Print this page




  43  *                                               expm1l(-2x) + 2
  44  *                                                        2
  45  *        1      <= x <= threshold :  tanhl(x) := 1 -  ---------------
  46  *                                                    expm1l(2x) + 2
  47  *     threshold <  x <= INF       :  tanhl(x) := 1.
  48  *
  49  * where
  50  *      single :        small = 1.e-5           threshold = 11.0
  51  *      double :        small = 1.e-10          threshold = 22.0
  52  *      quad   :        small = 1.e-20          threshold = 45.0
  53  *
  54  * Note: threshold was chosen so that
  55  *              fl(1.0+2/(expm1(2*threshold)+2)) == 1.
  56  *
  57  * Special cases:
  58  *      tanhl(NaN) is NaN;
  59  *      only tanhl(0.0)=0.0 is exact for finite argument.
  60  */
  61 
  62 #include "libm.h"

  63 
  64 static const long double small = 1.0e-20L, one = 1.0, two = 2.0,
  65 #ifndef lint
  66         big = 1.0e+20L,
  67 #endif
  68         threshold = 45.0L;
  69 
  70 long double
  71 tanhl(long double x) {
  72         long double t, y, z;
  73         int signx;

  74 
  75         if (isnanl(x))
  76                 return (x + x);         /* x is NaN */
  77         signx = signbitl(x);
  78         t = fabsl(x);
  79         z = one;
  80         if (t <= threshold) {
  81                 if (t > one)
  82                         z = one - two / (expm1l(t + t) + two);
  83                 else if (t > small) {
  84                         y = expm1l(-t - t);
  85                         z = -y / (y + two);
  86                 } else {
  87 #ifndef lint
  88                         volatile long double dummy = t + big;
  89                                                         /* inexact if t != 0 */
  90 #endif
  91                         return (x);
  92                 }
  93         } else if (!finitel(t))
  94                 return (copysignl(one, x));
  95         else
  96                 return (signx ? -z + small * small : z - small * small);
  97         return (signx ? -z : z);
  98 }


  43  *                                               expm1l(-2x) + 2
  44  *                                                        2
  45  *        1      <= x <= threshold :  tanhl(x) := 1 -  ---------------
  46  *                                                    expm1l(2x) + 2
  47  *     threshold <  x <= INF       :  tanhl(x) := 1.
  48  *
  49  * where
  50  *      single :        small = 1.e-5           threshold = 11.0
  51  *      double :        small = 1.e-10          threshold = 22.0
  52  *      quad   :        small = 1.e-20          threshold = 45.0
  53  *
  54  * Note: threshold was chosen so that
  55  *              fl(1.0+2/(expm1(2*threshold)+2)) == 1.
  56  *
  57  * Special cases:
  58  *      tanhl(NaN) is NaN;
  59  *      only tanhl(0.0)=0.0 is exact for finite argument.
  60  */
  61 
  62 #include "libm.h"
  63 #include "longdouble.h"
  64 
  65 static const long double small = 1.0e-20L, one = 1.0, two = 2.0,
  66 #ifndef lint
  67         big = 1.0e+20L,
  68 #endif
  69         threshold = 45.0L;
  70 
  71 long double
  72 tanhl(long double x) {
  73         long double t, y, z;
  74         int signx;
  75         volatile long double dummy;
  76 
  77         if (isnanl(x))
  78                 return (x + x);         /* x is NaN */
  79         signx = signbitl(x);
  80         t = fabsl(x);
  81         z = one;
  82         if (t <= threshold) {
  83                 if (t > one)
  84                         z = one - two / (expm1l(t + t) + two);
  85                 else if (t > small) {
  86                         y = expm1l(-t - t);
  87                         z = -y / (y + two);
  88                 } else {
  89 #ifndef lint
  90                         dummy = t + big;
  91                                                         /* inexact if t != 0 */
  92 #endif
  93                         return (x);
  94                 }
  95         } else if (!finitel(t))
  96                 return (copysignl(one, x));
  97         else
  98                 return (signx ? -z + small * small : z - small * small);
  99         return (signx ? -z : z);
 100 }