1 '\" te 2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved. 3 .\" The contents of this file are subject to the terms of the Common Development and Distribution License (the "License"). You may not use this file except in compliance with the License. 4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. See the License for the specific language governing permissions and limitations under the License. 5 .\" When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner] 6 .TH vrhypot_ 3MVEC "14 Dec 2007" "SunOS 5.11" "Vector Math Library Functions" 7 .SH NAME 8 vrhypot_, vrhypotf_ \- vector reciprocal hypotenuse functions 9 .SH SYNOPSIS 10 .LP 11 .nf 12 cc [ \fIflag\fR\&.\|.\|. ] \fIfile\fR\&.\|.\|. \fB-lmvec\fR [ \fIlibrary\fR\&.\|.\|. ] 13 14 \fBvoid\fR \fBvrhypot_\fR(\fBint *\fR\fIn\fR, \fBdouble * restrict\fR \fIx\fR, \fBint *\fR\fIstridex\fR, 15 \fBdouble * restrict\fR \fIy\fR, \fBint *\fR\fIstridey\fR, \fBdouble * restrict\fR \fIz\fR, 16 \fBint *\fR\fIstridez\fR); 17 .fi 18 19 .LP 20 .nf 21 \fBvoid\fR \fBvrhypotf_\fR(\fBint *\fR\fIn\fR, \fBfloat * restrict\fR \fIx\fR, \fBint *\fR\fIstridex\fR, 22 \fBfloat * restrict\fR \fIy\fR, \fBint *\fR\fIstridey\fR, \fBfloat * restrict\fR \fIz\fR, 23 \fBint *\fR\fIstridez\fR); 24 .fi 25 26 .SH DESCRIPTION 27 .sp 28 .LP 29 These functions evaluate the function \fBrhypot\fR(\fIx\fR, \fIy\fR), defined 30 by \fBrhypot\fR(\fIx\fR, \fIy\fR) = 1 / \fBhypot\fR(\fIx\fR, \fIy\fR), for an 31 entire vector of values at once. The first parameter specifies the number of 32 values to compute. Subsequent parameters specify the argument and result 33 vectors. Each vector is described by a pointer to the first element and a 34 stride, which is the increment between successive elements. 35 .sp 36 .LP 37 Specifically, \fBvrhypot_\fR(\fIn\fR, \fIx\fR, \fIsx\fR, \fIy\fR, \fIsy\fR, 38 \fIz\fR, \fIsz\fR) computes \fIz\fR[\fIi\fR * *\fIsz\fR] = 39 \fBrhypot\fR(\fIx\fR[\fIi\fR * *\fIsx\fR], \fIy\fR[\fIi\fR * *\fIsy\fR]) for 40 each \fIi\fR = 0, 1, ..., *\fIn\fR - 1. The \fBvrhypotf_()\fR function 41 performs the same computation for single precision data. 42 .sp 43 .LP 44 These functions are not guaranteed to deliver results that are identical to the 45 results of evaluating 1.0 / \fBhypot\fR(\fIx\fR, \fIy\fR) given the same 46 arguments. Non-exceptional results, however, are accurate to within a unit in 47 the last place. 48 .SH USAGE 49 .sp 50 .LP 51 The element count *\fIn\fR must be greater than zero. The strides for the 52 argument and result arrays can be arbitrary integers, but the arrays themselves 53 must not be the same or overlap. A zero stride effectively collapses an entire 54 vector into a single element. A negative stride causes a vector to be accessed 55 in descending memory order, but note that the corresponding pointer must still 56 point to the first element of the vector to be used; if the stride is negative, 57 this will be the highest-addressed element in memory. This convention differs 58 from the Level 1 BLAS, in which array parameters always refer to the 59 lowest-addressed element in memory even when negative increments are used. 60 .sp 61 .LP 62 These functions assume that the default round-to-nearest rounding direction 63 mode is in effect. On x86, these functions also assume that the default 64 round-to-64-bit rounding precision mode is in effect. The result of calling a 65 vector function with a non-default rounding mode in effect is undefined. 66 .sp 67 .LP 68 These functions handle special cases and exceptions in the spirit of IEEE 754. 69 In particular, 70 .RS +4 71 .TP 72 .ie t \(bu 73 .el o 74 if x or \fIy\fR is \(+-Inf, \fBrhypot\fR(\fIx\fR, \fIy\fR) is +0, even if the 75 other of \fIx\fR or \fIy\fR is NaN, 76 .RE 77 .RS +4 78 .TP 79 .ie t \(bu 80 .el o 81 if x or \fIy\fR is NaN and neither is infinite, \fBrhypot\fR(\fIx\fR, \fIy\fR) 82 is NaN 83 .RE 84 .RS +4 85 .TP 86 .ie t \(bu 87 .el o 88 if \fIx\fR and \fIy\fR are both zero, \fBrhypot\fR(\fIx\fR, \fIy\fR) is +0, and 89 a division-by-zero exception is raised. 90 .RE 91 .sp 92 .LP 93 An application wanting to check for exceptions should call 94 \fBfeclearexcept\fR(\fBFE_ALL_EXCEPT\fR) before calling these functions. On 95 return, if \fBfetestexcept\fR(\fBFE_INVALID\fR | \fBFE_DIVBYZERO\fR | 96 \fBFE_OVERFLOW\fR | \fBFE_UNDERFLOW\fR) is non-zero, an exception has been 97 raised. The application can then examine the result or argument vectors for 98 exceptional values. Some vector functions can raise the inexact exception even 99 if all elements of the argument array are such that the numerical results are 100 exact. 101 .SH ATTRIBUTES 102 .sp 103 .LP 104 See \fBattributes\fR(5) for descriptions of the following attributes: 105 .sp 106 107 .sp 108 .TS 109 tab() box; 110 cw(2.75i) |cw(2.75i) 111 lw(2.75i) |lw(2.75i) 112 . 113 ATTRIBUTE TYPEATTRIBUTE VALUE 114 _ 115 Interface StabilityCommitted 116 _ 117 MT-LevelMT-Safe 118 .TE 119 120 .SH SEE ALSO 121 .sp 122 .LP 123 \fBhypot\fR(3M), \fBfeclearexcept\fR(3M), \fBfetestexcept\fR(3M), 124 \fBattributes\fR(5)