Print this page
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/LD/__tanl.c
+++ new/usr/src/lib/libm/common/LD/__tanl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 25 /*
26 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 27 * Use is subject to license terms.
28 28 */
29 29
30 30 /* INDENT OFF */
31 31 /*
32 32 * __k_tanl( long double x; long double y; int k )
33 33 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 34 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 35 * Input y is the tail of x.
36 36 * Input k indicate -- tan if k=0; else -1/tan
37 37 *
38 38 * Table look up algorithm
39 39 * 1. by tan(-x) = -tan(x), need only to consider positive x
40 40 * 2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
41 41 * if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x!= 0
42 42 * else
43 43 * z = x*x;
44 44 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
45 45 * return (k == 0 ? w : 1/w);
46 46 * 3. else
47 47 * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t)
48 48 * lt = 0
49 49 * i = (hy-0x3ffc4000)>>11; (i<=64)
50 50 * x' = (x - t)+y (|x'| ~<= 2^-7)
51 51 * By
52 52 * tan(t+x')
53 53 * = (tan(t)+tan(x'))/(1-tan(x')tan(t))
54 54 * We have
55 55 * sin(x')+tan(t)*(tan(t)*sin(x'))
56 56 * = tan(t) + ------------------------------- for k=0
57 57 * cos(x') - tan(t)*sin(x')
58 58 *
59 59 * cos(x') - tan(t)*sin(x')
60 60 * = - -------------------------------------- for k=1
61 61 * tan(t) + tan(t)*(cos(x')-1) + sin(x')
62 62 *
63 63 *
64 64 * where tan(t) is from the table,
65 65 * sin(x') = x + pp1*x^3 + ...+ pp5*x^11
66 66 * cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10
67 67 */
68 68
69 69 #include "libm.h"
70 70
71 71 #include <sys/isa_defs.h>
72 72
73 73 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
74 74 static const long double
75 75 one = 1.0,
76 76 /*
77 77 * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64
78 78 */
79 79 pp1 = -1.666666666666666666666666666586782940810e-0001L,
80 80 pp2 = 8.333333333333333333333003723660929317540e-0003L,
81 81 pp3 = -1.984126984126984076045903483778337804470e-0004L,
82 82 pp4 = 2.755731922361906641319723106210900949413e-0006L,
83 83 pp5 = -2.505198398570947019093998469135012057673e-0008L,
84 84 /*
85 85 * 2 10 -123.84
86 86 * |cos(x) - (1+qq1*x +...+ qq5*x )| <= 2 for |x|<=1/128
87 87 */
88 88 qq1 = -4.999999999999999999999999999999378373641e-0001L,
89 89 qq2 = 4.166666666666666666666665478399327703130e-0002L,
90 90 qq3 = -1.388888888888888888058211230618051613494e-0003L,
91 91 qq4 = 2.480158730156105377771585658905303111866e-0005L,
92 92 qq5 = -2.755728099762526325736488376695157008736e-0007L,
93 93 /*
94 94 * |tan(x) - (x+t1*x^3+...+t6*x^13)|
95 95 * |------------------------------ | <= 2^-59.73 for |x|<0.15625
96 96 * | x |
97 97 */
98 98 t1 = 3.333333333333333333333333333333423342490e-0001L,
99 99 t2 = 1.333333333333333333333333333093838744537e-0001L,
100 100 t3 = 5.396825396825396825396827906318682662250e-0002L,
101 101 t4 = 2.186948853615520282185576976994418486911e-0002L,
102 102 t5 = 8.863235529902196573354554519991152936246e-0003L,
103 103 t6 = 3.592128036572480064652191427543994878790e-0003L,
↓ open down ↓ |
103 lines elided |
↑ open up ↑ |
104 104 t7 = 1.455834387051455257856833807581901305474e-0003L,
105 105 t8 = 5.900274409318599857829983256201725587477e-0004L,
106 106 t9 = 2.391291152117265181501116961901122362937e-0004L,
107 107 t10 = 9.691533169382729742394024173194981882375e-0005L,
108 108 t11 = 3.927994733186415603228178184225780859951e-0005L,
109 109 t12 = 1.588300018848323824227640064883334101288e-0005L,
110 110 t13 = 6.916271223396808311166202285131722231723e-0006L;
111 111 /* INDENT ON */
112 112 long double
113 113 __k_tanl(long double x, long double y, int k) {
114 - long double a, t, z, w, s, c;
114 + long double a, t, z, w = 0.0, s, c;
115 115 int *pt = (int *) &t, *px = (int *) &x;
116 116 int i, j, hx, ix;
117 117
118 118 t = 1.0;
119 -#if defined(_BIG_ENDIAN)
120 - hx = px[0];
121 -#else
119 +#if defined(__i386) || defined(__amd64)
122 120 XTOI(px, hx);
121 +#else
122 + hx = px[0];
123 123 #endif
124 124 ix = hx & 0x7fffffff;
125 125 if (ix < 0x3ffc4000) {
126 126 if (ix < 0x3fc60000) {
127 127 if ((i = (int) x) == 0) /* generate inexact */
128 128 w = x;
129 129 } else {
130 130 z = x * x;
131 131 if (ix < 0x3ff30000) /* 2**-12 */
132 132 t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
133 133 else
134 134 t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
↓ open down ↓ |
2 lines elided |
↑ open up ↑ |
135 135 z * (t5 + z * (t6 + z * (t7 + z *
136 136 (t8 + z * (t9 + z * (t10 + z * (t11 +
137 137 z * (t12 + z * t13))))))))))));
138 138 t = y + x * t;
139 139 w = x + t;
140 140 }
141 141 return (k == 0 ? w : -one / w);
142 142 }
143 143 j = (ix + 0x400) & 0x7ffff800;
144 144 i = (j - 0x3ffc4000) >> 11;
145 -#if defined(_BIG_ENDIAN)
146 - pt[0] = j;
147 -#else
145 +#if defined(__i386) || defined(__amd64)
148 146 ITOX(j, pt);
147 +#else
148 + pt[0] = j;
149 149 #endif
150 150 if (hx > 0)
151 151 x = y - (t - x);
152 152 else
153 153 x = (-y) - (t + x);
154 154 a = _TBL_tanl_hi[i];
155 155 z = x * x;
156 156 /* cos(x)-1 */
157 157 t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
158 158 /* sin(x) */
159 159 s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z *
160 160 pp5)))));
161 161 if (k == 0) {
162 162 w = a * s;
163 163 t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
164 164 return (hx < 0 ? -a - t : a + t);
165 165 } else {
166 166 w = s + a * t;
167 167 c = w + _TBL_tanl_lo[i];
168 168 z = (one - (a * s - t));
169 169 return (hx >= 0 ? z / (-a - c) : z / (a + c));
170 170 }
171 171 }
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX