1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #if defined(ELFOBJ) 31 #pragma weak jnl = __jnl 32 #pragma weak ynl = __ynl 33 #endif 34 35 /* 36 * floating point Bessel's function of the 1st and 2nd kind 37 * of order n: jn(n,x),yn(n,x); 38 * 39 * Special cases: 40 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; 41 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. 42 * Note 2. About jn(n,x), yn(n,x) 43 * For n=0, j0(x) is called, 44 * for n=1, j1(x) is called, 45 * for n<x, forward recursion us used starting 46 * from values of j0(x) and j1(x). 47 * for n>x, a continued fraction approximation to 48 * j(n,x)/j(n-1,x) is evaluated and then backward 49 * recursion is used starting from a supposed value 50 * for j(n,x). The resulting value of j(0,x) is 51 * compared with the actual value to correct the 52 * supposed value of j(n,x). 53 * 54 * yn(n,x) is similar in all respects, except 55 * that forward recursion is used for all 56 * values of n>1. 57 * 58 */ 59 60 #include "libm.h" 61 #include <float.h> /* LDBL_MAX */ 62 63 #define GENERIC long double 64 65 static const GENERIC 66 invsqrtpi= 5.641895835477562869480794515607725858441e-0001L, 67 two = 2.0L, 68 zero = 0.0L, 69 one = 1.0L; 70 71 GENERIC 72 jnl(n,x) int n; GENERIC x;{ 73 int i, sgn; 74 GENERIC a, b, temp, z, w; 75 76 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 77 * Thus, J(-n,x) = J(n,-x) 78 */ 79 if(n<0){ 80 n = -n; 81 x = -x; 82 } 83 if(n==0) return(j0l(x)); 84 if(n==1) return(j1l(x)); 85 if(x!=x) return x+x; 86 if((n&1)==0) 87 sgn=0; /* even n */ 88 else 89 sgn = signbitl(x); /* old n */ 90 x = fabsl(x); 91 if(x == zero||!finitel(x)) b = zero; 92 else if((GENERIC)n<=x) { /* Safe to use 93 J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 94 */ 95 if(x>1.0e91L) { /* x >> n**2 96 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 97 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 98 Let s=sin(x), c=cos(x), 99 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 100 101 n sin(xn)*sqt2 cos(xn)*sqt2 102 ---------------------------------- 103 0 s-c c+s 104 1 -s-c -c+s 105 2 -s+c -c-s 106 3 s+c c-s 107 */ 108 switch(n&3) { 109 case 0: temp = cosl(x)+sinl(x); break; 110 case 1: temp = -cosl(x)+sinl(x); break; 111 case 2: temp = -cosl(x)-sinl(x); break; 112 case 3: temp = cosl(x)-sinl(x); break; 113 } 114 b = invsqrtpi*temp/sqrtl(x); 115 } else { 116 a = j0l(x); 117 b = j1l(x); 118 for(i=1;i<n;i++){ 119 temp = b; 120 b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */ 121 a = temp; 122 } 123 } 124 } else { 125 if(x<1e-17L) { /* use J(n,x) = 1/n!*(x/2)^n */ 126 b = powl(0.5L*x,(GENERIC) n); 127 if (b!=zero) { 128 for(a=one,i=1;i<=n;i++) a *= (GENERIC)i; 129 b = b/a; 130 } 131 } else { 132 /* use backward recurrence */ 133 /* x x^2 x^2 134 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 135 * 2n - 2(n+1) - 2(n+2) 136 * 137 * 1 1 1 138 * (for large x) = ---- ------ ------ ..... 139 * 2n 2(n+1) 2(n+2) 140 * -- - ------ - ------ - 141 * x x x 142 * 143 * Let w = 2n/x and h=2/x, then the above quotient 144 * is equal to the continued fraction: 145 * 1 146 * = ----------------------- 147 * 1 148 * w - ----------------- 149 * 1 150 * w+h - --------- 151 * w+2h - ... 152 * 153 * To determine how many terms needed, let 154 * Q(0) = w, Q(1) = w(w+h) - 1, 155 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 156 * When Q(k) > 1e4 good for single 157 * When Q(k) > 1e9 good for double 158 * When Q(k) > 1e17 good for quaduple 159 */ 160 /* determin k */ 161 GENERIC t,v; 162 double q0,q1,h,tmp; int k,m; 163 w = (n+n)/(double)x; h = 2.0/(double)x; 164 q0 = w; z = w+h; q1 = w*z - 1.0; k=1; 165 while(q1<1.0e17) { 166 k += 1; z += h; 167 tmp = z*q1 - q0; 168 q0 = q1; 169 q1 = tmp; 170 } 171 m = n+n; 172 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); 173 a = t; 174 b = one; 175 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 176 hence, if n*(log(2n/x)) > ... 177 single 8.8722839355e+01 178 double 7.09782712893383973096e+02 179 long double 1.1356523406294143949491931077970765006170e+04 180 then recurrent value may overflow and the result is 181 likely underflow to zero 182 */ 183 tmp = n; 184 v = two/x; 185 tmp = tmp*logl(fabsl(v*tmp)); 186 if(tmp<1.1356523406294143949491931077970765e+04L) { 187 for(i=n-1;i>0;i--){ 188 temp = b; 189 b = ((i+i)/x)*b - a; 190 a = temp; 191 } 192 } else { 193 for(i=n-1;i>0;i--){ 194 temp = b; 195 b = ((i+i)/x)*b - a; 196 a = temp; 197 if(b>1e1000L) { 198 a /= b; 199 t /= b; 200 b = 1.0; 201 } 202 } 203 } 204 b = (t*j0l(x)/b); 205 } 206 } 207 if(sgn==1) return -b; else return b; 208 } 209 210 GENERIC ynl(n,x) 211 int n; GENERIC x;{ 212 int i; 213 int sign; 214 GENERIC a, b, temp; 215 216 if(x!=x) return x+x; 217 if (x <= zero) 218 if(x==zero) 219 return -one/zero; 220 else 221 return zero/zero; 222 sign = 1; 223 if(n<0){ 224 n = -n; 225 if((n&1) == 1) sign = -1; 226 } 227 if(n==0) return(y0l(x)); 228 if(n==1) return(sign*y1l(x)); 229 if(!finitel(x)) return zero; 230 231 if(x>1.0e91L) { /* x >> n**2 232 Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 233 Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 234 Let s=sin(x), c=cos(x), 235 xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 236 237 n sin(xn)*sqt2 cos(xn)*sqt2 238 ---------------------------------- 239 0 s-c c+s 240 1 -s-c -c+s 241 2 -s+c -c-s 242 3 s+c c-s 243 */ 244 switch(n&3) { 245 case 0: temp = sinl(x)-cosl(x); break; 246 case 1: temp = -sinl(x)-cosl(x); break; 247 case 2: temp = -sinl(x)+cosl(x); break; 248 case 3: temp = sinl(x)+cosl(x); break; 249 } 250 b = invsqrtpi*temp/sqrtl(x); 251 } else { 252 a = y0l(x); 253 b = y1l(x); 254 /* 255 * fix 1262058 and take care of non-default rounding 256 */ 257 for (i = 1; i < n; i++) { 258 temp = b; 259 b *= (GENERIC) (i + i) / x; 260 if (b <= -LDBL_MAX) 261 break; 262 b -= a; 263 a = temp; 264 } 265 } 266 if(sign>0) return b; else return -b; 267 }