1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #if defined(ELFOBJ) 31 #pragma weak jnl = __jnl 32 #pragma weak ynl = __ynl 33 #endif 34 35 /* 36 * floating point Bessel's function of the 1st and 2nd kind 37 * of order n: jn(n,x),yn(n,x); 38 * 39 * Special cases: 40 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; 41 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. 42 * Note 2. About jn(n,x), yn(n,x) 43 * For n=0, j0(x) is called, 44 * for n=1, j1(x) is called, 45 * for n<x, forward recursion us used starting 46 * from values of j0(x) and j1(x). 47 * for n>x, a continued fraction approximation to 48 * j(n,x)/j(n-1,x) is evaluated and then backward 49 * recursion is used starting from a supposed value 50 * for j(n,x). The resulting value of j(0,x) is 51 * compared with the actual value to correct the 52 * supposed value of j(n,x). 53 * 54 * yn(n,x) is similar in all respects, except 55 * that forward recursion is used for all 56 * values of n>1. 57 * 58 */ 59 60 #include "libm.h" 61 #include "longdouble.h" 62 #include <float.h> /* LDBL_MAX */ 63 64 #define GENERIC long double 65 66 static const GENERIC 67 invsqrtpi= 5.641895835477562869480794515607725858441e-0001L, 68 two = 2.0L, 69 zero = 0.0L, 70 one = 1.0L; 71 72 GENERIC 73 jnl(n,x) int n; GENERIC x;{ 74 int i, sgn; 75 GENERIC a, b, temp = 0, z, w; 76 77 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 78 * Thus, J(-n,x) = J(n,-x) 79 */ 80 if(n<0){ 81 n = -n; 82 x = -x; 83 } 84 if(n==0) return(j0l(x)); 85 if(n==1) return(j1l(x)); 86 if(x!=x) return x+x; 87 if((n&1)==0) 88 sgn=0; /* even n */ 89 else 90 sgn = signbitl(x); /* old n */ 91 x = fabsl(x); 92 if(x == zero||!finitel(x)) b = zero; 93 else if((GENERIC)n<=x) { /* Safe to use 94 J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 95 */ 96 if(x>1.0e91L) { /* x >> n**2 97 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 98 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 99 Let s=sin(x), c=cos(x), 100 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 101 102 n sin(xn)*sqt2 cos(xn)*sqt2 103 ---------------------------------- 104 0 s-c c+s 105 1 -s-c -c+s 106 2 -s+c -c-s 107 3 s+c c-s 108 */ 109 switch(n&3) { 110 case 0: temp = cosl(x)+sinl(x); break; 111 case 1: temp = -cosl(x)+sinl(x); break; 112 case 2: temp = -cosl(x)-sinl(x); break; 113 case 3: temp = cosl(x)-sinl(x); break; 114 } 115 b = invsqrtpi*temp/sqrtl(x); 116 } else { 117 a = j0l(x); 118 b = j1l(x); 119 for(i=1;i<n;i++){ 120 temp = b; 121 b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */ 122 a = temp; 123 } 124 } 125 } else { 126 if(x<1e-17L) { /* use J(n,x) = 1/n!*(x/2)^n */ 127 b = powl(0.5L*x,(GENERIC) n); 128 if (b!=zero) { 129 for(a=one,i=1;i<=n;i++) a *= (GENERIC)i; 130 b = b/a; 131 } 132 } else { 133 /* use backward recurrence */ 134 /* x x^2 x^2 135 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 136 * 2n - 2(n+1) - 2(n+2) 137 * 138 * 1 1 1 139 * (for large x) = ---- ------ ------ ..... 140 * 2n 2(n+1) 2(n+2) 141 * -- - ------ - ------ - 142 * x x x 143 * 144 * Let w = 2n/x and h=2/x, then the above quotient 145 * is equal to the continued fraction: 146 * 1 147 * = ----------------------- 148 * 1 149 * w - ----------------- 150 * 1 151 * w+h - --------- 152 * w+2h - ... 153 * 154 * To determine how many terms needed, let 155 * Q(0) = w, Q(1) = w(w+h) - 1, 156 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 157 * When Q(k) > 1e4 good for single 158 * When Q(k) > 1e9 good for double 159 * When Q(k) > 1e17 good for quaduple 160 */ 161 /* determin k */ 162 GENERIC t,v; 163 double q0,q1,h,tmp; int k,m; 164 w = (n+n)/(double)x; h = 2.0/(double)x; 165 q0 = w; z = w+h; q1 = w*z - 1.0; k=1; 166 while(q1<1.0e17) { 167 k += 1; z += h; 168 tmp = z*q1 - q0; 169 q0 = q1; 170 q1 = tmp; 171 } 172 m = n+n; 173 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); 174 a = t; 175 b = one; 176 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 177 hence, if n*(log(2n/x)) > ... 178 single 8.8722839355e+01 179 double 7.09782712893383973096e+02 180 long double 1.1356523406294143949491931077970765006170e+04 181 then recurrent value may overflow and the result is 182 likely underflow to zero 183 */ 184 tmp = n; 185 v = two/x; 186 tmp = tmp*logl(fabsl(v*tmp)); 187 if(tmp<1.1356523406294143949491931077970765e+04L) { 188 for(i=n-1;i>0;i--){ 189 temp = b; 190 b = ((i+i)/x)*b - a; 191 a = temp; 192 } 193 } else { 194 for(i=n-1;i>0;i--){ 195 temp = b; 196 b = ((i+i)/x)*b - a; 197 a = temp; 198 if(b>1e1000L) { 199 a /= b; 200 t /= b; 201 b = 1.0; 202 } 203 } 204 } 205 b = (t*j0l(x)/b); 206 } 207 } 208 if(sgn==1) return -b; else return b; 209 } 210 211 GENERIC ynl(n,x) 212 int n; GENERIC x;{ 213 int i; 214 int sign; 215 GENERIC a, b, temp = 0; 216 217 if(x!=x) 218 return x+x; 219 if (x <= zero) { 220 if(x==zero) 221 return -one/zero; 222 else 223 return zero/zero; 224 } 225 sign = 1; 226 if(n<0){ 227 n = -n; 228 if((n&1) == 1) sign = -1; 229 } 230 if(n==0) return(y0l(x)); 231 if(n==1) return(sign*y1l(x)); 232 if(!finitel(x)) return zero; 233 234 if(x>1.0e91L) { /* x >> n**2 235 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 236 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 237 Let s=sin(x), c=cos(x), 238 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 239 240 n sin(xn)*sqt2 cos(xn)*sqt2 241 ---------------------------------- 242 0 s-c c+s 243 1 -s-c -c+s 244 2 -s+c -c-s 245 3 s+c c-s 246 */ 247 switch(n&3) { 248 case 0: temp = sinl(x)-cosl(x); break; 249 case 1: temp = -sinl(x)-cosl(x); break; 250 case 2: temp = -sinl(x)+cosl(x); break; 251 case 3: temp = sinl(x)+cosl(x); break; 252 } 253 b = invsqrtpi*temp/sqrtl(x); 254 } else { 255 a = y0l(x); 256 b = y1l(x); 257 /* 258 * fix 1262058 and take care of non-default rounding 259 */ 260 for (i = 1; i < n; i++) { 261 temp = b; 262 b *= (GENERIC) (i + i) / x; 263 if (b <= -LDBL_MAX) 264 break; 265 b -= a; 266 a = temp; 267 } 268 } 269 if(sign>0) return b; else return -b; 270 }