
new/exception_lists/packaging 1

**
 26814 Tue Jun 12 19:54:33 2012
new/exception_lists/packaging
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 #

27 #
28 # Exception List for validate_pkg
29 #

31 #
32 # The following entries are built in the /proto area
33 # but not included in any packages - this is intentional.
34 #
35 usr/include/auth_list.h
36 usr/include/bsm/audit_door_infc.h
37 usr/include/bsm/audit_private.h
38 usr/include/bsm/devalloc.h
39 usr/include/getxby_door.h
40 usr/include/passwdutil.h
41 usr/include/priv_utils.h
42 usr/include/rpcsvc/daemon_utils.h
43 usr/include/rpcsvc/svc_dg_priv.h
44 usr/include/security/pam_impl.h
45 usr/include/sys/clock_impl.h
46 usr/include/sys/ieeefp.h
47 usr/include/sys/winlockio.h
48 usr/include/scsi/plugins/ses/vendor/sun_impl.h
49 #
50 # Private/Internal libraries of the Cryptographic Framework.
51 #
52 lib/libkcfd.so
53 lib/llib-lelfsign
54 lib/llib-lelfsign.ln
55 lib/llib-lkcfd
56 lib/llib-lkcfd.ln
57 usr/include/libelfsign.h
58 usr/lib/llib-lsoftcrypto
59 usr/lib/llib-lsoftcrypto.ln

new/exception_lists/packaging 2

60 usr/lib/amd64/llib-lsoftcrypto.ln i386
61 usr/lib/sparcv9/llib-lsoftcrypto.ln sparc

63 #
64 # The following files are used by the DHCP service, the
65 # standalone’s DHCP implementation, and the kernel (nfs_dlboot).
66 # They contain interfaces which are currently private.
67 #
68 usr/include/dhcp_svc_confkey.h
69 usr/include/dhcp_svc_confopt.h
70 usr/include/dhcp_svc_private.h
71 usr/include/dhcp_symbol.h
72 usr/include/sys/sunos_dhcp_class.h
73 usr/lib/libdhcpsvc.so
74 usr/lib/llib-ldhcpsvc
75 usr/lib/llib-ldhcpsvc.ln
76 #
77 # Private MAC driver header files
78 #
79 usr/include/inet/iptun.h
80 usr/include/sys/aggr_impl.h
81 usr/include/sys/aggr.h
82 usr/include/sys/dld_impl.h
83 usr/include/sys/dld_ioc.h
84 usr/include/sys/dls_impl.h
85 usr/include/sys/dls.h
86 usr/include/sys/mac_client_impl.h
87 usr/include/sys/mac_client.h
88 usr/include/sys/mac_flow_impl.h
89 usr/include/sys/mac_impl.h
90 usr/include/sys/mac_soft_ring.h
91 usr/include/sys/mac_stat.h
92 #
93 # Private GLDv3 userland libraries and headers
94 #
95 usr/include/libdladm_impl.h
96 usr/include/libdlaggr.h
97 usr/include/libdlether.h
98 usr/include/libdlflow_impl.h
99 usr/include/libdlflow.h
100 usr/include/libdliptun.h
101 usr/include/libdlmgmt.h
102 usr/include/libdlsim.h
103 usr/include/libdlstat.h
104 usr/include/libdlvnic.h
105 usr/include/libdlwlan_impl.h
106 usr/include/libdlwlan.h
107 #
108 # Virtual Network Interface Card (VNIC)
109 #
110 usr/include/sys/vnic.h
111 usr/include/sys/vnic_impl.h
112 #
113 # Private libipadm lint library and header files
114 #
115 usr/include/ipadm_ipmgmt.h
116 usr/include/ipadm_ndpd.h
117 usr/include/libipadm.h
118 lib/llib-lipadm
119 lib/llib-lipadm.ln
120 lib/libipadm.so
121 #
122 # Private libsocket header file
123 #
124 usr/include/libsocket_priv.h
125 #

new/exception_lists/packaging 3

126 # IKE and IPsec support library exceptions. The IKE support
127 # library contains exclusively private interfaces, as does
128 # libipsecutil. My apologies for the glut of header files here.
129 #
130 usr/include/errfp.h
131 usr/include/ikedoor.h
132 usr/include/ipsec_util.h
133 usr/lib/libike.so
134 usr/lib/amd64/libike.so i386
135 usr/lib/sparcv9/libike.so sparc
136 usr/lib/libipsecutil.so
137 usr/lib/amd64/libipsecutil.so i386
138 usr/lib/sparcv9/libipsecutil.so sparc
139 usr/lib/llib-like
140 usr/lib/llib-like.ln
141 usr/lib/amd64/llib-like.ln i386
142 usr/lib/sparcv9/llib-like.ln sparc
143 usr/lib/llib-lipsecutil
144 usr/lib/llib-lipsecutil.ln
145 usr/lib/amd64/llib-lipsecutil.ln i386
146 usr/lib/sparcv9/llib-lipsecutil.ln sparc
147 #
148 usr/include/inet/ip_impl.h
149 usr/include/inet/ip_ndp.h
150 usr/include/inet/ip2mac_impl.h
151 usr/include/inet/ip2mac.h
152 usr/include/inet/rawip_impl.h
153 usr/include/inet/tcp_impl.h
154 usr/include/inet/udp_impl.h
155 usr/include/libmail.h
156 usr/include/libnwam_priv.h
157 usr/include/protocols/ripngd.h
158 usr/include/s_string.h
159 usr/include/sys/logindmux_impl.h
160 usr/include/sys/vgareg.h
161 #
162 # Some IPsec headers can’t be shipped lest we hit export controls...
163 #
164 usr/include/inet/ipsec_impl.h
165 usr/include/inet/ipsec_info.h
166 usr/include/inet/ipsecah.h
167 usr/include/inet/ipsecesp.h
168 usr/include/inet/keysock.h
169 usr/include/inet/sadb.h
170 usr/include/sys/sha1_consts.h
171 usr/include/sys/sha2_consts.h
172 #
173 #
174 # Filtering out directories not shipped
175 #
176 usr/4lib i386
177 #
178 # These files contain definitions shared privately between the kernel
179 # and libc. There is no reason for them to be part of a package that
180 # a customer should ever see. They are installed in the proto area by
181 # the uts build because libc and and other components, like truss, are
182 # dependent upon their contents and should not have their own copies.
183 #
184 usr/include/sys/libc_kernel.h
185 usr/include/sys/synch32.h
186 #
187 # These files are installed in the proto area by the build of libproc for
188 # the benefit of the builds of cmd/truss, cmd/gcore and cmd/ptools, which
189 # use libproc as their common process-control library. These are not
190 # interfaces for customer use, so the files are excluded from packaging.
191 #

new/exception_lists/packaging 4

192 lib/llib-lproc
193 lib/llib-lproc.ln
194 lib/amd64/llib-lproc.ln i386
195 lib/sparcv9/llib-lproc.ln sparc
196 usr/include/libproc.h
197 #
198 # Private interfaces for libdisasm
199 #
200 usr/include/libdisasm.h
201 usr/lib/llib-ldisasm
202 usr/lib/llib-ldisasm.ln
203 usr/lib/amd64/llib-ldisasm.ln i386
204 usr/lib/sparcv9/llib-ldisasm.ln sparc
205 #
206 # Private interfaces for libraidcfg
207 #
208 usr/include/raidcfg_spi.h
209 usr/include/raidcfg.h
210 usr/lib/libraidcfg.so
211 usr/lib/amd64/libraidcfg.so i386
212 usr/lib/sparcv9/libraidcfg.so sparc
213 usr/lib/llib-lraidcfg
214 usr/lib/llib-lraidcfg.ln
215 usr/lib/amd64/llib-lraidcfg.ln i386
216 usr/lib/sparcv9/llib-lraidcfg.ln sparc
217 #
218 # This file is used for private communication between mdb, drv/kmdb, and
219 # misc/kmdb. The interfaces described herein are not intended for customer
220 # use, and are thus excluded from packaging.
221 #
222 usr/include/sys/kmdb.h
223 #
224 # These files are installed in the proto area by the build of libdhcpagent
225 # and libdhcputil for the benefit of DHCP-related networking commands such
226 # as dhcpagent, dhcpinfo, ifconfig, and netstat. These are not interfaces
227 # for customer use, so the files are excluded from packaging.
228 #
229 lib/libdhcpagent.so
230 lib/libdhcputil.so
231 lib/llib-ldhcpagent
232 lib/llib-ldhcpagent.ln
233 lib/llib-ldhcputil
234 lib/llib-ldhcputil.ln
235 usr/include/dhcp_hostconf.h
236 usr/include/dhcp_impl.h
237 usr/include/dhcp_inittab.h
238 usr/include/dhcp_stable.h
239 usr/include/dhcp_symbol_common.h
240 usr/include/dhcpagent_ipc.h
241 usr/include/dhcpagent_util.h
242 usr/include/dhcpmsg.h
243 usr/lib/libdhcpagent.so
244 usr/lib/libdhcputil.so
245 usr/lib/llib-ldhcpagent
246 usr/lib/llib-ldhcpagent.ln
247 usr/lib/llib-ldhcputil
248 usr/lib/llib-ldhcputil.ln
249 #
250 # These files are installed in the proto area by the build of libinstzones
251 # and libpkg
252 #
253 usr/lib/llib-linstzones
254 usr/lib/llib-linstzones.ln
255 usr/lib/llib-lpkg
256 usr/lib/llib-lpkg.ln
257 #

new/exception_lists/packaging 5

258 # Don’t ship header files private to libipmp and in.mpathd
259 #
260 usr/include/ipmp_query_impl.h
261 #
262 # These files are installed in the proto area by the build of libinetsvc,
263 # an inetd-specific library shared by inetd, inetadm and inetconv. Only
264 # the shared object is shipped.
265 #
266 usr/include/inetsvc.h
267 usr/lib/libinetsvc.so
268 usr/lib/llib-linetsvc
269 usr/lib/llib-linetsvc.ln
270 #
271 # These files are installed in the proto area by the build of libinetutil,
272 # a general purpose library for the benefit of internet utilities. Only
273 # the shared object is shipped.
274 #
275 lib/libinetutil.so
276 lib/amd64/libinetutil.so i386
277 lib/sparcv9/libinetutil.so sparc
278 lib/llib-linetutil
279 lib/llib-linetutil.ln
280 lib/amd64/llib-linetutil.ln i386
281 lib/sparcv9/llib-linetutil.ln sparc
282 usr/include/libinetutil.h
283 usr/include/netinet/inetutil.h
284 usr/include/ofmt.h
285 usr/lib/libinetutil.so
286 usr/lib/amd64/libinetutil.so i386
287 usr/lib/sparcv9/libinetutil.so sparc
288 usr/lib/llib-linetutil
289 usr/lib/llib-linetutil.ln
290 usr/lib/amd64/llib-linetutil.ln i386
291 usr/lib/sparcv9/llib-linetutil.ln sparc
292 #
293 # Miscellaneous kernel interfaces or kernel<->user interfaces that are
294 # consolidation private and we do not want to export at this time.
295 #
296 usr/include/sys/cryptmod.h
297 usr/include/sys/dumpadm.h
298 usr/include/sys/ontrap.h
299 usr/include/sys/sysmsg_impl.h
300 usr/include/sys/vlan.h
301 #
302 # These files are installed in the proto area so lvm can use
303 # them during the build process.
304 #
305 lib/llib-lmeta
306 lib/llib-lmeta.ln
307 usr/include/sdssc.h
308 usr/lib/llib-lmeta
309 usr/lib/llib-lmeta.ln
310 #
311 # non-public pci header
312 #
313 usr/include/sys/pci_impl.h
314 usr/include/sys/pci_tools.h
315 #
316 # Exception list for RCM project, included by librcm and rcm_daemon
317 #
318 usr/include/librcm_event.h
319 usr/include/librcm_impl.h
320 #
321 # MDB deliverables that are not yet public
322 #
323 usr/lib/mdb/proc/mdb_test.so

new/exception_lists/packaging 6

324 usr/lib/mdb/proc/sparcv9/mdb_test.so sparc
325 #
326 # SNCA project exception list
327 #
328 usr/include/inet/kssl/kssl.h
329 usr/include/inet/kssl/ksslimpl.h
330 usr/include/inet/kssl/ksslproto.h
331 usr/include/inet/nca
332 #
333 # these are "removed" from the source product build because the only
334 # packages that currently deliver them are removed.
335 # they really should’t be in here.
336 #
337 etc/sfw
338 #
339 # Entries for the libmech_krb5 symlink, which has been included
340 # for build purposes only, not delivered to customers.
341 #
342 usr/lib/gss/libmech_krb5.so
343 usr/lib/amd64/gss/libmech_krb5.so i386
344 usr/lib/sparcv9/gss/libmech_krb5.so sparc
345 usr/lib/libmech_krb5.so
346 usr/lib/amd64/libmech_krb5.so i386
347 usr/lib/sparcv9/libmech_krb5.so sparc
348 #
349 # Entries for headers from efcode project which user does not need to see
350 #
351 usr/platform/sun4u/include/sys/fc_plat.h sparc
352 usr/platform/sun4u/include/sys/fcode.h sparc
353 #
354 # Private net80211 headers
355 #
356 usr/include/sys/net80211_crypto.h
357 usr/include/sys/net80211_ht.h
358 usr/include/sys/net80211_proto.h
359 usr/include/sys/net80211.h
360 #
361 usr/include/net/wpa.h
362 #
361 # PPPoE files not delivered to customers.
362 #
363 usr/include/net/pppoe.h
364 usr/include/net/sppptun.h
365 #
366 # Simnet
367 #
368 usr/include/net/simnet.h
369 #
370 # Bridging internal data structures
371 #
372 usr/include/net/bridge_impl.h
373 #
374 # User<->kernel interface used by cfgadm/USB only
375 #
376 usr/include/sys/usb/hubd/hubd_impl.h
377 #
378 # User<->kernel interface used by cfgadm/SATA only
379 #
380 usr/include/sys/sata/sata_cfgadm.h i386
381 #
382 # Private ucred kernel header
383 #
384 usr/include/sys/ucred.h
385 #
386 # Private and/or platform-specific smf(5) files
387 #

new/exception_lists/packaging 7

388 lib/librestart.so
389 lib/llib-lrestart
390 lib/llib-lrestart.ln
391 lib/amd64/llib-lrestart.ln i386
392 lib/sparcv9/llib-lrestart.ln sparc
393 usr/include/libcontract_priv.h
394 usr/include/librestart_priv.h
395 usr/include/librestart.h
396 usr/lib/librestart.so
397 usr/lib/sparcv9/librestart.so sparc
398 lib/svc/manifest/platform/sun4u i386
399 lib/svc/manifest/platform/sun4v i386
400 var/svc/manifest/platform/sun4u i386
401 var/svc/manifest/platform/sun4v i386
402 etc/svc/profile/platform_sun4v.xml i386
403 etc/svc/profile/platform_SUNW,SPARC-Enterprise.xml i386
404 etc/svc/profile/platform_SUNW,Sun-Fire-15000.xml i386
405 etc/svc/profile/platform_SUNW,Sun-Fire-880.xml i386
406 etc/svc/profile/platform_SUNW,Sun-Fire-V890.xml i386
407 etc/svc/profile/platform_SUNW,Sun-Fire.xml i386
408 etc/svc/profile/platform_SUNW,Ultra-Enterprise-10000.xml i386
409 etc/svc/profile/platform_SUNW,UltraSPARC-IIe-NetraCT-40.xml i386
410 etc/svc/profile/platform_SUNW,UltraSPARC-IIe-NetraCT-60.xml i386
411 etc/svc/profile/platform_SUNW,UltraSPARC-IIi-Netract.xml i386
412 #
413 # Private libuutil files
414 #
415 lib/libuutil.so
416 lib/llib-luutil
417 lib/llib-luutil.ln
418 lib/sparcv9/llib-luutil.ln sparc
419 usr/include/libuutil_impl.h
420 usr/lib/libuutil.so
421 usr/lib/sparcv9/libuutil.so sparc
422 #
423 # Private Multidata file.
424 #
425 usr/include/sys/multidata_impl.h
426 #
427 # The following files are used by wanboot.
428 # They contain interfaces which are currently private.
429 #
430 usr/include/sys/wanboot_impl.h
431 usr/include/wanboot
432 usr/include/wanbootutil.h
433 #
434 # Even though all the objects built under usr/src/stand are later glommed
435 # together into a couple of second-stage boot loaders, we dump the static
436 # archives and lint libraries into $(ROOT)/stand for intermediate use
437 # (e.g., for lint, linking the second-stage boot loaders, ...). Since
438 # these are merely intermediate objects, they do not need to be packaged.
439 #
440 stand sparc
441 #
442 # Private KCF header files
443 #
444 usr/include/sys/crypto/elfsign.h
445 usr/include/sys/crypto/impl.h
446 usr/include/sys/crypto/ops_impl.h
447 usr/include/sys/crypto/sched_impl.h
448 #
449 # The following files are installed in the proto area
450 # by the build of libavl (AVL Tree Interface Library).
451 # libavl contains interfaces which are all private interfaces.
452 #
453 lib/libavl.so

new/exception_lists/packaging 8

454 lib/amd64/libavl.so i386
455 lib/sparcv9/libavl.so sparc
456 lib/llib-lavl
457 lib/llib-lavl.ln
458 lib/amd64/llib-lavl.ln i386
459 lib/sparcv9/llib-lavl.ln sparc
460 usr/lib/libavl.so
461 usr/lib/amd64/libavl.so i386
462 usr/lib/sparcv9/libavl.so sparc
463 usr/lib/llib-lavl
464 usr/lib/llib-lavl.ln
465 usr/lib/amd64/llib-lavl.ln i386
466 usr/lib/sparcv9/llib-lavl.ln sparc
467 #
468 # The following files are installed in the proto area
469 # by the build of libcmdutils (Command Utilities Library).
470 # libcmdutils contains interfaces which are all private interfaces.
471 #
472 lib/libcmdutils.so
473 lib/amd64/libcmdutils.so i386
474 lib/sparcv9/libcmdutils.so sparc
475 lib/llib-lcmdutils
476 lib/llib-lcmdutils.ln
477 lib/amd64/llib-lcmdutils.ln i386
478 lib/sparcv9/llib-lcmdutils.ln sparc
479 usr/include/libcmdutils.h
480 usr/lib/libcmdutils.so
481 usr/lib/amd64/libcmdutils.so i386
482 usr/lib/sparcv9/libcmdutils.so sparc
483 usr/lib/llib-lcmdutils
484 usr/lib/llib-lcmdutils.ln
485 usr/lib/amd64/llib-lcmdutils.ln i386
486 usr/lib/sparcv9/llib-lcmdutils.ln sparc
487 #
488 # Private interfaces in libsec
489 #
490 usr/include/aclutils.h
491 #
492 # USB skeleton driver stays in sync with the rest of USB but doesn’t ship.
493 #
494 kernel/drv/usbskel i386
495 kernel/drv/amd64/usbskel i386
496 kernel/drv/sparcv9/usbskel sparc
497 kernel/drv/usbskel.conf
498 #
499 # Consolidation and Sun private libdevid interfaces
500 # Public libdevid interfaces provided by devid.h
501 #
502 usr/include/sys/libdevid.h
503 #
504 # The following files are installed in the proto area by the build of
505 # libprtdiag. libprtdiag contains interfaces which are all private.
506 # Only the shared object is shipped.
507 #
508 usr/platform/sun4u/lib/llib-lprtdiag sparc
509 usr/platform/sun4u/lib/llib-lprtdiag.ln sparc
510 usr/platform/sun4v/lib/llib-lprtdiag.ln sparc
511 #
512 # The following files are installed in the proto area by the build of
513 # mdesc driver in sun4v. These header files are used on in the build
514 # and do not need to be shipped to customers.
515 #
516 usr/include/sys/mdesc.h sparc
517 usr/include/sys/mdesc_impl.h sparc
518 usr/platform/sun4v/include/sys/mach_descrip.h sparc
519 #

