
new/usr/src/cmd/initpkg/Makefile 1

**
 2854 Thu Jun 6 18:30:48 2013
new/usr/src/cmd/initpkg/Makefile
3788 /etc/bootrc is defunct and should be removed
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 SHFILES= dfstab vfstab
27 CPFILES= rcS rc0 rc1 rc2 rc3 mountall shutdown swapadd umountall
28 ALL= $(SHFILES) $(CPFILES)
29 TXTS= rc2.d/mk.rc2.d.sh
30 CLOBBERFILES= $(ALL)
31 RCDIRS= rc2.d

33 include ../Makefile.cmd

35 ETCDFSD= $(ROOTETC)/dfs

37 SBINF= rcS mountall rc0 rc1 rc2 rc3 swapadd umountall
38 SBINL= rc5 rc6
39 USRSBINF= mountall shutdown umountall

41 ETCTABS= vfstab inittab nscd.conf security/crypt.conf
41 sparc_ETCTABS=
42 i386_ETCTABS= bootrc
43 ETCTABS= vfstab inittab nscd.conf security/crypt.conf $($(MACH)_ETCTABS)

43 DFSTAB= dfstab
44 SBINETC= rcS mountall rc0 rc1 rc2 rc3 rc5 rc6 swapadd umountall
45 USRSBINETC= shutdown

47 FILEMODE= 0744

49 ROOTSBINF= $(SBINF:%=$(ROOTSBIN)/%)
50 ROOTSBINL= $(SBINL:%=$(ROOTSBIN)/%)
51 ROOTUSRSBINF= $(USRSBINF:%=$(ROOTUSRSBIN)/%)
52 ROOTETCTABS= $(ETCTABS:%=$(ROOTETC)/%)
53 ROOTDFSTAB= $(DFSTAB:%=$(ETCDFSD)/%)
54 SYMSBINF= $(SBINETC:%=$(ROOTETC)/%)
55 SYMUSRSBINF= $(USRSBINETC:%=$(ROOTETC)/%)

57 $(ROOTETC)/inittab := FILEMODE = 0644
58 $(ROOTETC)/vfstab := FILEMODE = 0644

new/usr/src/cmd/initpkg/Makefile 2

59 $(ROOTETC)/nscd.conf := FILEMODE = 0644
60 $(ROOTETC)/security/crypt.conf := FILEMODE = 0644
63 $(ROOTETC)/bootrc := FILEMODE = 0755
61 $(ROOTDFSTAB) := FILEMODE = 0644
62 $(ROOTSBIN)/mountall := FILEMODE = 0555
63 $(ROOTUSRSBIN)/mountall := FILEMODE = 0555
64 $(ROOTSBIN)/umountall := FILEMODE = 0555
65 $(ROOTUSRSBIN)/umountall := FILEMODE = 0555
66 $(ROOTUSRSBIN)/shutdown := FILEMODE = 0755

68 $(ETCDFSD)/% : %
69 $(INS.file)

71 .KEEP_STATE:

73 all: $(ALL) all_init.d $(TXTS)

75 $(SYMSBINF):
76 $(RM) $@; $(SYMLINK) ../sbin/$(@F) $@

78 $(SYMUSRSBINF):
79 $(RM) $@; $(SYMLINK) ../usr/sbin/$(@F) $@

81 $(ROOTSBINL): $(ROOTSBIN)/rc0
82 $(RM) $@; $(LN) $(ROOTSBIN)/rc0 $@

84 all_init.d: FRC
85 @cd init.d; pwd; $(MAKE) $(MFLAGS) all

87 ins_init.d: FRC
88 @cd init.d; pwd; $(MAKE) $(MFLAGS) install

90 $(SHFILES):
91 sh $@.sh $(ROOT)

93 install: $(ALL) ins_all ins_init.d $(RCDIRS)

95 ins_all : $(ROOTSBINF) $(ROOTSBINL) $(ROOTUSRSBINF) $(ROOTETCTABS) \
96 $(ROOTDFSTAB) $(SYMSBINF) $(SYMUSRSBINF)

98 # Don’t re-install directories already installed by Targetdirs
99 #$(DIRS):
100 # $(INS.dir)

102 $(RCDIRS): FRC
103 @cd $@; pwd; ROOT=$(ROOT) sh mk.$@.sh

105 FRC:

107 clean lint:

