1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * long double __k_lgammal(long double x, int *signgamlp); 32 * K.C. Ng, August, 1989. 33 * 34 * We choose [1.5,2.5] to be the primary interval. Our algorithms 35 * are mainly derived from 36 * 37 * 38 * zeta(2)-1 2 zeta(3)-1 3 39 * lgamma(2+s) = s*(1-euler) + --------- * s - --------- * s + ... 40 * 2 3 41 * 42 * 43 * Note 1. Since gamma(1+s)=s*gamma(s), hence 44 * lgamma(1+s) = log(s) + lgamma(s), or 45 * lgamma(s) = lgamma(1+s) - log(s). 46 * When s is really tiny (like roundoff), lgamma(1+s) ~ s(1-enler) 47 * Hence lgamma(s) ~ -log(s) for tiny s 48 * 49 */ 50 51 #include "libm.h" 52 #include "longdouble.h" 53 54 static long double neg(long double, int *); 55 static long double poly(long double, const long double *, int); 56 static long double polytail(long double); 57 static long double primary(long double); 58 59 static const long double 60 c0 = 0.0L, 61 ch = 0.5L, 62 c1 = 1.0L, 63 c2 = 2.0L, 64 c3 = 3.0L, 65 c4 = 4.0L, 66 c5 = 5.0L, 67 c6 = 6.0L, 68 pi = 3.1415926535897932384626433832795028841971L, 69 tiny = 1.0e-40L; 70 71 long double 72 __k_lgammal(long double x, int *signgamlp) { 73 long double t,y; 74 int i; 75 76 /* purge off +-inf, NaN and negative arguments */ 77 if(!finitel(x)) return x*x; 78 *signgamlp = 1; 79 if(signbitl(x)) return(neg(x,signgamlp)); 80 81 /* for x < 8.0 */ 82 if(x<8.0L) { 83 y = anintl(x); 84 i = (int) y; 85 switch(i) { 86 case 0: 87 if(x<1.0e-40L) return -logl(x); else 88 return (primary(x)-log1pl(x))-logl(x); 89 case 1: 90 return primary(x-y)-logl(x); 91 case 2: 92 return primary(x-y); 93 case 3: 94 return primary(x-y)+logl(x-c1); 95 case 4: 96 return primary(x-y)+logl((x-c1)*(x-c2)); 97 case 5: 98 return primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)); 99 case 6: 100 return primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)*(x-c4)); 101 case 7: 102 return primary(x-y)+logl((x-c1)*(x-c2)*(x-c3)*(x-c4)*(x-c5)); 103 case 8: 104 return primary(x-y)+ 105 logl((x-c1)*(x-c2)*(x-c3)*(x-c4)*(x-c5)*(x-c6)); 106 } 107 } 108 109 /* 8.0 <= x < 1.0e40 */ 110 if (x < 1.0e40L) { 111 t = logl(x); 112 return x*(t-c1)-(ch*t-polytail(c1/x)); 113 } 114 115 /* 1.0e40 <= x <= inf */ 116 return x*(logl(x)-c1); 117 } 118 119 static const long double an1[] = { /* 20 terms */ 120 -0.0772156649015328606065120900824024309741L, 121 3.224670334241132182362075833230130289059e-0001L, 122 -6.735230105319809513324605383668929964120e-0002L, 123 2.058080842778454787900092432928910226297e-0002L, 124 -7.385551028673985266273054086081102125704e-0003L, 125 2.890510330741523285758867304409628648727e-0003L, 126 -1.192753911703260976581414338096267498555e-0003L, 127 5.096695247430424562831956662855697824035e-0004L, 128 -2.231547584535777978926798502084300123638e-0004L, 129 9.945751278186384670278268034322157947635e-0005L, 130 -4.492623673665547726647838474125147631082e-0005L, 131 2.050721280617796810096993154281561168706e-0005L, 132 -9.439487785617396552092393234044767313568e-0006L, 133 4.374872903516051510689234173139793159340e-0006L, 134 -2.039156676413643091040459825776029327487e-0006L, 135 9.555777181318621470466563543806211523634e-0007L, 136 -4.468344919709630637558538313482398989638e-0007L, 137 2.216738086090045781773004477831059444178e-0007L, 138 -7.472783403418388455860445842543843485916e-0008L, 139 8.777317930927149922056782132706238921648e-0008L, 140 }; 141 142 static const long double an2[] = { /* 20 terms */ 143 -.0772156649015328606062692723698127607018L, 144 3.224670334241132182635552349060279118047e-0001L, 