Print this page




  41  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
  42  * Note 2. About jn(n,x), yn(n,x)
  43  *      For n=0, j0(x) is called,
  44  *      for n=1, j1(x) is called,
  45  *      for n<x, forward recursion us used starting
  46  *      from values of j0(x) and j1(x).
  47  *      for n>x, a continued fraction approximation to
  48  *      j(n,x)/j(n-1,x) is evaluated and then backward
  49  *      recursion is used starting from a supposed value
  50  *      for j(n,x). The resulting value of j(0,x) is
  51  *      compared with the actual value to correct the
  52  *      supposed value of j(n,x).
  53  *
  54  *      yn(n,x) is similar in all respects, except
  55  *      that forward recursion is used for all
  56  *      values of n>1.
  57  *      
  58  */
  59 
  60 #include "libm.h"

  61 #include <float.h>        /* LDBL_MAX */
  62 
  63 #define GENERIC long double
  64 
  65 static const GENERIC
  66 invsqrtpi= 5.641895835477562869480794515607725858441e-0001L,
  67 two  = 2.0L,
  68 zero = 0.0L,
  69 one  = 1.0L;
  70 
  71 GENERIC
  72 jnl(n,x) int n; GENERIC x;{
  73         int i, sgn;
  74         GENERIC a, b, temp, z, w;
  75 
  76     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
  77      * Thus, J(-n,x) = J(n,-x)
  78      */
  79         if(n<0){             
  80                 n = -n;
  81                 x = -x;
  82         }
  83         if(n==0) return(j0l(x));
  84         if(n==1) return(j1l(x));
  85         if(x!=x) return x+x;
  86         if((n&1)==0)        
  87                 sgn=0;                  /* even n */
  88         else 
  89                 sgn = signbitl(x);      /* old n  */
  90         x = fabsl(x);
  91         if(x == zero||!finitel(x)) b = zero;
  92         else if((GENERIC)n<=x) {     /* Safe to use 
  93                                            J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 
  94                                          */


 194                         temp = b;
 195                         b = ((i+i)/x)*b - a;
 196                         a = temp;
 197                         if(b>1e1000L) {
 198                             a /= b;
 199                             t /= b;
 200                             b  = 1.0;
 201                         }
 202                     }
 203                 }
 204                 b = (t*j0l(x)/b);
 205             }
 206         }
 207         if(sgn==1) return -b; else return b;
 208 }
 209 
 210 GENERIC ynl(n,x) 
 211 int n; GENERIC x;{
 212         int i;
 213         int sign;
 214         GENERIC a, b, temp;
 215 
 216         if(x!=x) return x+x;
 217         if (x <= zero) 

 218                 if(x==zero) 
 219                         return -one/zero;
 220                 else 
 221                         return zero/zero;

 222         sign = 1;
 223         if(n<0){
 224                 n = -n;
 225                 if((n&1) == 1) sign = -1;
 226         }
 227         if(n==0) return(y0l(x));
 228         if(n==1) return(sign*y1l(x));
 229         if(!finitel(x)) return zero;
 230 
 231         if(x>1.0e91L) {      /* x >> n**2 
 232                                     Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 233                                     Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 234                                     Let s=sin(x), c=cos(x), 
 235                                         xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 236 
 237                                            n    sin(xn)*sqt2    cos(xn)*sqt2
 238                                         ----------------------------------
 239                                            0     s-c             c+s
 240                                            1    -s-c            -c+s
 241                                            2    -s+c            -c-s




  41  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
  42  * Note 2. About jn(n,x), yn(n,x)
  43  *      For n=0, j0(x) is called,
  44  *      for n=1, j1(x) is called,
  45  *      for n<x, forward recursion us used starting
  46  *      from values of j0(x) and j1(x).
  47  *      for n>x, a continued fraction approximation to
  48  *      j(n,x)/j(n-1,x) is evaluated and then backward
  49  *      recursion is used starting from a supposed value
  50  *      for j(n,x). The resulting value of j(0,x) is
  51  *      compared with the actual value to correct the
  52  *      supposed value of j(n,x).
  53  *
  54  *      yn(n,x) is similar in all respects, except
  55  *      that forward recursion is used for all
  56  *      values of n>1.
  57  *      
  58  */
  59 
  60 #include "libm.h"
  61 #include "longdouble.h"
  62 #include <float.h>        /* LDBL_MAX */
  63 
  64 #define GENERIC long double
  65 
  66 static const GENERIC
  67 invsqrtpi= 5.641895835477562869480794515607725858441e-0001L,
  68 two  = 2.0L,
  69 zero = 0.0L,
  70 one  = 1.0L;
  71 
  72 GENERIC
  73 jnl(n,x) int n; GENERIC x;{
  74         int i, sgn;
  75         GENERIC a, b, temp = 0, z, w;
  76 
  77     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
  78      * Thus, J(-n,x) = J(n,-x)
  79      */
  80         if(n<0){             
  81                 n = -n;
  82                 x = -x;
  83         }
  84         if(n==0) return(j0l(x));
  85         if(n==1) return(j1l(x));
  86         if(x!=x) return x+x;
  87         if((n&1)==0)        
  88                 sgn=0;                  /* even n */
  89         else 
  90                 sgn = signbitl(x);      /* old n  */
  91         x = fabsl(x);
  92         if(x == zero||!finitel(x)) b = zero;
  93         else if((GENERIC)n<=x) {     /* Safe to use 
  94                                            J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 
  95                                          */


 195                         temp = b;
 196                         b = ((i+i)/x)*b - a;
 197                         a = temp;
 198                         if(b>1e1000L) {
 199                             a /= b;
 200                             t /= b;
 201                             b  = 1.0;
 202                         }
 203                     }
 204                 }
 205                 b = (t*j0l(x)/b);
 206             }
 207         }
 208         if(sgn==1) return -b; else return b;
 209 }
 210 
 211 GENERIC ynl(n,x) 
 212 int n; GENERIC x;{
 213         int i;
 214         int sign;
 215         GENERIC a, b, temp = 0;
 216 
 217         if(x!=x)
 218                 return x+x;
 219         if (x <= zero) {
 220                 if(x==zero) 
 221                         return -one/zero;
 222                 else 
 223                         return zero/zero;
 224         }
 225         sign = 1;
 226         if(n<0){
 227                 n = -n;
 228                 if((n&1) == 1) sign = -1;
 229         }
 230         if(n==0) return(y0l(x));
 231         if(n==1) return(sign*y1l(x));
 232         if(!finitel(x)) return zero;
 233 
 234         if(x>1.0e91L) {      /* x >> n**2 
 235                                     Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 236                                     Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 237                                     Let s=sin(x), c=cos(x), 
 238                                         xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 239 
 240                                            n    sin(xn)*sqt2    cos(xn)*sqt2
 241                                         ----------------------------------
 242                                            0     s-c             c+s
 243                                            1    -s-c            -c+s
 244                                            2    -s+c            -c-s