109 include ../Makefile.targ

new/usr/src/cmd/prtconf/prtconf.c 1

**
 8214 Thu Jun 6 18:30:49 2013
new/usr/src/cmd/prtconf/prtconf.c
3788 /etc/bootrc is defunct and should be removed
**
______unchanged_portion_omitted_

162 /*
163 * debug version has two more flags:
164 * -L force load driver
165 * -M: print per driver list
166 */

168 #ifdef DEBUG
169 static const char *optstring = "abcdDvVxpPFf:M:dLuC";
170 #else
171 static const char *optstring = "abcdDvVxpPFf:uC";
172 #endif /* DEBUG */

174 int
175 main(int argc, char *argv[])
176 {
177 long pagesize, npages;
178 int c, ret;
179 char hw_provider[SYS_NMLN];

181 setpname(argv[0]);
182 opts.o_promdev = "/dev/openprom";

184 while ((c = getopt(argc, argv, optstring)) != -1) {
185 switch (c) {
186 case ’a’:
187 ++opts.o_ancestors;
188 break;
189 case ’b’:
190 ++opts.o_productinfo;
191 break;
192 case ’c’:
193 ++opts.o_children;
194 break;
195 case ’d’:
196 ++opts.o_pciid;
197 break;
198 case ’D’:
199 ++opts.o_drv_name;
200 break;
201 case ’v’:
202 ++opts.o_verbose;
203 break;
204 case ’p’:
205 ++opts.o_prominfo;
206 break;
207 case ’f’:
208 opts.o_promdev = optarg;
209 break;
210 case ’V’:
211 ++opts.o_promversion;
212 break;
213 case ’x’:
214 ++opts.o_prom_ready64;
215 break;
216 case ’F’:
217 ++opts.o_fbname;
218 ++opts.o_noheader;
219 break;

new/usr/src/cmd/prtconf/prtconf.c 2

220 case ’P’:
221 ++opts.o_pseudodevs;
222 break;
223 case ’C’:
224 ++opts.o_forcecache;
225 break;
226 #ifdef DEBUG
227 case ’M’:
228 dbg.d_drivername = optarg;
229 ++dbg.d_bydriver;
230 break;
231 case ’L’:
232 ++dbg.d_forceload;
233 break;
234 #endif /* DEBUG */

236 default:
237 (void) fprintf(stderr, usage, opts.o_progname);
238 return (1);
239 }
240 }

242 (void) uname(&opts.o_uts);

244 if (opts.o_fbname)
245 return (do_fbname());

247 if (opts.o_promversion)
248 return (do_promversion());

250 if (opts.o_prom_ready64)
251 return (do_prom_version64());

253 if (opts.o_productinfo)
254 return (do_productinfo());

256 opts.o_devices_path = NULL;
257 opts.o_devt = DDI_DEV_T_NONE;
258 opts.o_target = 0;
259 if (optind < argc) {
260 struct stat sinfo;
261 char *path = argv[optind];
262 int error;

264 if (opts.o_prominfo) {
265 /* PROM tree cannot be used with path */
266 (void) fprintf(stderr, "%s: path and -p option are "
267 "mutually exclusive\n", opts.o_progname);
268 return (1);
269 }

271 if (strlen(path) >= MAXPATHLEN) {
272 (void) fprintf(stderr, "%s: "
273 "path specified is too long\n", opts.o_progname);
274 return (1);
275 }

277 if (error = stat(path, &sinfo)) {

279 /* an invalid path was specified */
280 (void) fprintf(stderr, "%s: invalid path specified\n",
281 opts.o_progname);
282 return (1);

284 } else if (((sinfo.st_mode & S_IFMT) == S_IFCHR) ||
285 ((sinfo.st_mode & S_IFMT) == S_IFBLK)) {

new/usr/src/cmd/prtconf/prtconf.c 3

287 opts.o_devt = sinfo.st_rdev;
288 error = 0;

290 } else if ((sinfo.st_mode & S_IFMT) == S_IFDIR) {
291 size_t len, plen;

293 /* clean up the path */
294 cleanup_path(path, new_path);

296 len = strlen(new_path);
297 plen = strlen("/devices");
298 if (len < plen) {
299 /* This is not a valid /devices path */
300 error = 1;
301 } else if ((len == plen) &&
302 (strcmp(new_path, "/devices") == 0)) {
303 /* /devices is the root nexus */
304 opts.o_devices_path = "/";
305 error = 0;
306 } else if (strncmp(new_path, "/devices/", plen + 1)) {
307 /* This is not a valid /devices path */
308 error = 1;
309 } else {
310 /* a /devices/ path was specified */
311 opts.o_devices_path = new_path + plen;
312 error = 0;
313 }

315 } else {
316 /* an invalid device path was specified */
317 error = 1;
318 }

320 if (error) {
321 (void) fprintf(stderr, "%s: "
322 "invalid device path specified\n",
323 opts.o_progname);
324 return (1);
325 }

327 opts.o_target = 1;
328 }

330 if ((opts.o_ancestors || opts.o_children) && (!opts.o_target)) {
331 (void) fprintf(stderr, "%s: options require a device path\n",
332 opts.o_progname);
333 return (1);
334 }

336 if (opts.o_target) {
337 prtconf_devinfo();
338 return (0);
339 }

341 ret = sysinfo(SI_HW_PROVIDER, hw_provider, sizeof (hw_provider));
342 /*
343 * If 0 bytes are returned (the system returns ’1’, for the \0),
344 * we’re probably on x86, default to Oracle.
344 * we’re probably on x86, and there has been no si-hw-provider
345 * set in /etc/bootrc, default to Oracle.
345 */
346 if (ret <= 1) {
347 (void) strncpy(hw_provider, "Oracle Corporation",
348 sizeof (hw_provider));
349 }

new/usr/src/cmd/prtconf/prtconf.c 4

350 (void) printf("System Configuration: %s %s\n", hw_provider,
351 opts.o_uts.machine);

353 pagesize = sysconf(_SC_PAGESIZE);
354 npages = sysconf(_SC_PHYS_PAGES);
355 (void) printf("Memory size: ");
356 if (pagesize == -1 || npages == -1)
357 (void) printf("unable to determine\n");
358 else {
359 const int64_t kbyte = 1024;
360 const int64_t mbyte = 1024 * 1024;
361 int64_t ii = (int64_t)pagesize * npages;

363 if (ii >= mbyte)
364 (void) printf("%ld Megabytes\n",
365 (long)((ii+mbyte-1) / mbyte));
366 else
367 (void) printf("%ld Kilobytes\n",
368 (long)((ii+kbyte-1) / kbyte));
369 }

371 if (opts.o_prominfo) {
372 (void) printf("System Peripherals (PROM Nodes):\n\n");
373 if (do_prominfo() == 0)
374 return (0);
375 (void) fprintf(stderr, "%s: Defaulting to non-PROM mode...\n",
376 opts.o_progname);
377 }

379 (void) printf("System Peripherals (Software Nodes):\n\n");

381 (void) prtconf_devinfo();

383 return (0);
384 }

______unchanged_portion_omitted_

new/usr/src/pkg/manifests/driver-network-platform.mf 1

**
 2754 Thu Jun 6 18:30:50 2013
new/usr/src/pkg/manifests/driver-network-platform.mf
3788 /etc/bootrc is defunct and should be removed
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # The default for payload-bearing actions in this package is to appear in the
28 # global zone only. See the include file for greater detail, as well as
29 # information about overriding the defaults.
30 #
31 <include global_zone_only_component>
32 set name=pkg.fmri value=pkg:/driver/network/platform@$(PKGVERS)
33 set name=pkg.description value="Platform Support, OS Functionality"
34 set name=pkg.summary value="Platform Support, OS Functionality"
35 set name=info.classification \
36 value=org.opensolaris.category.2008:Drivers/Networking
37 set name=variant.arch value=i386
38 dir path=etc group=sys
39 dir path=kernel group=sys
40 dir path=kernel/drv group=sys
41 dir path=kernel/drv/$(ARCH64) group=sys
42 dir path=usr/share/man
43 dir path=usr/share/man/man7d
44 driver name=dnet clone_perms="dnet 0666 root sys" perms="* 0666 root sys" \
45 alias=pci1011,14 \
46 alias=pci1011,19 \
47 alias=pci1011,2 \
48 alias=pci1011,9 \
49 alias=pci10b8,2001 \
50 alias=pci1109,1400 \
51 alias=pci1109,2400 \
52 alias=pci2646,1
53 file path=etc/bootrc group=sys mode=0755
53 file path=etc/mach group=sys original_name=SUNWos86r:etc/mach preserve=true
54 file path=kernel/drv/$(ARCH64)/dnet group=sys
55 file path=kernel/drv/dnet group=sys
56 file path=kernel/drv/sd group=sys
57 file path=kernel/drv/sd.conf group=sys \
58 original_name=SUNWos86r:kernel/drv/sd.conf preserve=true
59 file path=usr/share/man/man7d/dnet.7d
60 legacy pkg=SUNWos86r desc="Platform Support, OS Functionality (Root)" \

new/usr/src/pkg/manifests/driver-network-platform.mf 2

61 name="Platform Support, OS Functionality (Root)"
62 license cr_Sun license=cr_Sun
63 license lic_CDDL license=lic_CDDL
64 # elxl moved out of this package, so create a dependency for upgraded systems
65 depend fmri=driver/network/elxl type=require
66 # iprb moved out of this package, so create a dependency for upgraded systems
67 depend fmri=driver/network/iprb type=require
68 # pcn moved out of this package, so create a dependency for upgraded systems
69 depend fmri=driver/network/pcn type=require

new/usr/src/uts/common/conf/param.c 1

**
 21322 Thu Jun 6 18:30:51 2013
new/usr/src/uts/common/conf/param.c
3788 /etc/bootrc is defunct and should be removed
**
______unchanged_portion_omitted_

459 int loaded_classes = 1; /* for loaded classes */
460 kmutex_t class_lock; /* lock for class[] */

462 int nclass = sizeof (sclass) / sizeof (sclass_t);
463 char initcls[] = "TS";
464 char *defaultclass = initcls;

466 /*
467 * Tunable system parameters.
468 */

470 /*
471 * The integers tune_* are done this way so that the tune
472 * data structure may be "tuned" if necessary from the /etc/system
473 * file. The tune data structure is initialized in param_init();
474 */

476 tune_t tune;

478 /*
479 * If freemem < t_getpgslow, then start to steal pages from processes.
480 */
481 int tune_t_gpgslo = 25;

483 /*
484 * Rate at which fsflush is run, in seconds.
485 */
486 #define DEFAULT_TUNE_T_FSFLUSHR 1
487 int tune_t_fsflushr = DEFAULT_TUNE_T_FSFLUSHR;

489 /*
490 * The minimum available resident (not swappable) memory to maintain
491 * in order to avoid deadlock. In pages.
492 */
493 int tune_t_minarmem = 25;

495 /*
496 * The minimum available swappable memory to maintain in order to avoid
497 * deadlock. In pages.
498 */
499 int tune_t_minasmem = 25;

501 int tune_t_flckrec = 512; /* max # of active frlocks */

503 /*
504 * Number of currently available pages that cannot be ’locked’
505 * This is set in init_pages_pp_maximum, and must be initialized
506 * to zero here to detect an override in /etc/system
507 */
508 pgcnt_t pages_pp_maximum = 0;

510 int boothowto; /* boot flags passed to kernel */
511 struct var v; /* System Configuration Information */

513 /*
514 * System Configuration Information
515 */

517 /*

new/usr/src/uts/common/conf/param.c 2

518 * The physical system’s host identifier, expressed as a decimal string.
519 * Code should only directly access this value when writing to it (setting the
520 * physical system’s host identifier). Code that reads the physical system’s
521 * host identifier should use zone_get_hostid(NULL) instead.
522 */
523 char hw_serial[HW_HOSTID_LEN] = "0";

525 #if defined(__sparc)

527 /*
528 * On sparc machines, read hw_serial from the firmware at boot time
529 * and simply assert Oracle is the hardware provider.
530 */
531 char architecture[] = "sparcv9";
532 char architecture_32[] = "sparc";
533 char hw_provider[] = "Oracle Corporation";

535 #elif defined(__i386)

537 /*
538 * On x86 machines, read hw_serial, hw_provider and srpc_domain from
539 * /etc/bootrc at boot time.
540 */
537 char architecture[] = "i386";
538 char architecture_32[] = "i386";
539 char hw_provider[SYS_NMLN] = "";

541 #elif defined(__amd64)

547 /*
548 * On amd64 machines, read hw_serial, hw_provider and srpc_domain from
549 * /etc/bootrc at boot time.
550 */
543 char architecture[] = "amd64";
544 char architecture_32[] = "i386";
545 char hw_provider[SYS_NMLN] = "";

547 #else
548 #error "unknown processor architecture"
549 #endif

551 char srpc_domain[SYS_NMLN] = "";
552 char platform[SYS_NMLN] = ""; /* read from the devinfo root node */

554 /* Initialize isa_list */
555 char *isa_list = architecture;

557 static pgcnt_t original_physmem = 0;

559 #define MIN_DEFAULT_MAXUSERS 8u
560 #define MAX_DEFAULT_MAXUSERS 2048u
561 #define MAX_MAXUSERS 4096u

563 void
564 param_preset(void)
565 {
566 original_physmem = physmem;
567 }

______unchanged_portion_omitted_

new/usr/src/uts/common/krtld/kobj_bootflags.c 1

**
 6328 Thu Jun 6 18:30:52 2013
new/usr/src/uts/common/krtld/kobj_bootflags.c
3788 /etc/bootrc is defunct and should be removed
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

27 #include <sys/types.h>
28 #include <sys/reboot.h>
29 #include <sys/cmn_err.h>
30 #include <sys/bootconf.h>
31 #include <sys/promif.h>
32 #include <sys/obpdefs.h>
33 #include <sys/sunddi.h>
34 #include <sys/systm.h>
35 #include <sys/kobj.h>
36 #include <sys/kobj_impl.h>
37 #include <util/getoptstr.h>

39 char *kobj_kmdb_argv[11]; /* 10 arguments and trailing NULL */

41 /*
42 * Parse the boot line to determine boot flags.
43 */
44 void
45 bootflags(struct bootops *ops)
46 {
47 struct gos_params params;
48 uchar_t num_O_opt = 0;
49 char *cp;
50 int c;
51 char scratch[BOOTARGS_MAX];

53 if (BOP_GETPROP(ops, "bootargs", kern_bootargs) == -1) {
54 boothowto |= RB_ASKNAME;
55 return;
56 }

58 (void) BOP_GETPROP(ops, "boot-file", kern_bootfile);

60 cp = kern_bootargs;

new/usr/src/uts/common/krtld/kobj_bootflags.c 2

62 #if defined(_OBP)
63 /*
64 * x86: The boot scripts don’t prepend the kernel name to the boot
65 * arguments. (And beware making it do so: if the run-kernel command
66 * returns, it will loop, and you will end up with multiple copies
67 * of the kernel name.)
64 * x86: The boot scripts (i.e., /etc/bootrc) don’t prepend the kernel
65 * name to the boot arguments. (And beware making it do so: if the
66 * run-kernel command returns, it will loop, and you will end up with
67 * multiple copies of the kernel name.)
68 */
69 if (cp[0] != ’-’) {
70 /* if user booted kadb or kmdb, load kmdb */
71 if (cp[0] == ’k’ && (cp[1] == ’a’ || cp[1] == ’m’) &&
72 cp[2] == ’d’ && cp[3] == ’b’ &&
73 (cp[4] == ’ ’ || cp[4] == ’ ’ || cp[4] == 0))
74 boothowto |= RB_KMDB;
75 SKIP_WORD(cp); /* Skip the kernel’s filename. */
76 }
77 #endif
78 SKIP_SPC(cp);

80 #if defined(_OBP)
81 /* skip bootblk args */
82 params.gos_opts = "abcdDf:F:gGHhi:km:o:O:rsvVwxZ:";
83 #else
84 params.gos_opts = "abcdgGhi:km:O:rsvwx";
85 #endif
86 params.gos_strp = cp;
87 getoptstr_init(¶ms);
88 while ((c = getoptstr(¶ms)) != -1) {

90 switch (c) {
91 case ’a’:
92 boothowto |= RB_ASKNAME;
93 break;
94 case ’b’:
95 boothowto |= RB_NOBOOTRC;
96 break;
97 case ’c’:
98 boothowto |= RB_CONFIG;
99 break;
100 case ’d’:
101 boothowto |= RB_DEBUGENTER;
102 break;
103 #if defined(_OBP)
104 case ’D’:
105 case ’F’:
106 break;
107 case ’f’:
108 (void) prom_setprop(prom_optionsnode(), "diag-level",
108 (void)prom_setprop(prom_optionsnode(), "diag-level",
109 (char *)params.gos_optargp,
110 params.gos_optarglen + 1);
111 break;
112 #endif
113 case ’g’:
114 boothowto |= RB_FORTHDEBUG;
115 break;
116 case ’G’:
117 boothowto |= RB_FORTHDEBUGDBP;
118 break;
119 case ’h’:
120 boothowto |= RB_HALT;
121 break;
122 #if defined(_OBP)

new/usr/src/uts/common/krtld/kobj_bootflags.c 3

123 case ’H’:
124 break;
125 #endif
126 case ’i’:
127 if (params.gos_optarglen + 1 > sizeof (initname)) {
128 _kobj_printf(ops, "krtld: initname too long. "
129 "Ignoring.\n");
130 } else {
131 (void) strncpy(initname, params.gos_optargp,
132 params.gos_optarglen);
133 initname[params.gos_optarglen] = ’\0’;
134 }
135 break;
136 case ’k’:
137 boothowto |= RB_KMDB;
138 break;
139 case ’m’:
140 if (strlen(initargs) + 3 + params.gos_optarglen + 1 >
141 sizeof (initargs)) {
142 _kobj_printf(ops,
143 "unix: init options too long. "
144 "Ignoring -m.\n");
145 break;
146 }
147 /* gos_optargp is not null terminated */
148 (void) strncpy(scratch, params.gos_optargp,
149 params.gos_optarglen);
150 scratch[params.gos_optarglen] = ’\0’;
151 (void) strlcat(initargs, "-m ", sizeof (initargs));
152 (void) strlcat(initargs, scratch,
153 sizeof (initargs));
154 (void) strlcat(initargs, " ", sizeof (initargs));
155 break;
156 #if defined(_OBP)
157 /* Ignore argument meant for wanboot standalone */
158 case ’o’:
159 break;
160 #endif
161 case ’O’: {
162 char **str = &kobj_kmdb_argv[num_O_opt];

164 if (++num_O_opt > (sizeof (kobj_kmdb_argv) /
165 sizeof (char *)) - 1) {
166 _kobj_printf(ops, "krtld: too many kmdb "
167 "options - ignoring option #%d.\n",
168 num_O_opt);
169 continue;
170 }

172 *str = kobj_alloc(params.gos_optarglen + 1, KM_TMP);
173 (void) strncpy(*str, params.gos_optargp,
174 params.gos_optarglen);
175 (*str)[params.gos_optarglen] = ’\0’;
176 break;
177 }
178 case ’r’:
179 if (strlen(initargs) + 3 + 1 > sizeof (initargs)) {
180 _kobj_printf(ops, "unix: init options too "
181 "long. Ignoring -r.\n");
182 break;
183 }
184 boothowto |= RB_RECONFIG;
185 (void) strlcat(initargs, "-r ", sizeof (initargs));
186 break;
187 case ’s’:
188 if (strlen(initargs) + 3 + 1 > sizeof (initargs)) {

new/usr/src/uts/common/krtld/kobj_bootflags.c 4

189 _kobj_printf(ops, "unix: init options too "
190 "long. Ignoring -s.\n");
191 break;
192 }
193 boothowto |= RB_SINGLE;
194 (void) strlcat(initargs, "-s ", sizeof (initargs));
195 break;
196 case ’v’:
197 if (strlen(initargs) + 3 + 1 > sizeof (initargs)) {
198 _kobj_printf(ops, "unix: init options too "
199 "long. Ignoring -v.\n");
200 break;
201 }
202 boothowto |= RB_VERBOSE;
203 (void) strlcat(initargs, "-v ", sizeof (initargs));
204 break;
205 #if defined(_OBP)
206 case ’V’:
207 break;
208 case ’Z’:
209 break;
210 #endif
211 case ’w’:
212 boothowto |= RB_WRITABLE;
213 break;
214 case ’x’:
215 boothowto |= RB_NOBOOTCLUSTER;
216 break;
217 case ’?’:
218 switch (params.gos_last_opt) {
219 case ’i’:
220 _kobj_printf(ops, "krtld: Required argument "
221 "for -i flag missing. Ignoring.\n");
222 break;
223 default:
224 _kobj_printf(ops, "krtld: Ignoring invalid "
225 "kernel option -%c.\n",
226 params.gos_last_opt);
227 }
228 break;
229 default:
230 _kobj_printf(ops, "krtld: Ignoring unimplemented "
231 "option -%c.\n", c);
232 }
233 }

235 if ((boothowto & (RB_DEBUGENTER | RB_KMDB)) == RB_DEBUGENTER) {
236 _kobj_printf(ops, "krtld: -d is not valid without -k.\n");
237 boothowto &= ~RB_DEBUGENTER;
238 }

240 if (*params.gos_strp) {
241 /* Unused arguments. */
242 if (params.gos_strp[0] == ’-’ && ISSPACE(params.gos_strp[1])) {
243 /*EMPTY*/
244 /* Lousy install arguments. Silently ignore. */
245 } else {
246 _kobj_printf(ops, "krtld: Unused kernel arguments: "
247 "‘%s’.\n", params.gos_strp);
248 }
249 }
250 }

______unchanged_portion_omitted_

