1 '\" te
   2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
   3 .\" The contents of this file are subject to the terms of the Common Development and Distribution License (the "License").  You may not use this file except in compliance with the License.
   4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.  See the License for the specific language governing permissions and limitations under the License.
   5 .\" When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE.  If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner]
   6 .TH vsincospi_ 3MVEC "14 Dec 2007" "SunOS 5.11" "Vector Math Library Functions"
   7 .SH NAME
   8 vsincospi_, vsincospif_ \- vector sincospi functions
   9 .SH SYNOPSIS
  10 .LP
  11 .nf
  12 cc [ \fIflag\fR\&.\|.\|. ] \fIfile\fR\&.\|.\|. \fB-lmvec\fR [ \fIlibrary\fR\&.\|.\|. ]
  13 
  14 \fBvoid\fR \fBvsincospi_\fR(\fBint *\fR\fIn\fR, \fBdouble * restrict\fR \fIx\fR, \fBint *\fR\fIstridex\fR,
  15      \fBdouble * restrict\fR \fIs\fR, \fBint *\fR\fIstrides\fR, \fBdouble * restrict\fR \fIc\fR,
  16      \fBint *\fR\fIstridec\fR);
  17 .fi
  18 
  19 .LP
  20 .nf
  21 \fBvoid\fR \fBvsincospif_\fR(\fBint *\fR\fIn\fR, \fBfloat * restrict\fR \fIx\fR, \fBint *\fR\fIstridex\fR,
  22      \fBfloat * restrict\fR \fIs\fR, \fBint *\fR\fIstrides\fR, \fBfloat * restrict\fR \fIc\fR,
  23      \fBint *\fR\fIstridec\fR);
  24 .fi
  25 
  26 .SH DESCRIPTION
  27 .sp
  28 .LP
  29 These functions evaluate both \fBsinpi\fR(\fIx\fR) and \fBcospi\fR(\fIx\fR),
  30 defined by \fBsinpi\fR(\fIx\fR) = \fBsin\fR(\c
  31 .if n pi\c
  32 .if t \(*p
  33 \c
  34  * \fIx\fR) and \fBcospi\fR(\fIx\fR) = \fBcos\fR(\c
  35 .if n pi\c
  36 .if t \(*p
  37 \c
  38  * \fIx\fR), for an entire vector of values at once. The first parameter
  39 specifies the number of values to compute. Subsequent parameters specify the
  40 argument and result vectors. Each vector is described by a pointer to the first
  41 element and a stride, which is the increment between successive elements.
  42 .sp
  43 .LP
  44 Specifically, \fBvsincospi_\fR(\fIn\fR, \fIx\fR, \fIsx\fR, \fIs\fR, \fIss\fR,
  45 \fIc\fR, \fIsc\fR) simultaneously computes \fIs\fR[\fIi\fR * *\fIss\fR] =
  46 \fBsinpi\fR(\fIx\fR[\fIi\fR * *\fIsx\fR]) and \fIc\fR[\fIi\fR * *\fIsc\fR] =
  47 \fBcospi\fR(\fIx\fR[\fIi\fR * *\fIsx\fR]) for each \fIi\fR = 0, 1, ...,
  48 *\fIn\fR - 1. The  \fBvsincosf_()\fR function performs the same computation for
  49 single precision data.
  50 .sp
  51 .LP
  52 Non-exceptional results are accurate to within a unit in the last place.
  53 .SH USAGE
  54 .sp
  55 .LP
  56 The element count *\fIn\fR must be greater than zero. The strides for the
  57 argument and result arrays can be arbitrary integers, but the arrays themselves
  58 must not be the same or overlap. A zero stride effectively collapses an entire
  59 vector into a single element. A negative stride causes a vector to be accessed
  60 in descending memory order, but note that the corresponding pointer must still
  61 point to the first element of the vector to be used; if the stride is negative,
  62 this will be the highest-addressed element in memory. This convention differs
  63 from the Level 1 BLAS, in which array parameters always refer to the
  64 lowest-addressed element in memory even when negative increments are used.
  65 .sp
  66 .LP
  67 These functions assume that the default round-to-nearest rounding direction
  68 mode is in effect. On x86, these functions also assume that the default
  69 round-to-64-bit rounding precision mode is in effect. The result of calling a
  70 vector function with a non-default rounding mode in effect is undefined.
  71 .sp
  72 .LP
  73 These functions handle special cases and exceptions in the spirit of IEEE 754.
  74 In particular,
  75 .RS +4
  76 .TP
  77 .ie t \(bu
  78 .el o
  79 \fBsinpi\fR(NaN), \fBcospi\fR(NaN) are NaN,
  80 .RE
  81 .RS +4
  82 .TP
  83 .ie t \(bu
  84 .el o
  85 \fBsinpi\fR(\(+-0) is \(+-0,
  86 .RE
  87 .RS +4
  88 .TP
  89 .ie t \(bu
  90 .el o
  91 \fBsinpi\fR(\(+-Inf), \fBcospi\fR(\(+-Inf) are NaN, and an invalid operation
  92 exception is raised.
  93 .RE
  94 .sp
  95 .LP
  96 An application wanting to check for exceptions should call
  97 \fBfeclearexcept\fR(\fBFE_ALL_EXCEPT\fR) before calling these functions. On
  98 return, if \fBfetestexcept\fR(\fBFE_INVALID\fR | \fBFE_DIVBYZERO\fR |
  99 \fBFE_OVERFLOW\fR | \fBFE_UNDERFLOW\fR) is non-zero, an exception has been
 100 raised. The application can then examine the result or argument vectors for
 101 exceptional values. Some vector functions can raise the inexact exception even
 102 if all elements of the argument array are such that the numerical results are
 103 exact.
 104 .SH ATTRIBUTES
 105 .sp
 106 .LP
 107 See \fBattributes\fR(5) for descriptions of the following attributes:
 108 .sp
 109 
 110 .sp
 111 .TS
 112 tab() box;
 113 cw(2.75i) |cw(2.75i) 
 114 lw(2.75i) |lw(2.75i) 
 115 .
 116 ATTRIBUTE TYPEATTRIBUTE VALUE
 117 _
 118 Interface StabilityCommitted
 119 _
 120 MT-LevelMT-Safe
 121 .TE
 122 
 123 .SH SEE ALSO
 124 .sp
 125 .LP
 126 \fBfeclearexcept\fR(3M), \fBfetestexcept\fR(3M), \fBattributes\fR(5)