1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #if defined(ELFOBJ) 31 #pragma weak jnl = __jnl 32 #pragma weak ynl = __ynl 33 #endif 34 35 /* 36 * floating point Bessel's function of the 1st and 2nd kind 37 * of order n: jn(n,x),yn(n,x); 38 * 39 * Special cases: 40 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; 41 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. 42 * Note 2. About jn(n,x), yn(n,x) 43 * For n=0, j0(x) is called, 44 * for n=1, j1(x) is called, 45 * for n<x, forward recursion us used starting 46 * from values of j0(x) and j1(x). 47 * for n>x, a continued fraction approximation to 48 * j(n,x)/j(n-1,x) is evaluated and then backward 49 * recursion is used starting from a supposed value 50 * for j(n,x). The resulting value of j(0,x) is 51 * compared with the actual value to correct the 52 * supposed value of j(n,x). 53 * 54 * yn(n,x) is similar in all respects, except 55 * that forward recursion is used for all 56 * values of n>1. 57 * 58 */ 59 60 #include "libm.h" 61 #include "longdouble.h" 62 #include <float.h> /* LDBL_MAX */ 63 64 #define GENERIC long double 65 66 static const GENERIC 67 invsqrtpi= 5.641895835477562869480794515607725858441e-0001L, 68 two = 2.0L, 69 zero = 0.0L, 70 one = 1.0L; 71 72 GENERIC 73 jnl(n,x) int n; GENERIC x;{ 74 int i, sgn; 75 GENERIC a, b, temp, z, w; 76 77 /* 78 * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 79 * Thus, J(-n,x) = J(n,-x) 80 */ 81 if(n<0){ 82 n = -n; 83 x = -x; 84 } 85 if(n==0) return(j0l(x)); 86 if(n==1) return(j1l(x)); 87 if(x!=x) return x+x; 88 if((n&1)==0) 89 sgn=0; /* even n */ 90 else 91 sgn = signbitl(x); /* old n */ 92 x = fabsl(x); 93 if(x == zero||!finitel(x)) b = zero; 94 else if((GENERIC)n<=x) { /* Safe to use 95 J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 96 */ 97 if(x>1.0e91L) { /* x >> n**2 98 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 99 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 100 Let s=sin(x), c=cos(x), 101 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 102 103 n sin(xn)*sqt2 cos(xn)*sqt2 104 ---------------------------------- 105 0 s-c c+s 106 1 -s-c -c+s 107 2 -s+c -c-s 108 3 s+c c-s 109 */ 110 switch(n&3) { 111 case 0: temp = cosl(x)+sinl(x); break; 112 case 1: temp = -cosl(x)+sinl(x); break; 113 case 2: temp = -cosl(x)-sinl(x); break; 114 case 3: temp = cosl(x)-sinl(x); break; 115 } 116 b = invsqrtpi*temp/sqrtl(x); 117 } else { 118 a = j0l(x); 119 b = j1l(x); 120 for(i=1;i<n;i++){ 121 temp = b; 122 b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */ 123 a = temp; 124 } 125 } 126 } else { 127 if(x<1e-17L) { /* use J(n,x) = 1/n!*(x/2)^n */ 128 b = powl(0.5L*x,(GENERIC) n); 129 if (b!=zero) { 130 for(a=one,i=1;i<=n;i++) a *= (GENERIC)i; 131 b = b/a; 132 } 133 } else { 134 /* use backward recurrence */ 135 /* 136 * x x^2 x^2 137 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 138 * 2n - 2(n+1) - 2(n+2) 139 * 140 * 1 1 1 141 * (for large x) = ---- ------ ------ ..... 142 * 2n 2(n+1) 2(n+2) 143 * -- - ------ - ------ - 144 * x x x 145 * 146 * Let w = 2n/x and h=2/x, then the above quotient 147 * is equal to the continued fraction: 148 * 1 149 * = ----------------------- 150 * 1 151 * w - ----------------- 152 * 1 153 * w+h - --------- 154 * w+2h - ... 155 * 156 * To determine how many terms needed, let 157 * Q(0) = w, Q(1) = w(w+h) - 1, 158 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 159 * When Q(k) > 1e4 good for single 160 * When Q(k) > 1e9 good for double 161 * When Q(k) > 1e17 good for quaduple 162 */ 163 /* determin k */ 164 GENERIC t,v; 165 double q0,q1,h,tmp; int k,m; 166 w = (n+n)/(double)x; h = 2.0/(double)x; 167 q0 = w; z = w+h; q1 = w*z - 1.0; k=1; 168 while(q1<1.0e17) { 169 k += 1; z += h; 170 tmp = z*q1 - q0; 171 q0 = q1; 172 q1 = tmp; 173 } 174 m = n+n; 175 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); 176 a = t; 177 b = one; 178 /* 179 * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 180 * hence, if n*(log(2n/x)) > ... 181 * single 8.8722839355e+01 182 * double 7.09782712893383973096e+02 183 * long double 1.1356523406294143949491931077970765006170e+04 184 * then recurrent value may overflow and the result is 185 * likely underflow to zero 186 */ 187 tmp = n; 188 v = two/x; 189 tmp = tmp*logl(fabsl(v*tmp)); 190 if(tmp<1.1356523406294143949491931077970765e+04L) { 191 for(i=n-1;i>0;i--){ 192 temp = b; 193 b = ((i+i)/x)*b - a; 194 a = temp; 195 } 196 } else { 197 for(i=n-1;i>0;i--){ 198 temp = b; 199 b = ((i+i)/x)*b - a; 200 a = temp; 201 if(b>1e1000L) { 202 a /= b; 203 t /= b; 204 b = 1.0; 205 } 206 } 207 } 208 b = (t*j0l(x)/b); 209 } 210 } 211 if(sgn==1) return -b; else return b; 212 } 213 214 GENERIC ynl(n,x) 215 int n; GENERIC x;{ 216 int i; 217 int sign; 218 GENERIC a, b, temp; 219 220 if(x!=x) return x+x; 221 if (x <= zero) { 222 if(x==zero) 223 return -one/zero; 224 else 225 return zero/zero; 226 } 227 sign = 1; 228 if(n<0){ 229 n = -n; 230 if((n&1) == 1) sign = -1; 231 } 232 if(n==0) return(y0l(x)); 233 if(n==1) return(sign*y1l(x)); 234 if(!finitel(x)) return zero; 235 236 if(x>1.0e91L) { /* x >> n**2 237 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 238 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 239 Let s=sin(x), c=cos(x), 240 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 241 242 n sin(xn)*sqt2 cos(xn)*sqt2 243 ---------------------------------- 244 0 s-c c+s 245 1 -s-c -c+s 246 2 -s+c -c-s 247 3 s+c c-s 248 */ 249 switch(n&3) { 250 case 0: temp = sinl(x)-cosl(x); break; 251 case 1: temp = -sinl(x)-cosl(x); break; 252 case 2: temp = -sinl(x)+cosl(x); break; 253 case 3: temp = sinl(x)+cosl(x); break; 254 } 255 b = invsqrtpi*temp/sqrtl(x); 256 } else { 257 a = y0l(x); 258 b = y1l(x); 259 /* 260 * fix 1262058 and take care of non-default rounding 261 */ 262 for (i = 1; i < n; i++) { 263 temp = b; 264 b *= (GENERIC) (i + i) / x; 265 if (b <= -LDBL_MAX) 266 break; 267 b -= a; 268 a = temp; 269 } 270 } 271 if(sign>0) return b; else return -b; 272 }