new/exception_lists/packaging 9

520 # The following files are installed in the proto area by the build of
521 # libpcp. libpcp contains interfaces which are all private.
522 # Only the shared object is shipped.
523 #
524 usr/platform/sun4v/lib/llib-lpcp.ln sparc
525 usr/platform/SUNW,Netra-CP3060/lib/llib-lpcp.ln sparc
526 usr/platform/SUNW,Netra-CP3260/lib/llib-lpcp.ln sparc
527 usr/platform/SUNW,Netra-T5220/lib/llib-lpcp.ln sparc
528 usr/platform/SUNW,Netra-T5440/lib/llib-lpcp.ln sparc
529 usr/platform/SUNW,SPARC-Enterprise-T5120/lib/llib-lpcp.ln sparc
530 usr/platform/SUNW,Sun-Blade-T6300/lib/llib-lpcp.ln sparc
531 usr/platform/SUNW,Sun-Blade-T6320/lib/llib-lpcp.ln sparc
532 usr/platform/SUNW,Sun-Fire-T200/lib/llib-lpcp.ln sparc
533 usr/platform/SUNW,T5140/lib/llib-lpcp.ln sparc
534 usr/platform/SUNW,USBRDT-5240/lib/llib-lpcp.ln sparc
535 #
536 # ZFS internal tools and lint libraries
537 #
538 usr/lib/llib-lzfs_jni
539 usr/lib/llib-lzfs_jni.ln
540 usr/lib/amd64/llib-lzfs_jni.ln i386
541 usr/lib/sparcv9/llib-lzfs_jni.ln sparc
542 usr/lib/llib-lzpool
543 usr/lib/llib-lzpool.ln i386
544 usr/lib/amd64/llib-lzpool.ln i386
545 usr/lib/sparcv9/llib-lzpool.ln sparc
546 #
547 # ZFS JNI headers
548 #
549 usr/include/libzfs_jni_dataset.h
550 usr/include/libzfs_jni_disk.h
551 usr/include/libzfs_jni_diskmgt.h
552 usr/include/libzfs_jni_ipool.h
553 usr/include/libzfs_jni_main.h
554 usr/include/libzfs_jni_pool.h
555 usr/include/libzfs_jni_property.h
556 usr/include/libzfs_jni_util.h
557 #
558 # These files are installed in the proto area for Solaris scsi_vhci driver
559 # (for MPAPI support) and should not be shipped
560 #
561 usr/include/sys/scsi/adapters/mpapi_impl.h
562 usr/include/sys/scsi/adapters/mpapi_scsi_vhci.h
563 #
564 # This library is installed in the proto area by the build of libdisasm, and is
565 # only used when building the KMDB disasm module.
566 #
567 usr/lib/libstanddisasm.so
568 usr/lib/amd64/libstanddisasm.so i386
569 usr/lib/sparcv9/libstanddisasm.so sparc
570 #
571 # TSol: tsol doesn’t ship lint source, and tsnet isn’t for customers at all.
572 #
573 lib/libtsnet.so
574 usr/lib/llib-ltsnet
575 usr/lib/llib-ltsol
576 #
577 # nss interfaces shared between libnsl and other ON libraries.
578 #
579 usr/include/nss.h
580 #
581 # AT&T AST (ksh93) files which are currently needed only to build OS/Net
582 # (msgcc&co.)
583 # libast
584 usr/lib/libast.so
585 usr/lib/amd64/libast.so i386

new/exception_lists/packaging 10

586 usr/lib/sparcv9/libast.so sparc
587 usr/lib/llib-last
588 usr/lib/llib-last.ln
589 usr/lib/amd64/llib-last.ln i386
590 usr/lib/sparcv9/llib-last.ln sparc
591 # libcmd
592 usr/lib/llib-lcmd
593 usr/lib/llib-lcmd.ln
594 usr/lib/amd64/llib-lcmd.ln i386
595 usr/lib/sparcv9/llib-lcmd.ln sparc
596 # libdll
597 usr/lib/libdll.so
598 usr/lib/amd64/libdll.so i386
599 usr/lib/sparcv9/libdll.so sparc
600 usr/lib/llib-ldll
601 usr/lib/llib-ldll.ln
602 usr/lib/amd64/llib-ldll.ln i386
603 usr/lib/sparcv9/llib-ldll.ln sparc
604 # libpp (a helper library needed by AST’s msgcc)
605 usr/lib/libpp.so
606 usr/lib/llib-lpp
607 usr/lib/llib-lpp.ln
608 usr/lib/locale/C/LC_MESSAGES/libpp
609 # libshell
610 usr/lib/libshell.so
611 usr/lib/amd64/libshell.so i386
612 usr/lib/sparcv9/libshell.so sparc
613 usr/lib/llib-lshell
614 usr/lib/llib-lshell.ln
615 usr/lib/amd64/llib-lshell.ln i386
616 usr/lib/sparcv9/llib-lshell.ln sparc
617 # libsum
618 usr/lib/libsum.so
619 usr/lib/amd64/libsum.so i386
620 usr/lib/sparcv9/libsum.so sparc
621 usr/lib/llib-lsum
622 usr/lib/llib-lsum.ln
623 usr/lib/amd64/llib-lsum.ln i386
624 usr/lib/sparcv9/llib-lsum.ln sparc
625 #
626 # This file is used in ON to build DSCP clients. It is not for customers.
627 #
628 usr/include/libdscp.h sparc
629 #
630 # These files are used by the iSCSI Target and the iSCSI Initiator
631 #
632 usr/include/sys/iscsi_protocol.h
633 usr/include/sys/iscsi_authclient.h
634 usr/include/sys/iscsi_authclientglue.h
635 #
636 # These files are used by the COMSTAR iSCSI target port provider
637 #
638 usr/include/sys/idm
639 usr/include/sys/iscsit/chap.h
640 usr/include/sys/iscsit/iscsi_if.h
641 usr/include/sys/iscsit/isns_protocol.h
642 usr/include/sys/iscsit/radius_packet.h
643 usr/include/sys/iscsit/radius_protocol.h
644 #
645 # libshare is private and the 64-bit sharemgr is not delivered.
646 #
647 usr/lib/libshare.so
648 usr/lib/amd64/libshare.so i386
649 usr/lib/sparcv9/libshare.so sparc
650 usr/lib/fs/autofs/libshare_autofs.so
651 usr/lib/fs/autofs/amd64/libshare_autofs.so i386

new/exception_lists/packaging 11

652 usr/lib/fs/autofs/sparcv9/libshare_autofs.so sparc
653 usr/lib/fs/nfs/libshare_nfs.so
654 usr/lib/fs/nfs/amd64/libshare_nfs.so i386
655 usr/lib/fs/nfs/sparcv9/libshare_nfs.so sparc
656 usr/lib/fs/smb/libshare_smb.so
657 usr/lib/fs/smb/amd64/libshare_smb.so i386
658 usr/lib/fs/smb/sparcv9/libshare_smb.so sparc
659 usr/lib/fs/smbfs/libshare_smbfs.so
660 usr/lib/fs/smbfs/amd64/libshare_smbfs.so i386
661 usr/lib/fs/smbfs/sparcv9/libshare_smbfs.so sparc
662 usr/include/libshare_impl.h
663 usr/include/scfutil.h
664 #
665 # These files are installed in the proto area by the build of libpri for
666 # the benefit of the builds of FMA libldom, Zeus, picld plugins, and/or
667 # other libpri consumers. However, the libpri interfaces are private to
668 # Sun (Consolidation Private) and not intended for customer use. So these
669 # files (the symlink and the lint library) are excluded from packaging.
670 #
671 usr/lib/libpri.so sparc
672 usr/lib/llib-lpri sparc
673 usr/lib/llib-lpri.ln sparc
674 usr/lib/sparcv9/libpri.so sparc
675 usr/lib/sparcv9/llib-lpri.ln sparc
676 #
677 # These files are installed in the proto area by the build of libds for
678 # the benefit of the builds of sun4v IO FMA and/or other libds
679 # consumers. However, the libds interfaces are private to Sun
680 # (Consolidation Private) and not intended for customer use. So these
681 # files (the symlink and the lint library) are excluded from packaging.
682 #
683 usr/lib/libds.so sparc
684 usr/lib/sparcv9/libds.so sparc
685 usr/lib/llib-lds sparc
686 usr/lib/llib-lds.ln sparc
687 usr/lib/sparcv9/llib-lds.ln sparc
688 usr/lib/libdscfg.so
689 usr/lib/llib-ldscfg.ln
690 usr/platform/sun4v/include/sys/libds.h sparc
691 usr/platform/sun4v/include/sys/vlds.h sparc
692 #
693 # Private/Internal u8_textprep header file. Do not ship.
694 #
695 usr/include/sys/u8_textprep_data.h
696 #
697 # SQLite is private, used by SMF (svc.configd), idmapd and libsmb.
698 #
699 usr/include/sqlite
700 usr/lib/libsqlite-native.o
701 usr/lib/libsqlite.o
702 usr/lib/llib-lsqlite.ln
703 usr/lib/smbsrv/libsqlite.so
704 #
705 # Private/Internal kiconv header files. Do not ship.
706 #
707 usr/include/sys/kiconv_big5_utf8.h
708 usr/include/sys/kiconv_cck_common.h
709 usr/include/sys/kiconv_cp950hkscs_utf8.h
710 usr/include/sys/kiconv_emea1.h
711 usr/include/sys/kiconv_emea2.h
712 usr/include/sys/kiconv_euckr_utf8.h
713 usr/include/sys/kiconv_euctw_utf8.h
714 usr/include/sys/kiconv_gb18030_utf8.h
715 usr/include/sys/kiconv_gb2312_utf8.h
716 usr/include/sys/kiconv_hkscs_utf8.h
717 usr/include/sys/kiconv_ja_jis_to_unicode.h

new/exception_lists/packaging 12

718 usr/include/sys/kiconv_ja_unicode_to_jis.h
719 usr/include/sys/kiconv_ja.h
720 usr/include/sys/kiconv_ko.h
721 usr/include/sys/kiconv_latin1.h
722 usr/include/sys/kiconv_sc.h
723 usr/include/sys/kiconv_tc.h
724 usr/include/sys/kiconv_uhc_utf8.h
725 usr/include/sys/kiconv_utf8_big5.h
726 usr/include/sys/kiconv_utf8_cp950hkscs.h
727 usr/include/sys/kiconv_utf8_euckr.h
728 usr/include/sys/kiconv_utf8_euctw.h
729 usr/include/sys/kiconv_utf8_gb18030.h
730 usr/include/sys/kiconv_utf8_gb2312.h
731 usr/include/sys/kiconv_utf8_hkscs.h
732 usr/include/sys/kiconv_utf8_uhc.h
733 #
734 # At this time, the ttydefs.cleanup file is only useful on sun4u systems
735 #
736 etc/flash/postdeployment/ttydefs.cleanup i386
737 #
738 # This header file is shared only between the power commands and
739 # ppm/srn modules # and should not be in any package
740 #
741 usr/include/sys/srn.h
742 #
743 # Private/Internal header files of smbsrv. Do not ship.
744 #
745 usr/include/smb
746 usr/include/smbsrv
747 #
748 # Private/Internal dtrace scripts of smbsrv. Do not ship.
749 #
750 usr/lib/smbsrv/dtrace
751 #
752 # Private/Internal (lint) libraries of smbsrv. Do not ship.
753 #
754 usr/lib/reparse/llib-lreparse_smb
755 usr/lib/reparse/llib-lreparse_smb.ln
756 usr/lib/smbsrv/llib-lmlrpc
757 usr/lib/smbsrv/llib-lmlrpc.ln
758 usr/lib/smbsrv/llib-lmlsvc
759 usr/lib/smbsrv/llib-lmlsvc.ln
760 usr/lib/smbsrv/llib-lsmb
761 usr/lib/smbsrv/llib-lsmb.ln
762 usr/lib/smbsrv/llib-lsmbns
763 usr/lib/smbsrv/llib-lsmbns.ln
764 #
765 #
766 # Private/Internal 64-bit libraries of smbsrv. Do not ship.
767 #
768 usr/lib/smbsrv/amd64 i386
769 usr/lib/smbsrv/sparcv9 sparc

771 usr/lib/reparse/amd64/libreparse_smb.so i386
772 usr/lib/reparse/amd64/libreparse_smb.so.1 i386
773 usr/lib/reparse/amd64/llib-lreparse_smb.ln i386
774 usr/lib/reparse/sparcv9/libreparse_smb.so sparc
775 usr/lib/reparse/sparcv9/libreparse_smb.so.1 sparc
776 usr/lib/reparse/sparcv9/llib-lreparse_smb.ln sparc
777 #
778 # Private dirent, extended to include flags, for use by SMB server
779 #
780 usr/include/sys/extdirent.h
781 #
782 # Private header files for vscan service
783 #

new/exception_lists/packaging 13

784 usr/include/libvscan.h
785 usr/include/sys/vscan.h
786 #
787 # libvscan is private
788 #
789 usr/lib/vscan/llib-lvscan
790 usr/lib/vscan/llib-lvscan.ln
791 #
792 # i86hvm is not a full platform. It is just a home for paravirtualized
793 # drivers. There is no usr/ component to this sub-platform, but the
794 # directory is created in the proto area to keep other tools happy.
795 #
796 usr/platform/i86hvm i386
797 #
798 # Private sdcard framework headers
799 #
800 usr/include/sys/sdcard
801 #
802 # libsmbfs is private
803 #
804 usr/include/netsmb
805 usr/lib/libsmbfs.so
806 usr/lib/amd64/libsmbfs.so i386
807 usr/lib/sparcv9/libsmbfs.so sparc
808 usr/lib/llib-lsmbfs
809 usr/lib/llib-lsmbfs.ln
810 usr/lib/amd64/llib-lsmbfs.ln i386
811 usr/lib/sparcv9/llib-lsmbfs.ln sparc
812 #
813 # demo & test program for smbfs (private) ACL support
814 #
815 usr/lib/fs/smbfs/chacl
816 usr/lib/fs/smbfs/lsacl
817 usr/lib/fs/smbfs/testnp
818 #
819 # FC related files
820 kernel/kmdb/fcip i386
821 kernel/kmdb/amd64/fcip i386
822 kernel/kmdb/sparcv9/fcip sparc
823 kernel/kmdb/fcp i386
824 kernel/kmdb/amd64/fcp i386
825 kernel/kmdb/sparcv9/fcp sparc
826 kernel/kmdb/fctl i386
827 kernel/kmdb/amd64/fctl i386
828 kernel/kmdb/sparcv9/fctl sparc
829 kernel/kmdb/qlc i386
830 kernel/kmdb/amd64/qlc i386
831 kernel/kmdb/sparcv9/qlc sparc
832 lib/llib-la5k sparc
833 lib/llib-la5k.ln sparc
834 lib/sparcv9/llib-la5k.ln sparc
835 lib/llib-lg_fc sparc
836 lib/llib-lg_fc.ln sparc
837 lib/sparcv9/llib-lg_fc.ln sparc
838 usr/include/a_state.h sparc
839 usr/include/a5k.h sparc
840 usr/include/exec.h sparc
841 usr/include/g_scsi.h sparc
842 usr/include/g_state.h sparc
843 usr/include/gfc.h sparc
844 usr/include/l_common.h sparc
845 usr/include/l_error.h sparc
846 usr/include/rom.h sparc
847 usr/include/stgcom.h sparc
848 usr/include/sys/fibre-channel
849 usr/lib/llib-lHBAAPI

new/exception_lists/packaging 14

850 usr/lib/llib-lHBAAPI.ln
851 usr/lib/amd64/llib-lHBAAPI.ln i386
852 usr/lib/sparcv9/llib-lHBAAPI.ln sparc
853 #
854 usr/bin/dscfgcli
855 usr/bin/sd_diag
856 usr/bin/sd_stats
857 usr/include/nsctl.h
858 usr/include/sys/ncall
859 usr/include/sys/nsc_ddi.h
860 usr/include/sys/nsc_thread.h
861 usr/include/sys/nsctl
862 usr/include/sys/nskernd.h
863 usr/include/sys/unistat
864 usr/lib/libnsctl.so
865 usr/lib/librdc.so
866 usr/lib/libunistat.so
867 usr/lib/llib-lnsctl.ln
868 usr/lib/llib-lrdc.ln
869 usr/lib/llib-lunistat.ln
870 #
871 # These files are used by the iSCSI initiator only.
872 # No reason to ship them.
873 #
874 usr/include/sys/scsi/adapters/iscsi_door.h
875 usr/include/sys/scsi/adapters/iscsi_if.h
876 #
877 # sbd ioctl hdr
878 #
879 usr/include/sys/stmf_sbd_ioctl.h
880 #
881 # proxy port provider interface
882 #
883 usr/include/sys/pppt_ic_if.h
884 usr/include/sys/pppt_ioctl.h
885 #
886 # proxy daemon lint library
887 #
888 usr/lib/llib-lstmfproxy
889 usr/lib/llib-lstmfproxy.ln
890 usr/lib/amd64/llib-lstmfproxy.ln i386
891 usr/lib/sparcv9/llib-lstmfproxy.ln sparc
892 #
893 # portable object file and dictionary used by libfmd_msg test
894 #
895 usr/lib/fm/dict/TEST.dict
896 usr/lib/locale/C/LC_MESSAGES/TEST.mo
897 usr/lib/locale/C/LC_MESSAGES/TEST.po
898 #
899 # Private idmap RPC protocol
900 #
901 usr/include/rpcsvc/idmap_prot.h
902 usr/include/rpcsvc/idmap_prot.x
903 #
904 # Private idmap directory API
905 #
906 usr/include/directory.h
907 #
908 # librstp is private for bridging
909 #
910 usr/include/stp_bpdu.h
911 usr/include/stp_in.h
912 usr/include/stp_vectors.h
913 usr/lib/librstp.so
914 usr/lib/llib-lrstp
915 usr/lib/llib-lrstp.ln

new/exception_lists/packaging 15

916 #
917 # Private nvfru API
918 #
919 usr/include/nvfru.h
920 #
921 # vrrp
922 #
923 usr/include/libvrrpadm.h
924 usr/lib/libvrrpadm.so
925 usr/lib/amd64/libvrrpadm.so i386
926 usr/lib/sparcv9/libvrrpadm.so sparc
927 usr/lib/llib-lvrrpadm
928 usr/lib/llib-lvrrpadm.ln
929 usr/lib/amd64/llib-lvrrpadm.ln i386
930 usr/lib/sparcv9/llib-lvrrpadm.ln sparc
931 #
932 # This is only used during the -t tools build
933 #
934 opt/onbld/bin/i386/elfsign i386
935 opt/onbld/bin/sparc/elfsign sparc

937 #
938 # Private libdwarf
939 #
940 opt/onbld/lib/i386/libdwarf.so i386
941 opt/onbld/lib/sparc/libdwarf.so sparc

943 #
944 # Private socket filter API
945 #
946 usr/include/sys/sockfilter.h
947 #
948 # We don’t actually validate license action payloads, and the license
949 # staging area is provided as a separate basedir for package
950 # publication. The net result is that everything therein should be
951 # ignored for packaging validation.
952 #
953 licenses
954 # Libbe is private
955 #
956 usr/include/libbe_priv.h

new/usr/src/Makefile.lint 1

**
 8613 Tue Jun 12 19:54:34 2012
new/usr/src/Makefile.lint
wpa_supplicant pkg now is created correctly in illumos-gate
wpad renamed to wpa_supplicant
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.

24 # include global definitions
25 include Makefile.master

27 #
28 # As pieces are made lint-clean, add them here so the nightly build
29 # can be used to keep them that way.
30 #
31 COMMON_SUBDIRS = \
32 cmd/acctadm \
33 cmd/asa \
34 cmd/amt \
35 cmd/audio/audioctl \
36 cmd/audio/audiotest \
37 cmd/audit \
38 cmd/auditconfig \
39 cmd/auditd \
40 cmd/auditreduce \
41 cmd/auditstat \
42 cmd/auths \
43 cmd/autopush \
44 cmd/availdevs \
45 cmd/avs \
46 cmd/awk \
47 cmd/banner \
48 cmd/bart \
49 cmd/basename \
50 cmd/bdiff \
51 cmd/bfs \
52 cmd/busstat \
53 cmd/boot \
54 cmd/cal \
55 cmd/captoinfo \
56 cmd/cat \
57 cmd/cdrw \
58 cmd/cfgadm \
59 cmd/checkeq \
60 cmd/checknr \

new/usr/src/Makefile.lint 2

61 cmd/chgrp \
62 cmd/chmod \
63 cmd/chown \
64 cmd/chroot \
65 cmd/clinfo \
66 cmd/cmd-crypto \
67 cmd/cmd-inet/lib \
68 cmd/cmd-inet/lib/netcfgd \
69 cmd/cmd-inet/lib/nwamd \
70 cmd/cmd-inet/sbin \
71 cmd/cmd-inet/usr.bin \
72 cmd/cmd-inet/usr.lib/bridged \
73 cmd/cmd-inet/usr.lib/dsvclockd \
74 cmd/cmd-inet/usr.lib/ilbd \
75 cmd/cmd-inet/usr.lib/in.dhcpd \
76 cmd/cmd-inet/usr.lib/in.mpathd \
77 cmd/cmd-inet/usr.lib/in.ndpd \
78 cmd/cmd-inet/usr.lib/inetd \
79 cmd/cmd-inet/usr.lib/pppoe \
80 cmd/cmd-inet/usr.lib/slpd \
81 cmd/cmd-inet/usr.lib/vrrpd \
82 cmd/cmd-inet/usr.lib/wpad \
82 cmd/cmd-inet/usr.lib/wanboot \
83 cmd/cmd-inet/usr.sadm \
84 cmd/cmd-inet/usr.sbin \
85 cmd/cmd-inet/usr.sbin/ilbadm \
86 cmd/cmd-inet/usr.sbin/nwamadm \
87 cmd/cmd-inet/usr.sbin/nwamcfg \
88 cmd/col \
89 cmd/compress \
90 cmd/consadm \
91 cmd/coreadm \
92 cmd/cpc \
93 cmd/cpio \
94 cmd/crypt \
95 cmd/csplit \
96 cmd/ctrun \
97 cmd/ctstat \
98 cmd/ctwatch \
99 cmd/date \
100 cmd/dd \
101 cmd/deroff \
102 cmd/devctl \
103 cmd/devfsadm \
104 cmd/devinfo \
105 cmd/devmgmt \
106 cmd/devprop \
107 cmd/dfs.cmds \
108 cmd/diff3 \
109 cmd/dis \
110 cmd/dirname \
111 cmd/diskscan \
112 cmd/dispadmin \
113 cmd/dladm \
114 cmd/dlmgmtd \
115 cmd/dtrace \
116 cmd/du \
117 cmd/dumpadm \
118 cmd/dumpcs \
119 cmd/echo \
120 cmd/eject \
121 cmd/emul64ioctl \
122 cmd/env \
123 cmd/expand \
124 cmd/fcinfo \
125 cmd/fdetach \

new/usr/src/Makefile.lint 3

126 cmd/fdformat \
127 cmd/fdisk \
128 cmd/fgrep \
129 cmd/file \
130 cmd/filebench \
131 cmd/find \
132 cmd/fmthard \
133 cmd/fmtmsg \
134 cmd/fold \
135 cmd/fm \
136 cmd/format \
137 cmd/fs.d/fd \
138 cmd/fs.d/lofs/mount \
139 cmd/fs.d/mntfs \
140 cmd/fs.d/pcfs/mount \
141 cmd/fs.d/proc \
142 cmd/fs.d/tmpfs \
143 cmd/fs.d/udfs/mount \
144 cmd/fs.d/ufs/mount \
145 cmd/fs.d/ufs/fsirand\
146 cmd/fs.d/zfs/fstyp \
147 cmd/fwflash \
148 cmd/fuser \
149 cmd/gcore \
150 cmd/genmsg \
151 cmd/getconf \
152 cmd/getdevpolicy \
153 cmd/getfacl \
154 cmd/getopt \
155 cmd/gettext \
156 cmd/grep \
157 cmd/grep_xpg4 \
158 cmd/groups \
159 cmd/halt \
160 cmd/head \
161 cmd/hostid \
162 cmd/hostname \
163 cmd/hotplug \
164 cmd/hotplugd \
165 cmd/idmap \
166 cmd/init \
167 cmd/intrstat \
168 cmd/ipcrm \
169 cmd/ipcs \
170 cmd/isaexec \
171 cmd/isalist \
172 cmd/iscsiadm \
173 cmd/iscsid \
174 cmd/iscsitsvc \
175 cmd/isns \
176 cmd/itadm \
177 cmd/kbd \
178 cmd/killall \
179 cmd/ldap \
180 cmd/last \
181 cmd/lastcomm \
182 cmd/ldapcachemgr \
183 cmd/line \
184 cmd/link \
185 cmd/locator \
186 cmd/localedef \
187 cmd/lockstat \
188 cmd/lofiadm \
189 cmd/logadm \
190 cmd/logger \
191 cmd/login \

new/usr/src/Makefile.lint 4

192 cmd/logins \
193 cmd/ls \
194 cmd/luxadm \
195 cmd/lvm \
196 cmd/machid \
197 cmd/makekey \
198 cmd/mdb \
199 cmd/mesg \
200 cmd/mkdir \
201 cmd/mkfifo \
202 cmd/mkfile \
203 cmd/mkmsgs \
204 cmd/mknod \
205 cmd/mpathadm \
206 cmd/modload \
207 cmd/msgfmt \
208 cmd/msgid \
209 cmd/mt \
210 cmd/mv \
211 cmd/ndmpadm \
212 cmd/ndmpd \
213 cmd/ndmpstat \
214 cmd/newform \
215 cmd/newgrp \
216 cmd/newtask \
217 cmd/nice \
218 cmd/nl \
219 cmd/nohup \
220 cmd/nscd \
221 cmd/od \
222 cmd/pagesize \
223 cmd/passwd \
224 cmd/pathchk \
225 cmd/pbind \
226 cmd/pcidr \
227 cmd/pcitool \
228 cmd/pfexec \
229 cmd/pgrep \
230 cmd/picl/picld \
231 cmd/picl/prtpicl \
232 cmd/plockstat \
233 cmd/pools \
234 cmd/power \
235 cmd/powertop \
236 cmd/printf \
237 cmd/latencytop \
238 cmd/ppgsz \
239 cmd/praudit \
240 cmd/prctl \
241 cmd/priocntl \
242 cmd/profiles \
243 cmd/prstat \
244 cmd/prtconf \
245 cmd/prtdiag \
246 cmd/prtvtoc \
247 cmd/ps \
248 cmd/psradm \
249 cmd/psrinfo \
250 cmd/psrset \
251 cmd/ptools \
252 cmd/pwck \
253 cmd/pwconv \
254 cmd/ramdiskadm \
255 cmd/raidctl \
256 cmd/rcap \
257 cmd/rcm_daemon \

new/usr/src/Makefile.lint 5

258 cmd/rctladm \
259 cmd/renice \
260 cmd/rm \
261 cmd/rmdir \
262 cmd/rmformat \
263 cmd/rmt \
264 cmd/roles \
265 cmd/rpcgen \
266 cmd/rpcsvc/rpc.bootparamd \
267 cmd/runat \
268 cmd/savecore \
269 cmd/sbdadm \
270 cmd/sdpadm \
271 cmd/sed \
272 cmd/setpgrp \
273 cmd/smbios \
274 cmd/sgs \
275 cmd/smbsrv \
276 cmd/smserverd \
277 cmd/sort \
278 cmd/split \
279 cmd/srptadm \
280 cmd/srptsvc \
281 cmd/ssh \
282 cmd/stat \
283 cmd/stmfadm \
284 cmd/stmfsvc \
285 cmd/stmsboot \
286 cmd/streams/strcmd \
287 cmd/strings \
288 cmd/su \
289 cmd/sulogin \
290 cmd/svc \
291 cmd/swap \
292 cmd/sync \
293 cmd/syseventadm \
294 cmd/syseventd \
295 cmd/syslogd \
296 cmd/tabs \
297 cmd/tail \
298 cmd/th_tools \
299 cmd/tip \
300 cmd/touch \
301 cmd/tr \
302 cmd/truss \
303 cmd/tty \
304 cmd/tzreload \
305 cmd/uadmin \
306 cmd/ul \
307 cmd/userattr \
308 cmd/users \
309 cmd/utmp_update \
310 cmd/utmpd \
311 cmd/valtools \
312 cmd/vrrpadm \
313 cmd/vt \
314 cmd/wall \
315 cmd/who \
316 cmd/whodo \
317 cmd/wracct \
318 cmd/wusbadm \
319 cmd/xargs \
320 cmd/xstr \
321 cmd/yes \
322 cmd/yppasswd \
323 cmd/zdb \

new/usr/src/Makefile.lint 6

324 cmd/zdump \
325 cmd/zfs \
326 cmd/zinject \
327 cmd/zlogin \
328 cmd/zoneadm \
329 cmd/zoneadmd \
330 cmd/zonecfg \
331 cmd/zonename \
332 cmd/zpool \
333 cmd/zlook \
334 cmd/ztest \
335 lib/abi \
336 lib/auditd_plugins \
337 lib/libbe \
338 lib/pylibbe \
339 lib/brand/sn1 \
340 lib/brand/solaris10 \
341 lib/crypt_modules \
342 lib/extendedFILE \
343 lib/libadm \
344 lib/libadutils \
345 lib/libadt_jni \
346 lib/libaio \
347 lib/libavl \
348 lib/libbrand \
349 lib/libbsdmalloc \
350 lib/libbsm \
351 lib/libc \
352 lib/libc_db \
353 lib/libcfgadm \
354 lib/libcmdutils \
355 lib/libcommputil \
356 lib/libcontract \
357 lib/libcryptoutil \
358 lib/libctf \
359 lib/libdevice \
360 lib/libdevid \
361 lib/libdevinfo \
362 lib/libdhcpagent \
363 lib/libdhcpdu \
364 lib/libdhcpsvc \
365 lib/libdhcputil \
366 lib/libdisasm \
367 lib/libdiskmgt \
368 lib/libdladm \
369 lib/libdlpi \
370 lib/libdoor \
371 lib/libdscfg \
372 lib/libdtrace \
373 lib/libefi \
374 lib/libelfsign \
375 lib/libexacct \
376 lib/libfcoe \
377 lib/libgen \
378 lib/libgrubmgmt \
379 lib/libgss \
380 lib/libhotplug \
381 lib/libidmap \
382 lib/libilb \
383 lib/libinetsvc \
384 lib/libinetutil \
385 lib/libinstzones \
386 lib/libipadm \
387 lib/libipmi \
388 lib/libipmp \
389 lib/libipp \

new/usr/src/Makefile.lint 7

390 lib/libipsecutil \
391 lib/libiscsit \
392 lib/libkmf \
393 lib/libkstat \
394 lib/liblgrp \
395 lib/liblm \
396 lib/libmalloc \
397 lib/libmapmalloc \
398 lib/libmapid \
399 lib/libmd \
400 lib/libmp \
401 lib/libmtmalloc \
402 lib/libndmp \
403 lib/libnsctl \
404 lib/libnsl \
405 lib/libnvpair \
406 lib/libnwam \
407 lib/libpam \
408 lib/libpctx \
409 lib/libpicl \
410 lib/libpicltree \
411 lib/libpkg \
412 lib/libpool \
413 lib/libproc \
414 lib/libpthread \
415 lib/libraidcfg \
416 lib/librcm \
417 lib/librdc \
418 lib/libreparse \
419 lib/librestart \
420 lib/librstp \
421 lib/librt \
422 lib/libscf \
423 lib/libsec \
424 lib/libsecdb \
425 lib/libsendfile \
426 lib/libsip \
427 lib/libshare \
428 lib/libsldap \
429 lib/libslp \
430 lib/libsmbfs \
431 lib/libsmbios \
432 lib/libsmedia \
433 lib/libsrpt \
434 lib/libstmf \
435 lib/libsun_ima \
436 lib/libsysevent \
437 lib/libthread \
438 lib/libtsnet \
439 lib/libtsol \
440 lib/libumem \
441 lib/libunistat \
442 lib/libuuid \
443 lib/libuutil \
444 lib/libvrrpadm \
445 lib/libwanboot \
446 lib/libwanbootutil \
447 lib/libxnet \
448 lib/libzfs \
449 lib/libzfs_jni \
450 lib/libzonecfg \
451 lib/libzoneinfo \
452 lib/lvm \
453 lib/madv \
454 lib/mpss \
455 lib/nametoaddr \

new/usr/src/Makefile.lint 8

456 lib/ncad_addr \
457 lib/nsswitch \
458 lib/pam_modules \
459 lib/passwdutil \
460 lib/pkcs11 \
461 lib/print \
462 lib/raidcfg_plugins \
463 lib/scsi \
464 lib/smbsrv \
465 lib/fm \
466 lib/udapl \
467 lib/watchmalloc \
468 psm \
469 ucbcmd/basename \
470 ucbcmd/biff \
471 ucbcmd/echo \
472 ucbcmd/groups \
473 ucbcmd/mkstr \
474 ucbcmd/printenv \
475 ucbcmd/sum \
476 ucbcmd/test \
477 ucbcmd/users \
478 ucbcmd/whoami

480 i386_SUBDIRS= \
481 cmd/acpihpd \
482 cmd/biosdev \
483 cmd/rtc \
484 cmd/ucodeadm \
485 lib/cfgadm_plugins/sata \
486 lib/cfgadm_plugins/sbd \
487 lib/libfdisk

489 sparc_SUBDIRS= \
490 cmd/datadm \
491 cmd/dcs \
492 cmd/drd \
493 cmd/fruadm \
494 cmd/ldmad \
495 cmd/prtdscp \
496 cmd/prtfru \
497 cmd/sckmd \
498 cmd/virtinfo \
499 cmd/vntsd \
500 lib/libds \
501 lib/libdscp \
502 lib/libpri \
503 lib/libpcp \
504 lib/libtsalarm \
505 lib/libv12n \
506 lib/storage \
507 stand

509 LINTSUBDIRS= $(COMMON_SUBDIRS) $($(MACH)_SUBDIRS)

511 .PARALLEL: $(LINTSUBDIRS)

513 lint: uts .WAIT subdirs

515 subdirs: $(LINTSUBDIRS)

517 uts $(LINTSUBDIRS): FRC
518 @cd $@; pwd; $(MAKE) lint

520 FRC:

new/usr/src/cmd/Makefile.check 1

**
 4151 Tue Jun 12 19:54:35 2012
new/usr/src/cmd/Makefile.check
wpa_supplicant pkg now is created correctly in illumos-gate
wpad renamed to wpa_supplicant
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.

24 include ../Makefile.master

26 #
27 # Commands providing manifests must offer a check target. A recursive check
28 # target across all commands directories is not currently provided.
29 #
30 MANIFEST_TOPDIRS= \
31 acctadm \
32 auditd \
33 bnu \
34 consadm \
35 coreadm \
36 cron \
37 cvcd \
38 dispadmin \
39 drd \
40 dumpadm \
41 fcinfo \
42 fcoesvc \
43 fm \
44 ibd_upgrade \
45 intrd \
46 iscsid \
47 iscsitsvc \
48 kbd \
49 keyserv \
50 ldapcachemgr \
51 ldmad \
52 lms \
53 dlmgmtd \
54 ndmpd \
55 nscd \
56 oplhpd \
57 pools \
58 power \
59 rexd \
60 rmvolmgr \

new/usr/src/cmd/Makefile.check 2

61 rpcbind \
62 rpcsvc \
63 sa \
64 saf \
65 sckmd \
66 sf880drd \
67 smserverd \
68 stmfproxy \
69 stmfsvc \
70 stmsboot \
71 syseventd \
72 syslogd \
73 utmpd \
74 vntsd \
75 ypcmd \
76 zoneadm \
77 zoneadmd

79 MANIFEST_SUBDIRS= \
80 boot/scripts \
81 cmd-crypto/scripts \
82 cmd-inet/usr.lib/ilbd \
83 cmd-inet/usr.lib/in.chargend \
84 cmd-inet/usr.lib/in.daytimed \
85 cmd-inet/usr.lib/in.dhcpd \
86 cmd-inet/usr.lib/in.discardd \
87 cmd-inet/usr.lib/in.echod \
88 cmd-inet/usr.lib/in.ndpd \
89 cmd-inet/usr.lib/in.ripngd \
90 cmd-inet/usr.lib/in.timed \
91 cmd-inet/usr.lib/inetd \
92 cmd-inet/usr.lib/mdnsd \
93 cmd-inet/usr.lib/slpd \
94 cmd-inet/usr.lib/vrrpd \
95 cmd-inet/usr.lib/wpa_supplicant \
95 cmd-inet/usr.lib/wpad \
96 cmd-inet/usr.sbin \
97 cmd-inet/usr.sbin/in.ftpd \
98 cmd-inet/usr.sbin/in.rdisc \
99 cmd-inet/usr.sbin/in.routed \
100 cmd-inet/usr.sbin/in.talkd \
101 cmd-inet/usr.sbin/ipsecutils \
102 cmd-inet/usr.sbin/kssl/ksslcfg \
103 cmd-inet/usr.sbin/routeadm \
104 dcs/sparc/sun4u \
105 dfs.cmds/sharemgr \
106 fs.d/autofs \
107 fs.d/nfs/svc \
108 fs.d/smbclnt/svc \
109 gss/gssd \
110 hal/addons/network-devices \
111 hal/hald/solaris \
112 halt/smf.$(MACH) \
113 hostid/smf \
114 idmap/idmapd \
115 ipf/svc \
116 isns/isnsd \
117 krb5/kadmin/server \
118 krb5/krb5kdc \
119 krb5/kwarn \
120 krb5/slave \
121 lp/cmd/lpsched \
122 lvm/rpc.mdcommd \
123 lvm/rpc.metad \
124 lvm/rpc.metamedd \
125 lvm/rpc.metamhd \

new/usr/src/cmd/Makefile.check 3

126 lvm/md_monitord \
127 lvm/util \
128 picl/picld \
129 pools/poold \
130 print/bsd-sysv-commands \
131 print/ppdmgr \
132 rcap/rcapd \
133 rpcsvc/rpc.bootparamd \
134 sendmail/lib \
135 smbsrv/smbd \
136 ssh/etc \
137 svc/milestone \
138 tsol/labeld \
139 tsol/tnctl \
140 tsol/tnd \
141 tsol/tsol-zones \
142 vscan/vscand \
143 xvm/ipagent \
144 ypcmd/yppasswd \
145 ypcmd/ypupdated \
146 zonestat/zonestatd

148 $(CLOSED_BUILD)MANIFEST_SUBDIRS += \
149 $(CLOSED)/cmd/cmd-inet/usr.lib/in.iked

151 DTEST_SUBDIRS= \
152 dtrace/test/tst

154 .KEEP_STATE:

156 # Manifests cannot be checked in parallel, because we are using the global
157 # repository that is in $(SRC)/cmd/svc/seed/global.db. This is a
158 # repository that is built from the manifests in this workspace, whereas
159 # the build machine’s repository may be out of sync with these manifests.
160 # Because we are using a private repository, svccfg-native must start up a
161 # private copy of configd-native. We cannot have multiple copies of
162 # configd-native trying to access global.db simultaneously.

164 .NO_PARALLEL:

166 check: svccfg_check $(MANIFEST_TOPDIRS) $(MANIFEST_SUBDIRS) $(DTEST_SUBDIRS)

168 svccfg_check:
169 @$(ECHO) "building requirements for svccfg check ..."; \
170 (cd $(SRC)/cmd/svc/seed && pwd && $(MAKE) $(MFLAGS) global.db)

172 $(MANIFEST_TOPDIRS) $(MANIFEST_SUBDIRS) $(DTEST_SUBDIRS): FRC
173 @cd $@; pwd; $(MAKE) check

175 FRC:

new/usr/src/cmd/cmd-inet/lib/nwamd/known_wlans.c 1

**
 14850 Tue Jun 12 19:54:36 2012
new/usr/src/cmd/cmd-inet/lib/nwamd/known_wlans.c
secobjs types now are "wep, psk, eap, pin"
dladm_wlan_secmode_t and dladm_secobj_class_t are not related anymore
**
______unchanged_portion_omitted_

248 /*
249 * Walk security objects looking for one that matches the essid prefix.
250 * Store the key and keyname if a match is found - we use the last match
251 * as the key for the known WLAN, since it is the most recently updated.
252 */
253 /* ARGSUSED0 */
254 static boolean_t
255 find_secobj_matching_prefix(dladm_handle_t dh, void *arg,
256 const char *secobjname)
257 {
258 struct nwamd_secobj_arg *nsa = arg;

260 if (strncmp(nsa->nsa_essid_prefix, secobjname,
261 strlen(nsa->nsa_essid_prefix)) == 0) {
262 nlog(LOG_DEBUG, "find_secobj_matching_prefix: "
263 "found secobj with prefix %s : %s\n",
264 nsa->nsa_essid_prefix, secobjname);
265 /* Free last key found (if any) */
266 if (nsa->nsa_key != NULL)
267 free(nsa->nsa_key);
268 /* Retrive key so we can get security mode */
269 nsa->nsa_key = nwamd_wlan_get_key_named(secobjname, 0);
270 (void) strlcpy(nsa->nsa_keyname, secobjname,
271 sizeof (nsa->nsa_keyname));
272 switch (nsa->nsa_key->wk_class) {
273 case DLADM_SECOBJ_CLASS_WEP:
274 nsa->nsa_secmode = DLADM_WLAN_SECMODE_WEP;
275 nlog(LOG_DEBUG, "find_secobj_matching_prefix: "
276 "got WEP key %s", nsa->nsa_keyname);
277 break;
278 case DLADM_SECOBJ_CLASS_PSK:
279 nsa->nsa_secmode = DLADM_WLAN_SECMODE_PSK;
278 case DLADM_SECOBJ_CLASS_WPA:
279 nsa->nsa_secmode = DLADM_WLAN_SECMODE_WPA;
280 nlog(LOG_DEBUG, "find_secobj_matching_prefix: "
281 "got WPA key %s", nsa->nsa_keyname);
282 break;
283 default:
284 /* shouldn’t happen */
285 nsa->nsa_secmode = DLADM_WLAN_SECMODE_NONE;
286 nlog(LOG_ERR, "find_secobj_matching_prefix: "
287 "key class for key %s was invalid",
288 nsa->nsa_keyname);
289 break;
290 }
291 }
292 return (B_TRUE);
293 }

______unchanged_portion_omitted_

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 1

**
 58588 Tue Jun 12 19:54:37 2012
new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c
secobjs types now are "wep, psk, eap, pin"
dladm_wlan_secmode_t and dladm_secobj_class_t are not related anymore
**
______unchanged_portion_omitted_

221 /* not used */
222 #endif /* ! codereview */
223 #define WLAN_ENC(sec) \
224 ((sec == DLADM_WLAN_SECMODE_PSK ? "WPA" : \
221 ((sec == DLADM_WLAN_SECMODE_WPA ? "WPA" : \
225 (sec == DLADM_WLAN_SECMODE_WEP ? "WEP" : "none")))

227 /*
228 * NEED_END should return false and when DLADM_WLAN_AUTH_NONE is set
229 * (key_mgmt=NONE in wpa_s conf) (!not key_mgmt=WPA-NONE)
230 */
231 #endif /* ! codereview */
232 #define NEED_ENC(sec) \
233 (sec == DLADM_WLAN_SECMODE_PSK || sec == DLADM_WLAN_SECMODE_WEP)
224 (sec == DLADM_WLAN_SECMODE_WPA || sec == DLADM_WLAN_SECMODE_WEP)

235 #define WIRELESS_LAN_INIT_COUNT 8

237 /*
238 * The variable wireless_scan_level specifies the signal level
239 * that we will initiate connections to previously-visited APs
240 * at when we are in the connected state.
241 */
242 dladm_wlan_strength_t wireless_scan_level = DLADM_WLAN_STRENGTH_WEAK;

244 /*
245 * The variable wireless_scan_interval specifies how often the periodic
246 * scan occurs.
247 */
248 uint64_t wireless_scan_interval = WIRELESS_SCAN_INTERVAL_DEFAULT;

250 /*
251 * The variable wireless_autoconf specifies if we use dladm_wlan_autoconf()
252 * to connect.
253 */
254 boolean_t wireless_autoconf = B_FALSE;

256 /*
257 * The variable wireless_strict_bssid specifies if we only connect
258 * to WLANs with BSSIDs that we previously connected to.
259 */
260 boolean_t wireless_strict_bssid = B_FALSE;

262 /*
263 * We need to ensure scan or connect threads do not run concurrently
264 * on any links - otherwise we get radio interference. Acquire this
265 * lock on entering scan/connect threads to prevent this.
266 */
267 pthread_mutex_t wireless_mutex = PTHREAD_MUTEX_INITIALIZER;

269 static void
270 scanconnect_entry(void)
271 {
272 (void) pthread_mutex_lock(&wireless_mutex);
273 }

______unchanged_portion_omitted_

281 /*

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 2

282 * Below are functions used to handle storage/retrieval of keys
283 * for a given WLAN. The keys are stored/retrieved using dladm_set_secobj()
284 * and dladm_get_secobj().
285 */

287 /*
288 * Convert key hexascii string to raw secobj value. This
289 * code is very similar to convert_secobj() in dladm.c, it would
290 * be good to have a libdladm function to convert values.
291 */
292 static int
293 key_string_to_secobj_value(char *buf, uint8_t *obj_val, uint_t *obj_lenp,
294 dladm_secobj_class_t class)
295 {
296 size_t buf_len = strlen(buf);

298 nlog(LOG_DEBUG, "before: key_string_to_secobj_value: buf_len = %d",
299 buf_len);
300 if (buf_len == 0) {
301 /* length zero means "delete" */
302 return (0);
303 }

305 if (buf[buf_len - 1] == ’\n’)
306 buf[--buf_len] = ’\0’;

308 nlog(LOG_DEBUG, "after: key_string_to_secobj_value: buf_len = %d",
309 buf_len);

311 if (class == DLADM_SECOBJ_CLASS_PSK) {
302 if (class == DLADM_SECOBJ_CLASS_WPA) {
312 /*
313 * Per IEEE802.11i spec, the Pre-shared key (PSK) length should
314 * be between 8 and 63.
315 */
316 if (buf_len < 8 || buf_len > 63) {
317 nlog(LOG_ERR,
318 "key_string_to_secobj_value:"
319 " invalid WPA key length: buf_len = %d", buf_len);
320 return (-1);
321 }
322 (void) memcpy(obj_val, buf, (uint_t)buf_len);
323 *obj_lenp = buf_len;
324 return (0);
325 }

327 switch (buf_len) {
328 case 5: /* ASCII key sizes */
329 case 13:
330 (void) memcpy(obj_val, buf, (uint_t)buf_len);
331 *obj_lenp = (uint_t)buf_len;
332 break;
333 case 10:
334 case 26: /* Hex key sizes, not preceded by 0x */
335 if (hexascii_to_octet(buf, (uint_t)buf_len, obj_val, obj_lenp)
336 != 0) {
337 nlog(LOG_ERR,
338 "key_string_to_secobj_value: invalid WEP key");
339 return (-1);
340 }
341 break;
342 case 12:
343 case 28: /* Hex key sizes, preceded by 0x */
344 if (strncmp(buf, "0x", 2) != 0 ||
345 hexascii_to_octet(buf + 2, (uint_t)buf_len - 2, obj_val,
346 obj_lenp) != 0) {

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 3

347 nlog(LOG_ERR,
348 "key_string_to_secobj_value: invalid WEP key");
349 return (-1);
350 }
351 break;
352 default:
353 syslog(LOG_ERR,
354 "key_string_to_secobj_value: invalid WEP key length");
355 return (-1);
356 }
357 return (0);
358 }

______unchanged_portion_omitted_

406 nwam_error_t
407 nwamd_wlan_set_key(const char *linkname, const char *essid, const char *bssid,
408 uint32_t security_mode, uint_t keyslot, char *raw_key)
409 {
410 nwamd_object_t ncu_obj;
411 nwamd_ncu_t *ncu;
412 nwamd_link_t *link;
413 uint8_t obj_val[DLADM_SECOBJ_VAL_MAX];
414 uint_t obj_len = sizeof (obj_val);
415 char obj_name[DLADM_SECOBJ_NAME_MAX];
416 dladm_status_t status;
417 char errmsg[DLADM_STRSIZE];
418 dladm_secobj_class_t class;

420 if ((ncu_obj = nwamd_ncu_object_find(NWAM_NCU_TYPE_LINK, linkname))
421 == NULL) {
422 nlog(LOG_ERR, "nwamd_wlan_set_key: could not find object "
423 "for link %s", linkname);
424 return (NWAM_ENTITY_NOT_FOUND);
425 }
426 ncu = ncu_obj->nwamd_object_data;
427 link = &ncu->ncu_link;

429 nlog(LOG_DEBUG, "nwamd_wlan_set_key: running for link %s", linkname);
430 /*
431 * Name key object for this WLAN so it can be later retrieved
432 * (name is unique for each ESSID/BSSID combination).
433 */
434 nwamd_set_key_name(essid, bssid, obj_name, sizeof (obj_name));
435 nlog(LOG_DEBUG, "store_key: obj_name is %s", obj_name);

437 class = (security_mode == DLADM_WLAN_SECMODE_WEP ?
438 DLADM_SECOBJ_CLASS_WEP : DLADM_SECOBJ_CLASS_PSK);
429 DLADM_SECOBJ_CLASS_WEP : DLADM_SECOBJ_CLASS_WPA);
439 if (key_string_to_secobj_value(raw_key, obj_val, &obj_len,
440 class) != 0) {
441 /* above function logs internally on failure */
442 nwamd_object_release(ncu_obj);
443 return (NWAM_ERROR_INTERNAL);
444 }

446 /* we’ve validated the new key, so remove the old one */
447 status = dladm_unset_secobj(dld_handle, obj_name,
448 DLADM_OPT_ACTIVE | DLADM_OPT_PERSIST);
449 if (status != DLADM_STATUS_OK && status != DLADM_STATUS_NOTFOUND) {
450 nlog(LOG_ERR, "store_key: could not remove old secure object "
451 "’%s’ for key: %s", obj_name,
452 dladm_status2str(status, errmsg));
453 nwamd_object_release(ncu_obj);
454 return (NWAM_ERROR_INTERNAL);
455 }

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 4

457 /* if we’re just deleting the key, then we’re done */
458 if (raw_key[0] == ’\0’) {
459 nwamd_object_release(ncu_obj);
460 return (NWAM_SUCCESS);
461 }

463 status = dladm_set_secobj(dld_handle, obj_name, class,
464 obj_val, obj_len,
465 DLADM_OPT_CREATE | DLADM_OPT_PERSIST | DLADM_OPT_ACTIVE);
466 if (status != DLADM_STATUS_OK) {
467 nlog(LOG_ERR, "store_key: could not create secure object "
468 "’%s’ for key: %s", obj_name,
469 dladm_status2str(status, errmsg));
470 nwamd_object_release(ncu_obj);
471 return (NWAM_ERROR_INTERNAL);
472 }
473 link->nwamd_link_wifi_key = nwamd_wlan_get_key_named(obj_name,
474 security_mode);
475 (void) strlcpy(link->nwamd_link_wifi_keyname, obj_name,
476 sizeof (link->nwamd_link_wifi_keyname));
477 link->nwamd_link_wifi_security_mode = security_mode;
478 if (security_mode == DLADM_WLAN_SECMODE_WEP) {
479 link->nwamd_link_wifi_key->wk_idx =
480 (keyslot >= 1 && keyslot <= 4) ? keyslot : 1;
481 }

483 /* If link NCU is offline* or online, (re)connect. */
484 switch (ncu_obj->nwamd_object_state) {
485 case NWAM_STATE_ONLINE:
486 /* if changing the key of the connected WLAN, reconnect */
487 if (strcmp(essid, link->nwamd_link_wifi_essid) == 0)
488 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
489 ncu_obj->nwamd_object_name, NWAM_STATE_ONLINE,
490 NWAM_AUX_STATE_LINK_WIFI_CONNECTING);
491 break;
492 case NWAM_STATE_OFFLINE_TO_ONLINE:
493 /* if we are waiting for the key, connect */
494 if (ncu_obj->nwamd_object_aux_state ==
495 NWAM_AUX_STATE_LINK_WIFI_NEED_KEY)
496 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
497 ncu_obj->nwamd_object_name,
498 NWAM_STATE_OFFLINE_TO_ONLINE,
499 NWAM_AUX_STATE_LINK_WIFI_CONNECTING);
500 break;
501 default:
502 break;
503 }
504 nwamd_object_release(ncu_obj);

506 return (NWAM_SUCCESS);
507 }

509 /*
510 * returns NULL if no key was recovered from libdladm. Passing in
511 * security mode of 0 means we don’t care what key type it is.
512 */
513 dladm_wlan_key_t *
514 nwamd_wlan_get_key_named(const char *name, uint32_t security_mode)
515 {
516 dladm_status_t status;
517 char errmsg[DLADM_STRSIZE];
518 dladm_wlan_key_t *cooked_key;
519 dladm_secobj_class_t class;

521 if (security_mode == DLADM_WLAN_SECMODE_NONE)
522 return (NULL);

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 5

524 /*
525 * Newly-allocated key must be freed by caller, or by
526 * subsequent call to nwamd_wlan_get_key_named().
527 */
528 if ((cooked_key = malloc(sizeof (dladm_wlan_key_t))) == NULL) {
529 nlog(LOG_ERR, "nwamd_wlan_get_key_named: malloc failed");
530 return (NULL);
531 }

533 /*
534 * Set name appropriately to retrieve key for this WLAN. Note that we
535 * cannot use the actual wk_name buffer size, as it’s two times too
536 * large for dladm_get_secobj.
537 */
538 (void) strlcpy(cooked_key->wk_name, name, DLADM_SECOBJ_NAME_MAX);
539 nlog(LOG_DEBUG, "nwamd_wlan_get_key_named: len = %d, object = %s\n",
540 strlen(cooked_key->wk_name), cooked_key->wk_name);
541 cooked_key->wk_len = sizeof (cooked_key->wk_val);
542 cooked_key->wk_idx = 1;

544 /* Try the kernel first, then fall back to persistent storage. */
545 status = dladm_get_secobj(dld_handle, cooked_key->wk_name, &class,
546 cooked_key->wk_val, &cooked_key->wk_len,
547 DLADM_OPT_ACTIVE);
548 if (status != DLADM_STATUS_OK) {
549 nlog(LOG_DEBUG, "nwamd_wlan_get_key_named: "
550 "dladm_get_secobj(TEMP) failed: %s",
551 dladm_status2str(status, errmsg));
552 status = dladm_get_secobj(dld_handle, cooked_key->wk_name,
553 &class, cooked_key->wk_val, &cooked_key->wk_len,
554 DLADM_OPT_PERSIST);
555 }

557 switch (status) {
558 case DLADM_STATUS_OK:
559 nlog(LOG_DEBUG, "nwamd_wlan_get_key_named: "
560 "dladm_get_secobj succeeded: len %d", cooked_key->wk_len);
561 break;
562 case DLADM_STATUS_NOTFOUND:
563 /*
564 * We do not want an error in the case that the secobj
565 * is not found, since we then prompt for it.
566 */
567 free(cooked_key);
568 return (NULL);
569 default:
570 nlog(LOG_ERR, "nwamd_wlan_get_key_named: could not get key "
571 "from secure object ’%s’: %s", cooked_key->wk_name,
572 dladm_status2str(status, errmsg));
573 free(cooked_key);
574 return (NULL);
575 }

577 if (security_mode != 0) {
578 switch (class) {
579 case DLADM_SECOBJ_CLASS_WEP:
580 if (security_mode == DLADM_WLAN_SECMODE_WEP)
581 return (cooked_key);
582 break;
583 case DLADM_SECOBJ_CLASS_PSK:
584 if (security_mode == DLADM_WLAN_SECMODE_PSK)
574 case DLADM_SECOBJ_CLASS_WPA:
575 if (security_mode == DLADM_WLAN_SECMODE_WPA)
585 return (cooked_key);
586 break;

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 6

587 default:
588 /* shouldn’t happen */
589 nlog(LOG_ERR, "nwamd_wlan_get_key: invalid class %d",
590 class);
591 break;
592 }
593 /* key type mismatch */
594 nlog(LOG_ERR, "nwamd_wlan_get_key: key type mismatch"
595 " from secure object ’%s’", cooked_key->wk_name);
596 free(cooked_key);
597 return (NULL);
598 }

600 cooked_key->wk_class = class;

602 #endif /* ! codereview */
603 return (cooked_key);
604 }

606 static dladm_wlan_key_t *
607 nwamd_wlan_get_key(const char *essid, const char *bssid, uint32_t security_mode)
608 {
609 char keyname[DLADM_SECOBJ_NAME_MAX];

611 nwamd_set_key_name(essid, bssid, keyname, DLADM_SECOBJ_NAME_MAX);

613 return (nwamd_wlan_get_key_named(keyname, security_mode));
614 }

616 /*
617 * Checks if a wireless network can be selected or not. A wireless network
618 * CANNOT be selected if the NCU is DISABLED, or the NCU is OFFLINE or
619 * ONLINE* and has lower priority than the currently active priority-group.
620 * Called with object lock held.
621 */
622 static boolean_t
623 wireless_selection_possible(nwamd_object_t object)
624 {
625 nwamd_ncu_t *ncu = object->nwamd_object_data;

627 if (ncu->ncu_link.nwamd_link_media != DL_WIFI)
628 return (B_FALSE);

630 (void) pthread_mutex_lock(&active_ncp_mutex);
631 if (object->nwamd_object_state == NWAM_STATE_DISABLED ||
632 ((object->nwamd_object_state == NWAM_STATE_OFFLINE ||
633 object->nwamd_object_state == NWAM_STATE_ONLINE_TO_OFFLINE) &&
634 ncu->ncu_link.nwamd_link_activation_mode ==
635 NWAM_ACTIVATION_MODE_PRIORITIZED &&
636 (current_ncu_priority_group == INVALID_PRIORITY_GROUP ||
637 ncu->ncu_link.nwamd_link_priority_group >
638 current_ncu_priority_group))) {
639 (void) pthread_mutex_unlock(&active_ncp_mutex);
640 return (B_FALSE);
641 }
642 (void) pthread_mutex_unlock(&active_ncp_mutex);

644 return (B_TRUE);
645 }

647 /*
648 * Update the selected and/or connected values for the
649 * scan data. If these change, we need to trigger a scan
650 * event since the updated values need to be communicated
651 * to the GUI.
652 */

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 7

653 void
654 nwamd_set_selected_connected(nwamd_ncu_t *ncu, boolean_t selected,
655 boolean_t connected)
656 {
657 nwamd_link_t *link = &ncu->ncu_link;
658 nwamd_wifi_scan_t *s = &link->nwamd_link_wifi_scan;
659 int i;
660 boolean_t trigger_scan_event = B_FALSE;

662 for (i = 0; i < s->nwamd_wifi_scan_curr_num; i++) {
663 if (strcmp(s->nwamd_wifi_scan_curr[i].nww_essid,
664 link->nwamd_link_wifi_essid) != 0 ||
665 (link->nwamd_link_wifi_bssid[0] != ’\0’ &&
666 strcmp(s->nwamd_wifi_scan_curr[i].nww_bssid,
667 link->nwamd_link_wifi_bssid) != 0))
668 continue;
669 if (selected) {
670 if (!s->nwamd_wifi_scan_curr[i].nww_selected)
671 trigger_scan_event = B_TRUE;
672 s->nwamd_wifi_scan_curr[i].nww_selected = B_TRUE;
673 } else {
674 if (s->nwamd_wifi_scan_curr[i].nww_selected)
675 trigger_scan_event = B_TRUE;
676 s->nwamd_wifi_scan_curr[i].nww_selected = B_FALSE;
677 }
678 if (connected) {
679 if (!s->nwamd_wifi_scan_curr[i].nww_connected)
680 trigger_scan_event = B_TRUE;
681 s->nwamd_wifi_scan_curr[i].nww_connected = B_TRUE;
682 } else {
683 if (s->nwamd_wifi_scan_curr[i].nww_connected)
684 trigger_scan_event = B_TRUE;
685 s->nwamd_wifi_scan_curr[i].nww_connected = B_FALSE;
686 }
687 }

689 if (trigger_scan_event || s->nwamd_wifi_scan_changed) {
690 nwamd_event_t scan_event = nwamd_event_init_wlan
691 (ncu->ncu_name, NWAM_EVENT_TYPE_WLAN_SCAN_REPORT, connected,
692 s->nwamd_wifi_scan_curr, s->nwamd_wifi_scan_curr_num);
693 if (scan_event != NULL) {
694 /* Avoid sending same scan data multiple times */
695 s->nwamd_wifi_scan_changed = B_FALSE;
696 nwamd_event_enqueue(scan_event);
697 }
698 }
699 }

701 /*
702 * Callback used on each known WLAN - if the BSSID is matched, set
703 * the ESSID of the hidden WLAN to the known WLAN name.
704 */
705 static int
706 find_bssid_cb(nwam_known_wlan_handle_t kwh, void *data)
707 {
708 nwamd_link_t *link = data;
709 nwam_error_t err;
710 nwam_value_t bssidval;
711 char **bssids, *name;
712 uint_t num_bssids, i;

714 if ((err = nwam_known_wlan_get_prop_value(kwh,
715 NWAM_KNOWN_WLAN_PROP_BSSIDS, &bssidval)) != NWAM_SUCCESS) {
716 nlog(LOG_ERR, "find_bssid_cb: nwam_known_wlan_get_prop: %s",
717 nwam_strerror(err));
718 return (0);

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 8

719 }
720 if ((err = nwam_value_get_string_array(bssidval, &bssids, &num_bssids))
721 != NWAM_SUCCESS) {
722 nlog(LOG_ERR, "find_bssid_cb: nwam_value_get_string_array: %s",
723 nwam_strerror(err));
724 nwam_value_free(bssidval);
725 return (0);
726 }
727 for (i = 0; i < num_bssids; i++) {
728 if (strcmp(bssids[i], link->nwamd_link_wifi_bssid) == 0) {
729 if ((err = nwam_known_wlan_get_name(kwh, &name))
730 != NWAM_SUCCESS) {
731 nlog(LOG_ERR, "find_bssid_cb: "
732 "nwam_known_wlan_get_name: %s",
733 nwam_strerror(err));
734 continue;
735 }
736 (void) strlcpy(link->nwamd_link_wifi_essid, name,
737 sizeof (link->nwamd_link_wifi_essid));
738 free(name);
739 nwam_value_free(bssidval);
740 /* Found ESSID for BSSID so terminate walk */
741 return (1);
742 }
743 }
744 nwam_value_free(bssidval);

746 return (0);
747 }

749 /*
750 * We may have encountered a BSSID for a hidden WLAN before and as a result
751 * may have a known WLAN entry with this BSSID. Walk known WLANs, searching
752 * for a BSSID match. Called with object lock held.
753 */
754 static void
755 check_if_hidden_wlan_was_visited(nwamd_link_t *link)
756 {
757 (void) nwam_walk_known_wlans(find_bssid_cb, link,
758 NWAM_FLAG_KNOWN_WLAN_WALK_PRIORITY_ORDER, NULL);
759 }

761 nwam_error_t
762 nwamd_wlan_select(const char *linkname, const char *essid, const char *bssid,
763 uint32_t security_mode, boolean_t add_to_known_wlans)
764 {
765 nwamd_object_t ncu_obj;
766 nwamd_ncu_t *ncu;
767 nwamd_link_t *link;
768 char key[DLADM_STRSIZE];
769 boolean_t found_old_key = B_FALSE, found_key = B_FALSE;

771 if ((ncu_obj = nwamd_ncu_object_find(NWAM_NCU_TYPE_LINK, linkname))
772 == NULL) {
773 nlog(LOG_ERR, "nwamd_wlan_select: could not find object "
774 "for link %s", linkname);
775 return (NWAM_ENTITY_NOT_FOUND);
776 }
777 ncu = ncu_obj->nwamd_object_data;
778 link = &ncu->ncu_link;

780 /*
781 * If wireless selection is not possible because of the current
782 * state or priority-group, then stop.
783 */
784 if (!wireless_selection_possible(ncu_obj)) {

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 9

785 nwamd_object_release(ncu_obj);
786 return (NWAM_ENTITY_INVALID_STATE);
787 }

789 /* unset selected, connected flag for previously connected wlan */
790 nwamd_set_selected_connected(ncu, B_FALSE, B_FALSE);

792 /* Disconnect to allow new selection to go ahead */
793 (void) dladm_wlan_disconnect(dld_handle, link->nwamd_link_id);

795 (void) strlcpy(link->nwamd_link_wifi_essid, essid,
796 sizeof (link->nwamd_link_wifi_essid));
797 (void) strlcpy(link->nwamd_link_wifi_bssid, bssid,
798 sizeof (link->nwamd_link_wifi_bssid));
799 link->nwamd_link_wifi_security_mode = security_mode;
800 link->nwamd_link_wifi_add_to_known_wlans = add_to_known_wlans;

802 /* If this is a hidden wlan, then essid is empty */
803 if (link->nwamd_link_wifi_essid[0] == ’\0’)
804 check_if_hidden_wlan_was_visited(link);

806 /* set selected flag for newly-selected WLAN */
807 nwamd_set_selected_connected(ncu, B_TRUE, B_FALSE);

809 /* does this WLAN require a key? If so go to NEED_KEY */
810 if (NEED_ENC(link->nwamd_link_wifi_security_mode)) {
811 /*
812 * First, if a key name may have been specified for a
813 * known WLAN. If so, use it. Otherwise, try both the
814 * new nwamd key name format (ESSID) and old (ESSID/BSSID).
815 * The user may have set the key without adding a known WLAN,
816 * so we need to try all these options to save going to
817 * NEED_KEY state.
818 */
819 if (known_wlan_get_keyname(link->nwamd_link_wifi_essid,
820 link->nwamd_link_wifi_keyname) == NWAM_SUCCESS &&
821 (link->nwamd_link_wifi_key = nwamd_wlan_get_key_named
822 (link->nwamd_link_wifi_keyname,
823 link->nwamd_link_wifi_security_mode)) != NULL) {
824 (void) known_wlan_get_keyslot
825 (link->nwamd_link_wifi_essid,
826 &link->nwamd_link_wifi_key->wk_idx);
827 nlog(LOG_DEBUG, "nwamd_wlan_select: got known WLAN "
828 "key %s, slot %d", link->nwamd_link_wifi_keyname,
829 link->nwamd_link_wifi_key->wk_idx);
830 found_key = B_TRUE;
831 } else if ((link->nwamd_link_wifi_key = nwamd_wlan_get_key
832 (link->nwamd_link_wifi_essid, NULL,
833 link->nwamd_link_wifi_security_mode)) != NULL) {
834 nwamd_set_key_name(link->nwamd_link_wifi_essid, NULL,
835 link->nwamd_link_wifi_keyname,
836 DLADM_SECOBJ_NAME_MAX);
837 nlog(LOG_DEBUG, "nwamd_wlan_select: got WLAN key %s",
838 link->nwamd_link_wifi_keyname);
839 found_key = B_TRUE;
840 } else if ((link->nwamd_link_wifi_key = nwamd_wlan_get_key
841 (link->nwamd_link_wifi_essid, link->nwamd_link_wifi_bssid,
842 link->nwamd_link_wifi_security_mode)) != NULL) {
843 /*
844 * Found old key format - prepare to save
845 * it as new ESSID-only key, but don’t
846 * do it until we’re released the object
847 * lock (since nwamd_wlan_set_key()
848 * takes the object lock).
849 */
850 (void) strlcpy(key,

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 10

851 (char *)link->nwamd_link_wifi_key->wk_val,
852 link->nwamd_link_wifi_key->wk_len + 1);
853 found_old_key = B_TRUE;
854 found_key = B_TRUE;
855 nwamd_set_key_name(link->nwamd_link_wifi_essid, NULL,
856 link->nwamd_link_wifi_keyname,
857 DLADM_SECOBJ_NAME_MAX);
858 nlog(LOG_DEBUG, "nwamd_wlan_select: got old format "
859 "WLAN key, converting to %s",
860 link->nwamd_link_wifi_keyname);
861 } else {
862 nlog(LOG_ERR, "nwamd_wlan_select: could not "
863 "find key for WLAN ’%s’",
864 link->nwamd_link_wifi_essid);
865 }
866 } else {
867 free(link->nwamd_link_wifi_key);
868 link->nwamd_link_wifi_key = NULL;
869 link->nwamd_link_wifi_keyname[0] = ’\0’;
870 }

872 if (NEED_ENC(link->nwamd_link_wifi_security_mode) && !found_key) {
873 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
874 ncu_obj->nwamd_object_name,
875 NWAM_STATE_OFFLINE_TO_ONLINE,
876 NWAM_AUX_STATE_LINK_WIFI_NEED_KEY);
877 } else {
878 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
879 ncu_obj->nwamd_object_name, NWAM_STATE_OFFLINE_TO_ONLINE,
880 NWAM_AUX_STATE_LINK_WIFI_CONNECTING);
881 }
882 nwamd_object_release(ncu_obj);

884 if (found_old_key) {
885 (void) nwamd_wlan_set_key(linkname, essid, NULL, security_mode,
886 1, key);
887 }
888 return (NWAM_SUCCESS);
889 }

891 /*
892 * See if BSSID is in visited list of BSSIDs for known WLAN. Used for
893 * strict BSSID matching (depends on wireless_strict_bssid property value).
894 */
895 static boolean_t
896 bssid_match(nwam_known_wlan_handle_t kwh, const char *bssid)
897 {
898 nwam_value_t bssidsval;
899 nwam_error_t err;
900 char **bssids;
901 uint_t nelem, i;
902 boolean_t found = B_FALSE;

904 if ((err = nwam_known_wlan_get_prop_value(kwh,
905 NWAM_KNOWN_WLAN_PROP_BSSIDS, &bssidsval)) != NWAM_SUCCESS) {
906 nlog(LOG_ERR, "bssid_match: %s", nwam_strerror(err));
907 return (B_FALSE);
908 }
909 if ((err = nwam_value_get_string_array(bssidsval, &bssids, &nelem))
910 != NWAM_SUCCESS) {
911 nwam_value_free(bssidsval);
912 return (B_FALSE);
913 }
914 for (i = 0; i < nelem; i++) {
915 if (strcmp(bssid, bssids[i]) == 0) {
916 found = B_TRUE;

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 11

917 break;
918 }
919 }
920 nwam_value_free(bssidsval);

922 return (found);
923 }

925 /* Find most prioritized AP with strongest signal in scan data. */
926 static int
927 find_best_wlan_cb(nwam_known_wlan_handle_t kwh, void *data)
928 {
929 nwamd_ncu_t *ncu = data;
930 nwamd_link_t *link = &ncu->ncu_link;
931 nwamd_wifi_scan_t *s = &link->nwamd_link_wifi_scan;
932 nwam_error_t err;
933 char *name = NULL;
934 int i;
935 dladm_wlan_strength_t curr_strength = 0;
936 dladm_wlan_strength_t max_strength = 0;
937 boolean_t found = B_FALSE;

939 if ((err = nwam_known_wlan_get_name(kwh, &name)) != NWAM_SUCCESS) {
940 nlog(LOG_ERR, "find_best_wlan_cb: could not look up name: %s",
941 nwam_strerror(err));
942 return (0);
943 }

945 if (link->nwamd_link_wifi_connected) {
946 (void) dladm_wlan_str2strength
947 (link->nwamd_link_wifi_signal_strength, &curr_strength);
948 }

950 /*
951 * If we’re >= scan level, don’t pick another Known WLAN if still
952 * connected (even if a Known WLAN with higher priority is available).
953 * If the user wants to connect to a different Known WLAN, it can be
954 * done from the GUI or select-wifi subcommand of nwamadm(1M).
955 */
956 if (curr_strength >= wireless_scan_level &&
957 link->nwamd_link_wifi_connected) {
958 free(name);
959 return (1);
960 }

962 for (i = 0; i < s->nwamd_wifi_scan_curr_num; i++) {
963 nwam_wlan_t *cur_wlan = &(s->nwamd_wifi_scan_curr[i]);
964 boolean_t b_match = bssid_match(kwh, cur_wlan->nww_bssid);

966 /*
967 * We need to either match the scanned essid, or in the case
968 * where the essid was not broadcast, match the scanned bssid.
969 */
970 if (strcmp(cur_wlan->nww_essid, name) != 0 &&
971 !(cur_wlan->nww_essid[0] == ’\0’ && b_match))
972 continue;
973 /*
974 * If wireless_strict_bssid is specified, need to match
975 * BSSID too.
976 */
977 if (wireless_strict_bssid && !b_match)
978 continue;
979 /*
980 * Found a match. Since we walk known WLANs in
981 * priority order, it’s guaranteed to be the
982 * most prioritized. It may not be the strongest though -

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 12

983 * we continue the walk and record the strength along
984 * with the ESSID and BSSID, so that if we encounter
985 * another AP with the same ESSID but a higher signal strength,
986 * we will choose it - but only if the currently-connected
987 * WLAN is at or below wireless_scan_level.
988 */
989 (void) dladm_wlan_str2strength
990 (cur_wlan->nww_signal_strength, &curr_strength);

992 if (curr_strength > max_strength) {
993 (void) strlcpy(link->nwamd_link_wifi_essid,
994 cur_wlan->nww_essid,
995 sizeof (link->nwamd_link_wifi_essid));
996 /*
997 * Set BSSID if wireless_strict_bssid is specified or
998 * if this is a hidden WLAN. Store the BSSID here and
999 * then later determine the hidden WLAN’s name in the

1000 * connect thread.
1001 */
1002 if (wireless_strict_bssid ||
1003 cur_wlan->nww_essid[0] == ’\0’) {
1004 (void) strlcpy(link->nwamd_link_wifi_bssid,
1005 cur_wlan->nww_bssid,
1006 sizeof (link->nwamd_link_wifi_bssid));
1007 }
1008 (void) strlcpy(link->nwamd_link_wifi_signal_strength,
1009 cur_wlan->nww_signal_strength,
1010 sizeof (link->nwamd_link_wifi_signal_strength));
1011 link->nwamd_link_wifi_security_mode =
1012 cur_wlan->nww_security_mode;
1013 found = B_TRUE;
1014 }
1015 (void) dladm_wlan_str2strength
1016 (link->nwamd_link_wifi_signal_strength, &max_strength);
1017 }
1018 free(name);
1019 return (found ? 1 : 0);
1020 }

1022 static boolean_t
1023 nwamd_find_known_wlan(nwamd_object_t ncu_obj)
1024 {
1025 nwamd_ncu_t *ncu = ncu_obj->nwamd_object_data;
1026 int ret;

1028 /*
1029 * Walk known WLANs, finding lowest priority (preferred) WLAN
1030 * in our scan results.
1031 */
1032 (void) nwam_walk_known_wlans(find_best_wlan_cb, ncu,
1033 NWAM_FLAG_KNOWN_WLAN_WALK_PRIORITY_ORDER, &ret);

1035 return (ret == 1);
1036 }

1038 /*
1039 * WLAN scan code for WIFI link NCUs.
1040 */

1042 /* Create periodic scan event for object. Called with object lock held. */
1043 void
1044 nwamd_ncu_create_periodic_scan_event(nwamd_object_t ncu_obj)
1045 {
1046 nwamd_event_t scan_event;

1048 if (wireless_scan_interval == 0) {

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 13

1049 nlog(LOG_DEBUG, "nwamd_ncu_create_periodic_scan_event: "
1050 "wireless_scan_interval set to 0 so no periodic scanning");
1051 return;
1052 }
1053 scan_event = nwamd_event_init(NWAM_EVENT_TYPE_PERIODIC_SCAN,
1054 NWAM_OBJECT_TYPE_NCU, 0, ncu_obj->nwamd_object_name);
1055 if (scan_event != NULL) {
1056 nwamd_event_enqueue_timed(scan_event,
1057 wireless_scan_interval > WIRELESS_SCAN_INTERVAL_MIN ?
1058 wireless_scan_interval : WIRELESS_SCAN_INTERVAL_MIN);
1059 }
1060 }

1062 /* Handle periodic scan event (which puts link into WIFI_INIT state */
1063 void
1064 nwamd_ncu_handle_periodic_scan_event(nwamd_event_t event)
1065 {
1066 nwamd_object_t ncu_obj;
1067 nwamd_ncu_t *ncu;

1069 ncu_obj = nwamd_object_find(NWAM_OBJECT_TYPE_NCU,
1070 event->event_object);
1071 if (ncu_obj == NULL) {
1072 nlog(LOG_ERR, "nwamd_ncu_handle_periodic_scan_event: "
1073 "no object %s", event->event_object);
1074 return;
1075 }
1076 ncu = ncu_obj->nwamd_object_data;

1078 /* Only rescan if state is offline* or online */
1079 nlog(LOG_DEBUG, "nwamd_ncu_handle_periodic_scan_event: doing rescan..");

1081 if (ncu_obj->nwamd_object_state == NWAM_STATE_OFFLINE_TO_ONLINE ||
1082 ncu_obj->nwamd_object_state == NWAM_STATE_ONLINE) {
1083 /* rescan, then create periodic scan event */
1084 (void) nwamd_wlan_scan(ncu->ncu_name);
1085 nwamd_ncu_create_periodic_scan_event(ncu_obj);
1086 }
1087 nwamd_object_release(ncu_obj);
1088 }

1090 static boolean_t
1091 get_scan_results(void *arg, dladm_wlan_attr_t *attrp)
1092 {
1093 nwamd_wifi_scan_t *s = arg;
1094 const char *linkname = s->nwamd_wifi_scan_link;
1095 char essid_name[DLADM_STRSIZE];
1096 char bssid_name[DLADM_STRSIZE];
1097 char strength[DLADM_STRSIZE];
1098 uint_t i, index = 0;
1099 boolean_t found = B_FALSE;

1101 (void) dladm_wlan_essid2str(&attrp->wa_essid, essid_name);
1102 (void) dladm_wlan_bssid2str(&attrp->wa_bssid, bssid_name);
1103 (void) dladm_wlan_strength2str(&attrp->wa_strength, strength);

1105 index = s->nwamd_wifi_scan_curr_num;
1106 if (index == NWAMD_MAX_NUM_WLANS) {
1107 nlog(LOG_ERR, "get_scan_results: truncating WLAN scan results "
1108 "for link %s: ommiting (%s, %s)", linkname, essid_name,
1109 bssid_name);
1110 return (B_TRUE);
1111 }

1113 (void) strlcpy(s->nwamd_wifi_scan_curr[index].nww_essid, essid_name,
1114 sizeof (s->nwamd_wifi_scan_curr[index].nww_essid));

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 14

1115 (void) strlcpy(s->nwamd_wifi_scan_curr[index].nww_bssid, bssid_name,
1116 sizeof (s->nwamd_wifi_scan_curr[index].nww_bssid));
1117 (void) strlcpy(s->nwamd_wifi_scan_curr[index].nww_signal_strength,
1118 strength,
1119 sizeof (s->nwamd_wifi_scan_curr[index].nww_signal_strength));
1120 s->nwamd_wifi_scan_curr[index].nww_security_mode = attrp->wa_secmode;
1121 s->nwamd_wifi_scan_curr[index].nww_speed = attrp->wa_speed;
1122 s->nwamd_wifi_scan_curr[index].nww_channel = attrp->wa_channel;
1123 s->nwamd_wifi_scan_curr[index].nww_bsstype = attrp->wa_bsstype;

1125 /*
1126 * We fill in actual values for selected/connected/key later when we
1127 * reacquire the object lock.
1128 */
1129 s->nwamd_wifi_scan_curr[index].nww_selected = B_FALSE;
1130 s->nwamd_wifi_scan_curr[index].nww_connected = B_FALSE;
1131 s->nwamd_wifi_scan_curr[index].nww_have_key = B_FALSE;
1132 s->nwamd_wifi_scan_curr[index].nww_keyindex = 1;
1133 s->nwamd_wifi_scan_curr_num++;

1135 /* Check if this AP was in previous scan results */
1136 for (i = 0; i < s->nwamd_wifi_scan_last_num; i++) {
1137 found = (strcmp(s->nwamd_wifi_scan_last[i].nww_essid,
1138 essid_name) == 0 &&
1139 strcmp(s->nwamd_wifi_scan_last[i].nww_bssid,
1140 bssid_name) == 0);
1141 if (found)
1142 break;
1143 }
1144 if (!found)
1145 s->nwamd_wifi_scan_changed = B_TRUE;

1147 nlog(LOG_DEBUG, "get_scan_results(%s, %d): ESSID %s, BSSID %s",
1148 linkname, index, essid_name, bssid_name);

1150 return (B_TRUE);
1151 }

1153 /*
1154 * Check if we’re connected to the expected WLAN, or in the case of autoconf
1155 * record the WLAN we’re connected to.
1156 */
1157 boolean_t
1158 nwamd_wlan_connected(nwamd_object_t ncu_obj)
1159 {
1160 nwamd_ncu_t *ncu = ncu_obj->nwamd_object_data;
1161 nwamd_link_t *link = &ncu->ncu_link;
1162 dladm_wlan_linkattr_t attr;
1163 char essid[DLADM_STRSIZE];
1164 char bssid[DLADM_STRSIZE];
1165 boolean_t connected = B_FALSE;
1166 int retries = 0;

1168 /*
1169 * This is awful, but some wireless drivers
1170 * (particularly ’ath’) will erroneously report
1171 * "disconnected" if queried right after a scan. If we
1172 * see ’down’ reported here, we retry a few times to
1173 * make sure it’s really down.
1174 */
1175 while (retries++ < 4) {
1176 if (dladm_wlan_get_linkattr(dld_handle, link->nwamd_link_id,
1177 &attr) != DLADM_STATUS_OK) {
1178 attr.la_status = DLADM_WLAN_LINK_DISCONNECTED;
1179 } else if (attr.la_status == DLADM_WLAN_LINK_CONNECTED) {
1180 break;

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 15

1181 }
1182 }

1184 if (attr.la_status == DLADM_WLAN_LINK_CONNECTED) {
1185 (void) dladm_wlan_essid2str(&attr.la_wlan_attr.wa_essid, essid);
1186 (void) dladm_wlan_bssid2str(&attr.la_wlan_attr.wa_bssid, bssid);
1187 connected = B_TRUE;
1188 nlog(LOG_DEBUG, "nwamd_wlan_connected: %s connected to %s %s",
1189 ncu->ncu_name, essid, bssid);
1190 } else {
1191 return (B_FALSE);
1192 }
1193 /*
1194 * If we’re using autoconf, we have no control over what we connect to,
1195 * so rather than verifying ESSSID, simply record ESSID/BSSID.
1196 */
1197 if (link->nwamd_link_wifi_autoconf) {
1198 (void) strlcpy(link->nwamd_link_wifi_essid, essid,
1199 sizeof (link->nwamd_link_wifi_essid));
1200 (void) strlcpy(link->nwamd_link_wifi_bssid, bssid,
1201 sizeof (link->nwamd_link_wifi_bssid));
1202 }
1203 /*
1204 * Are we connected to expected WLAN? Note:
1205 * we’d like to verify BSSID, but we cannot due to CR 6772510.
1206 */
1207 if (strcmp(essid, link->nwamd_link_wifi_essid) == 0) {
1208 /* Update connected signal strength */
1209 (void) dladm_wlan_strength2str(&attr.la_wlan_attr.wa_strength,
1210 link->nwamd_link_wifi_signal_strength);

1212 /* Store current BSSID */
1213 (void) strlcpy(link->nwamd_link_wifi_bssid, bssid,
1214 sizeof (link->nwamd_link_wifi_bssid));

1216 if (attr.la_wlan_attr.wa_strength < wireless_scan_level) {
1217 /*
1218 * We’re connected, but we’ve dropped below
1219 * scan threshold. Initiate a scan.
1220 */
1221 nlog(LOG_DEBUG, "nwamd_wlan_connected: "
1222 "connected but signal under threshold...");
1223 (void) nwamd_wlan_scan(ncu->ncu_name);
1224 }
1225 return (connected);
1226 } else if (strlen(essid) == 0) {
1227 /*
1228 * For hidden WLANs, no ESSID is specified, so we cannot verify
1229 * WLAN name.
1230 */
1231 nlog(LOG_DEBUG,
1232 "nwamd_wlan_connected: connected to hidden WLAN, cannot "
1233 "verify connection details");
1234 return (connected);
1235 } else {
1236 (void) nlog(LOG_ERR,
1237 "nwamd_wlan_connected: wrong AP on %s; expected %s %s",
1238 ncu->ncu_name, link->nwamd_link_wifi_essid,
1239 link->nwamd_link_wifi_bssid);
1240 (void) dladm_wlan_disconnect(dld_handle, link->nwamd_link_id);
1241 link->nwamd_link_wifi_connected = B_FALSE;
1242 return (B_FALSE);
1243 }
1244 }

1246 /*

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 16

1247 * WLAN scan thread. Called with the per-link WiFi mutex held.
1248 */
1249 static void *
1250 wlan_scan_thread(void *arg)
1251 {
1252 char *linkname = arg;
1253 nwamd_object_t ncu_obj;
1254 nwamd_ncu_t *ncu;
1255 nwamd_link_t *link;
1256 dladm_status_t status;
1257 char essid[DLADM_STRSIZE];
1258 char bssid[DLADM_STRSIZE];
1259 uint32_t now, link_id;
1260 nwamd_wifi_scan_t s;
1261 int i;

1263 if ((ncu_obj = nwamd_ncu_object_find(NWAM_NCU_TYPE_LINK, linkname))
1264 == NULL) {
1265 nlog(LOG_ERR, "wlan_scan_thread: could not find object "
1266 "for link %s", linkname);
1267 free(linkname);
1268 return (NULL);
1269 }

1271 ncu = ncu_obj->nwamd_object_data;
1272 link = &ncu->ncu_link;

1274 /*
1275 * It is possible multiple scan threads have queued up waiting for the
1276 * object lock. We try to prevent excessive scanning by limiting the
1277 * interval between scans to WIRELESS_SCAN_REQUESTED_INTERVAL_MIN sec.
1278 */
1279 now = NSEC_TO_SEC(gethrtime());
1280 if ((now - link->nwamd_link_wifi_scan.nwamd_wifi_scan_last_time) <
1281 WIRELESS_SCAN_REQUESTED_INTERVAL_MIN) {
1282 nlog(LOG_DEBUG, "wlan_scan_thread: last scan for %s "
1283 "was < %d sec ago, ignoring scan request",
1284 linkname, WIRELESS_SCAN_REQUESTED_INTERVAL_MIN);
1285 nwamd_object_release(ncu_obj);
1286 free(linkname);
1287 return (NULL);
1288 }

1290 /*
1291 * Prepare scan data - copy link name and copy previous "current"
1292 * scan results from the nwamd_link_t to the last scan results for
1293 * the next scan so that we can compare results to find if things
1294 * have changed since last time.
1295 */
1296 (void) bzero(&s, sizeof (nwamd_wifi_scan_t));
1297 (void) strlcpy(s.nwamd_wifi_scan_link, ncu->ncu_name,
1298 sizeof (s.nwamd_wifi_scan_link));
1299 s.nwamd_wifi_scan_last_num =
1300 link->nwamd_link_wifi_scan.nwamd_wifi_scan_curr_num;
1301 if (s.nwamd_wifi_scan_last_num > 0) {
1302 (void) memcpy(s.nwamd_wifi_scan_last,
1303 link->nwamd_link_wifi_scan.nwamd_wifi_scan_curr,
1304 s.nwamd_wifi_scan_last_num * sizeof (nwam_wlan_t));
1305 }
1306 link_id = link->nwamd_link_id;
1307 nwamd_object_release(ncu_obj);

1309 nlog(LOG_DEBUG, "wlan_scan_thread: initiating scan on %s",
1310 s.nwamd_wifi_scan_link);

1312 scanconnect_entry();

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 17

1313 status = dladm_wlan_scan(dld_handle, link_id, &s, get_scan_results);
1314 s.nwamd_wifi_scan_last_time = NSEC_TO_SEC(gethrtime());
1315 if (!s.nwamd_wifi_scan_changed) {
1316 /* Scan may have lost WLANs, if so this qualifies as change */
1317 s.nwamd_wifi_scan_changed = (s.nwamd_wifi_scan_curr_num !=
1318 s.nwamd_wifi_scan_last_num);
1319 }
1320 scanconnect_exit();

1322 if (status != DLADM_STATUS_OK) {
1323 nlog(LOG_ERR, "wlan_scan_thread: cannot scan link %s",
1324 s.nwamd_wifi_scan_link);
1325 free(linkname);
1326 return (NULL);
1327 }

1329 if ((ncu_obj = nwamd_ncu_object_find(NWAM_NCU_TYPE_LINK, linkname))
1330 == NULL) {
1331 nlog(LOG_ERR, "wlan_scan_thread: could not find object "
1332 "for link %s after doing scan", linkname);
1333 free(linkname);
1334 return (NULL);
1335 }
1336 ncu = ncu_obj->nwamd_object_data;
1337 link = &ncu->ncu_link;

1339 /* For new scan data, add key info from known WLANs */
1340 for (i = 0; i < s.nwamd_wifi_scan_curr_num; i++) {
1341 if (NEED_ENC(s.nwamd_wifi_scan_curr[i].nww_security_mode)) {
1342 char keyname[NWAM_MAX_VALUE_LEN];
1343 dladm_wlan_key_t *key = NULL;

1345 if (known_wlan_get_keyname
1346 (s.nwamd_wifi_scan_curr[i].nww_essid, keyname)
1347 == NWAM_SUCCESS &&
1348 (key = nwamd_wlan_get_key_named(keyname,
1349 s.nwamd_wifi_scan_curr[i].nww_security_mode))
1350 != NULL) {
1351 s.nwamd_wifi_scan_curr[i].nww_have_key =
1352 B_TRUE;
1353 s.nwamd_wifi_scan_curr[i].nww_keyindex =
1354 s.nwamd_wifi_scan_curr[i].
1355 nww_security_mode ==
1356 DLADM_WLAN_SECMODE_WEP ?
1357 key->wk_idx : 1;
1358 free(key);
1359 }
1360 }
1361 }
1362 /* Copy scan data into nwamd_link_t */
1363 link->nwamd_link_wifi_scan = s;
1364 /* Set selected, connected and send scan event if we’ve got new data */
1365 nwamd_set_selected_connected(ncu,
1366 link->nwamd_link_wifi_essid[0] != ’\0’,
1367 link->nwamd_link_wifi_connected);

1369 /*
1370 * If wireless selection is not possible because of the current
1371 * state or priority-group, then this was just a scan request.
1372 * Nothing else to do.
1373 */
1374 if (!wireless_selection_possible(ncu_obj)) {
1375 nwamd_object_release(ncu_obj);
1376 free(linkname);
1377 return (NULL);
1378 }

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 18

1380 /*
1381 * Check if WLAN is on our known WLAN list. If no
1382 * previously-visited WLANs are found in scan data, set
1383 * new state to NEED_SELECTION (provided we’re not currently
1384 * connected, as can be the case during a periodic scan or
1385 * monitor-triggered scan where the signal strength recovers.
1386 */
1387 if (!nwamd_find_known_wlan(ncu_obj)) {
1388 if (!nwamd_wlan_connected(ncu_obj)) {
1389 if (link->nwamd_link_wifi_connected) {
1390 nlog(LOG_DEBUG, "wlan_scan_thread: "
1391 "unexpected disconnect after scan");
1392 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
1393 ncu_obj->nwamd_object_name,
1394 NWAM_STATE_ONLINE_TO_OFFLINE,
1395 NWAM_AUX_STATE_DOWN);
1396 } else {
1397 nlog(LOG_DEBUG, "wlan_scan_thread: "
1398 "no known WLANs - ask user");
1399 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
1400 ncu_obj->nwamd_object_name,
1401 NWAM_STATE_OFFLINE_TO_ONLINE,
1402 NWAM_AUX_STATE_LINK_WIFI_NEED_SELECTION);
1403 }
1404 } else {
1405 /* still connected. if not online, change to online */
1406 nlog(LOG_DEBUG, "wlan_scan_thread: still connected to "
1407 "%s %s", link->nwamd_link_wifi_essid,
1408 link->nwamd_link_wifi_bssid);
1409 if (ncu_obj->nwamd_object_state != NWAM_STATE_ONLINE) {
1410 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
1411 ncu_obj->nwamd_object_name,
1412 NWAM_STATE_OFFLINE_TO_ONLINE,
1413 NWAM_AUX_STATE_UP);
1414 }
1415 }
1416 nwamd_object_release(ncu_obj);

1418 } else {
1419 nlog(LOG_DEBUG, "wlan_scan_thread: found known WLAN %s %s",
1420 link->nwamd_link_wifi_essid, link->nwamd_link_wifi_bssid);

1422 if (!nwamd_wlan_connected(ncu_obj)) {
1423 /* Copy selected ESSID/BSSID, unlock, call select */
1424 (void) strlcpy(essid, link->nwamd_link_wifi_essid,
1425 sizeof (essid));
1426 (void) strlcpy(bssid, link->nwamd_link_wifi_bssid,
1427 sizeof (bssid));
1428 nwamd_object_release(ncu_obj);
1429 (void) nwamd_wlan_select(linkname, essid, bssid,
1430 link->nwamd_link_wifi_security_mode, B_TRUE);
1431 } else {
1432 /* still connected. if not online, change to online */
1433 nlog(LOG_DEBUG, "wlan_scan_thread: still connected to "
1434 "known WLAN %s %s", link->nwamd_link_wifi_essid,
1435 link->nwamd_link_wifi_bssid);
1436 if (ncu_obj->nwamd_object_state != NWAM_STATE_ONLINE) {
1437 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
1438 ncu_obj->nwamd_object_name,
1439 NWAM_STATE_OFFLINE_TO_ONLINE,
1440 NWAM_AUX_STATE_UP);
1441 }
1442 nwamd_object_release(ncu_obj);
1443 }
1444 }

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 19

1445 free(linkname);
1446 return (NULL);
1447 }

1449 nwam_error_t
1450 nwamd_wlan_scan(const char *linkname)
1451 {
1452 pthread_t wifi_thread;
1453 char *link = strdup(linkname);

1455 if (link == NULL) {
1456 nlog(LOG_ERR, "nwamd_wlan_scan: out of memory");
1457 return (NWAM_NO_MEMORY);
1458 }

1460 nlog(LOG_DEBUG, "nwamd_wlan_scan: WLAN scan for %s",
1461 link);

1463 if (pthread_create(&wifi_thread, NULL, wlan_scan_thread,
1464 link) != 0) {
1465 nlog(LOG_ERR, "nwamd_wlan_scan: could not start scan");
1466 free(link);
1467 return (NWAM_ERROR_INTERNAL);
1468 }
1469 /* detach thread so that it doesn’t become a zombie */
1470 (void) pthread_detach(wifi_thread);
1471 return (NWAM_SUCCESS);
1472 }

1474 /*
1475 * WLAN connection code.
1476 */

1478 static dladm_status_t
1479 do_connect(uint32_t link_id, dladm_wlan_attr_t *attrp, dladm_wlan_key_t *key,
1480 uint_t keycount, uint_t flags)
1481 {
1482 dladm_status_t status;
1483 char errmsg[DLADM_STRSIZE];

1485 scanconnect_entry();
1486 status = dladm_wlan_connect(dld_handle, link_id, attrp,
1487 DLADM_WLAN_CONNECT_TIMEOUT_DEFAULT, key, keycount, flags, NULL);
591 DLADM_WLAN_CONNECT_TIMEOUT_DEFAULT, key, keycount, flags);
1488 scanconnect_exit();

1490 nlog(LOG_DEBUG, "nwamd_do_connect: dladm_wlan_connect returned %s",
1491 dladm_status2str(status, errmsg));

1493 return (status);
1494 }

1496 static void *
1497 wlan_connect_thread(void *arg)
1498 {
1499 char *linkname = arg;
1500 nwamd_object_t ncu_obj;
1501 nwamd_ncu_t *ncu;
1502 nwamd_link_t *link;
1503 nwam_error_t err;
1504 uint_t keycount;
1505 uint32_t link_id;
1506 dladm_wlan_key_t *key = NULL;
1507 dladm_wlan_attr_t attr;
1508 dladm_status_t status;
1509 boolean_t autoconf = B_FALSE;

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 20

1511 if ((ncu_obj = nwamd_ncu_object_find(NWAM_NCU_TYPE_LINK, linkname))
1512 == NULL) {
1513 nlog(LOG_ERR, "wlan_connect_thread: could not find object "
1514 "for link %s", linkname);
1515 free(linkname);
1516 return (NULL);
1517 }

1519 ncu = ncu_obj->nwamd_object_data;
1520 link = &ncu->ncu_link;

1522 if (!wireless_selection_possible(ncu_obj)) {
1523 nlog(LOG_DEBUG, "wlan_connect_thread: %s in invalid state or "
1524 "has lower priority", ncu->ncu_name);
1525 goto done;
1526 }

1528 /* If it is already connected to the required AP, just return. */
1529 if (nwamd_wlan_connected(ncu_obj)) {
1530 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
1531 ncu_obj->nwamd_object_name,
1532 ncu_obj->nwamd_object_state, NWAM_AUX_STATE_UP);
1533 goto done;
1534 }

1536 (void) memset(&attr, 0, sizeof (attr));
1537 if (dladm_wlan_str2essid(link->nwamd_link_wifi_essid, &attr.wa_essid)
1538 != DLADM_STATUS_OK) {
1539 nlog(LOG_ERR, "wlan_connect_thread: invalid ESSID ’%s’ "
1540 "for ’%s’", link->nwamd_link_wifi_essid, ncu->ncu_name);
1541 goto done;
1542 }
1543 attr.wa_valid = DLADM_WLAN_ATTR_ESSID;

1545 /* note: bssid logic here is non-functional */
1546 if (link->nwamd_link_wifi_bssid[0] != ’\0’) {
1547 if (dladm_wlan_str2bssid(link->nwamd_link_wifi_bssid,
1548 &attr.wa_bssid) != DLADM_STATUS_OK) {
1549 nlog(LOG_ERR, "wlan_connect_thread: invalid BSSID ’%s’",
1550 "for ’%s’", link->nwamd_link_wifi_bssid,
1551 ncu->ncu_name);
1552 } else {
1553 attr.wa_valid |= DLADM_WLAN_ATTR_BSSID;
1554 }
1555 }

1557 /* First check for the key */
1558 if (NEED_ENC(link->nwamd_link_wifi_security_mode)) {
1559 if (link->nwamd_link_wifi_key == NULL) {
1560 nlog(LOG_ERR, "wlan_connect_thread: could not find "
1561 "key for WLAN ’%s’", link->nwamd_link_wifi_essid);
1562 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
1563 ncu_obj->nwamd_object_name,
1564 NWAM_STATE_OFFLINE_TO_ONLINE,
1565 NWAM_AUX_STATE_LINK_WIFI_NEED_KEY);
1566 goto done;
1567 }
1568 /* Make a copy of the key as we need to unlock the object */
1569 if ((key = calloc(1, sizeof (dladm_wlan_key_t))) == NULL) {
1570 nlog(LOG_ERR, "wlan_connect_thread: out of memory");
1571 goto done;
1572 }
1573 (void) memcpy(key, link->nwamd_link_wifi_key,
1574 sizeof (dladm_wlan_key_t));

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 21

1576 attr.wa_valid |= DLADM_WLAN_ATTR_SECMODE;
1577 attr.wa_secmode = link->nwamd_link_wifi_security_mode;
1578 keycount = 1;
1579 nlog(LOG_DEBUG, "wlan_connect_thread: retrieved key");
1580 } else {
1581 key = NULL;
1582 keycount = 0;
1583 }

1585 /*
1586 * Connect; only scan if a bssid was not specified. If it times out,
1587 * try a second time using autoconf. Drop the object lock during the
1588 * connect attempt since connecting may take some time, and access to
1589 * the link object during that period would be impossible if we held the
1590 * lock.
1591 */

1593 link->nwamd_link_wifi_autoconf = B_FALSE;
1594 link_id = link->nwamd_link_id;

1596 nwamd_object_release(ncu_obj);

1598 status = do_connect(link_id, &attr, key, keycount, 0);
702 status = do_connect(link_id, &attr, key, keycount,
703 DLADM_WLAN_CONNECT_NOSCAN);
1599 if (status != DLADM_STATUS_OK) {
1600 /* Connect failed, try autoconf */
1601 if (!wireless_autoconf || (status = do_connect(link_id, &attr,
1602 NULL, 0, 0)) != DLADM_STATUS_OK) {
1603 nlog(LOG_ERR, "wlan_connect_thread: connect failed for "
1604 "%s", linkname);
1605 goto done_unlocked;
1606 }
1607 if (status == DLADM_STATUS_OK)
1608 autoconf = B_TRUE;
1609 }

1611 /* Connect succeeded, reacquire object */
1612 if ((ncu_obj = nwamd_ncu_object_find(NWAM_NCU_TYPE_LINK, linkname))
1613 == NULL) {
1614 nlog(LOG_ERR, "wlan_connect_thread: could not find object "
1615 "for link %s", linkname);
1616 goto done_unlocked;
1617 }

1619 ncu = ncu_obj->nwamd_object_data;
1620 link = &ncu->ncu_link;

1622 if (autoconf)
1623 link->nwamd_link_wifi_autoconf = B_TRUE;

1625 /*
1626 * If WLAN is WEP/WPA, we would like to test the connection as the key
1627 * may be wrong. It is difficult to find a reliable test that works
1628 * across APs however. Do nothing for now.
1629 */
1630 link->nwamd_link_wifi_connected = nwamd_wlan_connected(ncu_obj);

1632 if (link->nwamd_link_wifi_connected) {
1633 if (link->nwamd_link_wifi_add_to_known_wlans) {
1634 /* add to known WLANs */
1635 nlog(LOG_DEBUG, "wlan_connect_thread: "
1636 "add ’%s’ to known WLANs",
1637 link->nwamd_link_wifi_essid);
1638 if ((err = nwam_known_wlan_add_to_known_wlans
1639 (link->nwamd_link_wifi_essid,

new/usr/src/cmd/cmd-inet/lib/nwamd/ncu_phys.c 22

1640 link->nwamd_link_wifi_bssid[0] != ’\0’ ?
1641 link->nwamd_link_wifi_bssid : NULL,
1642 link->nwamd_link_wifi_security_mode,
1643 link->nwamd_link_wifi_security_mode ==
1644 DLADM_WLAN_SECMODE_WEP ?
1645 (uint_t)link->nwamd_link_wifi_key->wk_idx : 1,
1646 NEED_ENC(link->nwamd_link_wifi_security_mode) ?
1647 link->nwamd_link_wifi_keyname : NULL))
1648 != NWAM_SUCCESS) {
1649 nlog(LOG_ERR, "wlan_connect_thread: "
1650 "could not add to known WLANs: %s",
1651 nwam_strerror(err));
1652 }
1653 }
1654 nwamd_set_selected_connected(ncu, B_TRUE, B_TRUE);
1655 nlog(LOG_DEBUG, "wlan_connect_thread: connect "
1656 "succeeded, setting state online");
1657 nwamd_object_set_state(NWAM_OBJECT_TYPE_NCU,
1658 ncu_obj->nwamd_object_name, NWAM_STATE_ONLINE,
1659 NWAM_AUX_STATE_UP);
1660 }

1662 done:
1663 nwamd_object_release(ncu_obj);
1664 done_unlocked:
1665 free(linkname);
1666 free(key);

1668 return (NULL);
1669 }
______unchanged_portion_omitted_

new/usr/src/cmd/cmd-inet/usr.lib/Makefile 1

**
 2056 Tue Jun 12 19:54:39 2012
new/usr/src/cmd/cmd-inet/usr.lib/Makefile
wpa_supplicant pkg now is created correctly in illumos-gate
wpad renamed to wpa_supplicant
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1996, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 SUBDIRS= bridged dhcp dsvclockd ilbd in.chargend in.daytimed \
27 in.discardd in.echod in.dhcpd in.mpathd in.ndpd \
28 in.ripngd in.timed inetd mdnsd ncaconfd pppoe \
29 slpd vrrpd wanboot wpa_supplicant
29 slpd vrrpd wanboot wpad

31 MSGSUBDIRS= dsvclockd ilbd in.dhcpd inetd ncaconfd vrrpd wanboot

33 include ../../Makefile.cmd
34 include ./Makefile.lib

36 $(CLOSED_BUILD)SUBDIRS += \
37 $(CLOSED)/cmd/cmd-inet/usr.lib/ike-certutils \
38 $(CLOSED)/cmd/cmd-inet/usr.lib/in.iked

40 POFILES= dsvclockd/dsvclockd.po in.dhcpd/in.dhcpd.po \
41 inetd/inetd.po ncaconfd/ncaconfd.po vrrpd/vrrpd.po \
42 wanboot/wanboot.po
43 POFILE= usr.lib.po

45 all:= TARGET= all
46 install:= TARGET= install
47 clean:= TARGET= clean
48 clobber:= TARGET= clobber
49 lint:= TARGET= lint
50 _msg:= TARGET= _msg

52 .KEEP_STATE:

54 all clean clobber lint: $(SUBDIRS)

56 install: $(SUBDIRS)
57 -$(RM) $(ROOTLIBINET)/in.iked
58 -$(LN) $(ISAEXEC) $(ROOTLIBINET)/in.iked

new/usr/src/cmd/cmd-inet/usr.lib/Makefile 2

61 _msg: $(MSGSUBDIRS)

63 #
64 # The reason this rule checks for the existence of the
65 # Makefile is that some of the directories do not exist
66 # in our exportable source builds or in OpenSolaris.
67 #
68 $(SUBDIRS): FRC
69 @if [-f $@/Makefile]; then \
70 cd $@; pwd; $(MAKE) $(TARGET); \
71 else \
72 true; \
73 fi

75 FRC:

new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/Makefile 1

**
 1337 Tue Jun 12 19:54:40 2012
new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/Makefile
wpa_supplicant pkg now is created correctly in illumos-gate
wpad renamed to wpa_supplicant
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2012 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #

25 include ../../../Makefile.cmd

27 SUBDIR= wpa_supplicant
28 MANIFEST = wpa_supplicant.xml

30 ROOTMANIFESTDIR = $(ROOTSVCNETWORK)

32 all:= TARGET= all
33 install:= TARGET= install
34 clean:= TARGET= clean
35 clobber:= TARGET= clobber

37 .KEEP_STATE:

39 all lint clean clobber: $(SUBDIR)

41 include ../Makefile.lib

43 install: $(SUBDIR) $(ROOTMANIFEST)

45 check: $(CHKMANIFEST)

47 $(SUBDIR): FRC
48 @cd $@; pwd; $(MAKE) $(TARGET)

50 FRC:

52 include ../../../Makefile.targ
53 #endif /* ! codereview */

new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/wpa_supplicant.xml 1

**
 3472 Tue Jun 12 19:54:41 2012
new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/wpa_supplicant.xml
wpa_supplicant pkg now is created correctly in illumos-gate
wpad renamed to wpa_supplicant
**

1 <?xml version="1.0"?>
2 <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">
3 <!--
4 Copyright 2007 Sun Microsystems, Inc. All rights reserved.
5 Use is subject to license terms.

7 CDDL HEADER START

9 The contents of this file are subject to the terms of the
10 Common Development and Distribution License (the "License").
11 You may not use this file except in compliance with the License.

13 You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
14 or http://www.opensolaris.org/os/licensing.
15 See the License for the specific language governing permissions
16 and limitations under the License.

18 When distributing Covered Code, include this CDDL HEADER in each
19 file and include the License file at usr/src/OPENSOLARIS.LICENSE.
20 If applicable, add the following below this CDDL HEADER, with the
21 fields enclosed by brackets "[]" replaced with your own identifying
22 information: Portions Copyright [yyyy] [name of copyright owner]

24 CDDL HEADER END

26 ident "%Z%%M% %I% %E% SMI"

28 NOTE: This service manifest is not editable; its contents will
29 be overwritten by package or patch operations, including
30 operating system upgrade. Make customizations in a different
31 file.
32 -->

34 <service_bundle type=’manifest’ name=’SUNWsupr:wpa_supplicant’>

36 <service
37 name=’network/wpa_supplicant’
38 type=’service’
39 version=’1’>
40 <single_instance/>
41 <dependency
42 name=’cryptosvc’
43 grouping=’require_all’
44 restart_on=’none’
45 type=’service’>
46 <service_fmri value=’svc:/system/cryptosvc’ />
47 </dependency>

49 <!--
50 The wpa service will require the crypto framework for
51 PKCS #11 keystores/certificates configuration
52 -->

54 <!--
55 If wpa_supplicant crashes for some reasons,
56 it will replace any existing file named
57 /var/run/wpa_supplicant-global. So we do not need to manage the
58 cleanup of the global UNIX socket.
59 Socket clients are cleaned up in libdlwlan.

new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/wpa_supplicant.xml 2

61 B=background
62 dd=debugging
63 f=use syslog
64 t=print timestamp
65 W=wait for libdlwlan/dladm to add an interface before doing anything
66 -->

68 <exec_method
69 type=’method’
70 name=’start’
71 exec=’/usr/lib/inet/wpa_supplicant -B -f/var/log/wpa_supplicant.
72 timeout_seconds=’60’>
73 <method_context>
74 <method_credential
75 user=’root’
76 group=’root’
77 limit_privileges=’:default’
78 privileges=’basic,sys_net_config,net_rawaccess’
79 />
80 </method_context>
81 </exec_method>

83 <exec_method
84 type=’method’
85 name=’stop’
86 exec=’:kill’
87 timeout_seconds=’60’>
88 <method_context>
89 <method_credential
90 user=’root’
91 group=’root’
92 limit_privileges=’:default’
93 privileges=’basic,sys_net_config,net_rawaccess’
94 />
95 </method_context>
96 </exec_method>

98 <!--
99 <exec_method
100 type=’method’
101 name=’refresh’
102 exec=’:kill’
103 timeout_seconds=’60’ />
104 -->

106 <property_group name=’general’ type=’framework’>
107 <!-- to start stop wpad -->
108 <propval name=’action_authorization’ type=’astring’
109 value=’solaris.smf.manage.wpa’ />
110 </property_group>

112 <instance name="default" enabled="true">
113 </instance>

115 <stability value=’External’ />

117 <template>
118 <common_name>
119 <loctext xml:lang=’C’>
120 Wireless WPA Supplicant
121 </loctext>
122 </common_name>
123 <documentation>
124 <manpage title=’wpa_supplicant’ section=’1M’
125 manpath=’/usr/share/man’ />
126 </documentation>

new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/wpa_supplicant.xml 3

127 </template>
128 </service>

130 </service_bundle>
131 #endif /* ! codereview */

new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/wpa_supplicant/Makefile 1

**
 2983 Tue Jun 12 19:54:41 2012
new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/wpa_supplicant/Makefile
wpa_supplicant pkg now is created correctly in illumos-gate
wpad renamed to wpa_supplicant
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/../src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/../src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2012 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #

25 PROG = wpa_supplicant
26 OBJS = config.o notify.o bss.o eap_register.o ../src/utils/common.o \
27 ../src/utils/wpa_debug.o ../src/utils/wpabuf.o ../src/utils/os_unix.o \
28 ../src/utils/eloop.o config_file.o ../src/rsn_supp/wpa.o \
29 ../src/rsn_supp/preauth.o ../src/rsn_supp/pmksa_cache.o \
30 ../src/rsn_supp/peerkey.o ../src/rsn_supp/wpa_ie.o ../src/common/wpa_common.o \
31 ../src/eap_peer/eap_tls.o ../src/eap_peer/eap_peap.o \
32 ../src/eap_common/eap_peap_common.o ../src/eap_peer/eap_ttls.o \
33 ../src/eap_peer/eap_md5.o ../src/eap_peer/eap_mschapv2.o \
34 ../src/eap_peer/mschapv2.o ../src/eapol_supp/eapol_supp_sm.o \
35 ../src/eap_peer/eap.o ../src/eap_peer/eap_methods.o ../src/crypto/ms_funcs.o \
36 ../src/eap_common/chap.o ../src/eap_peer/eap_tls_common.o \
37 ../src/crypto/tls_openssl.o ../src/crypto/crypto_openssl.o \
38 ../src/crypto/aes-unwrap.o ../src/crypto/md5.o ../src/crypto/random.o \
39 ctrl_iface.o ctrl_iface_unix.o ../src/utils/base64.o \
40 ../src/eap_common/eap_common.o ../src/crypto/sha1.o ../src/crypto/sha1-pbkdf2.o
41 ../src/crypto/sha1-tlsprf.o ../src/drivers/driver_common.o wpa_supplicant.o \
42 events.o blacklist.o wpas_glue.o scan.o main.o ../src/drivers/driver_solaris.o \
43 ../src/drivers/drivers.o ../src/l2_packet/l2_packet_solaris.o

45 SRCS = $(OBJS:%.o=%.c)

47 LINTME = ../src/drivers/driver_solaris.c

49 include ../../../../Makefile.cmd

51 MSGFILES= $(OBJS)

53 C99MODE = $(C99_ENABLE)
54 CFLAGS += -I../src -I../src/utils
55 CFLAGS += -DCONFIG_BACKEND_FILE \
56 -DCONFIG_DRIVER_SOLARIS -DEAP_TLS -DEAP_PEAP -DEAP_TTLS -DEAP_MD5 \
57 -DEAP_MSCHAPv2 -DIEEE8021X_EAPOL -DPKCS12_FUNCS -DCONFIG_SMARTCARD \
58 -DEAP_TLS_OPENSSL -DCONFIG_CTRL_IFACE -DCONFIG_CTRL_IFACE_UNIX \
59 -DCONFIG_DEBUG_SYSLOG -DLOG_HOSTAPD="LOG_DAEMON" -DCONFIG_DEBUG_FILE

new/usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/wpa_supplicant/Makefile 2

61 LDLIBS += -lsocket -ldlpi -ldladm

63 all install := LDLIBS += -lcrypto -lssl

65 LINTFLAGS += -u

67 .KEEP_STATE:

69 all: $(PROG)

71 %.o: %.c
72 $(COMPILE.c) -o $@ $<

74 $(PROG): $(OBJS)
75 $(LINK.c) -o $@ $(OBJS) $(LDLIBS)
76 $(POST_PROCESS)

79 include ../../Makefile.lib

81 install: all $(ROOTLIBINETPROG)

83 clean:
84 $(RM) $(OBJS)

86 include ../../../../Makefile.targ
87 #endif /* ! codereview */

new/usr/src/cmd/cmd-inet/usr.sbin/Makefile 1

**
 8544 Tue Jun 12 19:54:41 2012
new/usr/src/cmd/cmd-inet/usr.sbin/Makefile
removed wificonfig tool
are /dev/wifi/* devices links now deprecated?
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 SYNCPROG= syncinit syncloop syncstat
27 DHCPPROG= dhcpconfig dhtadm pntadm

29 # EXPORT DELETE START
30 XMODPROG= wanbootutil
31 # EXPORT DELETE END

33 PROG= 6to4relay arp gettable if_mpadm \
34 in.comsat in.fingerd in.rarpd in.rexecd in.rlogind \
35 in.rshd in.rwhod in.telnetd in.tftpd ipaddrsel \
36 ndd $(SYNCPROG) $(DHCPPROG) $(XMODPROG)

38 MANIFEST= rarp.xml telnet.xml comsat.xml finger.xml \
39 login.xml shell.xml rexec.xml socket-filter-kssl.xml
40 SVCMETHOD= svc-sockfilter

42 ROOTFS_PROG= hostconfig route soconfig
43 SBINLINKS= hostconfig route

45 RPCSVCPROG= hostconfig
46 AUDITPROG= in.rexecd in.rlogind in.rshd in.telnetd
47 PAMPROG= in.rexecd in.rlogind in.rshd in.telnetd
48 SOCKETPROG= 6to4relay arp gettable hostconfig if_mpadm in.comsat \
49 in.fingerd in.rarpd in.rexecd in.rlogind in.rshd \
50 in.rwhod in.telnetd in.tftpd ipaddrsel route
51 NSLPROG= 6to4relay arp gettable hostconfig in.comsat in.rarpd \
52 in.rexecd in.rlogind in.rshd in.rwhod in.telnetd \
53 in.tftpd ipaddrsel route
54 CMDPROG= in.telnetd
55 K5PROGS= in.telnetd in.rlogind in.rshd
56 TSNETPROG= route
57 DLADMPROG= 6to4relay
58 DEFAULTFILES= telnetd.dfl

60 PROGSRCS= $(PROG:%=%.c)

new/usr/src/cmd/cmd-inet/usr.sbin/Makefile 2

61 TFTPDOBJS= in.tftpd.o tftpsubs.o
62 OTHERSRC= ../usr.bin/tftp/tftpsubs.c
63 K5RLOGINOBJS= in.rlogind.o
64 K5RSHDOBJS= in.rshd.o
65 K5TELNETOBJS= in.telnetd.o
66 SRCS= $(PROGSRCS) $(OTHERSRC)

68 SUBDIRS= bootconfchk htable ifconfig ilbadm in.ftpd in.rdisc in.routed \
69 in.talkd inetadm inetconv ipadm ipmpstat ipqosconf ipsecutils \
70 kssl/kssladm kssl/ksslcfg nwamadm nwamcfg ping routeadm \
71 snoop sppptun traceroute
71 snoop sppptun traceroute wificonfig

73 MSGSUBDIRS= bootconfchk htable ifconfig ilbadm in.ftpd in.routed in.talkd \
74 inetadm inetconv ipadm ipmpstat ipqosconf ipsecutils \
75 kssl/ksslcfg nwamadm nwamcfg routeadm sppptun snoop
75 kssl/ksslcfg nwamadm nwamcfg routeadm sppptun snoop wificonfig

77 # As programs get lint-clean, add them here and to the ’lint’ target.
78 # Eventually this hack should go away, and all in PROG should be
79 # lint-clean.
80 LINTCLEAN= 6to4relay arp in.rlogind in.rshd in.telnetd in.tftpd \
81 ipaddrsel route \
82 in.rarpd if_mpadm $(SYNCPROG)
83 # Likewise, as subdirs get lint-clean, add them here. Once
84 # they’re all clean, replace the dependency of the lint target
85 # with SUBDIRS. Also (sigh) deal with the commented-out build lines
86 # for the lint rule.
87 LINTSUBDIRS= bootconfchk ilbadm in.rdisc in.routed in.talkd inetadm \
88 inetconv ipmpstat ipqosconf ipsecutils kssl/kssladm \
89 kssl/ksslcfg nwamadm nwamcfg ping routeadm sppptun traceroute
89 kssl/ksslcfg nwamadm nwamcfg ping routeadm sppptun traceroute \
90 wificonfig
90 # And as programs are verified not to attempt to write into constants,
91 # -xstrconst should be used to ensure they stay that way.
92 CONSTCLEAN=

94 include ../../Makefile.cmd
95 ROOTMANIFESTDIR= $(ROOTSVCNETWORK)
96 $(ROOTMANIFEST) := FILEMODE= 444
97 include ../Makefile.cmd-inet

99 ROOTSBINPROG = $(ROOTFS_PROG:%=$(ROOTSBIN)/%)
100 ROOTUSRSBINLINKS = $(SBINLINKS:%=$(ROOTUSRSBIN)/%)

102 COMMONOBJS= addr_match.o kcmd.o store_forw_creds.o
103 COMMONSRCS= $(COMMONOBJS:%.o=$(CMDINETCOMMONDIR)/%.c)
104 SRCS+= $(COMMONSRCS)

106 #
107 # Message catalog
108 #
109 POFILES= 6to4relay.po if_mpadm.po in.comsat.po ipaddrsel.po route.po \
110 soconfig.po
111 POFILE= usr.sbin.po

113 all:= TARGET= all
114 install:= TARGET= install
115 clean:= TARGET= clean
116 clobber:= TARGET= clobber
117 lint:= TARGET= lint
118 _msg:= TARGET= _msg

120 CLOBBERFILES += $(ROOTFS_PROG) $(PROG)
121 CLEANFILES += $(COMMONOBJS) $(K5RLOGINOBJS) $(K5RSHDOBJS) $(TFTPDOBJS)

new/usr/src/cmd/cmd-inet/usr.sbin/Makefile 3

123 CPPFLAGS += -DSYSV -DBSD_COMP -I$(CMDINETCOMMONDIR) -I

125 include $(SRC)/lib/gss_mechs/mech_krb5/Makefile.mech_krb5
126 K5LIBS=

128 # Eventually just plain CFLAGS should be += -v, but not until all in
129 # PROGS are lint clean.
130 $(LINTCLEAN) := CFLAGS += $(CCVERBOSE)
131 $(CONSTCLEAN) := CFLAGS += $(XSTRCONST)

