1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma weak sinhl = __sinhl 31 32 #include "libm.h" 33 34 /* SINH(X) 35 * RETURN THE HYPERBOLIC SINE OF X 36 * 37 * Method : 38 * 1. reduce x to non-negative by SINH(-x) = - SINH(x). 39 * 2. 40 * 41 * EXPM1(x) + EXPM1(x)/(EXPM1(x)+1) 42 * 0 <= x <= lnovft : SINH(x) := -------------------------------- 43 * 2 44 * 45 * lnovft <= x < INF : SINH(x) := EXP(x-MEP1*ln2)*2**ME 46 * 47 * here 48 * lnovft logarithm of the overflow threshold 49 * = MEP1*ln2 chopped to machine precision. 50 * ME maximum exponent 51 * MEP1 maximum exponent plus 1 52 * 53 * Special cases: 54 * SINH(x) is x if x is +INF, -INF, or NaN. 55 * only SINH(0)=0 is exact for finite argument. 56 * 57 */ 58 59 static const long double C[] = { 60 0.5L, 61 1.0L, 62 1.135652340629414394879149e+04L, 63 7.004447686242549087858985e-16L 64 }; 65 66 #define half C[0] 67 #define one C[1] 68 #define lnovft C[2] 69 #define lnovlo C[3] 70 71 long double 72 sinhl(long double x) 73 { 74 long double r, t; 75 76 if (!finitel(x)) 77 return (x + x); /* x is INF or NaN */ 78 r = fabsl(x); 79 if (r < lnovft) { 80 t = expm1l(r); 81 r = copysignl((t + t / (one + t)) * half, x); 82 } else { 83 r = copysignl(expl((r - lnovft) - lnovlo), x); 84 r = scalbnl(r, 16383); 85 } 86 return (r); 87 }