1 '\" te 2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved. 3 .\" The contents of this file are subject to the terms of the Common Development and Distribution License (the "License"). You may not use this file except in compliance with the License. 4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. See the License for the specific language governing permissions and limitations under the License. 5 .\" When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner] 6 .TH vsincospi_ 3MVEC "14 Dec 2007" "SunOS 5.11" "Vector Math Library Functions" 7 .SH NAME 8 vsincospi_, vsincospif_ \- vector sincospi functions 9 .SH SYNOPSIS 10 .LP 11 .nf 12 cc [ \fIflag\fR\&.\|.\|. ] \fIfile\fR\&.\|.\|. \fB-lmvec\fR [ \fIlibrary\fR\&.\|.\|. ] 13 14 \fBvoid\fR \fBvsincospi_\fR(\fBint *\fR\fIn\fR, \fBdouble * restrict\fR \fIx\fR, \fBint *\fR\fIstridex\fR, 15 \fBdouble * restrict\fR \fIs\fR, \fBint *\fR\fIstrides\fR, \fBdouble * restrict\fR \fIc\fR, 16 \fBint *\fR\fIstridec\fR); 17 .fi 18 19 .LP 20 .nf 21 \fBvoid\fR \fBvsincospif_\fR(\fBint *\fR\fIn\fR, \fBfloat * restrict\fR \fIx\fR, \fBint *\fR\fIstridex\fR, 22 \fBfloat * restrict\fR \fIs\fR, \fBint *\fR\fIstrides\fR, \fBfloat * restrict\fR \fIc\fR, 23 \fBint *\fR\fIstridec\fR); 24 .fi 25 26 .SH DESCRIPTION 27 .sp 28 .LP 29 These functions evaluate both \fBsinpi\fR(\fIx\fR) and \fBcospi\fR(\fIx\fR), 30 defined by \fBsinpi\fR(\fIx\fR) = \fBsin\fR(\c 31 .if n pi\c 32 .if t \(*p 33 \c 34 * \fIx\fR) and \fBcospi\fR(\fIx\fR) = \fBcos\fR(\c 35 .if n pi\c 36 .if t \(*p 37 \c 38 * \fIx\fR), for an entire vector of values at once. The first parameter 39 specifies the number of values to compute. Subsequent parameters specify the 40 argument and result vectors. Each vector is described by a pointer to the first 41 element and a stride, which is the increment between successive elements. 42 .sp 43 .LP 44 Specifically, \fBvsincospi_\fR(\fIn\fR, \fIx\fR, \fIsx\fR, \fIs\fR, \fIss\fR, 45 \fIc\fR, \fIsc\fR) simultaneously computes \fIs\fR[\fIi\fR * *\fIss\fR] = 46 \fBsinpi\fR(\fIx\fR[\fIi\fR * *\fIsx\fR]) and \fIc\fR[\fIi\fR * *\fIsc\fR] = 47 \fBcospi\fR(\fIx\fR[\fIi\fR * *\fIsx\fR]) for each \fIi\fR = 0, 1, ..., 48 *\fIn\fR - 1. The \fBvsincosf_()\fR function performs the same computation for 49 single precision data. 50 .sp 51 .LP 52 Non-exceptional results are accurate to within a unit in the last place. 53 .SH USAGE 54 .sp 55 .LP 56 The element count *\fIn\fR must be greater than zero. The strides for the 57 argument and result arrays can be arbitrary integers, but the arrays themselves 58 must not be the same or overlap. A zero stride effectively collapses an entire 59 vector into a single element. A negative stride causes a vector to be accessed 60 in descending memory order, but note that the corresponding pointer must still 61 point to the first element of the vector to be used; if the stride is negative, 62 this will be the highest-addressed element in memory. This convention differs 63 from the Level 1 BLAS, in which array parameters always refer to the 64 lowest-addressed element in memory even when negative increments are used. 65 .sp 66 .LP 67 These functions assume that the default round-to-nearest rounding direction 68 mode is in effect. On x86, these functions also assume that the default 69 round-to-64-bit rounding precision mode is in effect. The result of calling a 70 vector function with a non-default rounding mode in effect is undefined. 71 .sp 72 .LP 73 These functions handle special cases and exceptions in the spirit of IEEE 754. 74 In particular, 75 .RS +4 76 .TP 77 .ie t \(bu 78 .el o 79 \fBsinpi\fR(NaN), \fBcospi\fR(NaN) are NaN, 80 .RE 81 .RS +4 82 .TP 83 .ie t \(bu 84 .el o 85 \fBsinpi\fR(\(+-0) is \(+-0, 86 .RE 87 .RS +4 88 .TP 89 .ie t \(bu 90 .el o 91 \fBsinpi\fR(\(+-Inf), \fBcospi\fR(\(+-Inf) are NaN, and an invalid operation 92 exception is raised. 93 .RE 94 .sp 95 .LP 96 An application wanting to check for exceptions should call 97 \fBfeclearexcept\fR(\fBFE_ALL_EXCEPT\fR) before calling these functions. On 98 return, if \fBfetestexcept\fR(\fBFE_INVALID\fR | \fBFE_DIVBYZERO\fR | 99 \fBFE_OVERFLOW\fR | \fBFE_UNDERFLOW\fR) is non-zero, an exception has been 100 raised. The application can then examine the result or argument vectors for 101 exceptional values. Some vector functions can raise the inexact exception even 102 if all elements of the argument array are such that the numerical results are 103 exact. 104 .SH ATTRIBUTES 105 .sp 106 .LP 107 See \fBattributes\fR(5) for descriptions of the following attributes: 108 .sp 109 110 .sp 111 .TS 112 tab() box; 113 cw(2.75i) |cw(2.75i) 114 lw(2.75i) |lw(2.75i) 115 . 116 ATTRIBUTE TYPEATTRIBUTE VALUE 117 _ 118 Interface StabilityCommitted 119 _ 120 MT-LevelMT-Safe 121 .TE 122 123 .SH SEE ALSO 124 .sp 125 .LP 126 \fBfeclearexcept\fR(3M), \fBfetestexcept\fR(3M), \fBattributes\fR(5)