *py2 = one + t2;
384 break;

386 case 6:
387 j0 = (xsb0 + 0x4000) & 0xffff8000;
388 HI(&t0) = j0;
389 LO(&t0) = 0;
390 x0 -= t0;
391 z0 = x0 * x0;
392 z1 = x1 * x1;
393 z2 = x2 * x2;
394 t0 = z0 * (qq1 + z0 * qq2);
395 t1 = z1 * (poly3[1] + z1 * poly4[1]);
396 t2 = z2 * (poly3[1] + z2 * poly4[1]);
397 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
398 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
399 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
400 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
401 xsb0 = (xsb0 >> 30) & 2;
402 a0 = __vlibm_TBL_sincos_hi[j0+1];
403 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
404 *py0 = a0 + t0;
405 *py1 = one + t1;
406 *py2 = one + t2;
407 break;

409 case 7: /* All are < 5/32 */
410 z0 = x0 * x0;
411 z1 = x1 * x1;
412 z2 = x2 * x2;
413 t0 = z0 * (poly3[1] + z0 * poly4[1]);
414 t1 = z1 * (poly3[1] + z1 * poly4[1]);
415 t2 = z2 * (poly3[1] + z2 * poly4[1]);
416 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
417 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
418 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
419 *py0 = one + t0;
420 *py1 = one + t1;
421 *py2 = one + t2;
422 break;
423 }

425 x += stridex;
426 y += stridey;
427 i = 0;
428 } while (--n > 0); /* END MAIN LOOP */

430 /*
431 * CLEAN UP last 0, 1, or 2 elts.
432 */
433 if (i > 0) /* Clean up elts at tail. i < 3. */
434 {

new/usr/src/lib/libmvec/common/__vcos.c 8

435 double a0, a1, w0, w1;
436 double t0, t1, z0, z1;
437 unsigned j0, j1;

439 if (i > 1)
440 {
441 if (hx1 < 0x3fc40000)
442 {
443 z1 = x1 * x1;
444 t1 = z1 * (poly3[1] + z1 * poly4[1]);
445 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
446 t1 = one + t1;
447 *py1 = t1;
448 }
449 else
450 {
451 j1 = (xsb1 + 0x4000) & 0xffff8000;
452 HI(&t1) = j1;
453 LO(&t1) = 0;
454 x1 -= t1;
455 z1 = x1 * x1;
456 t1 = z1 * (qq1 + z1 * qq2);
457 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
458 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
459 xsb1 = (xsb1 >> 30) & 2;
460 a1 = __vlibm_TBL_sincos_hi[j1+1];
461 t1 = __vlibm_TBL_sincos_lo[j1+1]
462 - (__vlibm_TBL_sincos_hi[j1+xsb1]*w1 -
463 *py1 = a1 + t1;
464 }
465 }
466 if (hx0 < 0x3fc40000)
467 {
468 z0 = x0 * x0;
469 t0 = z0 * (poly3[1] + z0 * poly4[1]);
470 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
471 t0 = one + t0;
472 *py0 = t0;
473 }
474 else
475 {
476 j0 = (xsb0 + 0x4000) & 0xffff8000;
477 HI(&t0) = j0;
478 LO(&t0) = 0;
479 x0 -= t0;
480 z0 = x0 * x0;
481 t0 = z0 * (qq1 + z0 * qq2);
482 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
483 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
484 xsb0 = (xsb0 >> 30) & 2;
485 a0 = __vlibm_TBL_sincos_hi[j0+1];
486 t0 = __vlibm_TBL_sincos_lo[j0+1] - (__vlibm_TBL_sincos_
487 *py0 = a0 + t0;
488 }
489 } /* END CLEAN UP */

491 return;

493 /*
494 * Take care of BIGUNS.
495 *
496 * We have jumped here in the middle of processing after having
497 * encountered a medium range argument. Therefore things are in a
498 * bit of a tizzy.
499 */

new/usr/src/lib/libmvec/common/__vcos.c 9

501 MEDIUM:

503 x0_or_one[1] = 1.0;
504 x1_or_one[1] = 1.0;
505 x2_or_one[1] = 1.0;
506 x0_or_one[3] = -1.0;
507 x1_or_one[3] = -1.0;
508 x2_or_one[3] = -1.0;
509 y0_or_zero[1] = 0.0;
510 y1_or_zero[1] = 0.0;
511 y2_or_zero[1] = 0.0;
512 y0_or_zero[3] = 0.0;
513 y1_or_zero[3] = 0.0;
514 y2_or_zero[3] = 0.0;

516 if (biguns == 3)
517 {
518 biguns = 0;
519 xsb0 = xsb0 >> 31;
520 xsb1 = xsb1 >> 31;
521 goto loop2;
522 }
523 else if (biguns == 2)
524 {
525 xsb0 = xsb0 >> 31;
526 biguns = 0;
527 goto loop1;
528 }
529 biguns = 0;

531 do
532 {
533 double fn0, fn1, fn2, a0, a1, a2, w0, w1, w2, y0, y1, y
534 unsigned hx;
535 int n0, n1, n2;

537 /*
538 * Find 3 more to work on: Not already done, not too big.
539 */

541 loop0:
542 hx = HI(x);
543 xsb0 = hx >> 31;
544 hx &= ~0x80000000;
545 if (hx > 0x413921fb) /* (1.6471e+06) Too big: leave it. */
546 {
547 if (hx >= 0x7ff00000) /* Inf or NaN */
548 {
549 x0 = *x;
550 *y = x0 - x0;
551 }
552 else
553 biguns = 1;
554 x += stridex;
555 y += stridey;
556 i = 0;
557 if (--n <= 0)
558 break;
559 goto loop0;
560 }
561 x0 = *x;
562 py0 = y;
563 x += stridex;
564 y += stridey;
565 i = 1;
566 if (--n <= 0)

new/usr/src/lib/libmvec/common/__vcos.c 10

567 break;

569 loop1:
570 hx = HI(x);
571 xsb1 = hx >> 31;
572 hx &= ~0x80000000;
573 if (hx > 0x413921fb)
574 {
575 if (hx >= 0x7ff00000)
576 {
577 x1 = *x;
578 *y = x1 - x1;
579 }
580 else
581 biguns = 1;
582 x += stridex;
583 y += stridey;
584 i = 1;
585 if (--n <= 0)
586 break;
587 goto loop1;
588 }
589 x1 = *x;
590 py1 = y;
591 x += stridex;
592 y += stridey;
593 i = 2;
594 if (--n <= 0)
595 break;

597 loop2:
598 hx = HI(x);
599 xsb2 = hx >> 31;
600 hx &= ~0x80000000;
601 if (hx > 0x413921fb)
602 {
603 if (hx >= 0x7ff00000)
604 {
605 x2 = *x;
606 *y = x2 - x2;
607 }
608 else
609 biguns = 1;
610 x += stridex;
611 y += stridey;
612 i = 2;
613 if (--n <= 0)
614 break;
615 goto loop2;
616 }
617 x2 = *x;
618 py2 = y;

620 n0 = (int) (x0 * invpio2 + half[xsb0]);
621 n1 = (int) (x1 * invpio2 + half[xsb1]);
622 n2 = (int) (x2 * invpio2 + half[xsb2]);
623 fn0 = (double) n0;
624 fn1 = (double) n1;
625 fn2 = (double) n2;
626 n0 = (n0 + 1) & 3; /* Add 1 (before the mod) to make sin into co
627 n1 = (n1 + 1) & 3;
628 n2 = (n2 + 1) & 3;
629 a0 = x0 - fn0 * pio2_1;
630 a1 = x1 - fn1 * pio2_1;
631 a2 = x2 - fn2 * pio2_1;
632 w0 = fn0 * pio2_2;

new/usr/src/lib/libmvec/common/__vcos.c 11

633 w1 = fn1 * pio2_2;
634 w2 = fn2 * pio2_2;
635 x0 = a0 - w0;
636 x1 = a1 - w1;
637 x2 = a2 - w2;
638 y0 = (a0 - x0) - w0;
639 y1 = (a1 - x1) - w1;
640 y2 = (a2 - x2) - w2;
641 a0 = x0;
642 a1 = x1;
643 a2 = x2;
644 w0 = fn0 * pio2_3 - y0;
645 w1 = fn1 * pio2_3 - y1;
646 w2 = fn2 * pio2_3 - y2;
647 x0 = a0 - w0;
648 x1 = a1 - w1;
649 x2 = a2 - w2;
650 y0 = (a0 - x0) - w0;
651 y1 = (a1 - x1) - w1;
652 y2 = (a2 - x2) - w2;
653 a0 = x0;
654 a1 = x1;
655 a2 = x2;
656 w0 = fn0 * pio2_3t - y0;
657 w1 = fn1 * pio2_3t - y1;
658 w2 = fn2 * pio2_3t - y2;
659 x0 = a0 - w0;
660 x1 = a1 - w1;
661 x2 = a2 - w2;
662 y0 = (a0 - x0) - w0;
663 y1 = (a1 - x1) - w1;
664 y2 = (a2 - x2) - w2;
665 xsb0 = HI(&x0);
666 i = ((xsb0 & ~0x80000000) - thresh[n0&1]) >> 31;
667 xsb1 = HI(&x1);
668 i |= (((xsb1 & ~0x80000000) - thresh[n1&1]) >> 30) & 2;
669 xsb2 = HI(&x2);
670 i |= (((xsb2 & ~0x80000000) - thresh[n2&1]) >> 29) & 4;
671 switch (i)
672 {
673 double t0, t1, t2, z0, z1, z2;
674 unsigned j0, j1, j2;

676 case 0:
677 j0 = (xsb0 + 0x4000) & 0xffff8000;
678 j1 = (xsb1 + 0x4000) & 0xffff8000;
679 j2 = (xsb2 + 0x4000) & 0xffff8000;
680 HI(&t0) = j0;
681 HI(&t1) = j1;
682 HI(&t2) = j2;
683 LO(&t0) = 0;
684 LO(&t1) = 0;
685 LO(&t2) = 0;
686 x0 = (x0 - t0) + y0;
687 x1 = (x1 - t1) + y1;
688 x2 = (x2 - t2) + y2;
689 z0 = x0 * x0;
690 z1 = x1 * x1;
691 z2 = x2 * x2;
692 t0 = z0 * (qq1 + z0 * qq2);
693 t1 = z1 * (qq1 + z1 * qq2);
694 t2 = z2 * (qq1 + z2 * qq2);
695 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
696 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
697 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
698 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~

new/usr/src/lib/libmvec/common/__vcos.c 12

699 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
700 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
701 xsb0 = (xsb0 >> 30) & 2;
702 xsb1 = (xsb1 >> 30) & 2;
703 xsb2 = (xsb2 >> 30) & 2;
704 n0 ^= (xsb0 & ~(n0 << 1));
705 n1 ^= (xsb1 & ~(n1 << 1));
706 n2 ^= (xsb2 & ~(n2 << 1));
707 xsb0 |= 1;
708 xsb1 |= 1;
709 xsb2 |= 1;
710 a0 = __vlibm_TBL_sincos_hi[j0+n0];
711 a1 = __vlibm_TBL_sincos_hi[j1+n1];
712 a2 = __vlibm_TBL_sincos_hi[j2+n2];
713 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
714 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
715 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
716 *py0 = (a0 + t0);
717 *py1 = (a1 + t1);
718 *py2 = (a2 + t2);
719 break;

721 case 1:
722 j0 = n0 & 1;
723 j1 = (xsb1 + 0x4000) & 0xffff8000;
724 j2 = (xsb2 + 0x4000) & 0xffff8000;
725 HI(&t1) = j1;
726 HI(&t2) = j2;
727 LO(&t1) = 0;
728 LO(&t2) = 0;
729 x0_or_one[0] = x0;
730 x0_or_one[2] = -x0;
731 y0_or_zero[0] = y0;
732 y0_or_zero[2] = -y0;
733 x1 = (x1 - t1) + y1;
734 x2 = (x2 - t2) + y2;
735 z0 = x0 * x0;
736 z1 = x1 * x1;
737 z2 = x2 * x2;
738 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
739 t1 = z1 * (qq1 + z1 * qq2);
740 t2 = z2 * (qq1 + z2 * qq2);
741 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
742 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
743 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
744 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
745 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
746 xsb1 = (xsb1 >> 30) & 2;
747 xsb2 = (xsb2 >> 30) & 2;
748 n1 ^= (xsb1 & ~(n1 << 1));
749 n2 ^= (xsb2 & ~(n2 << 1));
750 xsb1 |= 1;
751 xsb2 |= 1;
752 a1 = __vlibm_TBL_sincos_hi[j1+n1];
753 a2 = __vlibm_TBL_sincos_hi[j2+n2];
754 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
755 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
756 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
757 *py0 = t0;
758 *py1 = (a1 + t1);
759 *py2 = (a2 + t2);
760 break;

762 case 2:
763 j0 = (xsb0 + 0x4000) & 0xffff8000;
764 j1 = n1 & 1;

new/usr/src/lib/libmvec/common/__vcos.c 13

765 j2 = (xsb2 + 0x4000) & 0xffff8000;
766 HI(&t0) = j0;
767 HI(&t2) = j2;
768 LO(&t0) = 0;
769 LO(&t2) = 0;
770 x1_or_one[0] = x1;
771 x1_or_one[2] = -x1;
772 x0 = (x0 - t0) + y0;
773 y1_or_zero[0] = y1;
774 y1_or_zero[2] = -y1;
775 x2 = (x2 - t2) + y2;
776 z0 = x0 * x0;
777 z1 = x1 * x1;
778 z2 = x2 * x2;
779 t0 = z0 * (qq1 + z0 * qq2);
780 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
781 t2 = z2 * (qq1 + z2 * qq2);
782 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
783 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
784 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
785 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
786 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
787 xsb0 = (xsb0 >> 30) & 2;
788 xsb2 = (xsb2 >> 30) & 2;
789 n0 ^= (xsb0 & ~(n0 << 1));
790 n2 ^= (xsb2 & ~(n2 << 1));
791 xsb0 |= 1;
792 xsb2 |= 1;
793 a0 = __vlibm_TBL_sincos_hi[j0+n0];
794 a2 = __vlibm_TBL_sincos_hi[j2+n2];
795 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
796 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
797 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
798 *py0 = (a0 + t0);
799 *py1 = t1;
800 *py2 = (a2 + t2);
801 break;

803 case 3:
804 j0 = n0 & 1;
805 j1 = n1 & 1;
806 j2 = (xsb2 + 0x4000) & 0xffff8000;
807 HI(&t2) = j2;
808 LO(&t2) = 0;
809 x0_or_one[0] = x0;
810 x0_or_one[2] = -x0;
811 x1_or_one[0] = x1;
812 x1_or_one[2] = -x1;
813 y0_or_zero[0] = y0;
814 y0_or_zero[2] = -y0;
815 y1_or_zero[0] = y1;
816 y1_or_zero[2] = -y1;
817 x2 = (x2 - t2) + y2;
818 z0 = x0 * x0;
819 z1 = x1 * x1;
820 z2 = x2 * x2;
821 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
822 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
823 t2 = z2 * (qq1 + z2 * qq2);
824 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
825 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
826 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
827 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
828 xsb2 = (xsb2 >> 30) & 2;
829 n2 ^= (xsb2 & ~(n2 << 1));
830 xsb2 |= 1;

new/usr/src/lib/libmvec/common/__vcos.c 14

831 a2 = __vlibm_TBL_sincos_hi[j2+n2];
832 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
833 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
834 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
835 *py0 = t0;
836 *py1 = t1;
837 *py2 = (a2 + t2);
838 break;

840 case 4:
841 j0 = (xsb0 + 0x4000) & 0xffff8000;
842 j1 = (xsb1 + 0x4000) & 0xffff8000;
843 j2 = n2 & 1;
844 HI(&t0) = j0;
845 HI(&t1) = j1;
846 LO(&t0) = 0;
847 LO(&t1) = 0;
848 x2_or_one[0] = x2;
849 x2_or_one[2] = -x2;
850 x0 = (x0 - t0) + y0;
851 x1 = (x1 - t1) + y1;
852 y2_or_zero[0] = y2;
853 y2_or_zero[2] = -y2;
854 z0 = x0 * x0;
855 z1 = x1 * x1;
856 z2 = x2 * x2;
857 t0 = z0 * (qq1 + z0 * qq2);
858 t1 = z1 * (qq1 + z1 * qq2);
859 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
860 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
861 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
862 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
863 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
864 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
865 xsb0 = (xsb0 >> 30) & 2;
866 xsb1 = (xsb1 >> 30) & 2;
867 n0 ^= (xsb0 & ~(n0 << 1));
868 n1 ^= (xsb1 & ~(n1 << 1));
869 xsb0 |= 1;
870 xsb1 |= 1;
871 a0 = __vlibm_TBL_sincos_hi[j0+n0];
872 a1 = __vlibm_TBL_sincos_hi[j1+n1];
873 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
874 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
875 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
876 *py0 = (a0 + t0);
877 *py1 = (a1 + t1);
878 *py2 = t2;
879 break;

