1 '\" te
   2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
   3 .\" The contents of this file are subject to the terms of the Common Development and Distribution License (the "License").  You may not use this file except in compliance with the License.
   4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.  See the License for the specific language governing permissions and limitations under the License.
   5 .\" When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE.  If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner]
   6 .TH vz_exp_ 3MVEC "14 Dec 2007" "SunOS 5.11" "Vector Math Library Functions"
   7 .SH NAME
   8 vz_exp_, vc_exp_ \- vector complex exponential functions
   9 .SH SYNOPSIS
  10 .LP
  11 .nf
  12 cc [ \fIflag\fR\&.\|.\|. ] \fIfile\fR\&.\|.\|. \fB-lmvec\fR [ \fIlibrary\fR\&.\|.\|. ]
  13 
  14 \fBvoid\fR \fBvz_exp_\fR(\fBint *\fR\fIn\fR, \fBdouble complex * restrict\fR \fIz\fR,
  15      \fBint *\fR\fIstridez\fR, \fBdouble  complex * restrict\fR \fIw\fR \fBint *\fR\fIstridew\fR,
  16      \fBdouble *\fR \fItmp\fR);
  17 .fi
  18 
  19 .LP
  20 .nf
  21 \fBvoid\fR \fBvc_exp_\fR(\fBint *\fR\fIn\fR, \fBfloat complex * restrict\fR \fIz\fR,
  22      \fBint *\fR\fIstridez\fR, \fBfloat complex * restrict\fR \fIw\fR, \fBint *\fR\fIstridew\fR,
  23      \fBfloat *\fR \fItmp\fR);
  24 .fi
  25 
  26 .SH DESCRIPTION
  27 .sp
  28 .LP
  29 These functions evaluate the complex function \fBexp\fR(\fIz\fR) for an entire
  30 vector of values at once. The first parameter specifies the number of values to
  31 compute. Subsequent parameters specify the argument and result vectors. Each
  32 vector is described by a pointer to the first element and a stride, which is
  33 the increment between successive elements. The last argument is a pointer to
  34 scratch storage; this storage must be large enough to hold *\fIn\fR consecutive
  35 values of the real type corresponding to the complex type of the argument and
  36 result.
  37 .sp
  38 .LP
  39 Specifically, \fBvz_exp_\fR(\fIn\fR, \fIz\fR, \fIsz\fR, \fIw\fR, \fIsw\fR,
  40 \fItmp\fR) computes \fIw\fR[\fIi\fR * *\fIsw\fR] = \fBexp\fR(\fIz\fR[\fIi\fR *
  41 *\fIsz\fR]) for each \fIi\fR = 0, 1, ..., *\fIn\fR - 1. The \fBvc_exp_()\fR
  42 function performs the same  computation for single precision data.
  43 .sp
  44 .LP
  45 These functions are not guaranteed to deliver results that are identical to the
  46 results of the \fBcexp\fR(3M) functions given the same arguments.
  47 .SH USAGE
  48 .sp
  49 .LP
  50 The element count *\fIn\fR must be greater than zero. The strides for the
  51 argument and result arrays can be arbitrary integers, but the arrays themselves
  52 must not be the same or overlap. A zero stride effectively collapses an entire
  53 vector into a single element. A negative stride causes a vector to be accessed
  54 in descending memory order, but note that the corresponding pointer must still
  55 point to the first element of the vector to be used; if the stride is negative,
  56 this will be the highest-addressed element in memory. This convention differs
  57 from the Level 1 BLAS, in which array parameters always refer to the
  58 lowest-addressed element in memory even when negative increments are used.
  59 .sp
  60 .LP
  61 These functions assume that the default round-to-nearest rounding direction
  62 mode is in effect. On x86, these functions also assume that the default
  63 round-to-64-bit rounding precision mode is in effect. The result of calling a
  64 vector function with a non-default rounding mode in effect is undefined.
  65 .sp
  66 .LP
  67 Unlike the c99 \fBcexp\fR(3M) functions, the vector complex exponential
  68 functions make no attempt to handle special cases and exceptions; they simply
  69 use textbook formulas to compute a complex exponential in terms of real
  70 elementary functions. As a result, these functions can raise different
  71 exceptions and/or deliver different results from \fBcexp()\fR.
  72 .SH ATTRIBUTES
  73 .sp
  74 .LP
  75 See \fBattributes\fR(5) for descriptions of the following attributes:
  76 .sp
  77 
  78 .sp
  79 .TS
  80 tab() box;
  81 cw(2.75i) |cw(2.75i) 
  82 lw(2.75i) |lw(2.75i) 
  83 .
  84 ATTRIBUTE TYPEATTRIBUTE VALUE
  85 _
  86 Interface StabilityCommitted
  87 _
  88 MT-LevelMT-Safe
  89 .TE
  90 
  91 .SH SEE ALSO
  92 .sp
  93 .LP
  94 \fBcexp\fR(3M), \fBattributes\fR(5)