145 -6.735230105319809367555642883133994818325e-0002L, 146 2.058080842778459676880822202762143671813e-0002L, 147 -7.385551028672828216011343150077846918930e-0003L, 148 2.890510330762060607399561536905727853178e-0003L, 149 -1.192753911419623262328187532759756368041e-0003L, 150 5.096695278636456678258091134532258618614e-0004L, 151 -2.231547306817535743052975194022893369135e-0004L, 152 9.945771461633313282744264853986643877087e-0005L, 153 -4.492503279458972037926876061257489481619e-0005L, 154 2.051311416812082875492678651369394595613e-0005L, 155 -9.415778282365955203915850761537462941165e-0006L, 156 4.452428829045147098722932981088650055919e-0006L, 157 -1.835024727987632579886951760650722695781e-0006L, 158 1.379783080658545009579060714946381462565e-0006L, 159 2.282637532109775156769736768748402175238e-0007L, 160 1.002577375515900191362119718128149880168e-0006L, 161 5.177028794262638311939991106423220002463e-0007L, 162 3.127947245174847104122426445937830555755e-0007L, 163 }; 164 165 static const long double an3[] = { /* 20 terms */ 166 -.0772156649015328227870646417729220690875L, 167 3.224670334241156699881788955959915250365e-0001L, 168 -6.735230105312273571375431059744975563170e-0002L, 169 2.058080842924464587662846071337083809005e-0002L, 170 -7.385551008677271654723604653956131791619e-0003L, 171 2.890510536479782086197110272583833176602e-0003L, 172 -1.192752262076857692740571567808259138697e-0003L, 173 5.096800771149805289371135155128380707889e-0004L, 174 -2.231000836682831335505058492409860123647e-0004L, 175 9.968912171073936803871803966360595275047e-0005L, 176 -4.412020779327746243544387946167256187258e-0005L, 177 2.281374113541454151067016632998630209049e-0005L, 178 -4.028361291428629491824694655287954266830e-0006L, 179 1.470694920619518924598956849226530750139e-0005L, 180 1.381686137617987197975289545582377713772e-0005L, 181 2.012493539265777728944759982054970441601e-0005L, 182 1.723917864208965490251560644681933675799e-0005L, 183 1.202954035243788300138608765425123713395e-0005L, 184 5.079851887558623092776296577030850938146e-0006L, 185 1.220657945824153751555138592006604026282e-0006L, 186 }; 187 188 static const long double an4[] = { /* 21 terms */ 189 -.0772156649015732285350261816697540392371L, 190 3.224670334221752060691751340365212226097e-0001L, 191 -6.735230109744009693977755991488196368279e-0002L, 192 2.058080778913037626909954141611580783216e-0002L, 193 -7.385557567931505621170483708950557506819e-0003L, 194 2.890459838416254326340844289785254883436e-0003L, 195 -1.193059036207136762877351596966718455737e-0003L, 196 5.081914708100372836613371356529568937869e-0004L, 197 -2.289855016133600313131553005982542045338e-0004L, 198 8.053454537980585879620331053833498511491e-0005L, 199 -9.574620532104845821243493405855672438998e-0005L, 200 -9.269085628207107155601445001196317715686e-0005L, 201 -2.183276779859490461716196344776208220180e-0004L, 202 -3.134834305597571096452454999737269668868e-0004L, 203 -3.973878894951937437018305986901392888619e-0004L, 204 -3.953352414899222799161275564386488057119e-0004L, 205 -3.136740932204038779362660900621212816511e-0004L, 206 -1.884502253819634073946130825196078627664e-0004L, 207 -8.192655799958926853585332542123631379301e-0005L, 208 -2.292183750010571062891605074281744854436e-0005L, 209 -3.223980628729716864927724265781406614294e-0006L, 210 }; 211 212 static const long double ap1[] = { /* 19 terms */ 213 -0.0772156649015328606065120900824024296961L, 214 3.224670334241132182362075833230047956465e-0001L, 215 -6.735230105319809513324605382963943777301e-0002L, 216 2.058080842778454787900092126606252375465e-0002L, 217 -7.385551028673985266272518231365020063941e-0003L, 218 2.890510330741523285681704570797770736423e-0003L, 219 -1.192753911703260971285304221165990244515e-0003L, 220 5.096695247430420878696018188830886972245e-0004L, 221 -2.231547584535654004647639737841526025095e-0004L, 222 9.945751278137201960636098805852315982919e-0005L, 223 -4.492623672777606053587919463929044226280e-0005L, 224 2.050721258703289487603702670753053765201e-0005L, 225 -9.439485626565616989352750672499008021041e-0006L, 226 4.374838162403994645138200419356844574219e-0006L, 227 -2.038979492862555348577006944451002161496e-0006L, 228 9.536763152382263548086981191378885102802e-0007L, 229 -4.426111214332434049863595231916564014913e-0007L, 230 1.911148847512947464234633846270287546882e-0007L, 231 -5.788673944861923038157839080272303519671e-0008L, 232 }; 233 234 static const long double ap2[] = { /* 19 terms */ 235 -0.077215664901532860606428624449354836087L, 236 3.224670334241132182271948744265855440139e-0001L, 237 -6.735230105319809467356126599005051676203e-0002L, 238 2.058080842778453315716389815213496002588e-0002L, 239 -7.385551028673653323064118422580096222959e-0003L, 240 2.890510330735923572088003424849289006039e-0003L, 241 -1.192753911629952368606185543945790688144e-0003L, 242 5.096695239806718875364547587043220998766e-0004L, 243 -2.231547520600616108991867127392089144886e-0004L, 244 9.945746913898151120612322833059416008973e-0005L, 245 -4.492599307461977003570224943054585729684e-0005L, 246 2.050609891889165453592046505651759999090e-0005L, 247 -9.435329866734193796540515247917165988579e-0006L, 248 4.362267138522223236241016136585565144581e-0006L, 249 -2.008556356653246579300491601497510230557e-0006L, 250 8.961498103387207161105347118042844354395e-0007L, 251 -3.614187228330216282235692806488341157741e-0007L, 252 1.136978988247816860500420915014777753153e-0007L, 253 -2.000532786387196664019286514899782691776e-0008L, 254 }; 255 256 static const long double ap3[] = { /* 19 terms */ 257 -0.077215664901532859888521470795348856446L, 258 3.224670334241131733364048614484228443077e-0001L, 259 -6.735230105319676541660495145259038151576e-0002L, 260 2.058080842775975461837768839015444273830e-0002L, 261 -7.385551028347615729728618066663566606906e-0003L, 262 2.890510327517954083379032008643080256676e-0003L, 263 -1.192753886919470728001821137439430882603e-0003L, 264 5.096693728898932234814903769146577482912e-0004L, 265 -2.231540055048827662528594010961874258037e-0004L, 266 9.945446210018649311491619999438833843723e-0005L, 267 -4.491608206598064519190236245753867697750e-0005L, 268 2.047939071322271016498065052853746466669e-0005L, 269 -9.376824046522786006677541036631536790762e-0006L, 270 4.259329829498149111582277209189150127347e-0006L, 271 -1.866064770421594266702176289764212873428e-0006L, 272 7.462066721137579592928128104534957135669e-0007L, 273 -2.483546217529077735074007138457678727371e-0007L, 274 5.915166576378161473299324673649144297574e-0008L, 275 -7.334139641706988966966252333759604701905e-0009L, 276 }; 277 278 static const long double ap4[] = { /* 19 terms */ 279 -0.0772156649015326785569313252637238673675L, 280 3.224670334241051435008842685722468344822e-0001L, 281 -6.735230105302832007479431772160948499254e-0002L, 282 2.058080842553481183648529360967441889912e-0002L, 283 -7.385551007602909242024706804659879199244e-0003L, 284 2.890510182473907253939821312248303471206e-0003L, 285 -1.192753098427856770847894497586825614450e-0003L, 286 5.096659636418811568063339214203693550804e-0004L, 287 -2.231421144004355691166194259675004483639e-0004L, 288 9.942073842343832132754332881883387625136e-0005L, 289 -4.483809261973204531263252655050701205397e-0005L, 290 2.033260142610284888319116654931994447173e-0005L, 291 -9.153539544026646699870528191410440585796e-0006L, 292 3.988460469925482725894144688699584997971e-0006L, 293 -1.609692980087029172567957221850825977621e-0006L, 294 5.634916377249975825399706694496688803488e-0007L, 295 -1.560065465929518563549083208482591437696e-0007L, 296 2.961350193868935325526962209019387821584e-0008L, 297 -2.834602215195368130104649234505033159842e-0009L, 298 }; 299 300 static long double 301 primary(long double s) { /* assume |s|<=0.5 */ 302 int i; 303 304 i = (int) (8.0L * (s + 0.5L)); 305 switch(i) { 306 case 0: return ch*s+s*poly(s,an4,21); 307 case 1: return ch*s+s*poly(s,an3,20); 308 case 2: return ch*s+s*poly(s,an2,20); 309 case 3: return ch*s+s*poly(s,an1,20); 310 case 4: return ch*s+s*poly(s,ap1,19); 311 case 5: return ch*s+s*poly(s,ap2,19); 312 case 6: return ch*s+s*poly(s,ap3,19); 313 case 7: return ch*s+s*poly(s,ap4,19); 314 } 315 /* NOTREACHED */ 316 return 0.0L; 317 } 318 319 static long double 320 poly(long double s, const long double *p, int n) { 321 long double y; 322 int i; 323 y = p[n-1]; 324 for (i=n-2;i>=0;i--) y = p[i]+s*y; 325 return y; 326 } 327 328 static const long double pt[] = { 329 9.189385332046727417803297364056176804663e-0001L, 330 8.333333333333333333333333333331286969123e-0002L, 331 -2.777777777777777777777777553194796036402e-0003L, 332 7.936507936507936507927283071433584248176e-0004L, 333 -5.952380952380952362351042163192634108297e-0004L, 334 8.417508417508395661774286645578379460131e-0004L, 335 -1.917526917525263651186066417934685675649e-0003L, 336 6.410256409395203164659292973142293199083e-0003L, 337 -2.955065327248303301763594514012418438188e-0002L, 338 1.796442830099067542945998615411893822886e-0001L, 339 -1.392413465829723742489974310411118662919e+0000L, 340 1.339984238037267658352656597960492029261e+0001L, 341 -1.564707657605373662425785904278645727813e+0002L, 342 2.156323807499211356127813962223067079300e+0003L, 343 -3.330486427626223184647299834137041307569e+0004L, 344 5.235535072011889213611369254140123518699e+0005L, 345 -7.258160984602220710491988573430212593080e+0006L, 346 7.316526934569686459641438882340322673357e+0007L, 347 -3.806450279064900548836571789284896711473e+0008L, 348 }; 349 350 static long double 351 polytail(long double s) { 352 long double t,z; 353 int i; 354 z = s*s; 355 t = pt[18]; 356 for (i=17;i>=1;i--) t = pt[i]+z*t; 357 return pt[0]+s*t; 358 } 359 360 static long double 361 neg(long double z, int *signgamlp) { 362 long double t,p; 363 364 /* 365 * written by K.C. Ng, Feb 2, 1989. 366 * 367 * Since 368 * -z*G(-z)*G(z) = pi/sin(pi*z), 369 * we have 370 * G(-z) = -pi/(sin(pi*z)*G(z)*z) 371 * = pi/(sin(pi*(-z))*G(z)*z) 372 * Algorithm 373 * z = |z| 374 * t = sinpi(z); ...note that when z>2**112, z is an int 375 * and hence t=0. 376 * 377 * if(t==0.0) return 1.0/0.0; 378 * if(t< 0.0) *signgamlp = -1; else t= -t; 379 * if(z<1.0e-40) ...tiny z 380 * return -log(z); 381 * else 382 * return log(pi/(t*z))-lgamma(z); 383 * 384 */ 385 386 t = sinpil(z); /* t := sin(pi*z) */ 387 if (t==c0) /* return 1.0/0.0 = +INF */ 388 return c1/c0; 389 390 z = -z; 391 if(z<=tiny) 392 p = -logl(z); 393 else 394 p = logl(pi/(fabsl(t)*z))-__k_lgammal(z,signgamlp); 395 if(t<c0) *signgamlp = -1; 396 return p; 397 }