1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #if defined(ELFOBJ) 31 #pragma weak llrintl = __llrintl 32 #if defined(__sparcv9) || defined(__amd64) 33 #pragma weak lrintl = __llrintl 34 #pragma weak __lrintl = __llrintl 35 #endif 36 #endif 37 38 #include "libm.h" 39 40 #if defined(__sparc) 41 42 #include "fma.h" 43 #include "fenv_inlines.h" 44 45 long long 46 llrintl(long double x) { 47 union { 48 unsigned i[4]; 49 long double q; 50 } xx; 51 union { 52 unsigned i[2]; 53 long long l; 54 } zz; 55 union { 56 unsigned i; 57 float f; 58 } tt; 59 unsigned int hx, sx, frac; 60 unsigned int fsr; 61 int rm, j; 62 volatile float dummy; 63 64 xx.q = x; 65 sx = xx.i[0] & 0x80000000; 66 hx = xx.i[0] & ~0x80000000; 67 68 /* handle trivial cases */ 69 if (hx > 0x403e0000) { /* |x| > 2^63 + ... or x is nan */ 70 /* convert an out-of-range float */ 71 tt.i = sx | 0x7f000000; 72 return ((long long) tt.f); 73 } else if ((hx | xx.i[1] | xx.i[2] | xx.i[3]) == 0) /* x is zero */ 74 return (0LL); 75 76 /* get the rounding mode */ 77 __fenv_getfsr32(&fsr); 78 rm = fsr >> 30; 79 80 /* flip the sense of directed roundings if x is negative */ 81 if (sx) 82 rm ^= rm >> 1; 83 84 /* handle |x| < 1 */ 85 if (hx < 0x3fff0000) { 86 dummy = 1.0e30f; /* x is nonzero, so raise inexact */ 87 dummy += 1.0e-30f; 88 if (rm == FSR_RP || (rm == FSR_RN && (hx >= 0x3ffe0000 && 89 ((hx & 0xffff) | xx.i[1] | xx.i[2] | xx.i[3])))) 90 return (sx ? -1LL : 1LL); 91 return (0LL); 92 } 93 94 /* extract the integer and fractional parts of x */ 95 j = 0x406f - (hx >> 16); 96 xx.i[0] = 0x10000 | (xx.i[0] & 0xffff); 97 if (j >= 96) { 98 zz.i[0] = 0; 99 zz.i[1] = xx.i[0] >> (j - 96); 100 frac = ((xx.i[0] << 1) << (127 - j)) | (xx.i[1] >> (j - 96)); 101 if (((xx.i[1] << 1) << (127 - j)) | xx.i[2] | xx.i[3]) 102 frac |= 1; 103 } else if (j >= 64) { 104 zz.i[0] = xx.i[0] >> (j - 64); 105 zz.i[1] = ((xx.i[0] << 1) << (95 - j)) | (xx.i[1] >> (j - 64)); 106 frac = ((xx.i[1] << 1) << (95 - j)) | (xx.i[2] >> (j - 64)); 107 if (((xx.i[2] << 1) << (95 - j)) | xx.i[3]) 108 frac |= 1; 109 } else { 110 zz.i[0] = ((xx.i[0] << 1) << (63 - j)) | (xx.i[1] >> (j - 32)); 111 zz.i[1] = ((xx.i[1] << 1) << (63 - j)) | (xx.i[2] >> (j - 32)); 112 frac = ((xx.i[2] << 1) << (63 - j)) | (xx.i[3] >> (j - 32)); 113 if ((xx.i[3] << 1) << (63 - j)) 114 frac |= 1; 115 } 116 117 /* round */ 118 if (frac && (rm == FSR_RP || (rm == FSR_RN && (frac > 0x80000000u || 119 (frac == 0x80000000 && (zz.i[1] & 1)))))) { 120 if (++zz.i[1] == 0) 121 zz.i[0]++; 122 } 123 124 /* check for result out of range (note that z is |x| at this point) */ 125 if (zz.i[0] > 0x80000000u || (zz.i[0] == 0x80000000 && (zz.i[1] || 126 !sx))) { 127 tt.i = sx | 0x7f000000; 128 return ((long long) tt.f); 129 } 130 131 /* raise inexact if need be */ 132 if (frac) { 133 dummy = 1.0e30F; 134 dummy += 1.0e-30F; 135 } 136 137 /* negate result if need be */ 138 if (sx) { 139 zz.i[0] = ~zz.i[0]; 140 zz.i[1] = -zz.i[1]; 141 if (zz.i[1] == 0) 142 zz.i[0]++; 143 } 144 return (zz.l); 145 } 146 #elif defined(__x86) 147 long long 148 llrintl(long double x) { 149 /* 150 * Note: The following code works on x86 (in the default rounding 151 * precision mode), but one ought to just use the fistpll instruction 152 * instead. 153 */ 154 union { 155 unsigned i[3]; 156 long double e; 157 } xx, yy; 158 int ex; 159 160 xx.e = x; 161 ex = xx.i[2] & 0x7fff; 162 163 if (ex < 0x403e) { /* |x| < 2^63 */ 164 /* add and subtract a power of two to round x to an integer */ 165 yy.i[2] = (xx.i[2] & 0x8000) | 0x403e; 166 yy.i[1] = 0x80000000; 167 yy.i[0] = 0; 168 x = (x + yy.e) - yy.e; 169 } 170 171 /* now x is nan, inf, or integral */ 172 return ((long long) x); 173 } 174 #else 175 #error Unknown architecture 176 #endif