Print this page
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/LD/sinl.c
+++ new/usr/src/lib/libm/common/LD/sinl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 25 /*
26 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 27 * Use is subject to license terms.
28 28 */
29 29
30 30 #pragma weak sinl = __sinl
31 31
32 32 /* INDENT OFF */
33 33 /* sinl(x)
34 34 * Table look-up algorithm by K.C. Ng, November, 1989.
35 35 *
36 36 * kernel function:
37 37 * __k_sinl ... sin function on [-pi/4,pi/4]
38 38 * __k_cosl ... cos function on [-pi/4,pi/4]
39 39 * __rem_pio2l ... argument reduction routine
40 40 *
41 41 * Method.
42 42 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
43 43 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
44 44 * [-pi/2 , +pi/2], and let n = k mod 4.
45 45 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
46 46 *
47 47 * n sin(x) cos(x) tan(x)
48 48 * ----------------------------------------------------------
49 49 * 0 S C S/C
50 50 * 1 C -S -C/S
51 51 * 2 -S -C S/C
52 52 * 3 -C S -C/S
53 53 * ----------------------------------------------------------
54 54 *
55 55 * Special cases:
56 56 * Let trig be any of sin, cos, or tan.
57 57 * trig(+-INF) is NaN, with signals;
58 58 * trig(NaN) is that NaN;
59 59 *
60 60 * Accuracy:
61 61 * computer TRIG(x) returns trig(x) nearly rounded.
62 62 */
63 63 /* INDENT ON */
64 64
↓ open down ↓ |
64 lines elided |
↑ open up ↑ |
65 65 #include "libm.h"
66 66 #include "libm_synonyms.h"
67 67 #include "longdouble.h"
68 68
69 69 #include <sys/isa_defs.h>
70 70
71 71 long double
72 72 sinl(long double x) {
73 73 long double y[2], z = 0.0L;
74 74 int n, ix;
75 -#if defined(_LITTLE_ENDIAN)
75 +#if defined(__i386) || defined(__amd64)
76 76 int *px = (int *) &x;
77 77 #endif
78 78
79 79 /* sin(Inf or NaN) is NaN */
80 80 if (!finitel(x))
81 81 return x - x;
82 82
83 83 /* High word of x. */
84 -#if defined(_BIG_ENDIAN)
85 - ix = *(int *) &x;
86 -#else
84 +#if defined(__i386) || defined(__amd64)
87 85 XTOI(px, ix);
86 +#else
87 + ix = *(int *) &x;
88 88 #endif
89 89 /* |x| ~< pi/4 */
90 90 ix &= 0x7fffffff;
91 - if (ix <= 0x3ffe9220) {
91 + if (ix <= 0x3ffe9220)
92 92 return __k_sinl(x, z);
93 - }
94 93
95 94 /* argument reduction needed */
96 95 else {
97 96 n = __rem_pio2l(x, y);
98 97 switch (n & 3) {
99 98 case 0:
100 99 return __k_sinl(y[0], y[1]);
101 100 case 1:
102 101 return __k_cosl(y[0], y[1]);
103 102 case 2:
104 103 return -__k_sinl(y[0], y[1]);
105 104 case 3:
106 105 return -__k_cosl(y[0], y[1]);
107 106 /* NOTREACHED */
108 107 }
109 108 }
110 - return 0.0L;
109 + return 0.0L;
111 110 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX