1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak expm1 = __expm1
31
32 /* INDENT OFF */
33 /* expm1(x)
34 * Returns exp(x)-1, the exponential of x minus 1.
35 *
36 * Method
37 * 1. Arugment reduction:
38 * Given x, find r and integer k such that
39 *
40 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
41 *
42 * Here a correction term c will be computed to compensate
43 * the error in r when rounded to a floating-point number.
44 *
45 * 2. Approximating expm1(r) by a special rational function on
46 * the interval [0,0.34658]:
47 * Since
48 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
49 * we define R1(r*r) by
50 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
51 * That is,
52 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
53 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
54 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
55 * We use a special Reme algorithm on [0,0.347] to generate
56 * a polynomial of degree 5 in r*r to approximate R1. The
57 * maximum error of this polynomial approximation is bounded
58 * by 2**-61. In other words,
59 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
60 * where Q1 = -1.6666666666666567384E-2,
61 * Q2 = 3.9682539681370365873E-4,
62 * Q3 = -9.9206344733435987357E-6,
63 * Q4 = 2.5051361420808517002E-7,
64 * Q5 = -6.2843505682382617102E-9;
65 * (where z=r*r, and the values of Q1 to Q5 are listed below)
66 * with error bounded by
67 * | 5 | -61
68 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
69 * | |
70 *
71 * expm1(r) = exp(r)-1 is then computed by the following
72 * specific way which minimize the accumulation rounding error:
73 * 2 3
74 * r r [ 3 - (R1 + R1*r/2) ]
75 * expm1(r) = r + --- + --- * [--------------------]
76 * 2 2 [ 6 - r*(3 - R1*r/2) ]
77 *
78 * To compensate the error in the argument reduction, we use
79 * expm1(r+c) = expm1(r) + c + expm1(r)*c
80 * ~ expm1(r) + c + r*c
81 * Thus c+r*c will be added in as the correction terms for
82 * expm1(r+c). Now rearrange the term to avoid optimization
83 * screw up:
84 * ( 2 2 )
85 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
86 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
87 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
88 * ( )
89 *
90 * = r - E
91 * 3. Scale back to obtain expm1(x):
92 * From step 1, we have
93 * expm1(x) = either 2^k*[expm1(r)+1] - 1
94 * = or 2^k*[expm1(r) + (1-2^-k)]
95 * 4. Implementation notes:
96 * (A). To save one multiplication, we scale the coefficient Qi
97 * to Qi*2^i, and replace z by (x^2)/2.
98 * (B). To achieve maximum accuracy, we compute expm1(x) by
99 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
100 * (ii) if k=0, return r-E
101 * (iii) if k=-1, return 0.5*(r-E)-0.5
102 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
103 * else return 1.0+2.0*(r-E);
104 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
105 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
106 * (vii) return 2^k(1-((E+2^-k)-r))
107 *
108 * Special cases:
109 * expm1(INF) is INF, expm1(NaN) is NaN;
110 * expm1(-INF) is -1, and
111 * for finite argument, only expm1(0)=0 is exact.
112 *
113 * Accuracy:
114 * according to an error analysis, the error is always less than
115 * 1 ulp (unit in the last place).
116 *
117 * Misc. info.
118 * For IEEE double
119 * if x > 7.09782712893383973096e+02 then expm1(x) overflow
120 *
121 * Constants:
122 * The hexadecimal values are the intended ones for the following
123 * constants. The decimal values may be used, provided that the
124 * compiler will convert from decimal to binary accurately enough
125 * to produce the hexadecimal values shown.
