1 '\" te 2 .\" Copyright (c) 2001, the Institute of Electrical 3 .\" and Electronics Engineers, Inc. and The Open Group. All Rights Reserved. 4 .\" Copyright (c) 1992, X/Open Company Limited. 5 .\" All Rights Reserved. 6 .\" Copyright (c) 1983 Regents of the University 7 .\" of California. All rights reserved. The Berkeley software License Agreement 8 .\" specifies the terms and conditions for redistribution. 9 .\" Portions Copyright (c) 2006, Sun Microsystems, 10 .\" Inc. All Rights Reserved. 11 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission to reproduce portions of its copyrighted documentation. Original documentation from The Open Group can be obtained online at 12 .\" http://www.opengroup.org/bookstore/. 13 .\" The Institute of Electrical and Electronics Engineers and The Open Group, have given us permission to reprint portions of their documentation. In the following statement, the phrase "this text" refers to portions of the system documentation. Portions of this text are reprinted and reproduced in electronic form in the Sun OS Reference Manual, from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (C) 2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between these versions and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html. 14 .\" This notice shall appear on any product containing this material. 15 .TH lgamma 3M "12 Jul 2006" "SunOS 5.11" "Mathematical Library Functions" 16 .SH NAME 17 lgamma, lgammaf, lgammal, lgamma_r, lgammaf_r, lgammal_r, gamma, gammaf, 18 gammal, gamma_r, gammaf_r, gammal_r \- log gamma function 19 .SH SYNOPSIS 20 .LP 21 .nf 22 c99 [ \fIflag\fR... ] \fIfile\fR... \fB-lm\fR [ \fIlibrary\fR... ] 23 #include <math.h> 24 25 extern int signgam; 26 27 \fBdouble\fR \fBlgamma\fR(\fBdouble\fR \fIx\fR); 28 .fi 29 30 .LP 31 .nf 32 \fBfloat\fR \fBlgammaf\fR(\fBfloat\fR \fIx\fR); 33 .fi 34 35 .LP 36 .nf 37 \fBlong double\fR \fBlgammal\fR(\fBlong double\fR \fIx\fR); 38 .fi 39 40 .LP 41 .nf 42 \fBdouble\fR \fBgamma\fR(\fBdouble\fR \fIx\fR); 43 .fi 44 45 .LP 46 .nf 47 \fBfloat\fR \fBgammaf\fR(\fBfloat\fR \fIx\fR); 48 .fi 49 50 .LP 51 .nf 52 \fBlong double\fR \fBgammal\fR(\fBlong double\fR \fIx\fR); 53 .fi 54 55 .LP 56 .nf 57 \fBdouble\fR \fBlgamma_r\fR(\fBdouble\fR \fIx\fR, \fBint *\fR\fIsigngamp\fR); 58 .fi 59 60 .LP 61 .nf 62 \fBfloat\fR \fBlgammaf_r\fR(\fBfloat\fR \fIx\fR, \fBint *\fR\fIsigngamp\fR); 63 .fi 64 65 .LP 66 .nf 67 \fBlong double\fR \fBlgammal_r\fR(\fBlong double\fR \fIx\fR, \fBint *\fR\fIsigngamp\fR); 68 .fi 69 70 .LP 71 .nf 72 \fBdouble\fR \fBgamma_r\fR(\fBdouble\fR \fIx\fR, \fBint *\fR\fIsigngamp\fR); 73 .fi 74 75 .LP 76 .nf 77 \fBfloat\fR \fBgammaf_r\fR(\fBfloat\fR \fIx\fR, \fBint *\fR\fIsigngamp\fR); 78 .fi 79 80 .LP 81 .nf 82 \fBlong double\fR \fBgammal_r\fR(\fBlong double\fR \fIx\fR, \fBint *\fR\fIsigngamp\fR); 83 .fi 84 85 .SH DESCRIPTION 86 .sp 87 .LP 88 These functions return 89 .sp 90 ln||~(x)| 91 .sp 92 .LP 93 where 94 .sp 95 |~(x) = integral from 0 to +Infinity of pow(t,x-1)*exp(-t) dt 96 .sp 97 .LP 98 for x > 0 and 99 .sp 100 |~(x) = n/(|~(1-x)sin(nx)) 101 .sp 102 .LP 103 for x < 1. 104 .sp 105 .LP 106 These functions use the external integer \fBsigngam\fR to return the sign of 107 \fB|~(x)\fR while \fBlgamma_r()\fR and \fBgamma_r()\fR use the user-allocated 108 space addressed by \fBsigngamp\fR. 109 .SH RETURN VALUES 110 .sp 111 .LP 112 Upon successful completion, these functions return the logarithmic gamma of 113 \fIx\fR. 114 .sp 115 .LP 116 If \fIx\fR is a non-positive integer, a pole error occurs and these functions 117 return +\fBHUGE_VAL\fR, +\fBHUGE_VALF\fR, and +\fBHUGE_VALL\fR, respectively. 118 .sp 119 .LP 120 If \fIx\fR is NaN, a NaN is returned. 121 .sp 122 .LP 123 If \fIx\fR is 1 or 2, +0 shall be returned. 124 .sp 125 .LP 126 If \fIx\fR is \(+-Inf, +Inf is returned. 127 .SH ERRORS 128 .sp 129 .LP 130 These functions will fail if: 131 .sp 132 .ne 2 133 .mk 134 .na 135 \fBPole Error\fR 136 .ad 137 .RS 14n 138 .rt 139 The \fIx\fR argument is a negative integer or 0. 140 .sp 141 If the integer expression (\fBmath_errhandling\fR & \fBMATH_ERREXCEPT\fR) is 142 non-zero, then the divide-by-zero floating-point exception is raised. 143 .RE 144 145 .SH USAGE 146 .sp 147 .LP 148 An application wanting to check for exceptions should call 149 \fBfeclearexcept\fR(\fBFE_ALL_EXCEPT\fR) before calling these functions. On 150 return, if \fBfetestexcept\fR(\fBFE_INVALID\fR | \fBFE_DIVBYZERO\fR | 151 \fBFE_OVERFLOW\fR | \fBFE_UNDERFLOW\fR) is non-zero, an exception has been 152 raised. An application should either examine the return value or check the 153 floating point exception flags to detect exceptions. 154 .sp 155 .LP 156 In the case of \fBlgamma()\fR, do not use the expression 157 \fBsigngam*exp(lgamma(x))\fR to compute 158 .sp 159 `g := |~(x)' 160 .sp 161 .LP 162 Instead compute \fBlgamma()\fR first: 163 .sp 164 .LP 165 \fBlg = lgamma(x); g = signgam*exp(lg);\fR 166 .sp 167 .LP 168 only after \fBlgamma()\fR has returned can \fBsigngam\fR be correct. Note that 169 \fB|~(x)\fR must overflow when \fIx\fR is large enough, underflow when 170 \(mi\fIx\fR is large enough, and generate a division by 0 exception at the 171 singularities \fIx\fR a nonpositive integer. 172 .SH ATTRIBUTES 173 .sp 174 .LP 175 See \fBattributes\fR(5) for descriptions of the following attributes: 176 .sp 177 178 .sp 179 .TS 180 tab() box; 181 cw(2.75i) |cw(2.75i) 182 lw(2.75i) |lw(2.75i) 183 . 184 ATTRIBUTE TYPEATTRIBUTE VALUE 185 _ 186 Interface StabilitySee below. 187 _ 188 MT-LevelSee below. 189 .TE 190 191 .sp 192 .LP 193 The \fBlgamma()\fR, \fBlgammaf()\fR, \fBlgammal()\fR, and \fBgamma()\fR 194 functions are Standard. The \fBlgamma_r()\fR, \fBlgammaf_r()\fR, 195 \fBlgammal_r()\fR, \fBgamma_r()\fR, \fBgammaf_r()\fR, and \fBgammal_r()\fR, 196 functions are Stable. 197 .sp 198 .LP 199 The \fBlgamma()\fR, \fBlgammaf()\fR, \fBlgammal()\fR, \fBgamma()\fR, 200 \fBgammaf()\fR, and \fBgammal()\fR functions are Unsafe in multithreaded 201 applications. The \fBlgamma_r()\fR, \fBlgammaf_r()\fR, \fBlgammal_r()\fR, 202 \fBgamma_r()\fR, \fBgammaf_r()\fR, and \fBgammal_r()\fR functions are MT-Safe 203 and should be used instead. 204 .SH SEE ALSO 205 .sp 206 .LP 207 \fBexp\fR(3M), \fBfeclearexcept\fR(3M), \fBfetestexcept\fR(3M), 208 \fBisnan\fR(3M), \fBmath.h\fR(3HEAD), \fBattributes\fR(5), \fBstandards\fR(5) 209 .SH NOTES 210 .sp 211 .LP 212 When compiling multithreaded applications, the \fB_REENTRANT\fR flag must be 213 defined on the compile line. This flag should only be used in multithreaded 214 applications.