143 /* Q2 */ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ 144 /* Q3 */ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ 145 /* Q4 */ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ 146 /* Q5 */ -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */ 147 }; 148 #define one xxx[0] 149 #define huge xxx[1] 150 #define tiny xxx[2] 151 #define o_threshold xxx[3] 152 #define ln2_hi xxx[4] 153 #define ln2_lo xxx[5] 154 #define invln2 xxx[6] 155 #define Q1 xxx[7] 156 #define Q2 xxx[8] 157 #define Q3 xxx[9] 158 #define Q4 xxx[10] 159 #define Q5 xxx[11] 160 161 double 162 expm1(double x) { 163 double y, hi, lo, c, t, e, hxs, hfx, r1; 164 int k, xsb; 165 unsigned hx; 166 167 hx = ((unsigned *) &x)[HIWORD]; /* high word of x */ 168 xsb = hx & 0x80000000; /* sign bit of x */ 169 if (xsb == 0) 170 y = x; 171 else 172 y = -x; /* y = |x| */ 173 hx &= 0x7fffffff; /* high word of |x| */ 174 175 /* filter out huge and non-finite arugment */ 176 if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */ 177 if (hx >= 0x40862E42) { /* if |x|>=709.78... */ 178 if (hx >= 0x7ff00000) { 179 if (((hx & 0xfffff) | ((int *) &x)[LOWORD]) 180 != 0) 181 return x * x; /* + -> * for Cheetah */ 182 else 183 return xsb == 0 ? x : -1.0; /* exp(+-inf)={inf,-1} */ 184 } 185 if (x > o_threshold) 186 return huge * huge; /* overflow */ 187 } 188 if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */ 189 if (x + tiny < 0.0) /* raise inexact */ 190 return tiny - one; /* return -1 */ 191 } 192 } 193 194 /* argument reduction */ 195 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ 196 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ 197 if (xsb == 0) { 198 hi = x - ln2_hi; 199 lo = ln2_lo; 200 k = 1; 201 } 202 else { 203 hi = x + ln2_hi; 204 lo = -ln2_lo; 205 k = -1; 206 } 207 } 208 else { 209 k = (int) (invln2 * x + (xsb == 0 ? 0.5 : -0.5)); 210 t = k; 211 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ 212 lo = t * ln2_lo; 213 } 214 x = hi - lo; 215 c = (hi - x) - lo; 216 } 217 else if (hx < 0x3c900000) { /* when |x|<2**-54, return x */ 218 t = huge + x; /* return x w/inexact when x != 0 */ 219 return x - (t - (huge + x)); 220 } 221 else 222 k = 0; 223 224 /* x is now in primary range */ 225 hfx = 0.5 * x; 226 hxs = x * hfx; 227 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); 228 t = 3.0 - r1 * hfx; 229 e = hxs * ((r1 - t) / (6.0 - x * t)); 230 if (k == 0) 231 return x - (x * e - hxs); /* c is 0 */ 232 else { 233 e = (x * (e - c) - c); 234 e -= hxs; 235 if (k == -1) 236 return 0.5 * (x - e) - 0.5; 237 if (k == 1) 238 if (x < -0.25) 239 return -2.0 * (e - (x + 0.5)); 240 else 241 return one + 2.0 * (x - e); 242 if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ 243 y = one - (e - x); 244 ((int *) &y)[HIWORD] += k << 20; 245 return y - one; 246 } 247 t = one; 248 if (k < 20) { 249 ((int *) &t)[HIWORD] = 0x3ff00000 - (0x200000 >> k); 250 /* t = 1 - 2^-k */ 251 y = t - (e - x); 252 ((int *) &y)[HIWORD] += k << 20; 253 } 254 else { 255 ((int *) &t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */ 256 y = x - (e + t); 257 y += one; 258 ((int *) &y)[HIWORD] += k << 20; 259 } 260 } 261 return y; | 143 /* Q2 */ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ 144 /* Q3 */ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ 145 /* Q4 */ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ 146 /* Q5 */ -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */ 147 }; 148 #define one xxx[0] 149 #define huge xxx[1] 150 #define tiny xxx[2] 151 #define o_threshold xxx[3] 152 #define ln2_hi xxx[4] 153 #define ln2_lo xxx[5] 154 #define invln2 xxx[6] 155 #define Q1 xxx[7] 156 #define Q2 xxx[8] 157 #define Q3 xxx[9] 158 #define Q4 xxx[10] 159 #define Q5 xxx[11] 160 161 double 162 expm1(double x) { 163 double y, hi, lo, c = 0.0L, t, e, hxs, hfx, r1; 164 int k, xsb; 165 unsigned hx; 166 167 hx = ((unsigned *) &x)[HIWORD]; /* high word of x */ 168 xsb = hx & 0x80000000; /* sign bit of x */ 169 if (xsb == 0) 170 y = x; 171 else 172 y = -x; /* y = |x| */ 173 hx &= 0x7fffffff; /* high word of |x| */ 174 175 /* filter out huge and non-finite argument */ 176 /* for example exp(38)-1 is approximately 3.1855932e+16 */ 177 if (hx >= 0x4043687A) { /* if |x|>=56*ln2 (~38.8162...)*/ 178 if (hx >= 0x40862E42) { /* if |x|>=709.78... -> inf */ 179 if (hx >= 0x7ff00000) { 180 if (((hx & 0xfffff) | ((int *) &x)[LOWORD]) 181 != 0) 182 return x * x; /* + -> * for Cheetah */ 183 else 184 return xsb == 0 ? x : -1.0; /* exp(+-inf)={inf,-1} */ 185 } 186 if (x > o_threshold) 187 return huge * huge; /* overflow */ 188 } 189 if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */ 190 if (x + tiny < 0.0) /* raise inexact */ 191 return tiny - one; /* return -1 */ 192 } 193 } 194 195 /* argument reduction */ 196 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ 197 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ 198 if (xsb == 0) { /* positive number */ 199 hi = x - ln2_hi; 200 lo = ln2_lo; 201 k = 1; 202 } 203 else { /* negative number */ 204 hi = x + ln2_hi; 205 lo = -ln2_lo; 206 k = -1; 207 } 208 } 209 else { /* |x| > 1.5 ln2 */ 210 k = (int) (invln2 * x + (xsb == 0 ? 0.5 : -0.5)); 211 t = k; 212 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ 213 lo = t * ln2_lo; 214 } 215 x = hi - lo; 216 c = (hi - x) - lo; /* still at |x| > 0.5 ln2 */ 217 } 218 else if (hx < 0x3c900000) { /* when |x|<2**-54, return x */ 219 t = huge + x; /* return x w/inexact when x != 0 */ 220 return x - (t - (huge + x)); 221 } 222 else /* |x| <= 0.5 ln2 */ 223 k = 0; 224 225 /* x is now in primary range */ 226 hfx = 0.5 * x; 227 hxs = x * hfx; 228 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); 229 t = 3.0 - r1 * hfx; 230 e = hxs * ((r1 - t) / (6.0 - x * t)); 231 if (k == 0) /* |x| <= 0.5 ln2 */ 232 return x - (x * e - hxs); 233 else { /* |x| > 0.5 ln2 */ 234 e = (x * (e - c) - c); 235 e -= hxs; 236 if (k == -1) 237 return 0.5 * (x - e) - 0.5; 238 if (k == 1) { 239 if (x < -0.25) 240 return -2.0 * (e - (x + 0.5)); 241 else 242 return one + 2.0 * (x - e); 243 } 244 if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ 245 y = one - (e - x); 246 ((int *) &y)[HIWORD] += k << 20; 247 return y - one; 248 } 249 t = one; 250 if (k < 20) { 251 ((int *) &t)[HIWORD] = 0x3ff00000 - (0x200000 >> k); 252 /* t = 1 - 2^-k */ 253 y = t - (e - x); 254 ((int *) &y)[HIWORD] += k << 20; 255 } 256 else { 257 ((int *) &t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */ 258 y = x - (e + t); 259 y += one; 260 ((int *) &y)[HIWORD] += k << 20; 261 } 262 } 263 return y; |