Print this page
    
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/lib/libm/common/LD/sinl.c
          +++ new/usr/src/lib/libm/common/LD/sinl.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
  25   25  /*
  26   26   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   27   * Use is subject to license terms.
  28   28   */
  29   29  
  30   30  #pragma weak sinl = __sinl
  31   31  
  32   32  /* INDENT OFF */
  33   33  /* sinl(x)
  34   34   * Table look-up algorithm by K.C. Ng, November, 1989.
  35   35   *
  36   36   * kernel function:
  37   37   *      __k_sinl                ... sin function on [-pi/4,pi/4]
  38   38   *      __k_cosl                ... cos function on [-pi/4,pi/4]
  39   39   *      __rem_pio2l     ... argument reduction routine
  40   40   *
  41   41   * Method.
  42   42   *      Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
  43   43   *      1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
  44   44   *         [-pi/2 , +pi/2], and let n = k mod 4.
  45   45   *      2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
  46   46   *
  47   47   *          n        sin(x)      cos(x)        tan(x)
  48   48   *     ----------------------------------------------------------
  49   49   *          0          S           C             S/C
  50   50   *          1          C          -S            -C/S
  51   51   *          2         -S          -C             S/C
  52   52   *          3         -C           S            -C/S
  53   53   *     ----------------------------------------------------------
  54   54   *
  55   55   * Special cases:
  56   56   *      Let trig be any of sin, cos, or tan.
  57   57   *      trig(+-INF)  is NaN, with signals;
  58   58   *      trig(NaN)    is that NaN;
  59   59   *
  60   60   * Accuracy:
  61   61   *      computer TRIG(x) returns trig(x) nearly rounded.
  62   62   */
  63   63  /* INDENT ON */
  64   64  
  
    | ↓ open down ↓ | 64 lines elided | ↑ open up ↑ | 
  65   65  #include "libm.h"
  66   66  #include "libm_synonyms.h"
  67   67  #include "longdouble.h"
  68   68  
  69   69  #include <sys/isa_defs.h>
  70   70  
  71   71  long double
  72   72  sinl(long double x) {
  73   73          long double y[2], z = 0.0L;
  74   74          int n, ix;
  75      -#if defined(_LITTLE_ENDIAN)
       75 +#if defined(__i386) || defined(__amd64)
  76   76          int *px = (int *) &x;
  77   77  #endif
  78   78  
  79   79          /* sin(Inf or NaN) is NaN */
  80   80          if (!finitel(x))
  81   81                  return x - x;
  82   82  
  83   83          /* High word of x. */
  84      -#if defined(_BIG_ENDIAN)
  85      -        ix = *(int *) &x;
  86      -#else
       84 +#if defined(__i386) || defined(__amd64)
  87   85          XTOI(px, ix);
       86 +#else
       87 +        ix = *(int *) &x;
  88   88  #endif
  89   89          /* |x| ~< pi/4 */
  90   90          ix &= 0x7fffffff;
  91      -        if (ix <= 0x3ffe9220) {
       91 +        if (ix <= 0x3ffe9220)
  92   92                  return __k_sinl(x, z);
  93      -        }
  94   93  
  95   94          /* argument reduction needed */
  96   95          else {
  97   96                  n = __rem_pio2l(x, y);
  98   97                  switch (n & 3) {
  99   98                  case 0:
 100   99                          return __k_sinl(y[0], y[1]);
 101  100                  case 1:
 102  101                          return __k_cosl(y[0], y[1]);
 103  102                  case 2:
 104  103                          return -__k_sinl(y[0], y[1]);
 105  104                  case 3:
 106  105                          return -__k_cosl(y[0], y[1]);
 107  106                  /* NOTREACHED */
 108  107                  }
 109  108          }
 110      -    return 0.0L;
      109 +        return 0.0L;
 111  110  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX