1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma weak jn = __jn 31 #pragma weak yn = __yn 32 33 /* 34 * floating point Bessel's function of the 1st and 2nd kind 35 * of order n: jn(n,x),yn(n,x); 36 * 37 * Special cases: 38 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; 39 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. 40 * Note 2. About jn(n,x), yn(n,x) 41 * For n=0, j0(x) is called, 42 * for n=1, j1(x) is called, 43 * for n<x, forward recursion us used starting 44 * from values of j0(x) and j1(x). 45 * for n>x, a continued fraction approximation to 46 * j(n,x)/j(n-1,x) is evaluated and then backward 47 * recursion is used starting from a supposed value 48 * for j(n,x). The resulting value of j(0,x) is 49 * compared with the actual value to correct the 50 * supposed value of j(n,x). 51 * 52 * yn(n,x) is similar in all respects, except 53 * that forward recursion is used for all 54 * values of n>1. 55 * 56 */ 57 58 #include "libm.h" 59 #include <float.h> /* DBL_MIN */ 60 #include <values.h> /* X_TLOSS */ 61 #include "xpg6.h" /* __xpg6 */ 62 63 #define GENERIC double 64 65 static const GENERIC 66 invsqrtpi = 5.641895835477562869480794515607725858441e-0001, 67 two = 2.0, 68 zero = 0.0, 69 one = 1.0; 70 71 GENERIC 72 jn(int n, GENERIC x) { 73 int i, sgn; 74 GENERIC a, b, temp = 0; 75 GENERIC z, w, ox, on; 76 77 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 78 * Thus, J(-n,x) = J(n,-x) 79 */ 80 ox = x; on = (GENERIC)n; 81 if(n<0){ 82 n = -n; 83 x = -x; 84 } 85 if(isnan(x)) return x*x; /* + -> * for Cheetah */ 86 if (!((int) _lib_version == libm_ieee || 87 (__xpg6 & _C99SUSv3_math_errexcept) != 0)) { 88 if(fabs(x) > X_TLOSS) return _SVID_libm_err(on,ox,38); 89 } 90 if(n==0) return(j0(x)); 91 if(n==1) return(j1(x)); 92 if((n&1)==0) 93 sgn=0; /* even n */ 94 else 95 sgn = signbit(x); /* old n */ 96 x = fabs(x); 97 if(x == zero||!finite(x)) b = zero; 98 else if((GENERIC)n<=x) { /* Safe to use 99 J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 100 */ 101 if(x>1.0e91) { /* x >> n**2 102 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 103 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 104 Let s=sin(x), c=cos(x), 105 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 106 107 n sin(xn)*sqt2 cos(xn)*sqt2 108 ---------------------------------- 109 0 s-c c+s 110 1 -s-c -c+s 111 2 -s+c -c-s 112 3 s+c c-s 113 */ 114 switch(n&3) { 115 case 0: temp = cos(x)+sin(x); break; 116 case 1: temp = -cos(x)+sin(x); break; 117 case 2: temp = -cos(x)-sin(x); break; 118 case 3: temp = cos(x)-sin(x); break; 119 } 120 b = invsqrtpi*temp/sqrt(x); 121 } else { 122 a = j0(x); 123 b = j1(x); 124 for(i=1;i<n;i++){ 125 temp = b; 126 b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */ 127 a = temp; 128 } 129 } 130 } else { 131 if(x<1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */ 132 b = pow(0.5*x,(GENERIC) n); 133 if (b!=zero) { 134 for(a=one,i=1;i<=n;i++) a *= (GENERIC)i; 135 b = b/a; 136 } 137 } else { 138 /* use backward recurrence */ 139 /* x x^2 x^2 140 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 141 * 2n - 2(n+1) - 2(n+2) 142 * 143 * 1 1 1 144 * (for large x) = ---- ------ ------ ..... 145 * 2n 2(n+1) 2(n+2) 146 * -- - ------ - ------ - 147 * x x x 148 * 149 * Let w = 2n/x and h=2/x, then the above quotient 150 * is equal to the continued fraction: 151 * 1 152 * = ----------------------- 153 * 1 154 * w - ----------------- 155 * 1 156 * w+h - --------- 157 * w+2h - ... 158 * 159 * To determine how many terms needed, let 160 * Q(0) = w, Q(1) = w(w+h) - 1, 161 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 162 * When Q(k) > 1e4 good for single 163 * When Q(k) > 1e9 good for double 164 * When Q(k) > 1e17 good for quaduple 165 */ 166 /* determin k */ 167 GENERIC t,v; 168 double q0,q1,h,tmp; int k,m; 169 w = (n+n)/(double)x; h = 2.0/(double)x; 170 q0 = w; z = w+h; q1 = w*z - 1.0; k=1; 171 while(q1<1.0e9) { 172 k += 1; z += h; 173 tmp = z*q1 - q0; 174 q0 = q1; 175 q1 = tmp; 176 } 177 m = n+n; 178 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); 179 a = t; 180 b = one; 181 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 182 hence, if n*(log(2n/x)) > ... 183 single 8.8722839355e+01 184 double 7.09782712893383973096e+02 185 long double 1.1356523406294143949491931077970765006170e+04 186 then recurrent value may overflow and the result is 187 likely underflow to zero 188 */ 189 tmp = n; 190 v = two/x; 191 tmp = tmp*log(fabs(v*tmp)); 192 if(tmp<7.09782712893383973096e+02) { 193 for(i=n-1;i>0;i--){ 194 temp = b; 195 b = ((i+i)/x)*b - a; 196 a = temp; 197 } 198 } else { 199 for(i=n-1;i>0;i--){ 200 temp = b; 201 b = ((i+i)/x)*b - a; 202 a = temp; 203 if(b>1e100) { 204 a /= b; 205 t /= b; 206 b = 1.0; 207 } 208 } 209 } 210 b = (t*j0(x)/b); 211 } 212 } 213 if(sgn==1) return -b; else return b; 214 } 215 216 GENERIC 217 yn(int n, GENERIC x) { 218 int i; 219 int sign; 220 GENERIC a, b, temp = 0, ox, on; 221 222 ox = x; on = (GENERIC)n; 223 if(isnan(x)) return x*x; /* + -> * for Cheetah */ 224 if (x <= zero) { 225 if(x==zero) { 226 /* return -one/zero; */ 227 return _SVID_libm_err((GENERIC)n,x,12); 228 } else { 229 /* return zero/zero; */ 230 return _SVID_libm_err((GENERIC)n,x,13); 231 } 232 } 233 if (!((int) _lib_version == libm_ieee || 234 (__xpg6 & _C99SUSv3_math_errexcept) != 0)) { 235 if(x > X_TLOSS) return _SVID_libm_err(on,ox,39); 236 } 237 sign = 1; 238 if(n<0){ 239 n = -n; 240 if((n&1) == 1) sign = -1; 241 } 242 if(n==0) return(y0(x)); 243 if(n==1) return(sign*y1(x)); 244 if(!finite(x)) return zero; 245 246 if(x>1.0e91) { /* x >> n**2 247 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 248 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 249 Let s=sin(x), c=cos(x), 250 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 251 252 n sin(xn)*sqt2 cos(xn)*sqt2 253 ---------------------------------- 254 0 s-c c+s 255 1 -s-c -c+s 256 2 -s+c -c-s 257 3 s+c c-s 258 */ 259 switch(n&3) { 260 case 0: temp = sin(x)-cos(x); break; 261 case 1: temp = -sin(x)-cos(x); break; 262 case 2: temp = -sin(x)+cos(x); break; 263 case 3: temp = sin(x)+cos(x); break; 264 } 265 b = invsqrtpi*temp/sqrt(x); 266 } else { 267 a = y0(x); 268 b = y1(x); 269 /* 270 * fix 1262058 and take care of non-default rounding 271 */ 272 for (i = 1; i < n; i++) { 273 temp = b; 274 b *= (GENERIC) (i + i) / x; 275 if (b <= -DBL_MAX) 276 break; 277 b -= a; 278 a = temp; 279 } 280 } 281 if(sign>0) return b; else return -b; 282 }