881 case 5:
882 j0 = n0 & 1;
883 j1 = (xsb1 + 0x4000) & 0xffff8000;
884 j2 = n2 & 1;
885 HI(&t1) = j1;
886 LO(&t1) = 0;
887 x0_or_one[0] = x0;
888 x0_or_one[2] = -x0;
889 x2_or_one[0] = x2;
890 x2_or_one[2] = -x2;
891 y0_or_zero[0] = y0;
892 y0_or_zero[2] = -y0;
893 x1 = (x1 - t1) + y1;
894 y2_or_zero[0] = y2;
895 y2_or_zero[2] = -y2;
896 z0 = x0 * x0;

new/usr/src/lib/libmvec/common/__vcos.c 15

897 z1 = x1 * x1;
898 z2 = x2 * x2;
899 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
900 t1 = z1 * (qq1 + z1 * qq2);
901 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
902 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
903 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
904 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
905 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
906 xsb1 = (xsb1 >> 30) & 2;
907 n1 ^= (xsb1 & ~(n1 << 1));
908 xsb1 |= 1;
909 a1 = __vlibm_TBL_sincos_hi[j1+n1];
910 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
911 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
912 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
913 *py0 = t0;
914 *py1 = (a1 + t1);
915 *py2 = t2;
916 break;

918 case 6:
919 j0 = (xsb0 + 0x4000) & 0xffff8000;
920 j1 = n1 & 1;
921 j2 = n2 & 1;
922 HI(&t0) = j0;
923 LO(&t0) = 0;
924 x1_or_one[0] = x1;
925 x1_or_one[2] = -x1;
926 x2_or_one[0] = x2;
927 x2_or_one[2] = -x2;
928 x0 = (x0 - t0) + y0;
929 y1_or_zero[0] = y1;
930 y1_or_zero[2] = -y1;
931 y2_or_zero[0] = y2;
932 y2_or_zero[2] = -y2;
933 z0 = x0 * x0;
934 z1 = x1 * x1;
935 z2 = x2 * x2;
936 t0 = z0 * (qq1 + z0 * qq2);
937 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
938 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
939 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
940 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
941 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
942 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
943 xsb0 = (xsb0 >> 30) & 2;
944 n0 ^= (xsb0 & ~(n0 << 1));
945 xsb0 |= 1;
946 a0 = __vlibm_TBL_sincos_hi[j0+n0];
947 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
948 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
949 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
950 *py0 = (a0 + t0);
951 *py1 = t1;
952 *py2 = t2;
953 break;

955 case 7:
956 j0 = n0 & 1;
957 j1 = n1 & 1;
958 j2 = n2 & 1;
959 x0_or_one[0] = x0;
960 x0_or_one[2] = -x0;
961 x1_or_one[0] = x1;
962 x1_or_one[2] = -x1;

new/usr/src/lib/libmvec/common/__vcos.c 16

963 x2_or_one[0] = x2;
964 x2_or_one[2] = -x2;
965 y0_or_zero[0] = y0;
966 y0_or_zero[2] = -y0;
967 y1_or_zero[0] = y1;
968 y1_or_zero[2] = -y1;
969 y2_or_zero[0] = y2;
970 y2_or_zero[2] = -y2;
971 z0 = x0 * x0;
972 z1 = x1 * x1;
973 z2 = x2 * x2;
974 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
975 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
976 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
977 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
978 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
979 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
980 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
981 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
982 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
983 *py0 = t0;
984 *py1 = t1;
985 *py2 = t2;
986 break;
987 }

989 x += stridex;
990 y += stridey;
991 i = 0;
992 } while (--n > 0);

994 if (i > 0)
995 {
996 double fn0, fn1, a0, a1, w0, w1, y0, y1;
997 double t0, t1, z0, z1;
998 unsigned j0, j1;
999 int n0, n1;

1001 if (i > 1)
1002 {
1003 n1 = (int) (x1 * invpio2 + half[xsb1]);
1004 fn1 = (double) n1;
1005 n1 = (n1 + 1) & 3; /* Add 1 (before the mod) to make sin
1006 a1 = x1 - fn1 * pio2_1;
1007 w1 = fn1 * pio2_2;
1008 x1 = a1 - w1;
1009 y1 = (a1 - x1) - w1;
1010 a1 = x1;
1011 w1 = fn1 * pio2_3 - y1;
1012 x1 = a1 - w1;
1013 y1 = (a1 - x1) - w1;
1014 a1 = x1;
1015 w1 = fn1 * pio2_3t - y1;
1016 x1 = a1 - w1;
1017 y1 = (a1 - x1) - w1;
1018 xsb1 = HI(&x1);
1019 if ((xsb1 & ~0x80000000) < thresh[n1&1])
1020 {
1021 j1 = n1 & 1;
1022 x1_or_one[0] = x1;
1023 x1_or_one[2] = -x1;
1024 y1_or_zero[0] = y1;
1025 y1_or_zero[2] = -y1;
1026 z1 = x1 * x1;
1027 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1028 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1)

new/usr/src/lib/libmvec/common/__vcos.c 17

1029 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_on
1030 *py1 = t1;
1031 }
1032 else
1033 {
1034 j1 = (xsb1 + 0x4000) & 0xffff8000;
1035 HI(&t1) = j1;
1036 LO(&t1) = 0;
1037 x1 = (x1 - t1) + y1;
1038 z1 = x1 * x1;
1039 t1 = z1 * (qq1 + z1 * qq2);
1040 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1041 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
1042 xsb1 = (xsb1 >> 30) & 2;
1043 n1 ^= (xsb1 & ~(n1 << 1));
1044 xsb1 |= 1;
1045 a1 = __vlibm_TBL_sincos_hi[j1+n1];
1046 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] *
1047 *py1 = (a1 + t1);
1048 }
1049 }
1050 n0 = (int) (x0 * invpio2 + half[xsb0]);
1051 fn0 = (double) n0;
1052 n0 = (n0 + 1) & 3; /* Add 1 (before the mod) to make sin into co
1053 a0 = x0 - fn0 * pio2_1;
1054 w0 = fn0 * pio2_2;
1055 x0 = a0 - w0;
1056 y0 = (a0 - x0) - w0;
1057 a0 = x0;
1058 w0 = fn0 * pio2_3 - y0;
1059 x0 = a0 - w0;
1060 y0 = (a0 - x0) - w0;
1061 a0 = x0;
1062 w0 = fn0 * pio2_3t - y0;
1063 x0 = a0 - w0;
1064 y0 = (a0 - x0) - w0;
1065 xsb0 = HI(&x0);
1066 if ((xsb0 & ~0x80000000) < thresh[n0&1])
1067 {
1068 j0 = n0 & 1;
1069 x0_or_one[0] = x0;
1070 x0_or_one[2] = -x0;
1071 y0_or_zero[0] = y0;
1072 y0_or_zero[2] = -y0;
1073 z0 = x0 * x0;
1074 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1075 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1076 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1077 *py0 = t0;
1078 }
1079 else
1080 {
1081 j0 = (xsb0 + 0x4000) & 0xffff8000;
1082 HI(&t0) = j0;
1083 LO(&t0) = 0;
1084 x0 = (x0 - t0) + y0;
1085 z0 = x0 * x0;
1086 t0 = z0 * (qq1 + z0 * qq2);
1087 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1088 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1089 xsb0 = (xsb0 >> 30) & 2;
1090 n0 ^= (xsb0 & ~(n0 << 1));
1091 xsb0 |= 1;
1092 a0 = __vlibm_TBL_sincos_hi[j0+n0];
1093 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
1094 *py0 = (a0 + t0);

new/usr/src/lib/libmvec/common/__vcos.c 18

1095 }
1096 }

1098 if (biguns)
1099 __vlibm_vcos_big(nsave, xsave, sxsave, ysave, sysave, 0x413921f
1100 }

new/usr/src/lib/libmvec/common/__vsin.c 1

**
 28847 Thu Oct 9 19:48:55 2014
new/usr/src/lib/libmvec/common/__vsin.c
Revert "remove unused v from libmvec"
This reverts commit e853d278ee4b7f2a8c2117cc598cfc68b4e3f29b.
fix system-library-math.mf
update libm manifests
14071:dece9aafe99a - fix build problems on sparc
remove unused v from libmvec
fix for patch09 - use __GNU_UNUSED
patch12 - math.h: Align things with GCC
patch11 - added LIBM man pages
patch09 - update libmvec: fix build issues by gcc46
patch08 - libmvec: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
Revert "remove unused v from libmvec"
This reverts commit e853d278ee4b7f2a8c2117cc598cfc68b4e3f29b.
fix system-library-math.mf
update libm manifests
14071:dece9aafe99a - fix build problems on sparc
remove unused v from libmvec
fix for patch09 - use __GNU_UNUSED
patch12 - math.h: Align things with GCC
patch11 - added LIBM man pages
patch09 - update libmvec: fix build issues by gcc46
patch08 - libmvec: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #include <sys/isa_defs.h>
31 #include <sys/ccompile.h>

33 #ifdef _LITTLE_ENDIAN
34 #define HI(x) *(1+(int*)x)
35 #define LO(x) *(unsigned*)x
36 #else
37 #define HI(x) *(int*)x
38 #define LO(x) *(1+(unsigned*)x)

new/usr/src/lib/libmvec/common/__vsin.c 2

39 #endif

41 #ifdef __RESTRICT
42 #define restrict _Restrict
43 #else
44 #define restrict
45 #endif

47 extern const double __vlibm_TBL_sincos_hi[], __vlibm_TBL_sincos_lo[];

49 static const double
50 half[2] = { 0.5, -0.5 },
51 one = 1.0,
52 invpio2 = 0.636619772367581343075535,
53 pio2_1 = 1.570796326734125614166,
54 pio2_2 = 6.077100506303965976596e-11,
55 pio2_3 = 2.022266248711166455796e-21,
56 pio2_3t = 8.478427660368899643959e-32,
57 pp1 = -1.666666666605760465276263943134982554676e-0001,
58 pp2 = 8.333261209690963126718376566146180944442e-0003,
59 qq1 = -4.999999999977710986407023955908711557870e-0001,
60 qq2 = 4.166654863857219350645055881018842089580e-0002,
61 poly1[2]= { -1.666666666666629669805215138920301589656e-0001,
62 -4.999999999999931701464060878888294524481e-0001
63 poly2[2]= { 8.333333332390951295683993455280336376663e-0003,
64 4.166666666394861917535640593963708222319e-0002
65 poly3[2]= { -1.984126237997976692791551778230098403960e-0004,
66 -1.388888552656142867832756687736851681462e-0003
67 poly4[2]= { 2.753403624854277237649987622848330351110e-0006,
68 2.478519423681460796618128289454530524759e-0005

70 static const unsigned thresh[2] = { 0x3fc90000, 0x3fc40000 };

72 /* Don’t __ the following; acomp will handle it */
73 extern double fabs(double);
74 extern void __vlibm_vsin_big(int, double *, int, double *, int, int);

76 void
77 __vsin(int n, double * restrict x, int stridex, double * restrict y,
78 int stridey)
79 {
80 double x0_or_one[4], x1_or_one[4], x2_or_one[4];
81 double y0_or_zero[4], y1_or_zero[4], y2_or_zero[4];
82 double x0, x1, x2, *py0 = 0, *py1 = 0, *py2, *xsave, *ysave;
83 unsigned hx0, hx1, hx2, xsb0, xsb1 = 0, xsb2;
84 int i, biguns, nsave, sxsave, sysave;
85 volatile int v __GNU_UNUSED;
86 nsave = n;
87 xsave = x;
88 sxsave = stridex;
89 ysave = y;
90 sysave = stridey;
91 biguns = 0;

93 do
94 {
95 LOOP0:
96 xsb0 = HI(x);
97 hx0 = xsb0 & ~0x80000000;
98 if (hx0 > 0x3fe921fb)
99 {
100 biguns = 1;
101 goto MEDIUM;
102 }
103 if (hx0 < 0x3e400000)
104 {

new/usr/src/lib/libmvec/common/__vsin.c 3

105 v = *x;
106 *y = *x;
107 x += stridex;
108 y += stridey;
109 i = 0;
110 if (--n <= 0)
111 break;
112 goto LOOP0;
113 }
114 x0 = *x;
115 py0 = y;
116 x += stridex;
117 y += stridey;
118 i = 1;
119 if (--n <= 0)
120 break;

122 LOOP1:
123 xsb1 = HI(x);
124 hx1 = xsb1 & ~0x80000000;
125 if (hx1 > 0x3fe921fb)
126 {
127 biguns = 2;
128 goto MEDIUM;
129 }
130 if (hx1 < 0x3e400000)
131 {
132 v = *x;
133 *y = *x;
134 x += stridex;
135 y += stridey;
136 i = 1;
137 if (--n <= 0)
138 break;
139 goto LOOP1;
140 }
141 x1 = *x;
142 py1 = y;
143 x += stridex;
144 y += stridey;
145 i = 2;
146 if (--n <= 0)
147 break;

149 LOOP2:
150 xsb2 = HI(x);
151 hx2 = xsb2 & ~0x80000000;
152 if (hx2 > 0x3fe921fb)
153 {
154 biguns = 3;
155 goto MEDIUM;
156 }
157 if (hx2 < 0x3e400000)
158 {
159 v = *x;
160 *y = *x;
161 x += stridex;
162 y += stridey;
163 i = 2;
164 if (--n <= 0)
165 break;
166 goto LOOP2;
167 }
168 x2 = *x;
169 py2 = y;

new/usr/src/lib/libmvec/common/__vsin.c 4

171 i = (hx0 - 0x3fc90000) >> 31;
172 i |= ((hx1 - 0x3fc90000) >> 30) & 2;
173 i |= ((hx2 - 0x3fc90000) >> 29) & 4;
174 switch (i)
175 {
176 double a0, a1, a2, w0, w1, w2;
177 double t0, t1, t2, z0, z1, z2;
178 unsigned j0, j1, j2;

180 case 0:
181 j0 = (xsb0 + 0x4000) & 0xffff8000;
182 j1 = (xsb1 + 0x4000) & 0xffff8000;
183 j2 = (xsb2 + 0x4000) & 0xffff8000;
184 HI(&t0) = j0;
185 HI(&t1) = j1;
186 HI(&t2) = j2;
187 LO(&t0) = 0;
188 LO(&t1) = 0;
189 LO(&t2) = 0;
190 x0 -= t0;
191 x1 -= t1;
192 x2 -= t2;
193 z0 = x0 * x0;
194 z1 = x1 * x1;
195 z2 = x2 * x2;
196 t0 = z0 * (qq1 + z0 * qq2);
197 t1 = z1 * (qq1 + z1 * qq2);
198 t2 = z2 * (qq1 + z2 * qq2);
199 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
200 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
201 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
202 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
203 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
204 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
205 xsb0 = (xsb0 >> 30) & 2;
206 xsb1 = (xsb1 >> 30) & 2;
207 xsb2 = (xsb2 >> 30) & 2;
208 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
209 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
210 a2 = __vlibm_TBL_sincos_hi[j2+xsb2];
211 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
212 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1) + __
213 t2 = (__vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
214 *py0 = a0 + t0;
215 *py1 = a1 + t1;
216 *py2 = a2 + t2;
217 break;

219 case 1:
220 j1 = (xsb1 + 0x4000) & 0xffff8000;
221 j2 = (xsb2 + 0x4000) & 0xffff8000;
222 HI(&t1) = j1;
223 HI(&t2) = j2;
224 LO(&t1) = 0;
225 LO(&t2) = 0;
226 x1 -= t1;
227 x2 -= t2;
228 z0 = x0 * x0;
229 z1 = x1 * x1;
230 z2 = x2 * x2;
231 t0 = z0 * (poly3[0] + z0 * poly4[0]);
232 t1 = z1 * (qq1 + z1 * qq2);
233 t2 = z2 * (qq1 + z2 * qq2);
234 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
235 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
236 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));

new/usr/src/lib/libmvec/common/__vsin.c 5

237 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
238 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
239 xsb1 = (xsb1 >> 30) & 2;
240 xsb2 = (xsb2 >> 30) & 2;
241 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
242 a2 = __vlibm_TBL_sincos_hi[j2+xsb2];
243 t0 = x0 + x0 * t0;
244 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1) + __
245 t2 = (__vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
246 *py0 = t0;
247 *py1 = a1 + t1;
248 *py2 = a2 + t2;
249 break;

251 case 2:
252 j0 = (xsb0 + 0x4000) & 0xffff8000;
253 j2 = (xsb2 + 0x4000) & 0xffff8000;
254 HI(&t0) = j0;
255 HI(&t2) = j2;
256 LO(&t0) = 0;
257 LO(&t2) = 0;
258 x0 -= t0;
259 x2 -= t2;
260 z0 = x0 * x0;
261 z1 = x1 * x1;
262 z2 = x2 * x2;
263 t0 = z0 * (qq1 + z0 * qq2);
264 t1 = z1 * (poly3[0] + z1 * poly4[0]);
265 t2 = z2 * (qq1 + z2 * qq2);
266 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
267 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
268 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
269 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
270 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
271 xsb0 = (xsb0 >> 30) & 2;
272 xsb2 = (xsb2 >> 30) & 2;
273 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
274 a2 = __vlibm_TBL_sincos_hi[j2+xsb2];
275 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
276 t1 = x1 + x1 * t1;
277 t2 = (__vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2) + __
278 *py0 = a0 + t0;
279 *py1 = t1;
280 *py2 = a2 + t2;
281 break;

283 case 3:
284 j2 = (xsb2 + 0x4000) & 0xffff8000;
285 HI(&t2) = j2;
286 LO(&t2) = 0;
287 x2 -= t2;
288 z0 = x0 * x0;
289 z1 = x1 * x1;
290 z2 = x2 * x2;
291 t0 = z0 * (poly3[0] + z0 * poly4[0]);
292 t1 = z1 * (poly3[0] + z1 * poly4[0]);
293 t2 = z2 * (qq1 + z2 * qq2);
294 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
295 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
296 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
297 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
298 xsb2 = (xsb2 >> 30) & 2;
299 a2 = __vlibm_TBL_sincos_hi[j2+xsb2];
300 t0 = x0 + x0 * t0;
301 t1 = x1 + x1 * t1;
302 t2 = (__vlibm_TBL_sincos_hi[j2+1] * w2 + a2 * t2) + __

new/usr/src/lib/libmvec/common/__vsin.c 6

303 *py0 = t0;
304 *py1 = t1;
305 *py2 = a2 + t2;
306 break;

308 case 4:
309 j0 = (xsb0 + 0x4000) & 0xffff8000;
310 j1 = (xsb1 + 0x4000) & 0xffff8000;
311 HI(&t0) = j0;
312 HI(&t1) = j1;
313 LO(&t0) = 0;
314 LO(&t1) = 0;
315 x0 -= t0;
316 x1 -= t1;
317 z0 = x0 * x0;
318 z1 = x1 * x1;
319 z2 = x2 * x2;
320 t0 = z0 * (qq1 + z0 * qq2);
321 t1 = z1 * (qq1 + z1 * qq2);
322 t2 = z2 * (poly3[0] + z2 * poly4[0]);
323 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
324 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
325 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
326 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
327 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
328 xsb0 = (xsb0 >> 30) & 2;
329 xsb1 = (xsb1 >> 30) & 2;
330 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
331 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
332 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
333 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1) + __
334 t2 = x2 + x2 * t2;
335 *py0 = a0 + t0;
336 *py1 = a1 + t1;
337 *py2 = t2;
338 break;

340 case 5:
341 j1 = (xsb1 + 0x4000) & 0xffff8000;
342 HI(&t1) = j1;
343 LO(&t1) = 0;
344 x1 -= t1;
345 z0 = x0 * x0;
346 z1 = x1 * x1;
347 z2 = x2 * x2;
348 t0 = z0 * (poly3[0] + z0 * poly4[0]);
349 t1 = z1 * (qq1 + z1 * qq2);
350 t2 = z2 * (poly3[0] + z2 * poly4[0]);
351 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
352 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
353 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
354 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
355 xsb1 = (xsb1 >> 30) & 2;
356 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
357 t0 = x0 + x0 * t0;
358 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t1) + __
359 t2 = x2 + x2 * t2;
360 *py0 = t0;
361 *py1 = a1 + t1;
362 *py2 = t2;
363 break;

365 case 6:
366 j0 = (xsb0 + 0x4000) & 0xffff8000;
367 HI(&t0) = j0;
368 LO(&t0) = 0;

new/usr/src/lib/libmvec/common/__vsin.c 7

369 x0 -= t0;
370 z0 = x0 * x0;
371 z1 = x1 * x1;
372 z2 = x2 * x2;
373 t0 = z0 * (qq1 + z0 * qq2);
374 t1 = z1 * (poly3[0] + z1 * poly4[0]);
375 t2 = z2 * (poly3[0] + z2 * poly4[0]);
376 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
377 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
378 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
379 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
380 xsb0 = (xsb0 >> 30) & 2;
381 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
382 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
383 t1 = x1 + x1 * t1;
384 t2 = x2 + x2 * t2;
385 *py0 = a0 + t0;
386 *py1 = t1;
387 *py2 = t2;
388 break;

390 case 7:
391 z0 = x0 * x0;
392 z1 = x1 * x1;
393 z2 = x2 * x2;
394 t0 = z0 * (poly3[0] + z0 * poly4[0]);
395 t1 = z1 * (poly3[0] + z1 * poly4[0]);
396 t2 = z2 * (poly3[0] + z2 * poly4[0]);
397 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
398 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
399 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
400 t0 = x0 + x0 * t0;
401 t1 = x1 + x1 * t1;
402 t2 = x2 + x2 * t2;
403 *py0 = t0;
404 *py1 = t1;
405 *py2 = t2;
406 break;
407 }

409 x += stridex;
410 y += stridey;
411 i = 0;
412 } while (--n > 0);

414 if (i > 0)
415 {
416 double a0, a1, w0, w1;
417 double t0, t1, z0, z1;
418 unsigned j0, j1;

420 if (i > 1)
421 {
422 if (hx1 < 0x3fc90000)
423 {
424 z1 = x1 * x1;
425 t1 = z1 * (poly3[0] + z1 * poly4[0]);
426 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
427 t1 = x1 + x1 * t1;
428 *py1 = t1;
429 }
430 else
431 {
432 j1 = (xsb1 + 0x4000) & 0xffff8000;
433 HI(&t1) = j1;
434 LO(&t1) = 0;

new/usr/src/lib/libmvec/common/__vsin.c 8

435 x1 -= t1;
436 z1 = x1 * x1;
437 t1 = z1 * (qq1 + z1 * qq2);
438 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
439 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
440 xsb1 = (xsb1 >> 30) & 2;
441 a1 = __vlibm_TBL_sincos_hi[j1+xsb1];
442 t1 = (__vlibm_TBL_sincos_hi[j1+1] * w1 + a1 * t
443 *py1 = a1 + t1;
444 }
445 }
446 if (hx0 < 0x3fc90000)
447 {
448 z0 = x0 * x0;
449 t0 = z0 * (poly3[0] + z0 * poly4[0]);
450 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
451 t0 = x0 + x0 * t0;
452 *py0 = t0;
453 }
454 else
455 {
456 j0 = (xsb0 + 0x4000) & 0xffff8000;
457 HI(&t0) = j0;
458 LO(&t0) = 0;
459 x0 -= t0;
460 z0 = x0 * x0;
461 t0 = z0 * (qq1 + z0 * qq2);
462 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
463 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
464 xsb0 = (xsb0 >> 30) & 2;
465 a0 = __vlibm_TBL_sincos_hi[j0+xsb0];
466 t0 = (__vlibm_TBL_sincos_hi[j0+1] * w0 + a0 * t0) + __
467 *py0 = a0 + t0;
468 }
469 }

471 return;

473 /*
474 * MEDIUM RANGE PROCESSING
475 * Jump here at first sign of medium range argument. We are a bit
476 * confused due to the jump.. fix up several variables and jump into
477 * the nth loop, same as was being processed above.
478 */

480 MEDIUM:

482 x0_or_one[1] = 1.0;
483 x1_or_one[1] = 1.0;
484 x2_or_one[1] = 1.0;
485 x0_or_one[3] = -1.0;
486 x1_or_one[3] = -1.0;
487 x2_or_one[3] = -1.0;
488 y0_or_zero[1] = 0.0;
489 y1_or_zero[1] = 0.0;
490 y2_or_zero[1] = 0.0;
491 y0_or_zero[3] = 0.0;
492 y1_or_zero[3] = 0.0;
493 y2_or_zero[3] = 0.0;

495 if (biguns == 3)
496 {
497 biguns = 0;
498 xsb0 = xsb0 >> 31;
499 xsb1 = xsb1 >> 31;
500 goto loop2;

new/usr/src/lib/libmvec/common/__vsin.c 9

501 }
502 else if (biguns == 2)
503 {
504 xsb0 = xsb0 >> 31;
505 biguns = 0;
506 goto loop1;
507 }
508 biguns = 0;

510 do
511 {
512 double fn0, fn1, fn2, a0, a1, a2, w0, w1, w2, y0, y1, y
513 unsigned hx;
514 int n0, n1, n2;

516 loop0:
517 hx = HI(x);
518 xsb0 = hx >> 31;
519 hx &= ~0x80000000;
520 if (hx < 0x3e400000)
521 {
522 v = *x;
523 *y = *x;
524 x += stridex;
525 y += stridey;
526 i = 0;
527 if (--n <= 0)
528 break;
529 goto loop0;
530 }
531 if (hx > 0x413921fb)
532 {
533 if (hx >= 0x7ff00000)
534 {
535 x0 = *x;
536 *y = x0 - x0;
537 }
538 else
539 biguns = 1;
540 x += stridex;
541 y += stridey;
542 i = 0;
543 if (--n <= 0)
544 break;
545 goto loop0;
546 }
547 x0 = *x;
548 py0 = y;
549 x += stridex;
550 y += stridey;
551 i = 1;
552 if (--n <= 0)
553 break;

555 loop1:
556 hx = HI(x);
557 xsb1 = hx >> 31;
558 hx &= ~0x80000000;
559 if (hx < 0x3e400000)
560 {
561 v = *x;
562 *y = *x;
563 x += stridex;
564 y += stridey;
565 i = 1;
566 if (--n <= 0)

new/usr/src/lib/libmvec/common/__vsin.c 10

567 break;
568 goto loop1;
569 }
570 if (hx > 0x413921fb)
571 {
572 if (hx >= 0x7ff00000)
573 {
574 x1 = *x;
575 *y = x1 - x1;
576 }
577 else
578 biguns = 1;
579 x += stridex;
580 y += stridey;
581 i = 1;
582 if (--n <= 0)
583 break;
584 goto loop1;
585 }
586 x1 = *x;
587 py1 = y;
588 x += stridex;
589 y += stridey;
590 i = 2;
591 if (--n <= 0)
592 break;

594 loop2:
595 hx = HI(x);
596 xsb2 = hx >> 31;
597 hx &= ~0x80000000;
598 if (hx < 0x3e400000)
599 {
600 v = *x;
601 *y = *x;
602 x += stridex;
603 y += stridey;
604 i = 2;
605 if (--n <= 0)
606 break;
607 goto loop2;
608 }
609 if (hx > 0x413921fb)
610 {
611 if (hx >= 0x7ff00000)
612 {
613 x2 = *x;
614 *y = x2 - x2;
615 }
616 else
617 biguns = 1;
618 x += stridex;
619 y += stridey;
620 i = 2;
621 if (--n <= 0)
622 break;
623 goto loop2;
624 }
625 x2 = *x;
626 py2 = y;

628 n0 = (int) (x0 * invpio2 + half[xsb0]);
629 n1 = (int) (x1 * invpio2 + half[xsb1]);
630 n2 = (int) (x2 * invpio2 + half[xsb2]);
631 fn0 = (double) n0;
632 fn1 = (double) n1;

new/usr/src/lib/libmvec/common/__vsin.c 11

633 fn2 = (double) n2;
634 n0 &= 3;
635 n1 &= 3;
636 n2 &= 3;
637 a0 = x0 - fn0 * pio2_1;
638 a1 = x1 - fn1 * pio2_1;
639 a2 = x2 - fn2 * pio2_1;
640 w0 = fn0 * pio2_2;
641 w1 = fn1 * pio2_2;
642 w2 = fn2 * pio2_2;
643 x0 = a0 - w0;
644 x1 = a1 - w1;
645 x2 = a2 - w2;
646 y0 = (a0 - x0) - w0;
647 y1 = (a1 - x1) - w1;
648 y2 = (a2 - x2) - w2;
649 a0 = x0;
650 a1 = x1;
651 a2 = x2;
652 w0 = fn0 * pio2_3 - y0;
653 w1 = fn1 * pio2_3 - y1;
654 w2 = fn2 * pio2_3 - y2;
655 x0 = a0 - w0;
656 x1 = a1 - w1;
657 x2 = a2 - w2;
658 y0 = (a0 - x0) - w0;
659 y1 = (a1 - x1) - w1;
660 y2 = (a2 - x2) - w2;
661 a0 = x0;
662 a1 = x1;
663 a2 = x2;
664 w0 = fn0 * pio2_3t - y0;
665 w1 = fn1 * pio2_3t - y1;
666 w2 = fn2 * pio2_3t - y2;
667 x0 = a0 - w0;
668 x1 = a1 - w1;
669 x2 = a2 - w2;
670 y0 = (a0 - x0) - w0;
671 y1 = (a1 - x1) - w1;
672 y2 = (a2 - x2) - w2;
673 xsb0 = HI(&x0);
674 i = ((xsb0 & ~0x80000000) - thresh[n0&1]) >> 31;
675 xsb1 = HI(&x1);
676 i |= (((xsb1 & ~0x80000000) - thresh[n1&1]) >> 30) & 2;
677 xsb2 = HI(&x2);
678 i |= (((xsb2 & ~0x80000000) - thresh[n2&1]) >> 29) & 4;
679 switch (i)
680 {
681 double t0, t1, t2, z0, z1, z2;
682 unsigned j0, j1, j2;

684 case 0:
685 j0 = (xsb0 + 0x4000) & 0xffff8000;
686 j1 = (xsb1 + 0x4000) & 0xffff8000;
687 j2 = (xsb2 + 0x4000) & 0xffff8000;
688 HI(&t0) = j0;
689 HI(&t1) = j1;
690 HI(&t2) = j2;
691 LO(&t0) = 0;
692 LO(&t1) = 0;
693 LO(&t2) = 0;
694 x0 = (x0 - t0) + y0;
695 x1 = (x1 - t1) + y1;
696 x2 = (x2 - t2) + y2;
697 z0 = x0 * x0;
698 z1 = x1 * x1;

new/usr/src/lib/libmvec/common/__vsin.c 12

699 z2 = x2 * x2;
700 t0 = z0 * (qq1 + z0 * qq2);
701 t1 = z1 * (qq1 + z1 * qq2);
702 t2 = z2 * (qq1 + z2 * qq2);
703 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
704 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
705 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
706 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
707 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
708 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
709 xsb0 = (xsb0 >> 30) & 2;
710 xsb1 = (xsb1 >> 30) & 2;
711 xsb2 = (xsb2 >> 30) & 2;
712 n0 ^= (xsb0 & ~(n0 << 1));
713 n1 ^= (xsb1 & ~(n1 << 1));
714 n2 ^= (xsb2 & ~(n2 << 1));
715 xsb0 |= 1;
716 xsb1 |= 1;
717 xsb2 |= 1;
718 a0 = __vlibm_TBL_sincos_hi[j0+n0];
719 a1 = __vlibm_TBL_sincos_hi[j1+n1];
720 a2 = __vlibm_TBL_sincos_hi[j2+n2];
721 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
722 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
723 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
724 *py0 = (a0 + t0);
725 *py1 = (a1 + t1);
726 *py2 = (a2 + t2);
727 break;

729 case 1:
730 j0 = n0 & 1;
731 j1 = (xsb1 + 0x4000) & 0xffff8000;
732 j2 = (xsb2 + 0x4000) & 0xffff8000;
733 HI(&t1) = j1;
734 HI(&t2) = j2;
735 LO(&t1) = 0;
736 LO(&t2) = 0;
737 x0_or_one[0] = x0;
738 x0_or_one[2] = -x0;
739 y0_or_zero[0] = y0;
740 y0_or_zero[2] = -y0;
741 x1 = (x1 - t1) + y1;
742 x2 = (x2 - t2) + y2;
743 z0 = x0 * x0;
744 z1 = x1 * x1;
745 z2 = x2 * x2;
746 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
747 t1 = z1 * (qq1 + z1 * qq2);
748 t2 = z2 * (qq1 + z2 * qq2);
749 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
750 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
751 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
752 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
753 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
754 xsb1 = (xsb1 >> 30) & 2;
755 xsb2 = (xsb2 >> 30) & 2;
756 n1 ^= (xsb1 & ~(n1 << 1));
757 n2 ^= (xsb2 & ~(n2 << 1));
758 xsb1 |= 1;
759 xsb2 |= 1;
760 a1 = __vlibm_TBL_sincos_hi[j1+n1];
761 a2 = __vlibm_TBL_sincos_hi[j2+n2];
762 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
763 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
764 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2

new/usr/src/lib/libmvec/common/__vsin.c 13

765 *py0 = t0;
766 *py1 = (a1 + t1);
767 *py2 = (a2 + t2);
768 break;

770 case 2:
771 j0 = (xsb0 + 0x4000) & 0xffff8000;
772 j1 = n1 & 1;
773 j2 = (xsb2 + 0x4000) & 0xffff8000;
774 HI(&t0) = j0;
775 HI(&t2) = j2;
776 LO(&t0) = 0;
777 LO(&t2) = 0;
778 x1_or_one[0] = x1;
779 x1_or_one[2] = -x1;
780 x0 = (x0 - t0) + y0;
781 y1_or_zero[0] = y1;
782 y1_or_zero[2] = -y1;
783 x2 = (x2 - t2) + y2;
784 z0 = x0 * x0;
785 z1 = x1 * x1;
786 z2 = x2 * x2;
787 t0 = z0 * (qq1 + z0 * qq2);
788 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
789 t2 = z2 * (qq1 + z2 * qq2);
790 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
791 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
792 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
793 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
794 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
795 xsb0 = (xsb0 >> 30) & 2;
796 xsb2 = (xsb2 >> 30) & 2;
797 n0 ^= (xsb0 & ~(n0 << 1));
798 n2 ^= (xsb2 & ~(n2 << 1));
799 xsb0 |= 1;
800 xsb2 |= 1;
801 a0 = __vlibm_TBL_sincos_hi[j0+n0];
802 a2 = __vlibm_TBL_sincos_hi[j2+n2];
803 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
804 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
805 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
806 *py0 = (a0 + t0);
807 *py1 = t1;
808 *py2 = (a2 + t2);
809 break;

811 case 3:
812 j0 = n0 & 1;
813 j1 = n1 & 1;
814 j2 = (xsb2 + 0x4000) & 0xffff8000;
815 HI(&t2) = j2;
816 LO(&t2) = 0;
817 x0_or_one[0] = x0;
818 x0_or_one[2] = -x0;
819 x1_or_one[0] = x1;
820 x1_or_one[2] = -x1;
821 y0_or_zero[0] = y0;
822 y0_or_zero[2] = -y0;
823 y1_or_zero[0] = y1;
824 y1_or_zero[2] = -y1;
825 x2 = (x2 - t2) + y2;
826 z0 = x0 * x0;
827 z1 = x1 * x1;
828 z2 = x2 * x2;
829 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
830 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);

new/usr/src/lib/libmvec/common/__vsin.c 14

831 t2 = z2 * (qq1 + z2 * qq2);
832 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
833 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
834 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
835 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
836 xsb2 = (xsb2 >> 30) & 2;
837 n2 ^= (xsb2 & ~(n2 << 1));
838 xsb2 |= 1;
839 a2 = __vlibm_TBL_sincos_hi[j2+n2];
840 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
841 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
842 t2 = (__vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)] * w2 + a2
843 *py0 = t0;
844 *py1 = t1;
845 *py2 = (a2 + t2);
846 break;

848 case 4:
849 j0 = (xsb0 + 0x4000) & 0xffff8000;
850 j1 = (xsb1 + 0x4000) & 0xffff8000;
851 j2 = n2 & 1;
852 HI(&t0) = j0;
853 HI(&t1) = j1;
854 LO(&t0) = 0;
855 LO(&t1) = 0;
856 x2_or_one[0] = x2;
857 x2_or_one[2] = -x2;
858 x0 = (x0 - t0) + y0;
859 x1 = (x1 - t1) + y1;
860 y2_or_zero[0] = y2;
861 y2_or_zero[2] = -y2;
862 z0 = x0 * x0;
863 z1 = x1 * x1;
864 z2 = x2 * x2;
865 t0 = z0 * (qq1 + z0 * qq2);
866 t1 = z1 * (qq1 + z1 * qq2);
867 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
868 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
869 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
870 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
871 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
872 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
873 xsb0 = (xsb0 >> 30) & 2;
874 xsb1 = (xsb1 >> 30) & 2;
875 n0 ^= (xsb0 & ~(n0 << 1));
876 n1 ^= (xsb1 & ~(n1 << 1));
877 xsb0 |= 1;
878 xsb1 |= 1;
879 a0 = __vlibm_TBL_sincos_hi[j0+n0];
880 a1 = __vlibm_TBL_sincos_hi[j1+n1];
881 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
882 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
883 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
884 *py0 = (a0 + t0);
885 *py1 = (a1 + t1);
886 *py2 = t2;
887 break;

889 case 5:
890 j0 = n0 & 1;
891 j1 = (xsb1 + 0x4000) & 0xffff8000;
892 j2 = n2 & 1;
893 HI(&t1) = j1;
894 LO(&t1) = 0;
895 x0_or_one[0] = x0;
896 x0_or_one[2] = -x0;

new/usr/src/lib/libmvec/common/__vsin.c 15

897 x2_or_one[0] = x2;
898 x2_or_one[2] = -x2;
899 y0_or_zero[0] = y0;
900 y0_or_zero[2] = -y0;
901 x1 = (x1 - t1) + y1;
902 y2_or_zero[0] = y2;
903 y2_or_zero[2] = -y2;
904 z0 = x0 * x0;
905 z1 = x1 * x1;
906 z2 = x2 * x2;
907 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
908 t1 = z1 * (qq1 + z1 * qq2);
909 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
910 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
911 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
912 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
913 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
914 xsb1 = (xsb1 >> 30) & 2;
915 n1 ^= (xsb1 & ~(n1 << 1));
916 xsb1 |= 1;
917 a1 = __vlibm_TBL_sincos_hi[j1+n1];
918 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
919 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] * w1 + a1
920 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
921 *py0 = t0;
922 *py1 = (a1 + t1);
923 *py2 = t2;
924 break;

926 case 6:
927 j0 = (xsb0 + 0x4000) & 0xffff8000;
928 j1 = n1 & 1;
929 j2 = n2 & 1;
930 HI(&t0) = j0;
931 LO(&t0) = 0;
932 x1_or_one[0] = x1;
933 x1_or_one[2] = -x1;
934 x2_or_one[0] = x2;
935 x2_or_one[2] = -x2;
936 x0 = (x0 - t0) + y0;
937 y1_or_zero[0] = y1;
938 y1_or_zero[2] = -y1;
939 y2_or_zero[0] = y2;
940 y2_or_zero[2] = -y2;
941 z0 = x0 * x0;
942 z1 = x1 * x1;
943 z2 = x2 * x2;
944 t0 = z0 * (qq1 + z0 * qq2);
945 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
946 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
947 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
948 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
949 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
950 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
951 xsb0 = (xsb0 >> 30) & 2;
952 n0 ^= (xsb0 & ~(n0 << 1));
953 xsb0 |= 1;
954 a0 = __vlibm_TBL_sincos_hi[j0+n0];
955 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
956 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
957 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
958 *py0 = (a0 + t0);
959 *py1 = t1;
960 *py2 = t2;
961 break;

new/usr/src/lib/libmvec/common/__vsin.c 16

963 case 7:
964 j0 = n0 & 1;
965 j1 = n1 & 1;
966 j2 = n2 & 1;
967 x0_or_one[0] = x0;
968 x0_or_one[2] = -x0;
969 x1_or_one[0] = x1;
970 x1_or_one[2] = -x1;
971 x2_or_one[0] = x2;
972 x2_or_one[2] = -x2;
973 y0_or_zero[0] = y0;
974 y0_or_zero[2] = -y0;
975 y1_or_zero[0] = y1;
976 y1_or_zero[2] = -y1;
977 y2_or_zero[0] = y2;
978 y2_or_zero[2] = -y2;
979 z0 = x0 * x0;
980 z1 = x1 * x1;
981 z2 = x2 * x2;
982 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
983 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
984 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
985 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
986 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
987 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
988 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
989 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
990 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
991 *py0 = t0;
992 *py1 = t1;
993 *py2 = t2;
994 break;
995 }

997 x += stridex;
998 y += stridey;
999 i = 0;

1000 } while (--n > 0);

1002 if (i > 0)
1003 {
1004 double fn0, fn1, a0, a1, w0, w1, y0, y1;
1005 double t0, t1, z0, z1;
1006 unsigned j0, j1;
1007 int n0, n1;

1009 if (i > 1)
1010 {
1011 n1 = (int) (x1 * invpio2 + half[xsb1]);
1012 fn1 = (double) n1;
1013 n1 &= 3;
1014 a1 = x1 - fn1 * pio2_1;
1015 w1 = fn1 * pio2_2;
1016 x1 = a1 - w1;
1017 y1 = (a1 - x1) - w1;
1018 a1 = x1;
1019 w1 = fn1 * pio2_3 - y1;
1020 x1 = a1 - w1;
1021 y1 = (a1 - x1) - w1;
1022 a1 = x1;
1023 w1 = fn1 * pio2_3t - y1;
1024 x1 = a1 - w1;
1025 y1 = (a1 - x1) - w1;
1026 xsb1 = HI(&x1);
1027 if ((xsb1 & ~0x80000000) < thresh[n1&1])
1028 {

new/usr/src/lib/libmvec/common/__vsin.c 17

1029 j1 = n1 & 1;
1030 x1_or_one[0] = x1;
1031 x1_or_one[2] = -x1;
1032 y1_or_zero[0] = y1;
1033 y1_or_zero[2] = -y1;
1034 z1 = x1 * x1;
1035 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1036 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1)
1037 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_on
1038 *py1 = t1;
1039 }
1040 else
1041 {
1042 j1 = (xsb1 + 0x4000) & 0xffff8000;
1043 HI(&t1) = j1;
1044 LO(&t1) = 0;
1045 x1 = (x1 - t1) + y1;
1046 z1 = x1 * x1;
1047 t1 = z1 * (qq1 + z1 * qq2);
1048 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1049 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
1050 xsb1 = (xsb1 >> 30) & 2;
1051 n1 ^= (xsb1 & ~(n1 << 1));
1052 xsb1 |= 1;
1053 a1 = __vlibm_TBL_sincos_hi[j1+n1];
1054 t1 = (__vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)] *
1055 *py1 = (a1 + t1);
1056 }
1057 }
1058 n0 = (int) (x0 * invpio2 + half[xsb0]);
1059 fn0 = (double) n0;
1060 n0 &= 3;
1061 a0 = x0 - fn0 * pio2_1;
1062 w0 = fn0 * pio2_2;
1063 x0 = a0 - w0;
1064 y0 = (a0 - x0) - w0;
1065 a0 = x0;
1066 w0 = fn0 * pio2_3 - y0;
1067 x0 = a0 - w0;
1068 y0 = (a0 - x0) - w0;
1069 a0 = x0;
1070 w0 = fn0 * pio2_3t - y0;
1071 x0 = a0 - w0;
1072 y0 = (a0 - x0) - w0;
1073 xsb0 = HI(&x0);
1074 if ((xsb0 & ~0x80000000) < thresh[n0&1])
1075 {
1076 j0 = n0 & 1;
1077 x0_or_one[0] = x0;
1078 x0_or_one[2] = -x0;
1079 y0_or_zero[0] = y0;
1080 y0_or_zero[2] = -y0;
1081 z0 = x0 * x0;
1082 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1083 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1084 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1085 *py0 = t0;
1086 }
1087 else
1088 {
1089 j0 = (xsb0 + 0x4000) & 0xffff8000;
1090 HI(&t0) = j0;
1091 LO(&t0) = 0;
1092 x0 = (x0 - t0) + y0;
1093 z0 = x0 * x0;
1094 t0 = z0 * (qq1 + z0 * qq2);

new/usr/src/lib/libmvec/common/__vsin.c 18

1095 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1096 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1097 xsb0 = (xsb0 >> 30) & 2;
1098 n0 ^= (xsb0 & ~(n0 << 1));
1099 xsb0 |= 1;
1100 a0 = __vlibm_TBL_sincos_hi[j0+n0];
1101 t0 = (__vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)] * w0 + a0
1102 *py0 = (a0 + t0);
1103 }
1104 }

1106 if (biguns)
1107 __vlibm_vsin_big(nsave, xsave, sxsave, ysave, sysave, 0x413921f
1108 }

new/usr/src/lib/libmvec/common/__vsincos.c 1

**
 39440 Thu Oct 9 19:48:55 2014
new/usr/src/lib/libmvec/common/__vsincos.c
Revert "remove unused v from libmvec"
This reverts commit e853d278ee4b7f2a8c2117cc598cfc68b4e3f29b.
fix system-library-math.mf
update libm manifests
14071:dece9aafe99a - fix build problems on sparc
remove unused v from libmvec
fix for patch09 - use __GNU_UNUSED
patch12 - math.h: Align things with GCC
patch11 - added LIBM man pages
patch09 - update libmvec: fix build issues by gcc46
patch08 - libmvec: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
Revert "remove unused v from libmvec"
This reverts commit e853d278ee4b7f2a8c2117cc598cfc68b4e3f29b.
fix system-library-math.mf
update libm manifests
14071:dece9aafe99a - fix build problems on sparc
remove unused v from libmvec
fix for patch09 - use __GNU_UNUSED
patch12 - math.h: Align things with GCC
patch11 - added LIBM man pages
patch09 - update libmvec: fix build issues by gcc46
patch08 - libmvec: fixed compilation issues after updates
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 #include <sys/isa_defs.h>
31 #include <sys/ccompile.h>

33 #ifdef _LITTLE_ENDIAN
34 #define HI(x) *(1+(int*)x)
35 #define LO(x) *(unsigned*)x
36 #else
37 #define HI(x) *(int*)x
38 #define LO(x) *(1+(unsigned*)x)

new/usr/src/lib/libmvec/common/__vsincos.c 2

39 #endif

41 #ifdef __RESTRICT
42 #define restrict _Restrict
43 #else
44 #define restrict
45 #endif

47 /*
48 * vsincos.c
49 *
50 * Vector sine and cosine function. Just slight modifications to vcos.c.
51 */

53 extern const double __vlibm_TBL_sincos_hi[], __vlibm_TBL_sincos_lo[];

55 static const double
56 half[2] = { 0.5, -0.5 },
57 one = 1.0,
58 invpio2 = 0.636619772367581343075535, /* 53 bits of pi/2 */
59 pio2_1 = 1.570796326734125614166, /* first 33 bits of pi/2 */
60 pio2_2 = 6.077100506303965976596e-11, /* second 33 bits of pi/2 */
61 pio2_3 = 2.022266248711166455796e-21, /* third 33 bits of pi/2 */
62 pio2_3t = 8.478427660368899643959e-32, /* pi/2 - pio2_3 */
63 pp1 = -1.666666666605760465276263943134982554676e-0001,
64 pp2 = 8.333261209690963126718376566146180944442e-0003,
65 qq1 = -4.999999999977710986407023955908711557870e-0001,
66 qq2 = 4.166654863857219350645055881018842089580e-0002,
67 poly1[2]= { -1.666666666666629669805215138920301589656e-0001,
68 -4.999999999999931701464060878888294524481e-0001
69 poly2[2]= { 8.333333332390951295683993455280336376663e-0003,
70 4.166666666394861917535640593963708222319e-0002
71 poly3[2]= { -1.984126237997976692791551778230098403960e-0004,
72 -1.388888552656142867832756687736851681462e-0003
73 poly4[2]= { 2.753403624854277237649987622848330351110e-0006,
74 2.478519423681460796618128289454530524759e-0005

76 /* Don’t __ the following; acomp will handle it */
77 extern double fabs(double);
78 extern void __vlibm_vsincos_big(int, double *, int, double *, int, double *, in

80 /*
81 * y[i*stridey] := sin(x[i*stridex]), for i = 0..n.
82 * c[i*stridec] := cos(x[i*stridex]), for i = 0..n.
83 *
84 * Calls __vlibm_vsincos_big to handle all elts which have abs >~ 1.647e+06.
85 * Argument reduction is done here for elts pi/4 < arg < 1.647e+06.
86 *
87 * elts < 2^-27 use the approximation 1.0 ~ cos(x).
88 */
89 void
90 __vsincos(int n, double * restrict x, int stridex,
91 double * restrict y, int stridey,
92 double * restrict c, int stridec)
93 {
94 double x0_or_one[4], x1_or_one[4], x2_or_one[4];
95 double y0_or_zero[4], y1_or_zero[4], y2_or_zero[4];
96 double x0, x1, x2,
97 *py0, *py1, *py2,
98 *pc0, *pc1, *pc2,
99 *xsave, *ysave, *csave;
100 unsigned hx0, hx1, hx2, xsb0, xsb1, xsb2;
101 int i, biguns, nsave, sxsave, sysave, scsave;
102 volatile int v __GNU_UNUSED;
103 nsave = n;
104 xsave = x;

new/usr/src/lib/libmvec/common/__vsincos.c 3

105 sxsave = stridex;
106 ysave = y;
107 sysave = stridey;
108 csave = c;
109 scsave = stridec;
110 biguns = 0;

112 do /* MAIN LOOP */
113 {

115 /* Gotos here so _break_ exits MAIN LOOP. */
116 LOOP0: /* Find first arg in right range. */
117 xsb0 = HI(x); /* get most significant word */
118 hx0 = xsb0 & ~0x80000000; /* mask off sign bit */
119 if (hx0 > 0x3fe921fb) {
120 /* Too big: arg reduction needed, so leave for second pa
121 biguns = 1;
122 x += stridex;
123 y += stridey;
124 c += stridec;
125 i = 0;
126 if (--n <= 0)
127 break;
128 goto LOOP0;
129 }
130 if (hx0 < 0x3e400000) {
131 /* Too small. cos x ~ 1, sin x ~ x. */
132 v = *x;
133 *c = 1.0;
134 *y = *x;
135 x += stridex;
136 y += stridey;
137 c += stridec;
138 i = 0;
139 if (--n <= 0)
140 break;
141 goto LOOP0;
142 }
143 x0 = *x;
144 py0 = y;
145 pc0 = c;
146 x += stridex;
147 y += stridey;
148 c += stridec;
149 i = 1;
150 if (--n <= 0)
151 break;

153 LOOP1: /* Get second arg, same as above. */
154 xsb1 = HI(x);
155 hx1 = xsb1 & ~0x80000000;
156 if (hx1 > 0x3fe921fb)
157 {
158 biguns = 1;
159 x += stridex;
160 y += stridey;
161 c += stridec;
162 i = 1;
163 if (--n <= 0)
164 break;
165 goto LOOP1;
166 }
167 if (hx1 < 0x3e400000)
168 {
169 v = *x;
170 *c = 1.0;

new/usr/src/lib/libmvec/common/__vsincos.c 4

171 *y = *x;
172 x += stridex;
173 y += stridey;
174 c += stridec;
175 i = 1;
176 if (--n <= 0)
177 break;
178 goto LOOP1;
179 }
180 x1 = *x;
181 py1 = y;
182 pc1 = c;
183 x += stridex;
184 y += stridey;
185 c += stridec;
186 i = 2;
187 if (--n <= 0)
188 break;

190 LOOP2: /* Get third arg, same as above. */
191 xsb2 = HI(x);
192 hx2 = xsb2 & ~0x80000000;
193 if (hx2 > 0x3fe921fb)
194 {
195 biguns = 1;
196 x += stridex;
197 y += stridey;
198 c += stridec;
199 i = 2;
200 if (--n <= 0)
201 break;
202 goto LOOP2;
203 }
204 if (hx2 < 0x3e400000)
205 {
206 v = *x;
207 *c = 1.0;
208 *y = *x;
209 x += stridex;
210 y += stridey;
211 c += stridec;
212 i = 2;
213 if (--n <= 0)
214 break;
215 goto LOOP2;
216 }
217 x2 = *x;
218 py2 = y;
219 pc2 = c;

221 /*
222 * 0x3fc40000 = 5/32 ~ 0.15625
223 * Get msb after subtraction. Will be 1 only if
224 * hx0 - 5/32 is negative.
225 */
226 i = (hx2 - 0x3fc40000) >> 31;
227 i |= ((hx1 - 0x3fc40000) >> 30) & 2;
228 i |= ((hx0 - 0x3fc40000) >> 29) & 4;
229 switch (i)
230 {
231 double a1_0, a1_1, a1_2, a2_0, a2_1, a2_2;
232 double w0, w1, w2;
233 double t0, t1, t2, t1_0, t1_1, t1_2, t2_0, t2_1
234 double z0, z1, z2;
235 unsigned j0, j1, j2;

new/usr/src/lib/libmvec/common/__vsincos.c 5

237 case 0: /* All are > 5/32 */
238 j0 = (xsb0 + 0x4000) & 0xffff8000;
239 j1 = (xsb1 + 0x4000) & 0xffff8000;
240 j2 = (xsb2 + 0x4000) & 0xffff8000;

242 HI(&t0) = j0;
243 HI(&t1) = j1;
244 HI(&t2) = j2;
245 LO(&t0) = 0;
246 LO(&t1) = 0;
247 LO(&t2) = 0;

249 x0 -= t0;
250 x1 -= t1;
251 x2 -= t2;

253 z0 = x0 * x0;
254 z1 = x1 * x1;
255 z2 = x2 * x2;

257 t0 = z0 * (qq1 + z0 * qq2);
258 t1 = z1 * (qq1 + z1 * qq2);
259 t2 = z2 * (qq1 + z2 * qq2);

261 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
262 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
263 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));

265 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
266 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
267 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~

269 xsb0 = (xsb0 >> 30) & 2;
270 xsb1 = (xsb1 >> 30) & 2;
271 xsb2 = (xsb2 >> 30) & 2;

273 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */
274 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];
275 a1_2 = __vlibm_TBL_sincos_hi[j2+xsb2];

277 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
278 a2_1 = __vlibm_TBL_sincos_hi[j1+1];
279 a2_2 = __vlibm_TBL_sincos_hi[j2+1];
280 /* cos_lo(t) */
281 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0
282 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 - a2_1*t1
283 t2_2 = __vlibm_TBL_sincos_lo[j2+1] - (a1_2*w2 - a2_2*t2

285 *pc0 = a2_0 + t2_0;
286 *pc1 = a2_1 + t2_1;
287 *pc2 = a2_2 + t2_2;

289 t1_0 = a2_0*w0 + a1_0*t0;
290 t1_1 = a2_1*w1 + a1_1*t1;
291 t1_2 = a2_2*w2 + a1_2*t2;

293 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
294 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
295 t1_2 += __vlibm_TBL_sincos_lo[j2+xsb2];

297 *py0 = a1_0 + t1_0;
298 *py1 = a1_1 + t1_1;
299 *py2 = a1_2 + t1_2;

301 break;

new/usr/src/lib/libmvec/common/__vsincos.c 6

303 case 1:
304 j0 = (xsb0 + 0x4000) & 0xffff8000;
305 j1 = (xsb1 + 0x4000) & 0xffff8000;
306 HI(&t0) = j0;
307 HI(&t1) = j1;
308 LO(&t0) = 0;
309 LO(&t1) = 0;
310 x0 -= t0;
311 x1 -= t1;
312 z0 = x0 * x0;
313 z1 = x1 * x1;
314 z2 = x2 * x2;
315 t0 = z0 * (qq1 + z0 * qq2);
316 t1 = z1 * (qq1 + z1 * qq2);
317 t2 = z2 * (poly3[1] + z2 * poly4[1]);
318 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
319 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
320 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
321 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
322 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
323 xsb0 = (xsb0 >> 30) & 2;
324 xsb1 = (xsb1 >> 30) & 2;

326 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */
327 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];

329 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
330 a2_1 = __vlibm_TBL_sincos_hi[j1+1];
331 /* cos_lo(t) */
332 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0
333 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 - a2_1*t1

335 *pc0 = a2_0 + t2_0;
336 *pc1 = a2_1 + t2_1;
337 *pc2 = one + t2;

339 t1_0 = a2_0*w0 + a1_0*t0;
340 t1_1 = a2_1*w1 + a1_1*t1;
341 t2 = z2 * (poly3[0] + z2 * poly4[0]);

343 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
344 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
345 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));

347 *py0 = a1_0 + t1_0;
348 *py1 = a1_1 + t1_1;
349 t2 = x2 + x2 * t2;
350 *py2 = t2;

352 break;

354 case 2:
355 j0 = (xsb0 + 0x4000) & 0xffff8000;
356 j2 = (xsb2 + 0x4000) & 0xffff8000;
357 HI(&t0) = j0;
358 HI(&t2) = j2;
359 LO(&t0) = 0;
360 LO(&t2) = 0;
361 x0 -= t0;
362 x2 -= t2;
363 z0 = x0 * x0;
364 z1 = x1 * x1;
365 z2 = x2 * x2;
366 t0 = z0 * (qq1 + z0 * qq2);
367 t1 = z1 * (poly3[1] + z1 * poly4[1]);
368 t2 = z2 * (qq1 + z2 * qq2);

new/usr/src/lib/libmvec/common/__vsincos.c 7

369 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
370 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
371 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
372 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
373 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
374 xsb0 = (xsb0 >> 30) & 2;
375 xsb2 = (xsb2 >> 30) & 2;

377 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */
378 a1_2 = __vlibm_TBL_sincos_hi[j2+xsb2];

380 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
381 a2_2 = __vlibm_TBL_sincos_hi[j2+1];
382 /* cos_lo(t) */
383 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0
384 t2_2 = __vlibm_TBL_sincos_lo[j2+1] - (a1_2*w2 - a2_2*t2

386 *pc0 = a2_0 + t2_0;
387 *pc1 = one + t1;
388 *pc2 = a2_2 + t2_2;

390 t1_0 = a2_0*w0 + a1_0*t0;
391 t1 = z1 * (poly3[0] + z1 * poly4[0]);
392 t1_2 = a2_2*w2 + a1_2*t2;

394 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
395 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
396 t1_2 += __vlibm_TBL_sincos_lo[j2+xsb2];

398 *py0 = a1_0 + t1_0;
399 t1 = x1 + x1 * t1;
400 *py1 = t1;
401 *py2 = a1_2 + t1_2;

403 break;

405 case 3:
406 j0 = (xsb0 + 0x4000) & 0xffff8000;
407 HI(&t0) = j0;
408 LO(&t0) = 0;
409 x0 -= t0;
410 z0 = x0 * x0;
411 z1 = x1 * x1;
412 z2 = x2 * x2;
413 t0 = z0 * (qq1 + z0 * qq2);
414 t1 = z1 * (poly3[1] + z1 * poly4[1]);
415 t2 = z2 * (poly3[1] + z2 * poly4[1]);
416 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
417 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
418 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
419 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
420 xsb0 = (xsb0 >> 30) & 2;
421 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */

423 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */

425 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0

427 *pc0 = a2_0 + t2_0;
428 *pc1 = one + t1;
429 *pc2 = one + t2;

431 t1_0 = a2_0*w0 + a1_0*t0;
432 t1 = z1 * (poly3[0] + z1 * poly4[0]);
433 t2 = z2 * (poly3[0] + z2 * poly4[0]);

new/usr/src/lib/libmvec/common/__vsincos.c 8

435 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
436 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
437 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));

439 *py0 = a1_0 + t1_0;
440 t1 = x1 + x1 * t1;
441 *py1 = t1;
442 t2 = x2 + x2 * t2;
443 *py2 = t2;

445 break;

447 case 4:
448 j1 = (xsb1 + 0x4000) & 0xffff8000;
449 j2 = (xsb2 + 0x4000) & 0xffff8000;
450 HI(&t1) = j1;
451 HI(&t2) = j2;
452 LO(&t1) = 0;
453 LO(&t2) = 0;
454 x1 -= t1;
455 x2 -= t2;
456 z0 = x0 * x0;
457 z1 = x1 * x1;
458 z2 = x2 * x2;
459 t0 = z0 * (poly3[1] + z0 * poly4[1]);
460 t1 = z1 * (qq1 + z1 * qq2);
461 t2 = z2 * (qq1 + z2 * qq2);
462 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
463 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
464 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
465 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
466 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
467 xsb1 = (xsb1 >> 30) & 2;
468 xsb2 = (xsb2 >> 30) & 2;

470 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];
471 a1_2 = __vlibm_TBL_sincos_hi[j2+xsb2];

473 a2_1 = __vlibm_TBL_sincos_hi[j1+1];
474 a2_2 = __vlibm_TBL_sincos_hi[j2+1];
475 /* cos_lo(t) */
476 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 - a2_1*t1
477 t2_2 = __vlibm_TBL_sincos_lo[j2+1] - (a1_2*w2 - a2_2*t2

479 *pc0 = one + t0;
480 *pc1 = a2_1 + t2_1;
481 *pc2 = a2_2 + t2_2;

483 t0 = z0 * (poly3[0] + z0 * poly4[0]);
484 t1_1 = a2_1*w1 + a1_1*t1;
485 t1_2 = a2_2*w2 + a1_2*t2;

487 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
488 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
489 t1_2 += __vlibm_TBL_sincos_lo[j2+xsb2];

491 t0 = x0 + x0 * t0;
492 *py0 = t0;
493 *py1 = a1_1 + t1_1;
494 *py2 = a1_2 + t1_2;

496 break;

498 case 5:
499 j1 = (xsb1 + 0x4000) & 0xffff8000;
500 HI(&t1) = j1;

new/usr/src/lib/libmvec/common/__vsincos.c 9

501 LO(&t1) = 0;
502 x1 -= t1;
503 z0 = x0 * x0;
504 z1 = x1 * x1;
505 z2 = x2 * x2;
506 t0 = z0 * (poly3[1] + z0 * poly4[1]);
507 t1 = z1 * (qq1 + z1 * qq2);
508 t2 = z2 * (poly3[1] + z2 * poly4[1]);
509 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
510 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
511 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
512 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
513 xsb1 = (xsb1 >> 30) & 2;

515 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];

517 a2_1 = __vlibm_TBL_sincos_hi[j1+1];

519 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 - a2_1*t1

521 *pc0 = one + t0;
522 *pc1 = a2_1 + t2_1;
523 *pc2 = one + t2;

525 t0 = z0 * (poly3[0] + z0 * poly4[0]);
526 t1_1 = a2_1*w1 + a1_1*t1;
527 t2 = z2 * (poly3[0] + z2 * poly4[0]);

529 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
530 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
531 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));

533 t0 = x0 + x0 * t0;
534 *py0 = t0;
535 *py1 = a1_1 + t1_1;
536 t2 = x2 + x2 * t2;
537 *py2 = t2;

539 break;

541 case 6:
542 j2 = (xsb2 + 0x4000) & 0xffff8000;
543 HI(&t2) = j2;
544 LO(&t2) = 0;
545 x2 -= t2;
546 z0 = x0 * x0;
547 z1 = x1 * x1;
548 z2 = x2 * x2;
549 t0 = z0 * (poly3[1] + z0 * poly4[1]);
550 t1 = z1 * (poly3[1] + z1 * poly4[1]);
551 t2 = z2 * (qq1 + z2 * qq2);
552 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
553 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
554 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
555 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
556 xsb2 = (xsb2 >> 30) & 2;
557 a1_2 = __vlibm_TBL_sincos_hi[j2+xsb2];

559 a2_2 = __vlibm_TBL_sincos_hi[j2+1];

561 t2_2 = __vlibm_TBL_sincos_lo[j2+1] - (a1_2*w2 - a2_2*t2

563 *pc0 = one + t0;
564 *pc1 = one + t1;
565 *pc2 = a2_2 + t2_2;

new/usr/src/lib/libmvec/common/__vsincos.c 10

567 t0 = z0 * (poly3[0] + z0 * poly4[0]);
568 t1 = z1 * (poly3[0] + z1 * poly4[0]);
569 t1_2 = a2_2*w2 + a1_2*t2;

571 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
572 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
573 t1_2 += __vlibm_TBL_sincos_lo[j2+xsb2];

575 t0 = x0 + x0 * t0;
576 *py0 = t0;
577 t1 = x1 + x1 * t1;
578 *py1 = t1;
579 *py2 = a1_2 + t1_2;

581 break;

583 case 7: /* All are < 5/32 */
584 z0 = x0 * x0;
585 z1 = x1 * x1;
586 z2 = x2 * x2;
587 t0 = z0 * (poly3[1] + z0 * poly4[1]);
588 t1 = z1 * (poly3[1] + z1 * poly4[1]);
589 t2 = z2 * (poly3[1] + z2 * poly4[1]);
590 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
591 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
592 t2 = z2 * (poly1[1] + z2 * (poly2[1] + t2));
593 *pc0 = one + t0;
594 *pc1 = one + t1;
595 *pc2 = one + t2;
596 t0 = z0 * (poly3[0] + z0 * poly4[0]);
597 t1 = z1 * (poly3[0] + z1 * poly4[0]);
598 t2 = z2 * (poly3[0] + z2 * poly4[0]);
599 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
600 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
601 t2 = z2 * (poly1[0] + z2 * (poly2[0] + t2));
602 t0 = x0 + x0 * t0;
603 t1 = x1 + x1 * t1;
604 t2 = x2 + x2 * t2;
605 *py0 = t0;
606 *py1 = t1;
607 *py2 = t2;
608 break;
609 }

611 x += stridex;
612 y += stridey;
613 c += stridec;
614 i = 0;
615 } while (--n > 0); /* END MAIN LOOP */

617 /*
618 * CLEAN UP last 0, 1, or 2 elts.
619 */
620 if (i > 0) /* Clean up elts at tail. i < 3. */
621 {
622 double a1_0, a1_1, a2_0, a2_1;
623 double w0, w1;
624 double t0, t1, t1_0, t1_1, t2_0, t2_1;
625 double z0, z1;
626 unsigned j0, j1;

628 if (i > 1)
629 {
630 if (hx1 < 0x3fc40000)
631 {
632 z1 = x1 * x1;

new/usr/src/lib/libmvec/common/__vsincos.c 11

633 t1 = z1 * (poly3[1] + z1 * poly4[1]);
634 t1 = z1 * (poly1[1] + z1 * (poly2[1] + t1));
635 t1 = one + t1;
636 *pc1 = t1;
637 t1 = z1 * (poly3[0] + z1 * poly4[0]);
638 t1 = z1 * (poly1[0] + z1 * (poly2[0] + t1));
639 t1 = x1 + x1 * t1;
640 *py1 = t1;
641 }
642 else
643 {
644 j1 = (xsb1 + 0x4000) & 0xffff8000;
645 HI(&t1) = j1;
646 LO(&t1) = 0;
647 x1 -= t1;
648 z1 = x1 * x1;
649 t1 = z1 * (qq1 + z1 * qq2);
650 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
651 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
652 xsb1 = (xsb1 >> 30) & 2;
653 a1_1 = __vlibm_TBL_sincos_hi[j1+xsb1];
654 a2_1 = __vlibm_TBL_sincos_hi[j1+1];
655 t2_1 = __vlibm_TBL_sincos_lo[j1+1] - (a1_1*w1 -
656 *pc1 = a2_1 + t2_1;
657 t1_1 = a2_1*w1 + a1_1*t1;
658 t1_1 += __vlibm_TBL_sincos_lo[j1+xsb1];
659 *py1 = a1_1 + t1_1;
660 }
661 }
662 if (hx0 < 0x3fc40000)
663 {
664 z0 = x0 * x0;
665 t0 = z0 * (poly3[1] + z0 * poly4[1]);
666 t0 = z0 * (poly1[1] + z0 * (poly2[1] + t0));
667 t0 = one + t0;
668 *pc0 = t0;
669 t0 = z0 * (poly3[0] + z0 * poly4[0]);
670 t0 = z0 * (poly1[0] + z0 * (poly2[0] + t0));
671 t0 = x0 + x0 * t0;
672 *py0 = t0;
673 }
674 else
675 {
676 j0 = (xsb0 + 0x4000) & 0xffff8000;
677 HI(&t0) = j0;
678 LO(&t0) = 0;
679 x0 -= t0;
680 z0 = x0 * x0;
681 t0 = z0 * (qq1 + z0 * qq2);
682 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
683 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
684 xsb0 = (xsb0 >> 30) & 2;
685 a1_0 = __vlibm_TBL_sincos_hi[j0+xsb0]; /* sin_hi(t) */
686 a2_0 = __vlibm_TBL_sincos_hi[j0+1]; /* cos_hi(t) */
687 t2_0 = __vlibm_TBL_sincos_lo[j0+1] - (a1_0*w0 - a2_0*t0
688 *pc0 = a2_0 + t2_0;
689 t1_0 = a2_0*w0 + a1_0*t0;
690 t1_0 += __vlibm_TBL_sincos_lo[j0+xsb0]; /* sin_lo(t) */
691 *py0 = a1_0 + t1_0;
692 }
693 } /* END CLEAN UP */

695 if (!biguns)
696 return;

698 /*

new/usr/src/lib/libmvec/common/__vsincos.c 12

699 * Take care of BIGUNS.
700 */
701 n = nsave;
702 x = xsave;
703 stridex = sxsave;
704 y = ysave;
705 stridey = sysave;
706 c = csave;
707 stridec = scsave;
708 biguns = 0;

710 x0_or_one[1] = 1.0;
711 x1_or_one[1] = 1.0;
712 x2_or_one[1] = 1.0;
713 x0_or_one[3] = -1.0;
714 x1_or_one[3] = -1.0;
715 x2_or_one[3] = -1.0;
716 y0_or_zero[1] = 0.0;
717 y1_or_zero[1] = 0.0;
718 y2_or_zero[1] = 0.0;
719 y0_or_zero[3] = 0.0;
720 y1_or_zero[3] = 0.0;
721 y2_or_zero[3] = 0.0;

723 do
724 {
725 double fn0, fn1, fn2, a0, a1, a2, w0, w1, w2, y0, y1, y
726 unsigned hx;
727 int n0, n1, n2;

729 /*
730 * Find 3 more to work on: Not already done, not too big.
731 */
732 loop0:
733 hx = HI(x);
734 xsb0 = hx >> 31;
735 hx &= ~0x80000000;
736 if (hx <= 0x3fe921fb) /* Done above. */
737 {
738 x += stridex;
739 y += stridey;
740 c += stridec;
741 i = 0;
742 if (--n <= 0)
743 break;
744 goto loop0;
745 }
746 if (hx > 0x413921fb) /* (1.6471e+06) Too big: leave it. */
747 {
748 if (hx >= 0x7ff00000) /* Inf or NaN */
749 {
750 x0 = *x;
751 *y = x0 - x0;
752 *c = x0 - x0;
753 }
754 else {
755 biguns = 1;
756 }
757 x += stridex;
758 y += stridey;
759 c += stridec;
760 i = 0;
761 if (--n <= 0)
762 break;
763 goto loop0;
764 }

new/usr/src/lib/libmvec/common/__vsincos.c 13

765 x0 = *x;
766 py0 = y;
767 pc0 = c;
768 x += stridex;
769 y += stridey;
770 c += stridec;
771 i = 1;
772 if (--n <= 0)
773 break;

775 loop1:
776 hx = HI(x);
777 xsb1 = hx >> 31;
778 hx &= ~0x80000000;
779 if (hx <= 0x3fe921fb)
780 {
781 x += stridex;
782 y += stridey;
783 c += stridec;
784 i = 1;
785 if (--n <= 0)
786 break;
787 goto loop1;
788 }
789 if (hx > 0x413921fb)
790 {
791 if (hx >= 0x7ff00000)
792 {
793 x1 = *x;
794 *y = x1 - x1;
795 *c = x1 - x1;
796 }
797 else {
798 biguns = 1;
799 }
800 x += stridex;
801 y += stridey;
802 c += stridec;
803 i = 1;
804 if (--n <= 0)
805 break;
806 goto loop1;
807 }
808 x1 = *x;
809 py1 = y;
810 pc1 = c;
811 x += stridex;
812 y += stridey;
813 c += stridec;
814 i = 2;
815 if (--n <= 0)
816 break;

818 loop2:
819 hx = HI(x);
820 xsb2 = hx >> 31;
821 hx &= ~0x80000000;
822 if (hx <= 0x3fe921fb)
823 {
824 x += stridex;
825 y += stridey;
826 c += stridec;
827 i = 2;
828 if (--n <= 0)
829 break;
830 goto loop2;

new/usr/src/lib/libmvec/common/__vsincos.c 14

831 }
832 if (hx > 0x413921fb)
833 {
834 if (hx >= 0x7ff00000)
835 {
836 x2 = *x;
837 *y = x2 - x2;
838 *c = x2 - x2;
839 }
840 else {
841 biguns = 1;
842 }
843 x += stridex;
844 y += stridey;
845 c += stridec;
846 i = 2;
847 if (--n <= 0)
848 break;
849 goto loop2;
850 }
851 x2 = *x;
852 py2 = y;
853 pc2 = c;

855 n0 = (int) (x0 * invpio2 + half[xsb0]);
856 n1 = (int) (x1 * invpio2 + half[xsb1]);
857 n2 = (int) (x2 * invpio2 + half[xsb2]);
858 fn0 = (double) n0;
859 fn1 = (double) n1;
860 fn2 = (double) n2;
861 n0 &= 3;
862 n1 &= 3;
863 n2 &= 3;
864 a0 = x0 - fn0 * pio2_1;
865 a1 = x1 - fn1 * pio2_1;
866 a2 = x2 - fn2 * pio2_1;
867 w0 = fn0 * pio2_2;
868 w1 = fn1 * pio2_2;
869 w2 = fn2 * pio2_2;
870 x0 = a0 - w0;
871 x1 = a1 - w1;
872 x2 = a2 - w2;
873 y0 = (a0 - x0) - w0;
874 y1 = (a1 - x1) - w1;
875 y2 = (a2 - x2) - w2;
876 a0 = x0;
877 a1 = x1;
878 a2 = x2;
879 w0 = fn0 * pio2_3 - y0;
880 w1 = fn1 * pio2_3 - y1;
881 w2 = fn2 * pio2_3 - y2;
882 x0 = a0 - w0;
883 x1 = a1 - w1;
884 x2 = a2 - w2;
885 y0 = (a0 - x0) - w0;
886 y1 = (a1 - x1) - w1;
887 y2 = (a2 - x2) - w2;
888 a0 = x0;
889 a1 = x1;
890 a2 = x2;
891 w0 = fn0 * pio2_3t - y0;
892 w1 = fn1 * pio2_3t - y1;
893 w2 = fn2 * pio2_3t - y2;
894 x0 = a0 - w0;
895 x1 = a1 - w1;
896 x2 = a2 - w2;

new/usr/src/lib/libmvec/common/__vsincos.c 15

897 y0 = (a0 - x0) - w0;
898 y1 = (a1 - x1) - w1;
899 y2 = (a2 - x2) - w2;
900 xsb2 = HI(&x2);
901 i = ((xsb2 & ~0x80000000) - 0x3fc40000) >> 31;
902 xsb1 = HI(&x1);
903 i |= (((xsb1 & ~0x80000000) - 0x3fc40000) >> 30) & 2;
904 xsb0 = HI(&x0);
905 i |= (((xsb0 & ~0x80000000) - 0x3fc40000) >> 29) & 4;
906 switch (i)
907 {
908 double a1_0, a1_1, a1_2, a2_0, a2_1, a2_2;
909 double t0, t1, t2, t1_0, t1_1, t1_2, t2_0, t2_1
910 double z0, z1, z2;
911 unsigned j0, j1, j2;

913 case 0:
914 j0 = (xsb0 + 0x4000) & 0xffff8000;
915 j1 = (xsb1 + 0x4000) & 0xffff8000;
916 j2 = (xsb2 + 0x4000) & 0xffff8000;
917 HI(&t0) = j0;
918 HI(&t1) = j1;
919 HI(&t2) = j2;
920 LO(&t0) = 0;
921 LO(&t1) = 0;
922 LO(&t2) = 0;
923 x0 = (x0 - t0) + y0;
924 x1 = (x1 - t1) + y1;
925 x2 = (x2 - t2) + y2;
926 z0 = x0 * x0;
927 z1 = x1 * x1;
928 z2 = x2 * x2;
929 t0 = z0 * (qq1 + z0 * qq2);
930 t1 = z1 * (qq1 + z1 * qq2);
931 t2 = z2 * (qq1 + z2 * qq2);
932 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
933 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
934 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
935 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
936 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
937 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
938 xsb0 = (xsb0 >> 30) & 2;
939 xsb1 = (xsb1 >> 30) & 2;
940 xsb2 = (xsb2 >> 30) & 2;
941 n0 ^= (xsb0 & ~(n0 << 1));
942 n1 ^= (xsb1 & ~(n1 << 1));
943 n2 ^= (xsb2 & ~(n2 << 1));
944 xsb0 |= 1;
945 xsb1 |= 1;
946 xsb2 |= 1;

948 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
949 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];
950 a1_2 = __vlibm_TBL_sincos_hi[j2+n2];

952 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];
953 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];
954 a2_2 = __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)];

956 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
957 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] - (a1_1*
958 t2_2 = __vlibm_TBL_sincos_lo[j2+((n2+xsb2)&3)] - (a1_2*

960 w0 *= a2_0;
961 w1 *= a2_1;
962 w2 *= a2_2;

new/usr/src/lib/libmvec/common/__vsincos.c 16

964 *pc0 = a2_0 + t2_0;
965 *pc1 = a2_1 + t2_1;
966 *pc2 = a2_2 + t2_2;

968 t1_0 = w0 + a1_0*t0;
969 t1_1 = w1 + a1_1*t1;
970 t1_2 = w2 + a1_2*t2;

972 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
973 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
974 t1_2 += __vlibm_TBL_sincos_lo[j2+n2];

976 *py0 = a1_0 + t1_0;
977 *py1 = a1_1 + t1_1;
978 *py2 = a1_2 + t1_2;

980 break;

982 case 1:
983 j0 = (xsb0 + 0x4000) & 0xffff8000;
984 j1 = (xsb1 + 0x4000) & 0xffff8000;
985 j2 = n2 & 1;
986 HI(&t0) = j0;
987 HI(&t1) = j1;
988 LO(&t0) = 0;
989 LO(&t1) = 0;
990 x2_or_one[0] = x2;
991 x2_or_one[2] = -x2;
992 x0 = (x0 - t0) + y0;
993 x1 = (x1 - t1) + y1;
994 y2_or_zero[0] = y2;
995 y2_or_zero[2] = -y2;
996 z0 = x0 * x0;
997 z1 = x1 * x1;
998 z2 = x2 * x2;
999 t0 = z0 * (qq1 + z0 * qq2);

1000 t1 = z1 * (qq1 + z1 * qq2);
1001 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1002 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1003 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1004 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1005 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1006 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1007 xsb0 = (xsb0 >> 30) & 2;
1008 xsb1 = (xsb1 >> 30) & 2;
1009 n0 ^= (xsb0 & ~(n0 << 1));
1010 n1 ^= (xsb1 & ~(n1 << 1));
1011 xsb0 |= 1;
1012 xsb1 |= 1;
1013 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
1014 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];

1016 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];
1017 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];

1019 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
1020 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] - (a1_1*
1021 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1023 *pc0 = a2_0 + t2_0;
1024 *pc1 = a2_1 + t2_1;
1025 *py2 = t2;

1027 n2 = (n2 + 1) & 3;
1028 j2 = (j2 + 1) & 1;

new/usr/src/lib/libmvec/common/__vsincos.c 17

1029 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);

1031 t1_0 = a2_0*w0 + a1_0*t0;
1032 t1_1 = a2_1*w1 + a1_1*t1;
1033 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));

1035 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
1036 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
1037 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1039 *py0 = a1_0 + t1_0;
1040 *py1 = a1_1 + t1_1;
1041 *pc2 = t2;

1043 break;

1045 case 2:
1046 j0 = (xsb0 + 0x4000) & 0xffff8000;
1047 j1 = n1 & 1;
1048 j2 = (xsb2 + 0x4000) & 0xffff8000;
1049 HI(&t0) = j0;
1050 HI(&t2) = j2;
1051 LO(&t0) = 0;
1052 LO(&t2) = 0;
1053 x1_or_one[0] = x1;
1054 x1_or_one[2] = -x1;
1055 x0 = (x0 - t0) + y0;
1056 y1_or_zero[0] = y1;
1057 y1_or_zero[2] = -y1;
1058 x2 = (x2 - t2) + y2;
1059 z0 = x0 * x0;
1060 z1 = x1 * x1;
1061 z2 = x2 * x2;
1062 t0 = z0 * (qq1 + z0 * qq2);
1063 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1064 t2 = z2 * (qq1 + z2 * qq2);
1065 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1066 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1067 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
1068 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1069 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1070 xsb0 = (xsb0 >> 30) & 2;
1071 xsb2 = (xsb2 >> 30) & 2;
1072 n0 ^= (xsb0 & ~(n0 << 1));
1073 n2 ^= (xsb2 & ~(n2 << 1));
1074 xsb0 |= 1;
1075 xsb2 |= 1;

1077 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
1078 a1_2 = __vlibm_TBL_sincos_hi[j2+n2];

1080 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];
1081 a2_2 = __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)];

1083 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
1084 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1085 t2_2 = __vlibm_TBL_sincos_lo[j2+((n2+xsb2)&3)] - (a1_2*

1087 *pc0 = a2_0 + t2_0;
1088 *py1 = t1;
1089 *pc2 = a2_2 + t2_2;

1091 n1 = (n1 + 1) & 3;
1092 j1 = (j1 + 1) & 1;
1093 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);

new/usr/src/lib/libmvec/common/__vsincos.c 18

1095 t1_0 = a2_0*w0 + a1_0*t0;
1096 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1097 t1_2 = a2_2*w2 + a1_2*t2;

1099 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
1100 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1101 t1_2 += __vlibm_TBL_sincos_lo[j2+n2];

1103 *py0 = a1_0 + t1_0;
1104 *pc1 = t1;
1105 *py2 = a1_2 + t1_2;

1107 break;

1109 case 3:
1110 j0 = (xsb0 + 0x4000) & 0xffff8000;
1111 j1 = n1 & 1;
1112 j2 = n2 & 1;
1113 HI(&t0) = j0;
1114 LO(&t0) = 0;
1115 x1_or_one[0] = x1;
1116 x1_or_one[2] = -x1;
1117 x2_or_one[0] = x2;
1118 x2_or_one[2] = -x2;
1119 x0 = (x0 - t0) + y0;
1120 y1_or_zero[0] = y1;
1121 y1_or_zero[2] = -y1;
1122 y2_or_zero[0] = y2;
1123 y2_or_zero[2] = -y2;
1124 z0 = x0 * x0;
1125 z1 = x1 * x1;
1126 z2 = x2 * x2;
1127 t0 = z0 * (qq1 + z0 * qq2);
1128 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1129 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1130 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1131 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1132 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1133 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1134 xsb0 = (xsb0 >> 30) & 2;
1135 n0 ^= (xsb0 & ~(n0 << 1));
1136 xsb0 |= 1;

1138 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
1139 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];

1141 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
1142 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1143 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1145 *pc0 = a2_0 + t2_0;
1146 *py1 = t1;
1147 *py2 = t2;

1149 n1 = (n1 + 1) & 3;
1150 n2 = (n2 + 1) & 3;
1151 j1 = (j1 + 1) & 1;
1152 j2 = (j2 + 1) & 1;

1154 t1_0 = a2_0*w0 + a1_0*t0;
1155 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1156 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);

1158 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
1159 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1160 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));

new/usr/src/lib/libmvec/common/__vsincos.c 19

1162 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1163 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1165 *py0 = a1_0 + t1_0;
1166 *pc1 = t1;
1167 *pc2 = t2;

1169 break;

1171 case 4:
1172 j0 = n0 & 1;
1173 j1 = (xsb1 + 0x4000) & 0xffff8000;
1174 j2 = (xsb2 + 0x4000) & 0xffff8000;
1175 HI(&t1) = j1;
1176 HI(&t2) = j2;
1177 LO(&t1) = 0;
1178 LO(&t2) = 0;
1179 x0_or_one[0] = x0;
1180 x0_or_one[2] = -x0;
1181 y0_or_zero[0] = y0;
1182 y0_or_zero[2] = -y0;
1183 x1 = (x1 - t1) + y1;
1184 x2 = (x2 - t2) + y2;
1185 z0 = x0 * x0;
1186 z1 = x1 * x1;
1187 z2 = x2 * x2;
1188 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1189 t1 = z1 * (qq1 + z1 * qq2);
1190 t2 = z2 * (qq1 + z2 * qq2);
1191 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1192 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1193 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
1194 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1195 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1196 xsb1 = (xsb1 >> 30) & 2;
1197 xsb2 = (xsb2 >> 30) & 2;
1198 n1 ^= (xsb1 & ~(n1 << 1));
1199 n2 ^= (xsb2 & ~(n2 << 1));
1200 xsb1 |= 1;
1201 xsb2 |= 1;

1203 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];
1204 a1_2 = __vlibm_TBL_sincos_hi[j2+n2];

1206 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];
1207 a2_2 = __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)];

1209 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1210 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] - (a1_1*
1211 t2_2 = __vlibm_TBL_sincos_lo[j2+((n2+xsb2)&3)] - (a1_2*

1213 *py0 = t0;
1214 *pc1 = a2_1 + t2_1;
1215 *pc2 = a2_2 + t2_2;

1217 n0 = (n0 + 1) & 3;
1218 j0 = (j0 + 1) & 1;
1219 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);

1221 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1222 t1_1 = a2_1*w1 + a1_1*t1;
1223 t1_2 = a2_2*w2 + a1_2*t2;

1225 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1226 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];

new/usr/src/lib/libmvec/common/__vsincos.c 20

1227 t1_2 += __vlibm_TBL_sincos_lo[j2+n2];

1229 *py1 = a1_1 + t1_1;
1230 *py2 = a1_2 + t1_2;
1231 *pc0 = t0;

1233 break;

1235 case 5:
1236 j0 = n0 & 1;
1237 j1 = (xsb1 + 0x4000) & 0xffff8000;
1238 j2 = n2 & 1;
1239 HI(&t1) = j1;
1240 LO(&t1) = 0;
1241 x0_or_one[0] = x0;
1242 x0_or_one[2] = -x0;
1243 x2_or_one[0] = x2;
1244 x2_or_one[2] = -x2;
1245 y0_or_zero[0] = y0;
1246 y0_or_zero[2] = -y0;
1247 x1 = (x1 - t1) + y1;
1248 y2_or_zero[0] = y2;
1249 y2_or_zero[2] = -y2;
1250 z0 = x0 * x0;
1251 z1 = x1 * x1;
1252 z2 = x2 * x2;
1253 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1254 t1 = z1 * (qq1 + z1 * qq2);
1255 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1256 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1257 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1258 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1259 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1260 xsb1 = (xsb1 >> 30) & 2;
1261 n1 ^= (xsb1 & ~(n1 << 1));
1262 xsb1 |= 1;

1264 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];
1265 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];

1267 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1268 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] - (a1_1*
1269 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1271 *py0 = t0;
1272 *pc1 = a2_1 + t2_1;
1273 *py2 = t2;

1275 n0 = (n0 + 1) & 3;
1276 n2 = (n2 + 1) & 3;
1277 j0 = (j0 + 1) & 1;
1278 j2 = (j2 + 1) & 1;

1280 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1281 t1_1 = a2_1*w1 + a1_1*t1;
1282 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);

1284 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1285 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
1286 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));

1288 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1289 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *

1291 *pc0 = t0;
1292 *py1 = a1_1 + t1_1;

new/usr/src/lib/libmvec/common/__vsincos.c 21

1293 *pc2 = t2;

1295 break;

1297 case 6:
1298 j0 = n0 & 1;
1299 j1 = n1 & 1;
1300 j2 = (xsb2 + 0x4000) & 0xffff8000;
1301 HI(&t2) = j2;
1302 LO(&t2) = 0;
1303 x0_or_one[0] = x0;
1304 x0_or_one[2] = -x0;
1305 x1_or_one[0] = x1;
1306 x1_or_one[2] = -x1;
1307 y0_or_zero[0] = y0;
1308 y0_or_zero[2] = -y0;
1309 y1_or_zero[0] = y1;
1310 y1_or_zero[2] = -y1;
1311 x2 = (x2 - t2) + y2;
1312 z0 = x0 * x0;
1313 z1 = x1 * x1;
1314 z2 = x2 * x2;
1315 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1316 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1317 t2 = z2 * (qq1 + z2 * qq2);
1318 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1319 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1320 w2 = x2 * (one + z2 * (pp1 + z2 * pp2));
1321 j2 = (((j2 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1322 xsb2 = (xsb2 >> 30) & 2;
1323 n2 ^= (xsb2 & ~(n2 << 1));
1324 xsb2 |= 1;

1326 a1_2 = __vlibm_TBL_sincos_hi[j2+n2];
1327 a2_2 = __vlibm_TBL_sincos_hi[j2+((n2+xsb2)&3)];

1329 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1330 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1331 t2_2 = __vlibm_TBL_sincos_lo[j2+((n2+xsb2)&3)] - (a1_2*

1333 *py0 = t0;
1334 *py1 = t1;
1335 *pc2 = a2_2 + t2_2;

1337 n0 = (n0 + 1) & 3;
1338 n1 = (n1 + 1) & 3;
1339 j0 = (j0 + 1) & 1;
1340 j1 = (j1 + 1) & 1;

1342 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1343 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1344 t1_2 = a2_2*w2 + a1_2*t2;

1346 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1347 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1348 t1_2 += __vlibm_TBL_sincos_lo[j2+n2];

1350 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1351 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *

1353 *pc0 = t0;
1354 *pc1 = t1;
1355 *py2 = a1_2 + t1_2;

1357 break;

new/usr/src/lib/libmvec/common/__vsincos.c 22

1359 case 7:
1360 j0 = n0 & 1;
1361 j1 = n1 & 1;
1362 j2 = n2 & 1;
1363 x0_or_one[0] = x0;
1364 x0_or_one[2] = -x0;
1365 x1_or_one[0] = x1;
1366 x1_or_one[2] = -x1;
1367 x2_or_one[0] = x2;
1368 x2_or_one[2] = -x2;
1369 y0_or_zero[0] = y0;
1370 y0_or_zero[2] = -y0;
1371 y1_or_zero[0] = y1;
1372 y1_or_zero[2] = -y1;
1373 y2_or_zero[0] = y2;
1374 y2_or_zero[2] = -y2;
1375 z0 = x0 * x0;
1376 z1 = x1 * x1;
1377 z2 = x2 * x2;
1378 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1379 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1380 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1381 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1382 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1383 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1384 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1385 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1386 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
1387 *py0 = t0;
1388 *py1 = t1;
1389 *py2 = t2;

1391 n0 = (n0 + 1) & 3;
1392 n1 = (n1 + 1) & 3;
1393 n2 = (n2 + 1) & 3;
1394 j0 = (j0 + 1) & 1;
1395 j1 = (j1 + 1) & 1;
1396 j2 = (j2 + 1) & 1;
1397 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1398 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1399 t2 = z2 * (poly3[j2] + z2 * poly4[j2]);
1400 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1401 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1));
1402 t2 = z2 * (poly1[j2] + z2 * (poly2[j2] + t2));
1403 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1404 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_one[n1] *
1405 t2 = x2_or_one[n2] + (y2_or_zero[n2] + x2_or_one[n2] *
1406 *pc0 = t0;
1407 *pc1 = t1;
1408 *pc2 = t2;
1409 break;
1410 }

1412 x += stridex;
1413 y += stridey;
1414 c += stridec;
1415 i = 0;
1416 } while (--n > 0);

1418 if (i > 0)
1419 {
1420 double a1_0, a1_1, a2_0, a2_1;
1421 double t0, t1, t1_0, t1_1, t2_0, t2_1;
1422 double fn0, fn1, a0, a1, w0, w1, y0, y1;
1423 double z0, z1;
1424 unsigned j0, j1;

new/usr/src/lib/libmvec/common/__vsincos.c 23

1425 int n0, n1;

1427 if (i > 1)
1428 {
1429 n1 = (int) (x1 * invpio2 + half[xsb1]);
1430 fn1 = (double) n1;
1431 n1 &= 3;
1432 a1 = x1 - fn1 * pio2_1;
1433 w1 = fn1 * pio2_2;
1434 x1 = a1 - w1;
1435 y1 = (a1 - x1) - w1;
1436 a1 = x1;
1437 w1 = fn1 * pio2_3 - y1;
1438 x1 = a1 - w1;
1439 y1 = (a1 - x1) - w1;
1440 a1 = x1;
1441 w1 = fn1 * pio2_3t - y1;
1442 x1 = a1 - w1;
1443 y1 = (a1 - x1) - w1;
1444 xsb1 = HI(&x1);
1445 if ((xsb1 & ~0x80000000) < 0x3fc40000)
1446 {
1447 j1 = n1 & 1;
1448 x1_or_one[0] = x1;
1449 x1_or_one[2] = -x1;
1450 y1_or_zero[0] = y1;
1451 y1_or_zero[2] = -y1;
1452 z1 = x1 * x1;
1453 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1454 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1)
1455 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_on
1456 *py1 = t1;
1457 n1 = (n1 + 1) & 3;
1458 j1 = (j1 + 1) & 1;
1459 t1 = z1 * (poly3[j1] + z1 * poly4[j1]);
1460 t1 = z1 * (poly1[j1] + z1 * (poly2[j1] + t1)
1461 t1 = x1_or_one[n1] + (y1_or_zero[n1] + x1_or_on
1462 *pc1 = t1;
1463 }
1464 else
1465 {
1466 j1 = (xsb1 + 0x4000) & 0xffff8000;
1467 HI(&t1) = j1;
1468 LO(&t1) = 0;
1469 x1 = (x1 - t1) + y1;
1470 z1 = x1 * x1;
1471 t1 = z1 * (qq1 + z1 * qq2);
1472 w1 = x1 * (one + z1 * (pp1 + z1 * pp2));
1473 j1 = (((j1 & ~0x80000000) - 0x3fc40000) >>
1474 xsb1 = (xsb1 >> 30) & 2;
1475 n1 ^= (xsb1 & ~(n1 << 1));
1476 xsb1 |= 1;
1477 a1_1 = __vlibm_TBL_sincos_hi[j1+n1];
1478 a2_1 = __vlibm_TBL_sincos_hi[j1+((n1+xsb1)&3)];
1479 t2_1 = __vlibm_TBL_sincos_lo[j1+((n1+xsb1)&3)] -
1480 *pc1 = a2_1 + t2_1;
1481 t1_1 = a2_1*w1 + a1_1*t1;
1482 t1_1 += __vlibm_TBL_sincos_lo[j1+n1];
1483 *py1 = a1_1 + t1_1;
1484 }
1485 }
1486 n0 = (int) (x0 * invpio2 + half[xsb0]);
1487 fn0 = (double) n0;
1488 n0 &= 3;
1489 a0 = x0 - fn0 * pio2_1;
1490 w0 = fn0 * pio2_2;

new/usr/src/lib/libmvec/common/__vsincos.c 24

1491 x0 = a0 - w0;
1492 y0 = (a0 - x0) - w0;
1493 a0 = x0;
1494 w0 = fn0 * pio2_3 - y0;
1495 x0 = a0 - w0;
1496 y0 = (a0 - x0) - w0;
1497 a0 = x0;
1498 w0 = fn0 * pio2_3t - y0;
1499 x0 = a0 - w0;
1500 y0 = (a0 - x0) - w0;
1501 xsb0 = HI(&x0);
1502 if ((xsb0 & ~0x80000000) < 0x3fc40000)
1503 {
1504 j0 = n0 & 1;
1505 x0_or_one[0] = x0;
1506 x0_or_one[2] = -x0;
1507 y0_or_zero[0] = y0;
1508 y0_or_zero[2] = -y0;
1509 z0 = x0 * x0;
1510 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1511 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1512 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1513 *py0 = t0;
1514 n0 = (n0 + 1) & 3;
1515 j0 = (j0 + 1) & 1;
1516 t0 = z0 * (poly3[j0] + z0 * poly4[j0]);
1517 t0 = z0 * (poly1[j0] + z0 * (poly2[j0] + t0));
1518 t0 = x0_or_one[n0] + (y0_or_zero[n0] + x0_or_one[n0] *
1519 *pc0 = t0;
1520 }
1521 else
1522 {
1523 j0 = (xsb0 + 0x4000) & 0xffff8000;
1524 HI(&t0) = j0;
1525 LO(&t0) = 0;
1526 x0 = (x0 - t0) + y0;
1527 z0 = x0 * x0;
1528 t0 = z0 * (qq1 + z0 * qq2);
1529 w0 = x0 * (one + z0 * (pp1 + z0 * pp2));
1530 j0 = (((j0 & ~0x80000000) - 0x3fc40000) >> 13) & ~
1531 xsb0 = (xsb0 >> 30) & 2;
1532 n0 ^= (xsb0 & ~(n0 << 1));
1533 xsb0 |= 1;
1534 a1_0 = __vlibm_TBL_sincos_hi[j0+n0];
1535 a2_0 = __vlibm_TBL_sincos_hi[j0+((n0+xsb0)&3)];
1536 t2_0 = __vlibm_TBL_sincos_lo[j0+((n0+xsb0)&3)] - (a1_0*
1537 *pc0 = a2_0 + t2_0;
1538 t1_0 = a2_0*w0 + a1_0*t0;
1539 t1_0 += __vlibm_TBL_sincos_lo[j0+n0];
1540 *py0 = a1_0 + t1_0;
1541 }
1542 }

1544 if (biguns) {
1545 __vlibm_vsincos_big(nsave, xsave, sxsave, ysave, sysave, csave,
1546 }
1547 }

new/usr/src/tools/cw/cw.c 1

**
 45820 Thu Oct 9 19:48:55 2014
new/usr/src/tools/cw/cw.c
rollback tools/cw/cw.c
patch01 - 693 import Sun Devpro Math Library
rollback tools/cw/cw.c
patch01 - 693 import Sun Devpro Math Library
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011, Richard Lowe.
24 */
25 /*
26 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */

30 /*
31 * Wrapper for the GNU C compiler to make it accept the Sun C compiler
32 * arguments where possible.
33 *
34 * Since the translation is inexact, this is something of a work-in-progress.
35 *
36 */

38 /* If you modify this file, you must increment CW_VERSION */
39 #define CW_VERSION "1.30"
36 #define CW_VERSION "1.29"

41 /*
42 * -# Verbose mode
43 * -### Show compiler commands built by driver, no compilation
44 * -A<name[(tokens)]> Preprocessor predicate assertion
45 * -B<[static|dynamic]> Specify dynamic or static binding
46 * -C Prevent preprocessor from removing comments
47 * -c Compile only - produce .o files, suppress linking
48 * -cg92 Alias for -xtarget=ss1000
49 * -D<name[=token]> Associate name with token as if by #define
50 * -d[y|n] dynamic [-dy] or static [-dn] option to linker
51 * -E Compile source through preprocessor only, output to stdout
52 * -erroff=<t> Suppress warnings specified by tags t(%none, %all, <tag list>)
53 * -errtags=<a> Display messages with tags a(no, yes)
54 * -errwarn=<t> Treats warnings specified by tags t(%none, %all, <tag list>)
55 * as errors
56 * -fast Optimize using a selection of options
57 * -fd Report old-style function definitions and declarations

new/usr/src/tools/cw/cw.c 2

58 * -features=zla Allow zero-length arrays
59 * -flags Show this summary of compiler options
60 * -fnonstd Initialize floating-point hardware to non-standard preferences
61 * -fns[=<yes|no>] Select non-standard floating point mode
62 * -fprecision=<p> Set FP rounding precision mode p(single, double, extended)
63 * -fround=<r> Select the IEEE rounding mode in effect at startup
64 * -fsimple[=<n>] Select floating-point optimization preferences <n>
65 * -fsingle Use single-precision arithmetic (-Xt and -Xs modes only)
66 * -ftrap=<t> Select floating-point trapping mode in effect at startup
67 * -fstore force floating pt. values to target precision on assignment
68 * -G Build a dynamic shared library
69 * -g Compile for debugging
70 * -H Print path name of each file included during compilation
71 * -h <name> Assign <name> to generated dynamic shared library
72 * -I<dir> Add <dir> to preprocessor #include file search path
73 * -i Passed to linker to ignore any LD_LIBRARY_PATH setting
74 * -keeptmp Keep temporary files created during compilation
75 * -KPIC Compile position independent code with 32-bit addresses
76 * -Kpic Compile position independent code
77 * -L<dir> Pass to linker to add <dir> to the library search path
78 * -l<name> Link with library lib<name>.a or lib<name>.so
79 * -mc Remove duplicate strings from .comment section of output files
80 * -mr Remove all strings from .comment section of output files
81 * -mr,"string" Remove all strings and append "string" to .comment section
82 * -mt Specify options needed when compiling multi-threaded code
83 * -native Find available processor, generate code accordingly
84 * -nofstore Do not force floating pt. values to target precision
85 * on assignment
86 * -nolib Same as -xnolib
87 * -noqueue Disable queuing of compiler license requests
88 * -norunpath Do not build in a runtime path for shared libraries
89 * -O Use default optimization level (-xO2 or -xO3. Check man page.)
90 * -o <outputfile> Set name of output file to <outputfile>
91 * -P Compile source through preprocessor only, output to .i file
92 * -PIC Alias for -KPIC or -xcode=pic32
93 * -p Compile for profiling with prof
94 * -pic Alias for -Kpic or -xcode=pic13
95 * -Q[y|n] Emit/don’t emit identification info to output file
96 * -qp Compile for profiling with prof
97 * -R<dir[:dir]> Build runtime search path list into executable
98 * -S Compile and only generate assembly code (.s)
99 * -s Strip symbol table from the executable file
100 * -t Turn off duplicate symbol warnings when linking
101 * -U<name> Delete initial definition of preprocessor symbol <name>
102 * -V Report version number of each compilation phase
103 * -v Do stricter semantic checking
104 * -W<c>,<arg> Pass <arg> to specified component <c> (a,l,m,p,0,2,h,i,u)
105 * -w Suppress compiler warning messages
106 * -Xa Compile assuming ANSI C conformance, allow K & R extensions
107 * (default mode)
108 * -Xc Compile assuming strict ANSI C conformance
109 * -Xs Compile assuming (pre-ANSI) K & R C style code
110 * -Xt Compile assuming K & R conformance, allow ANSI C
111 * -x386 Generate code for the 80386 processor
112 * -x486 Generate code for the 80486 processor
113 * -xarch=<a> Specify target architecture instruction set
114 * -xbuiltin[=] When profitable inline, or substitute intrinisic functions
115 * for system functions, b={%all,%none}
116 * -xCC Accept C++ style comments
117 * -xchar_byte_order=<o> Specify multi-char byte order <o> (default, high, low)
118 * -xchip=<c> Specify the target processor for use by the optimizer
119 * -xcode=<c> Generate different code for forming addresses
120 * -xcrossfile[=<n>] Enable optimization and inlining across source files,
121 * n={0|1}
122 * -xe Perform only syntax/semantic checking, no code generation
123 * -xF Compile for later mapfile reordering or unused section

new/usr/src/tools/cw/cw.c 3

124 * elimination
125 * -xhelp=<f> Display on-line help information f(flags, readme, errors)
126 * -xildoff Cancel -xildon
127 * -xildon Enable use of the incremental linker, ild
128 * -xinline=[<a>,...,<a>] Attempt inlining of specified user routines,
129 * <a>={%auto,func,no%func}
130 * -xlibmieee Force IEEE 754 return values for math routines in
131 * exceptional cases
132 * -xlibmil Inline selected libm math routines for optimization
133 * -xlic_lib=sunperf Link in the Sun supplied performance libraries
134 * -xlicinfo Show license server information
135 * -xM Generate makefile dependencies
136 * -xM1 Generate makefile dependencies, but exclude /usr/include
137 * -xmaxopt=[off,1,2,3,4,5] maximum optimization level allowed on #pragma opt
138 * -xnolib Do not link with default system libraries
139 * -xnolibmil Cancel -xlibmil on command line
140 * -xO<n> Generate optimized code (n={1|2|3|4|5})
141 * -xP Print prototypes for function definitions
142 * -xpentium Generate code for the pentium processor
143 * -xpg Compile for profiling with gprof
144 * -xprofile=<p> Collect data for a profile or use a profile to optimize
145 * <p>={{collect,use}[:<path>],tcov}
146 * -xregs=<r> Control register allocation
147 * -xs Allow debugging without object (.o) files
148 * -xsb Compile for use with the WorkShop source browser
149 * -xsbfast Generate only WorkShop source browser info, no compilation
150 * -xsfpconst Represent unsuffixed floating point constants as single
151 * precision
152 * -xspace Do not do optimizations that increase code size
153 * -xstrconst Place string literals into read-only data segment
154 * -xtarget=<t> Specify target system for optimization
155 * -xtemp=<dir> Set directory for temporary files to <dir>
156 * -xtime Report the execution time for each compilation phase
157 * -xtransition Emit warnings for differences between K&R C and ANSI C
158 * -xtrigraphs[=<yes|no>] Enable|disable trigraph translation
159 * -xunroll=n Enable unrolling loops n times where possible
160 * -Y<c>,<dir> Specify <dir> for location of component <c> (a,l,m,p,0,h,i,u)
161 * -YA,<dir> Change default directory searched for components
162 * -YI,<dir> Change default directory searched for include files
163 * -YP,<dir> Change default directory for finding libraries files
164 * -YS,<dir> Change default directory for startup object files
165 */

167 /*
168 * Translation table:
169 */
170 /*
171 * -# -v
172 * -### error
173 * -A<name[(tokens)]> pass-thru
174 * -B<[static|dynamic]> pass-thru (syntax error for anything else)
175 * -C pass-thru
176 * -c pass-thru
177 * -cg92 -m32 -mcpu=v8 -mtune=supersparc (SPARC only)
178 * -D<name[=token]> pass-thru
179 * -dy or -dn -Wl,-dy or -Wl,-dn
180 * -E pass-thru
181 * -erroff=E_EMPTY_TRANSLATION_UNIT ignore
182 * -errtags=%all -Wall
183 * -errwarn=%all -Werror else -Wno-error
184 * -fast error
185 * -fd error
186 * -features=zla ignore
187 * -flags --help
188 * -fnonstd error
189 * -fns[=<yes|no>] error

new/usr/src/tools/cw/cw.c 4

190 * -fprecision=<p> error
191 * -fround=<r> error
192 * -fsimple[=<n>] error
193 * -fsingle[=<n>] error
194 * -ftrap=<t> error
195 * -fstore error
196 * -G pass-thru
197 * -g pass-thru
198 * -H pass-thru
199 * -h <name> pass-thru
200 * -I<dir> pass-thru
201 * -i pass-thru
202 * -keeptmp -save-temps
203 * -KPIC -fPIC
204 * -Kpic -fpic
205 * -L<dir> pass-thru
206 * -l<name> pass-thru
207 * -mc error
208 * -mr error
209 * -mr,"string" error
210 * -mt -D_REENTRANT
211 * -native error
212 * -nofstore error
213 * -nolib -nodefaultlibs
214 * -noqueue ignore
215 * -norunpath ignore
216 * -O -O1 (Check the man page to be certain)
217 * -o <outputfile> pass-thru
218 * -P -E -o filename.i (or error)
219 * -PIC -fPIC (C++ only)
220 * -p pass-thru
221 * -pic -fpic (C++ only)
222 * -Q[y|n] error
223 * -qp -p
224 * -R<dir[:dir]> pass-thru
225 * -S pass-thru
226 * -s -Wl,-s
227 * -t -Wl,-t
228 * -U<name> pass-thru
229 * -V --version
230 * -v -Wall
231 * -Wa,<arg> pass-thru
232 * -Wp,<arg> pass-thru except -xc99=<a>
233 * -Wl,<arg> pass-thru
234 * -W{m,0,2,h,i,u> error/ignore
235 * -Wu,-xmodel=kernel -ffreestanding -mcmodel=kernel -mno-red-zone
236 * -xmodel=kernel -ffreestanding -mcmodel=kernel -mno-red-zone
237 * -Wu,-save_args -msave-args
238 * -w pass-thru
239 * -Xa -std=iso9899:199409 or -ansi
240 * -Xc -ansi -pedantic
241 * -Xt error
242 * -Xs -traditional -std=c89
243 * -x386 -march=i386 (x86 only)
244 * -x486 -march=i486 (x86 only)
245 * -xarch=<a> table
246 * -xbuiltin[=] -fbuiltin (-fno-builtin otherwise)
247 * -xCC ignore
248 * -xchar_byte_order=<o> error
249 * -xchip=<c> table
250 * -xcode=<c> table
251 * -xdebugformat=<format> ignore (always use dwarf-2 for gcc)
252 * -xcrossfile[=<n>] ignore
253 * -xe error
254 * -xF error
255 * -xhelp=<f> error

new/usr/src/tools/cw/cw.c 5

256 * -xildoff ignore
257 * -xildon ignore
258 * -xinline ignore
259 * -xlibmieee error
260 * -xlibmil error
261 * -xlic_lib=sunperf error
262 * -xM -M
263 * -xM1 -MM
264 * -xmaxopt=[...] error
265 * -xnolib -nodefaultlibs
266 * -xnolibmil error
267 * -xO<n> -O<n>
268 * -xP error
269 * -xpentium -march=pentium (x86 only)
270 * -xpg error
271 * -xprofile=<p> error
272 * -xregs=<r> table
273 * -xs error
274 * -xsb error
275 * -xsbfast error
276 * -xsfpconst error
277 * -xspace ignore (-not -Os)
278 * -xstrconst ignore
279 * -xtarget=<t> table
280 * -xtemp=<dir> error
281 * -xtime error
282 * -xtransition -Wtransition
283 * -xtrigraphs=<yes|no> -trigraphs -notrigraphs
284 * -xunroll=n error
285 * -W0,-xdbggen=no%usedonly -fno-eliminate-unused-debug-symbols
286 * -fno-eliminate-unused-debug-types
287 * -Y<c>,<dir> error
288 * -YA,<dir> error
289 * -YI,<dir> -nostdinc -I<dir>
290 * -YP,<dir> error
291 * -YS,<dir> error
292 */

294 #include <stdio.h>
295 #include <sys/types.h>
296 #include <unistd.h>
297 #include <string.h>
298 #include <stdlib.h>
299 #include <ctype.h>
300 #include <fcntl.h>
301 #include <errno.h>
302 #include <stdarg.h>
303 #include <sys/utsname.h>
304 #include <sys/param.h>
305 #include <sys/isa_defs.h>
306 #include <sys/wait.h>
307 #include <sys/stat.h>

309 #define CW_F_CXX 0x01
310 #define CW_F_SHADOW 0x02
311 #define CW_F_EXEC 0x04
312 #define CW_F_ECHO 0x08
313 #define CW_F_XLATE 0x10
314 #define CW_F_PROG 0x20

316 typedef enum cw_compiler {
317 CW_C_CC = 0,
318 CW_C_GCC
319 } cw_compiler_t;

______unchanged_portion_omitted_

new/usr/src/tools/cw/cw.c 6

388 /*
389 * The translation table for the -xarch= flag used in the Studio compilers.
390 */
391 static const xarch_table_t xtbl[] = {
392 #if defined(__x86)
393 { "generic", SS11 },
394 { "generic64", (SS11|M64), { "-m64", "-mtune=opteron" } },
395 { "amd64", (SS11|M64), { "-m64", "-mtune=opteron" } },
396 { "386", SS11, { "-march=i386" } },
397 { "pentium_pro", SS11, { "-march=pentiumpro" } },
398 { "sse", SS11, { "-msse", "-mfpmath=sse" } },
399 { "sse2", SS11, { "-msse2", "-mfpmath=sse" } },
400 #elif defined(__sparc)
401 { "generic", (SS11|M32), { "-m32", "-mcpu=v8" } },
402 { "generic64", (SS11|M64), { "-m64", "-mcpu=v9" } },
403 { "v8", (SS11|M32), { "-m32", "-mcpu=v8", "-mno-v8plus" } },
404 { "v8plus", (SS11|M32), { "-m32", "-mcpu=v9", "-mv8plus" } },
405 { "v8plusa", (SS11|M32), { "-m32", "-mcpu=ultrasparc", "-mv8plus",
406 "-mvis" } },
407 { "v8plusb", (SS11|M32), { "-m32", "-mcpu=ultrasparc3", "-mv8plus",
408 "-mvis" } },
409 { "v9", (SS11|M64), { "-m64", "-mcpu=v9" } },
410 { "v9a", (SS11|M64), { "-m64", "-mcpu=ultrasparc", "-mvis" } },
411 { "v9b", (SS11|M64), { "-m64", "-mcpu=ultrasparc3", "-mvis" } },
412 { "sparc", SS12, { "-mcpu=v9", "-mv8plus" } },
413 { "sparcvis", SS12, { "-mcpu=ultrasparc", "-mvis" } },
414 { "sparcvis2", SS12, { "-mcpu=ultrasparc3", "-mvis" } }
415 #endif
416 };

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/ccompile.h 1

**
 4224 Thu Oct 9 19:48:56 2014
new/usr/src/uts/common/sys/ccompile.h
Revert "remove unused v from libmvec"
This reverts commit e853d278ee4b7f2a8c2117cc598cfc68b4e3f29b.
fix system-library-math.mf
update libm manifests
14071:dece9aafe99a - fix build problems on sparc
remove unused v from libmvec
fix for patch09 - use __GNU_UNUSED - fix cstyle
fix for patch09 - use __GNU_UNUSED
Revert "remove unused v from libmvec"
This reverts commit e853d278ee4b7f2a8c2117cc598cfc68b4e3f29b.
fix system-library-math.mf
update libm manifests
14071:dece9aafe99a - fix build problems on sparc
remove unused v from libmvec
fix for patch09 - use __GNU_UNUSED - fix cstyle
fix for patch09 - use __GNU_UNUSED
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _SYS_CCOMPILE_H
28 #define _SYS_CCOMPILE_H

30 /*
31 * This file contains definitions designed to enable different compilers
32 * to be used harmoniously on Solaris systems.
33 */

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 /*
40 * Allow for version tests for compiler bugs and features.
41 */
42 #if defined(__GNUC__)
43 #define __GNUC_VERSION \
44 (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
45 #else
46 #define __GNUC_VERSION 0

new/usr/src/uts/common/sys/ccompile.h 2

47 #endif

49 #if defined(__ATTRIBUTE_IMPLEMENTED) || defined(__GNUC__)

51 /*
52 * analogous to lint’s PRINTFLIKEn
53 */
54 #define __sun_attr___PRINTFLIKE__(__n) \
55 __attribute__((__format__(printf, __n, (__n)+1)))
56 #define __sun_attr___VPRINTFLIKE__(__n) \
57 __attribute__((__format__(printf, __n, 0)))

59 /*
60 * Handle the kernel printf routines that can take ’%b’ too
61 */
62 #if __GNUC_VERSION < 30402
63 /*
64 * XX64 at least this doesn’t work correctly yet with 3.4.1 anyway!
65 */
66 #define __sun_attr___KPRINTFLIKE__ __sun_attr___PRINTFLIKE__
67 #define __sun_attr___KVPRINTFLIKE__ __sun_attr___VPRINTFLIKE__
68 #else
69 #define __sun_attr___KPRINTFLIKE__(__n) \
70 __attribute__((__format__(cmn_err, __n, (__n)+1)))
71 #define __sun_attr___KVPRINTFLIKE__(__n) \
72 __attribute__((__format__(cmn_err, __n, 0)))
73 #endif

75 /*
76 * This one’s pretty obvious -- the function never returns
77 */
78 #define __sun_attr___noreturn__ __attribute__((__noreturn__))

80 /*
81 * The function is ’extern inline’ and expects GNU C89 behaviour, not C99
82 * behaviour.
83 *
84 * Should only be used on ’extern inline’ definitions for GCC.
85 */
86 #if __GNUC_VERSION >= 40200
87 #define __sun_attr___gnu_inline__ __attribute__((__gnu_inline__))
88 #else
89 #define __sun_attr___gnu_inline__
90 #endif

92 /*
93 * The function has control flow such that it may return multiple times (in
94 * the manner of setjmp or vfork)
95 */
96 #if __GNUC_VERSION >= 40100
97 #define __sun_attr___returns_twice__ __attribute__((__returns_twice__))
98 #else
99 #define __sun_attr___returns_twice__
100 #endif

102 /*
103 * This is an appropriate label for functions that do not
104 * modify their arguments, e.g. strlen()
105 */
106 #define __sun_attr___pure__ __attribute__((__pure__))

108 /*
109 * This is a stronger form of __pure__. Can be used for functions
110 * that do not modify their arguments and don’t depend on global
111 * memory.
112 */

new/usr/src/uts/common/sys/ccompile.h 3

113 #define __sun_attr___const__ __attribute__((__const__))

115 /*
116 * structure packing like #pragma pack(1)
117 */
118 #define __sun_attr___packed__ __attribute__((__packed__))

120 #define ___sun_attr_inner(__a) __sun_attr_##__a
121 #define __sun_attr__(__a) ___sun_attr_inner __a

123 #else /* __ATTRIBUTE_IMPLEMENTED || __GNUC__ */

125 #define __sun_attr__(__a)

127 #endif /* __ATTRIBUTE_IMPLEMENTED || __GNUC__ */

129 /*
130 * Shorthand versions for readability
131 */

133 #define __PRINTFLIKE(__n) __sun_attr__((__PRINTFLIKE__(__n)))
134 #define __VPRINTFLIKE(__n) __sun_attr__((__VPRINTFLIKE__(__n)))
135 #define __KPRINTFLIKE(__n) __sun_attr__((__KPRINTFLIKE__(__n)))
136 #define __KVPRINTFLIKE(__n) __sun_attr__((__KVPRINTFLIKE__(__n)))
137 #define __NORETURN __sun_attr__((__noreturn__))
138 #define __GNU_INLINE __inline__ __sun_attr__((__gnu_inline__))
139 #define __RETURNS_TWICE __sun_attr__((__returns_twice__))
140 #define __CONST __sun_attr__((__const__))
141 #define __PURE __sun_attr__((__pure__))
142 #define __GNU_UNUSED __attribute__((__unused__))

144 #ifdef __cplusplus
145 }

______unchanged_portion_omitted_

