1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak sinhl = __sinhl
31
32 #include "libm.h"
33
34 /* SINH(X)
35 * RETURN THE HYPERBOLIC SINE OF X
36 *
37 * Method :
38 * 1. reduce x to non-negative by SINH(-x) = - SINH(x).
39 * 2.
40 *
41 * EXPM1(x) + EXPM1(x)/(EXPM1(x)+1)
42 * 0 <= x <= lnovft : SINH(x) := --------------------------------
43 * 2
44 *
45 * lnovft <= x < INF : SINH(x) := EXP(x-MEP1*ln2)*2**ME
46 *
47 * here
48 * lnovft logarithm of the overflow threshold
49 * = MEP1*ln2 chopped to machine precision.
50 * ME maximum exponent
51 * MEP1 maximum exponent plus 1
52 *
53 * Special cases:
54 * SINH(x) is x if x is +INF, -INF, or NaN.
55 * only SINH(0)=0 is exact for finite argument.
56 *
57 */
58
59 static const long double C[] = {
60 0.5L,
61 1.0L,
62 1.135652340629414394879149e+04L,
63 7.004447686242549087858985e-16L
64 };
65
66 #define half C[0]
67 #define one C[1]
68 #define lnovft C[2]
69 #define lnovlo C[3]
70
71 long double
72 sinhl(long double x)
73 {
74 long double r, t;
75
76 if (!finitel(x))
77 return (x + x); /* x is INF or NaN */
78 r = fabsl(x);
79 if (r < lnovft) {
80 t = expm1l(r);
81 r = copysignl((t + t / (one + t)) * half, x);
82 } else {
83 r = copysignl(expl((r - lnovft) - lnovlo), x);
84 r = scalbnl(r, 16383);
85 }
86 return (r);
87 }