Print this page
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/LD/sinhl.c
+++ new/usr/src/lib/libm/common/LD/sinhl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
↓ open down ↓ |
22 lines elided |
↑ open up ↑ |
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 25 /*
26 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 27 * Use is subject to license terms.
28 28 */
29 29
30 30 #pragma weak sinhl = __sinhl
31 31
32 32 #include "libm.h"
33 +#include "longdouble.h"
33 34
34 35 /* SINH(X)
35 36 * RETURN THE HYPERBOLIC SINE OF X
36 37 *
37 38 * Method :
38 39 * 1. reduce x to non-negative by SINH(-x) = - SINH(x).
39 40 * 2.
40 41 *
41 42 * EXPM1(x) + EXPM1(x)/(EXPM1(x)+1)
42 43 * 0 <= x <= lnovft : SINH(x) := --------------------------------
43 44 * 2
44 45 *
45 46 * lnovft <= x < INF : SINH(x) := EXP(x-MEP1*ln2)*2**ME
46 47 *
47 48 * here
48 49 * lnovft logarithm of the overflow threshold
49 50 * = MEP1*ln2 chopped to machine precision.
50 51 * ME maximum exponent
51 52 * MEP1 maximum exponent plus 1
52 53 *
53 54 * Special cases:
54 55 * SINH(x) is x if x is +INF, -INF, or NaN.
55 56 * only SINH(0)=0 is exact for finite argument.
56 57 *
57 58 */
58 59
59 60 static const long double C[] = {
60 61 0.5L,
61 62 1.0L,
62 63 1.135652340629414394879149e+04L,
63 64 7.004447686242549087858985e-16L
64 65 };
65 66
66 67 #define half C[0]
67 68 #define one C[1]
68 69 #define lnovft C[2]
69 70 #define lnovlo C[3]
70 71
71 72 long double
72 73 sinhl(long double x)
73 74 {
74 75 long double r, t;
75 76
76 77 if (!finitel(x))
77 78 return (x + x); /* x is INF or NaN */
78 79 r = fabsl(x);
79 80 if (r < lnovft) {
80 81 t = expm1l(r);
81 82 r = copysignl((t + t / (one + t)) * half, x);
82 83 } else {
83 84 r = copysignl(expl((r - lnovft) - lnovlo), x);
84 85 r = scalbnl(r, 16383);
85 86 }
86 87 return (r);
87 88 }
↓ open down ↓ |
45 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX