1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma weak clogl = __clogl 31 32 #include "libm.h" /* atan2l/fabsl/isinfl/log1pl/logl/__k_clog_rl */ 33 #include "complex_wrapper.h" 34 #include "longdouble.h" 35 36 #if defined(__sparc) 37 #define SIGP7 120 38 #define HSIGP7 60 39 #elif defined(__x86) 40 #define SIGP7 70 41 #define HSIGP7 35 42 #endif 43 44 /* INDENT OFF */ 45 static const long double zero = 0.0L, half = 0.5L, one = 1.0L; 46 /* INDENT ON */ 47 48 ldcomplex 49 clogl(ldcomplex z) { 50 ldcomplex ans; 51 long double x, y, t, ax, ay; 52 int n, ix, iy, hx, hy; 53 54 x = LD_RE(z); 55 y = LD_IM(z); 56 hx = HI_XWORD(x); 57 hy = HI_XWORD(y); 58 ix = hx & 0x7fffffff; 59 iy = hy & 0x7fffffff; 60 ay = fabsl(y); 61 ax = fabsl(x); 62 LD_IM(ans) = atan2l(y, x); 63 if (ix < iy || (ix == iy && ix < 0x7fff0000 && ax < ay)) { 64 /* swap x and y to force ax>=ay */ 65 t = ax; 66 ax = ay; 67 ay = t; 68 n = ix, ix = iy; 69 iy = n; 70 } 71 n = (ix - iy) >> 16; 72 if (ix >= 0x7fff0000) { /* x or y is Inf or NaN */ 73 if (isinfl(ax)) 74 LD_RE(ans) = ax; 75 else if (isinfl(ay)) 76 LD_RE(ans) = ay; 77 else 78 LD_RE(ans) = ax + ay; 79 } else if (ay == zero) 80 LD_RE(ans) = logl(ax); 81 else if (((0x3fffffff - ix) ^ (ix - 0x3ffe0000)) >= 0) { 82 /* 0.5 <= x < 2 */ 83 if (ix >= 0x3fff0000) { 84 if (ax == one) 85 LD_RE(ans) = half * log1pl(ay * ay); 86 else if (n >= SIGP7) 87 LD_RE(ans) = logl(ax); 88 else 89 LD_RE(ans) = half * (log1pl(ay * ay + (ax - 90 one) * (ax + one))); 91 } else if (n >= SIGP7) 92 LD_RE(ans) = logl(ax); 93 else 94 LD_RE(ans) = __k_clog_rl(x, y, &t); 95 } else if (n >= HSIGP7) 96 LD_RE(ans) = logl(ax); 97 else if (ix < 0x5f3f0000 && iy >= 0x20bf0000) 98 /* 2**-8000 < y < x < 2**8000 */ 99 LD_RE(ans) = half * logl(ax * ax + ay * ay); 100 else { 101 t = ay / ax; 102 LD_RE(ans) = logl(ax) + half * log1pl(t * t); 103 } 104 return (ans); 105 }