1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 /*
  26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27  * Use is subject to license terms.
  28  */
  29 
  30 #if defined(ELFOBJ)
  31 #pragma weak hypot = __hypot
  32 #endif
  33 
  34 /* INDENT OFF */
  35 /*
  36  * Hypot(x, y)
  37  * by K.C. Ng for SUN 4.0 libm, updated 3/11/2003.
  38  * Method :
  39  * A. When rounding is rounded-to-nearest:
  40  *      If z = x * x + y * y has error less than sqrt(2) / 2 ulp than
  41  *      sqrt(z) has error less than 1 ulp.
  42  *      So, compute sqrt(x*x+y*y) with some care as follows:
  43  *      Assume x > y > 0;
  44  *      1. Check whether save and set rounding to round-to-nearest
  45  *      2. if x > 2y  use
  46  *              xh*xh+(y*y+((x-xh)*(x+xh))) for x*x+y*y
  47  *      where xh = x with lower 32 bits cleared;  else
  48  *      3. if x <= 2y use
  49  *              x2h*yh+((x-y)*(x-y)+(x2h*(y-yh)+(x2-x2h)*y))
  50  *      where x2 = 2*x, x2h = 2x with lower 32 bits cleared, yh = y with
  51  *      lower 32 bits chopped.
  52  *
  53  * B. When rounding is not rounded-to-nearest:
  54  *      The following (magic) formula will yield an error less than 1 ulp.
  55  *      z = sqrt(x * x + y * y)
  56  *              hypot(x, y) = x + (y / ((x + z) / y))
  57  *
  58  * NOTE: DO NOT remove parenthsis!
  59  *
  60  * Special cases:
  61  *      hypot(x, y) is INF if x or y is +INF or -INF; else
  62  *      hypot(x, y) is NAN if x or y is NAN.
  63  *
  64  * Accuracy:
  65  *      hypot(x, y) returns sqrt(x^2+y^2) with error less than 1 ulps
  66  *      (units in the last place)
  67  */
  68 
  69 #include "libm.h"
  70 
  71 static const double
  72         zero = 0.0,
  73         onep1u = 1.00000000000000022204e+00,    /* 0x3ff00000 1 = 1+2**-52 */
  74         twom53 = 1.11022302462515654042e-16,    /* 0x3ca00000 0 = 2**-53 */
  75         twom768 = 6.441148769597133308e-232,    /* 2^-768 */
  76         two768  = 1.552518092300708935e+231;    /* 2^768 */
  77 
  78 /* INDENT ON */
  79 
  80 double
  81 hypot(double x, double y) {
  82         double xh, yh, w, ax, ay;
  83         int i, j, nx, ny, ix, iy, iscale = 0;
  84         unsigned lx, ly;
  85 
  86         ix = ((int *) &x)[HIWORD] & ~0x80000000;
  87         lx = ((int *) &x)[LOWORD];
  88         iy = ((int *) &y)[HIWORD] & ~0x80000000;
  89         ly = ((int *) &y)[LOWORD];
  90 /*
  91  * Force ax = |x| ~>~ ay = |y|
  92  */
  93         if (iy > ix) {
  94                 ax = fabs(y);
  95                 ay = fabs(x);
  96                 i = ix;
  97                 ix = iy;
  98                 iy = i;
  99                 i = lx;
 100                 lx = ly;
 101                 ly = i;
 102         } else {
 103                 ax = fabs(x);
 104                 ay = fabs(y);
 105         }
 106         nx = ix >> 20;
 107         ny = iy >> 20;
 108         j  = nx - ny;
 109 /*
 110  * x >= 2^500 (x*x or y*y may overflow)
 111  */
 112         if (nx >= 0x5f3) {
 113                 if (nx == 0x7ff) {      /* inf or NaN, signal of sNaN */
 114                         if (((ix - 0x7ff00000) | lx) == 0)
 115                                 return (ax == ay ? ay : ax);
 116                         else if (((iy - 0x7ff00000) | ly) == 0)
 117                                 return (ay == ax ? ax : ay);
 118                         else
 119                                 return (ax * ay);       /* + -> * for Cheetah */
 120                 } else if (j > 32) { /* x >> y */
 121                         if (j <= 53)
 122                                 ay *= twom53;
 123                         ax += ay;
 124                         if (((int *) &ax)[HIWORD] == 0x7ff00000)