126 */
127 /* INDENT ON */
128
129 #include "libm_synonyms.h" /* __expm1 */
130 #include "libm_macros.h"
131 #include <math.h>
132
133 static const double xxx[] = {
134 /* one */ 1.0,
135 /* huge */ 1.0e+300,
136 /* tiny */ 1.0e-300,
137 /* o_threshold */ 7.09782712893383973096e+02, /* 40862E42 FEFA39EF */
138 /* ln2_hi */ 6.93147180369123816490e-01, /* 3FE62E42 FEE00000 */
139 /* ln2_lo */ 1.90821492927058770002e-10, /* 3DEA39EF 35793C76 */
140 /* invln2 */ 1.44269504088896338700e+00, /* 3FF71547 652B82FE */
141 /* scaled coefficients related to expm1 */
142 /* Q1 */ -3.33333333333331316428e-02, /* BFA11111 111110F4 */
143 /* Q2 */ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
144 /* Q3 */ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
145 /* Q4 */ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
146 /* Q5 */ -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */
147 };
148 #define one xxx[0]
149 #define huge xxx[1]
150 #define tiny xxx[2]
151 #define o_threshold xxx[3]
152 #define ln2_hi xxx[4]
153 #define ln2_lo xxx[5]
154 #define invln2 xxx[6]
155 #define Q1 xxx[7]
156 #define Q2 xxx[8]
157 #define Q3 xxx[9]
158 #define Q4 xxx[10]
159 #define Q5 xxx[11]
160
161 double
162 expm1(double x) {
163 double y, hi, lo, c = 0.0L, t, e, hxs, hfx, r1;
164 int k, xsb;
165 unsigned hx;
166
167 hx = ((unsigned *) &x)[HIWORD]; /* high word of x */
168 xsb = hx & 0x80000000; /* sign bit of x */
169 if (xsb == 0)
170 y = x;
171 else
172 y = -x; /* y = |x| */
173 hx &= 0x7fffffff; /* high word of |x| */
174
175 /* filter out huge and non-finite argument */
176 /* for example exp(38)-1 is approximately 3.1855932e+16 */
177 if (hx >= 0x4043687A) { /* if |x|>=56*ln2 (~38.8162...)*/
178 if (hx >= 0x40862E42) { /* if |x|>=709.78... -> inf */
179 if (hx >= 0x7ff00000) {
180 if (((hx & 0xfffff) | ((int *) &x)[LOWORD])
181 != 0)
182 return x * x; /* + -> * for Cheetah */
183 else
184 return xsb == 0 ? x : -1.0; /* exp(+-inf)={inf,-1} */
185 }
186 if (x > o_threshold)
187 return huge * huge; /* overflow */
188 }
189 if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */
190 if (x + tiny < 0.0) /* raise inexact */
191 return tiny - one; /* return -1 */
192 }
193 }
194
195 /* argument reduction */
196 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
197 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
198 if (xsb == 0) { /* positive number */
199 hi = x - ln2_hi;
200 lo = ln2_lo;
201 k = 1;
202 }
203 else { /* negative number */
204 hi = x + ln2_hi;
205 lo = -ln2_lo;
206 k = -1;
207 }
208 }
209 else { /* |x| > 1.5 ln2 */
210 k = (int) (invln2 * x + (xsb == 0 ? 0.5 : -0.5));
211 t = k;
212 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
213 lo = t * ln2_lo;
214 }
215 x = hi - lo;
216 c = (hi - x) - lo; /* still at |x| > 0.5 ln2 */
217 }
218 else if (hx < 0x3c900000) { /* when |x|<2**-54, return x */
219 t = huge + x; /* return x w/inexact when x != 0 */
220 return x - (t - (huge + x));
221 }
222 else /* |x| <= 0.5 ln2 */
223 k = 0;
224
225 /* x is now in primary range */
226 hfx = 0.5 * x;
227 hxs = x * hfx;
228 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
229 t = 3.0 - r1 * hfx;
230 e = hxs * ((r1 - t) / (6.0 - x * t));
231 if (k == 0) /* |x| <= 0.5 ln2 */
232 return x - (x * e - hxs);
233 else { /* |x| > 0.5 ln2 */
234 e = (x * (e - c) - c);
235 e -= hxs;
236 if (k == -1)
237 return 0.5 * (x - e) - 0.5;
238 if (k == 1) {
239 if (x < -0.25)
240 return -2.0 * (e - (x + 0.5));
241 else
242 return one + 2.0 * (x - e);
243 }
244 if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */
245 y = one - (e - x);
246 ((int *) &y)[HIWORD] += k << 20;
247 return y - one;
248 }
249 t = one;
250 if (k < 20) {
251 ((int *) &t)[HIWORD] = 0x3ff00000 - (0x200000 >> k);
252 /* t = 1 - 2^-k */
253 y = t - (e - x);
254 ((int *) &y)[HIWORD] += k << 20;
255 }
256 else {
257 ((int *) &t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */
258 y = x - (e + t);
259 y += one;
260 ((int *) &y)[HIWORD] += k << 20;
261 }
262 }
263 return y;
264 }