1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak sinpil = __sinpil
31
32 /* long double sinpil(long double x),
33 * return long double precision sinl(pi*x).
34 *
35 * Algorithm, 10/17/2002, K.C. Ng
36 * ------------------------------
37 * Let y = |4x|, z = floor(y), and n = (int)(z mod 8.0) (displayed in binary).
38 * 1. If y==z, then x is a multiple of pi/4. Return the following values:
39 * ---------------------------------------------------
40 * n x mod 2 sin(x*pi) cos(x*pi) tan(x*pi)
41 * ---------------------------------------------------
42 * 000 0.00 +0 ___ +1 ___ +0
43 * 001 0.25 +\/0.5 +\/0.5 +1
44 * 010 0.50 +1 ___ +0 ___ +inf
45 * 011 0.75 +\/0.5 -\/0.5 -1
46 * 100 1.00 -0 ___ -1 ___ +0
47 * 101 1.25 -\/0.5 -\/0.5 +1
48 * 110 1.50 -1 ___ -0 ___ +inf
49 * 111 1.75 -\/0.5 +\/0.5 -1
50 * ---------------------------------------------------
51 * 2. Otherwise,
52 * ---------------------------------------------------
53 * n t sin(x*pi) cos(x*pi) tan(x*pi)
54 * ---------------------------------------------------
55 * 000 (y-z)/4 sinpi(t) cospi(t) tanpi(t)
56 * 001 (z+1-y)/4 cospi(t) sinpi(t) 1/tanpi(t)
57 * 010 (y-z)/4 cospi(t) -sinpi(t) -1/tanpi(t)
58 * 011 (z+1-y)/4 sinpi(t) -cospi(t) -tanpi(t)
59 * 100 (y-z)/4 -sinpi(t) -cospi(t) tanpi(t)
60 * 101 (z+1-y)/4 -cospi(t) -sinpi(t) 1/tanpi(t)
61 * 110 (y-z)/4 -cospi(t) sinpi(t) -1/tanpi(t)
62 * 111 (z+1-y)/4 -sinpi(t) cospi(t) -tanpi(t)
63 * ---------------------------------------------------
64 *
65 * NOTE. This program compute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0).
66 * This will return a result with error slightly more than one ulp (but less
67 * than 2 ulp). If one wants accurate result, one may break up pi*t in
68 * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
69 * instead.
70 */
71
72 #include "libm.h"
73 #include "libm_synonyms.h"
74 #include "longdouble.h"
75
76 #include <sys/isa_defs.h>
77
78 #define I(q, m) ((int *) &(q))[m]
79 #define U(q, m) ((unsigned *) &(q))[m]
80 #if defined(_LITTLE_ENDIAN)
81 #define LDBL_MOST_SIGNIF_I(ld) ((I(ld, 2) << 16) | (0xffff & (I(ld, 1) >> 15)))
82 #define LDBL_LEAST_SIGNIF_U(ld) U(ld, 0)
83 #define PREC 64
84 #define PRECM1 63
85 #define PRECM2 62
86 static const long double twoPRECM2 = 9.223372036854775808000000000000000e+18L;
87 #else
88 #define LDBL_MOST_SIGNIF_I(ld) I(ld, 0)
89 #define LDBL_LEAST_SIGNIF_U(ld) U(ld, sizeof(long double) / sizeof(int) - 1)
90 #define PREC 113
91 #define PRECM1 112
92 #define PRECM2 111
93 static const long double twoPRECM2 = 5.192296858534827628530496329220096e+33L;
94 #endif
95
96 static const long double
97 zero = 0.0L,
98 quater = 0.25L,
99 one = 1.0L,
100 pi = 3.141592653589793238462643383279502884197e+0000L,
101 sqrth = 0.707106781186547524400844362104849039284835937688474,
102 tiny = 1.0e-100;
103
104 long double
105 sinpil(long double x) {
106 long double y, z, t;
107 int hx, n, k;
108 unsigned lx;
109
110 hx = LDBL_MOST_SIGNIF_I(x);
111 lx = LDBL_LEAST_SIGNIF_U(x);
112 k = ((hx & 0x7fff0000) >> 16) - 0x3fff;
113 if (k >= PRECM2) { /* |x| >= 2**(Prec-2) */
114 if (k >= 16384)
115 y = x - x;
116 else {
117 if (k >= PREC)
118 y = zero;
119 else if (k == PRECM1)
120 y = (lx & 1) == 0 ? zero: -zero;
121 else { /* k = Prec - 2 */
122 y = (lx & 1) == 0 ? zero : one;
123 if ((lx & 2) != 0)
124 y = -y;
125 }
126 }
127 }
128 else if (k < -2) /* |x| < 0.25 */
129 y = __k_sinl(pi * fabsl(x), zero);
130 else {
131 /* y = |4x|, z = floor(y), and n = (int)(z mod 8.0) */
132 y = 4.0L * fabsl(x);
133 if (k < PRECM2) {
134 z = y + twoPRECM2;
135 n = LDBL_LEAST_SIGNIF_U(z) & 7; /* 3 LSb of z */
136 t = z - twoPRECM2;
137 k = 0;
138 if (t == y)
139 k = 1;
140 else if (t > y) {
141 n -= 1;
142 t = quater + (y - t) * quater;
143 }
144 else
145 t = (y - t) * quater;
146 }
147 else { /* k = Prec-3 */
148 n = LDBL_LEAST_SIGNIF_U(y) & 7; /* 3 LSb of z */
149 k = 1;
150 }
151 if (k) { /* x = N/4 */
152 if((n & 1) != 0)
153 y = sqrth + tiny;
154 else
155 y = (n & 2) == 0 ? zero : one;
156 if ((n & 4) != 0)
157 y = -y;
158 }
159 else {
160 if ((n & 1) != 0)
161 t = quater - t;
162 if (((n + (n & 1)) & 2) == 0)
163 y = __k_sinl(pi * t, zero);
164 else
165 y = __k_cosl(pi * t, zero);
166 if ((n & 4) != 0)
167 y = -y;
168 }
169 }
170 return hx >= 0 ? y : -y;
171 }
172 #undef U
173 #undef LDBL_LEAST_SIGNIF_U
174 #undef I
175 #undef LDBL_MOST_SIGNIF_I