 125                                 ax = _SVID_libm_err(x, y, 4);
 126                         return (ax);
 127                 }
 128                 ax *= twom768;
 129                 ay *= twom768;
 130                 iscale = 2;
 131                 ix -= 768 << 20;
 132                 iy -= 768 << 20;
 133         }
 134 /*
 135  * y < 2^-450 (x*x or y*y may underflow)
 136  */
 137         else if (ny < 0x23d) {
 138                 if ((ix | lx) == 0)
 139                         return (ay);
 140                 if ((iy | ly) == 0)
 141                         return (ax);
 142                 if (j > 53)          /* x >> y */
 143                         return (ax + ay);
 144                 iscale = 1;
 145                 ax *= two768;
 146                 ay *= two768;
 147                 if (nx == 0) {
 148                         if (ax == zero) /* guard subnormal flush to zero */
 149                                 return (ax);
 150                         ix = ((int *) &ax)[HIWORD];
 151                 } else
 152                         ix += 768 << 20;
 153                 if (ny == 0) {
 154                         if (ay == zero) /* guard subnormal flush to zero */
 155                                 return (ax * twom768);
 156                         iy = ((int *) &ay)[HIWORD];
 157                 } else
 158                         iy += 768 << 20;
 159                 j = (ix >> 20) - (iy >> 20);
 160                 if (j > 32) {                /* x >> y */
 161                         if (j <= 53)
 162                                 ay *= twom53;
 163                         return ((ax + ay) * twom768);
 164                 }
 165         } else if (j > 32) {         /* x >> y */
 166                 if (j <= 53)
 167                         ay *= twom53;
 168                 return (ax + ay);
 169         }
 170 /*
 171  * Medium range ax and ay with max{|ax/ay|,|ay/ax|} bounded by 2^32
 172  * First check rounding mode by comparing onep1u*onep1u with onep1u+twom53.
 173  * Make sure the computation is done at run-time.
 174  */
 175         if (((lx | ly) << 5) == 0) {
 176                 ay = ay * ay;
 177                 ax += ay / (ax + sqrt(ax * ax + ay));
 178         } else
 179         if (onep1u * onep1u != onep1u + twom53) {
 180         /* round-to-zero, positive, negative mode */
 181         /* magic formula with less than an ulp error */
 182                 w = sqrt(ax * ax + ay * ay);
 183                 ax += ay / ((ax + w) / ay);
 184         } else {
 185         /* round-to-nearest mode */
 186                 w = ax - ay;
 187                 if (w > ay) {
 188                         ((int *) &xh)[HIWORD] = ix;
 189                         ((int *) &xh)[LOWORD] = 0;
 190                         ay = ay * ay + (ax - xh) * (ax + xh);
 191                         ax = sqrt(xh * xh + ay);
 192                 } else {
 193                         ax = ax + ax;
 194                         ((int *) &xh)[HIWORD] = ix + 0x00100000;
 195                         ((int *) &xh)[LOWORD] = 0;
 196                         ((int *) &yh)[HIWORD] = iy;
 197                         ((int *) &yh)[LOWORD] = 0;
 198                         ay = w * w + ((ax - xh) * yh + (ay - yh) * ax);
 199                         ax = sqrt(xh * yh + ay);
 200                 }
 201         }
 202         if (iscale > 0) {
 203                 if (iscale == 1)
 204                         ax *= twom768;
 205                 else {
 206                         ax *= two768;   /* must generate side effect here */
 207                         if (((int *) &ax)[HIWORD] == 0x7ff00000)
 208                                 ax = _SVID_libm_err(x, y, 4);
 209                 }
 210         }
 211         return (ax);
 212 }