133 $(SYNCPROG) := LDLIBS += -ldlpi
134 $(SOCKETPROG) := LDLIBS += -lsocket
135 $(NSLPROG) := LDLIBS += -lnsl
136 $(AUDITPROG) := LDLIBS += -lbsm
137 $(PAMPROG) := LDLIBS += -lpam
138 $(RPCSVCPROG) := LDLIBS += -lrpcsvc
139 $(K5PROGS) := LDFLAGS += $(KRUNPATH) \
140 -L$(ROOT)$(KLIBDIR_DO) -L$(ROOT)$(KLIBDIR_GL)
141 $(K5PROGS) := K5LIBS= -lmech_krb5
142 $(K5PROGS) := CPPFLAGS += -I$(SRC)/head \
143 -I$(SRC)/uts/common/ \
144 -I$(SRC)/uts/common/gssapi/mechs/krb5/include \
145 -I$(SRC)/lib/gss_mechs/mech_krb5/include \
146 -I$(SRC)/lib/pam_modules/krb5
147 LDLIBS += $(K5LIBS)
148 $(TSNETPROG) := LDLIBS += -ltsnet
149 $(DLADMPROG) := LDLIBS += -ldladm

151 in.rarpd := LDLIBS += -linetutil -ldlpi
152 if_mpadm := LDLIBS += -linetutil -lipmp
153 if_mpadm.po := XGETFLAGS += -a
154 route := CPPFLAGS += -DNDEBUG
155 ndd := LDLIBS += -ldladm -lipadm
156 gettable in.comsat := LDFLAGS += $(MAPFILE.NGB:%=-M%)

158 .KEEP_STATE:

160 .PARALLEL:

162 all: $(PROG) $(ROOTFS_PROG) $(SUBDIRS) THIRDPARTYLICENSE.arp

164 #
165 # message catalog
166 #
167 _msg: $(MSGSUBDIRS) $(POFILE)

169 syncutil: $(SYNCPROG)

171 $(POFILE): $(POFILES)
172 $(RM) $@
173 cat $(POFILES) > $@

175 %.o: $(CMDINETCOMMONDIR)/%.c
176 $(COMPILE.c) -o $@ $<

178 in.telnetd: $(K5TELNETOBJS)
179 $(LINK.c) $(K5TELNETOBJS) -o $@ $(LDLIBS)
180 $(POST_PROCESS)

182 in.rlogind: $(K5RLOGINOBJS) $(COMMONOBJS)
183 $(LINK.c) $(K5RLOGINOBJS) $(COMMONOBJS) -o $@ $(LDLIBS)
184 $(POST_PROCESS)

186 in.rshd: $(K5RSHDOBJS) $(COMMONOBJS)
187 $(LINK.c) $(K5RSHDOBJS) $(COMMONOBJS) -o $@ $(LDLIBS)
188 $(POST_PROCESS)

new/usr/src/cmd/cmd-inet/usr.sbin/Makefile 4

190 in.tftpd: $(TFTPDOBJS)
191 $(LINK.c) $(TFTPDOBJS) -o $@ $(LDLIBS)
192 $(POST_PROCESS)

194 tftpsubs.o: $(OTHERSRC)
195 $(COMPILE.c) $(OTHERSRC) -o $@
196 $(POST_PROCESS_O)

198 $(ROOTUSRSBINLINKS):
199 -$(RM) $@; $(SYMLINK) ../../sbin/$(@F) $@

201 install: $(PROG) $(ROOTFS_PROG) $(SUBDIRS) .WAIT $(ROOTUSRSBINPROG) \
202 $(ROOTSBINPROG) $(ROOTUSRSBINLINKS) $(ROOTETCDEFAULTFILES) \
203 $(ROOTMANIFEST) $(ROOTSVCMETHOD) THIRDPARTYLICENSE.arp

205 THIRDPARTYLICENSE.arp: arp.c
206 $(SED) -n ’/University of California/,/SUCH DAMAGE/p’ arp.c > $@

208 CLOBBERFILES += THIRDPARTYLICENSE.arp

210 #
211 # The reason this rule checks for the existence of the
212 # Makefile is that some of the directories do not exist
213 # in our exportable source builds.
214 #
215 $(SUBDIRS): FRC
216 @if [-f $@/Makefile]; then \
217 cd $@; pwd; $(MAKE) $(TARGET); \
218 else \
219 true; \
220 fi

222 FRC:

224 check: $(CHKMANIFEST)

226 clean: $(SUBDIRS)
227 -$(RM) $(CLEANFILES)

229 clobber: $(SUBDIRS)
230 -$(RM) $(CLEANFILES) $(CLOBBERFILES)

232 lint: $(LINTSUBDIRS)
233 $(LINT.c) 6to4relay.c $(LDLIBS) -lsocket -ldladm
234 $(LINT.c) arp.c $(LDLIBS) -lsocket -lnsl
235 @# $(LINT.c) in.rexecd.c $(LDLIBS) -lbsm -lpam
236 $(LINT.c) -erroff=E_NAME_USED_NOT_DEF2 -erroff=E_NAME_DEF_NOT_USED2 \
237 -I$(SRC)/head -I$(SRC)/uts/common/ \
238 -I$(SRC)/uts/common/gssapi/mechs/krb5/include \
239 -I$(SRC)/lib/gss_mechs/mech_krb5/include \
240 -I$(SRC)/lib/pam_modules/krb5 \
241 in.rlogind.c $(COMMONSRCS) $(LDLIBS) -lbsm -lpam -lsocket -lnsl
242 $(LINT.c) -erroff=E_NAME_USED_NOT_DEF2 -erroff=E_NAME_DEF_NOT_USED2 \
243 -I$(SRC)/head -I$(SRC)/uts/common/ \
244 -I$(SRC)/uts/common/gssapi/mechs/krb5/include \
245 -I$(SRC)/lib/gss_mechs/mech_krb5/include \
246 -I$(SRC)/lib/pam_modules/krb5 \
247 in.rshd.c $(COMMONSRCS) $(LDLIBS) -lbsm -lpam -lsocket -lnsl
248 $(LINT.c) -erroff=E_NAME_USED_NOT_DEF2 \
249 -erroff=E_GLOBAL_COULD_BE_STATIC2 \
250 -I$(SRC)/head -I$(SRC)/uts/common/ \
251 -I$(SRC)/uts/common/gssapi/mechs/krb5/include \
252 -I$(SRC)/lib/gss_mechs/mech_krb5/include \
253 -I$(SRC)/lib/pam_modules/krb5 \
254 in.telnetd.c $(LDLIBS) -lbsm -lpam -lsocket -lnsl

new/usr/src/cmd/cmd-inet/usr.sbin/Makefile 5

255 $(LINT.c) if_mpadm.c $(LDLIBS) -lsocket -lnsl -lipmp -linetutil
256 $(LINT.c) ipaddrsel.c $(LDLIBS) -lsocket -lnsl
257 $(LINT.c) route.c $(LDLIBS) -lsocket -lnsl -ltsnet
258 $(LINT.c) syncinit.c $(LDLIBS) -ldlpi
259 $(LINT.c) syncloop.c $(LDLIBS) -ldlpi
260 $(LINT.c) syncstat.c $(LDLIBS) -ldlpi
261 $(LINT.c) -erroff=E_NAME_USED_NOT_DEF2 in.rarpd.c $(LDLIBS) \
262 -lsocket -lnsl
263 $(LINT.c) in.tftpd.c ../usr.bin/tftp/tftpsubs.c $(LDLIBS) \
264 -lsocket -lnsl

266 # EXPORT DELETE START
267 EXPORT_SRC:
268 $(RM) Makefile+
269 sed -e "/^# EXPORT DELETE START/,/^# EXPORT DELETE END/d" \
270 < Makefile > Makefile+
271 $(RM) Makefile
272 $(MV) Makefile+ Makefile
273 $(CHMOD) 444 Makefile
274 # EXPORT DELETE END

new/usr/src/cmd/dladm/dladm.c 1

**
 255013 Tue Jun 12 19:54:42 2012
new/usr/src/cmd/dladm/dladm.c
removed wpa.h header file
updated wpa_supplicant manifest to use global ctrl interface
some changes to libdlwlan, i need to finish ctrl_if integration
**
______unchanged_portion_omitted_

266 static cmd_t cmds[] = {
267 { "rename-link", do_rename_link,
268 " rename-link <oldlink> <newlink>" },
269 { "show-link", do_show_link,
270 " show-link [-pP] [-o <field>,..] [-s [-i <interval>]] "
271 "[<link>]\n" },
272 { "create-aggr", do_create_aggr,
273 " create-aggr [-t] [-P <policy>] [-L <mode>] [-T <time>] "
274 "[-u <address>]\n"
275 "\t\t -l <link> [-l <link>...] <link>" },
276 { "delete-aggr", do_delete_aggr,
277 " delete-aggr [-t] <link>" },
278 { "add-aggr", do_add_aggr,
279 " add-aggr [-t] -l <link> [-l <link>...] <link>" },
280 { "remove-aggr", do_remove_aggr,
281 " remove-aggr [-t] -l <link> [-l <link>...] <link>" },
282 { "modify-aggr", do_modify_aggr,
283 " modify-aggr [-t] [-P <policy>] [-L <mode>] [-T <time>] "
284 "[-u <address>]\n"
285 "\t\t <link>" },
286 { "show-aggr", do_show_aggr,
287 " show-aggr [-pPLx] [-o <field>,..] [-s [-i <interval>]] "
288 "[<link>]\n" },
289 { "up-aggr", do_up_aggr, NULL },
290 { "scan-wifi", do_scan_wifi,
291 " scan-wifi [-p] [-o <field>,...] [<link>]" },
292 { "connect-wifi", do_connect_wifi,
293 " connect-wifi [-e <essid>] [-i <bssid>] [-k <key>,...]\n"
294 "\t\t [-s wep|wpa] [-u <username>]\n"
293 " connect-wifi [-e <essid>] [-i <bssid>] [-k <key>,...] "
294 "[-s wep|wpa]\n"
295 "\t\t [-a open|shared] [-b bss|ibss] [-c] [-m a|b|g] "
296 "[-T <time>]\n"
297 "\t\t [<link>]" },
298 { "disconnect-wifi", do_disconnect_wifi,
299 " disconnect-wifi [-a] [<link>]" },
300 { "show-wifi", do_show_wifi,
301 " show-wifi [-p] [-o <field>,...] [<link>]\n" },
302 { "set-linkprop", do_set_linkprop,
303 " set-linkprop [-t] -p <prop>=<value>[,...] <name>" },
304 { "reset-linkprop", do_reset_linkprop,
305 " reset-linkprop [-t] [-p <prop>,...] <name>" },
306 { "show-linkprop", do_show_linkprop,
307 " show-linkprop [-cP] [-o <field>,...] [-p <prop>,...] "
308 "<name>\n" },
309 { "show-ether", do_show_ether,
310 " show-ether [-px][-o <field>,...] <link>\n" },
311 { "create-secobj", do_create_secobj,
312 " create-secobj [-t] [-f <file>] -c <class> <secobj>" },
313 { "delete-secobj", do_delete_secobj,
314 " delete-secobj [-t] <secobj>[,...]" },
315 { "show-secobj", do_show_secobj,
316 " show-secobj [-pP] [-o <field>,...] [<secobj>,...]\n" },
317 { "init-linkprop", do_init_linkprop, NULL },
318 { "init-secobj", do_init_secobj, NULL },
319 { "create-vlan", do_create_vlan,
320 " create-vlan [-ft] -l <link> -v <vid> [link]" },

new/usr/src/cmd/dladm/dladm.c 2

321 { "delete-vlan", do_delete_vlan,
322 " delete-vlan [-t] <link>" },
323 { "show-vlan", do_show_vlan,
324 " show-vlan [-pP] [-o <field>,..] [<link>]\n" },
325 { "up-vlan", do_up_vlan, NULL },
326 { "create-iptun", do_create_iptun,
327 " create-iptun [-t] -T <type> "
328 "[-a {local|remote}=<addr>,...] <link>]" },
329 { "delete-iptun", do_delete_iptun,
330 " delete-iptun [-t] <link>" },
331 { "modify-iptun", do_modify_iptun,
332 " modify-iptun [-t] -a {local|remote}=<addr>,... <link>" },
333 { "show-iptun", do_show_iptun,
334 " show-iptun [-pP] [-o <field>,..] [<link>]\n" },
335 { "up-iptun", do_up_iptun, NULL },
336 { "down-iptun", do_down_iptun, NULL },
337 { "delete-phys", do_delete_phys,
338 " delete-phys <link>" },
339 { "show-phys", do_show_phys,
340 " show-phys [-pP] [-o <field>,..] [-H] [<link>]\n"},
341 { "init-phys", do_init_phys, NULL },
342 { "show-linkmap", do_show_linkmap, NULL },
343 { "create-vnic", do_create_vnic,
344 " create-vnic [-t] -l <link> [-m <value> | auto |\n"
345 "\t\t {factory [-n <slot-id>]} | {random [-r <prefix>]} |\n"
346 "\t\t {vrrp -V <vrid> -A {inet | inet6}} [-v <vid> [-f]]\n"
347 "\t\t [-p <prop>=<value>[,...]] <vnic-link>" },
348 { "delete-vnic", do_delete_vnic,
349 " delete-vnic [-t] <vnic-link>" },
350 { "show-vnic", do_show_vnic,
351 " show-vnic [-pP] [-l <link>] [-s [-i <interval>]] "
352 "[<link>]\n" },
353 { "up-vnic", do_up_vnic, NULL },
354 { "create-part", do_create_part,
355 " create-part [-t] [-f] -l <link> [-P <pkey>]\n"
356 "\t\t [-R <root-dir>] <part-link>" },
357 { "delete-part", do_delete_part,
358 " delete-part [-t] [-R <root-dir>] <part-link>"},
359 { "show-part", do_show_part,
360 " show-part [-pP] [-o <field>,...][-l <linkover>]\n"
361 "\t\t [<part-link>]" },
362 { "show-ib", do_show_ib,
363 " show-ib [-p] [-o <field>,...] [<link>]\n" },
364 { "up-part", do_up_part, NULL },
365 { "create-etherstub", do_create_etherstub,
366 " create-etherstub [-t] <link>" },
367 { "delete-etherstub", do_delete_etherstub,
368 " delete-etherstub [-t] <link>" },
369 { "show-etherstub", do_show_etherstub,
370 " show-etherstub [-t] [<link>]\n" },
371 { "create-simnet", do_create_simnet, NULL },
372 { "modify-simnet", do_modify_simnet, NULL },
373 { "delete-simnet", do_delete_simnet, NULL },
374 { "show-simnet", do_show_simnet, NULL },
375 { "up-simnet", do_up_simnet, NULL },
376 { "create-bridge", do_create_bridge,
377 " create-bridge [-R <root-dir>] [-P <protect>] "
378 "[-p <priority>]\n"
379 "\t\t [-m <max-age>] [-h <hello-time>] [-d <forward-delay>]\n"
380 "\t\t [-f <force-protocol>] [-l <link>]... <bridge>" },
381 { "modify-bridge", do_modify_bridge,
382 " modify-bridge [-R <root-dir>] [-P <protect>] "
383 "[-p <priority>]\n"
384 "\t\t [-m <max-age>] [-h <hello-time>] [-d <forward-delay>]\n"
385 "\t\t [-f <force-protocol>] <bridge>" },
386 { "delete-bridge", do_delete_bridge,

new/usr/src/cmd/dladm/dladm.c 3

387 " delete-bridge [-R <root-dir>] <bridge>" },
388 { "add-bridge", do_add_bridge,
389 " add-bridge [-R <root-dir>] -l <link> [-l <link>]... "
390 "<bridge>" },
391 { "remove-bridge", do_remove_bridge,
392 " remove-bridge [-R <root-dir>] -l <link> [-l <link>]... "
393 "<bridge>" },
394 { "show-bridge", do_show_bridge,
395 " show-bridge [-p] [-o <field>,...] [-s [-i <interval>]] "
396 "[<bridge>]\n"
397 " show-bridge -l [-p] [-o <field>,...] [-s [-i <interval>]]"
398 " <bridge>\n"
399 " show-bridge -f [-p] [-o <field>,...] [-s [-i <interval>]]"
400 " <bridge>\n"
401 " show-bridge -t [-p] [-o <field>,...] [-s [-i <interval>]]"
402 " <bridge>\n" },
403 { "show-usage", do_show_usage,
404 " show-usage [-a] [-d | -F <format>] "
405 "[-s <DD/MM/YYYY,HH:MM:SS>]\n"
406 "\t\t [-e <DD/MM/YYYY,HH:MM:SS>] -f <logfile> [<link>]" }
407 };

______unchanged_portion_omitted_

6254 static void
6255 do_connect_wifi(int argc, char **argv, const char *use)
6256 {
6257 int option;
6258 dladm_wlan_attr_t attr, *attrp;
6259 dladm_status_t status = DLADM_STATUS_OK;
6260 int timeout = DLADM_WLAN_CONNECT_TIMEOUT_DEFAULT;
6261 datalink_id_t linkid = DATALINK_ALL_LINKID;
6262 dladm_wlan_key_t *keys = NULL;
6263 uint_t key_count = 0;
6264 uint_t flags = 0;
6265 dladm_wlan_secmode_t keysecmode = DLADM_WLAN_SECMODE_NONE;
6266 char buf[DLADM_STRSIZE];
6267 char identity[128];
6268 #endif /* ! codereview */

6270 opterr = 0;
6271 (void) memset(&attr, 0, sizeof (attr));
6272 while ((option = getopt_long(argc, argv, ":e:i:a:m:b:s:k:u:T:c",
6267 while ((option = getopt_long(argc, argv, ":e:i:a:m:b:s:k:T:c",
6273 wifi_longopts, NULL)) != -1) {
6274 switch (option) {
6275 case ’e’:
6276 status = dladm_wlan_str2essid(optarg, &attr.wa_essid);
6277 if (status != DLADM_STATUS_OK)
6278 die("invalid ESSID ’%s’", optarg);

6280 attr.wa_valid |= DLADM_WLAN_ATTR_ESSID;
6276 /*
6277 * Try to connect without doing a scan.
6278 */
6279 flags |= DLADM_WLAN_CONNECT_NOSCAN;
6281 break;
6282 case ’i’:
6283 status = dladm_wlan_str2bssid(optarg, &attr.wa_bssid);
6284 if (status != DLADM_STATUS_OK)
6285 die("invalid BSSID %s", optarg);

6287 attr.wa_valid |= DLADM_WLAN_ATTR_BSSID;
6288 break;
6289 case ’a’:
6290 status = dladm_wlan_str2auth(optarg, &attr.wa_auth);
6291 if (status != DLADM_STATUS_OK)

new/usr/src/cmd/dladm/dladm.c 4

6292 die("invalid authentication mode ’%s’", optarg);

6294 attr.wa_valid |= DLADM_WLAN_ATTR_AUTH;
6295 break;
6296 case ’m’:
6297 status = dladm_wlan_str2mode(optarg, &attr.wa_mode);
6298 if (status != DLADM_STATUS_OK)
6299 die("invalid mode ’%s’", optarg);

6301 attr.wa_valid |= DLADM_WLAN_ATTR_MODE;
6302 break;
6303 case ’b’:
6304 if ((status = dladm_wlan_str2bsstype(optarg,
6305 &attr.wa_bsstype)) != DLADM_STATUS_OK) {
6306 die("invalid bsstype ’%s’", optarg);
6307 }

6309 attr.wa_valid |= DLADM_WLAN_ATTR_BSSTYPE;
6310 break;
6311 case ’s’:
6312 if ((status = dladm_wlan_str2secmode(optarg,
6313 &attr.wa_secmode)) != DLADM_STATUS_OK) {
6314 die("invalid security mode ’%s’", optarg);
6315 }

6317 attr.wa_valid |= DLADM_WLAN_ATTR_SECMODE;
6318 break;
6319 case ’k’:
6320 if (parse_wlan_keys(optarg, &keys, &key_count) < 0)
6321 die("invalid key(s) ’%s’", optarg);

6323 if (keys[0].wk_class == DLADM_SECOBJ_CLASS_WEP)
6324 keysecmode = DLADM_WLAN_SECMODE_WEP;
6325 else if (keys[0].wk_class == DLADM_SECOBJ_CLASS_PSK)
6326 keysecmode = DLADM_WLAN_SECMODE_PSK;
6327 #endif /* ! codereview */
6328 else
6329 keysecmode = DLADM_WLAN_SECMODE_EAP;
6330 break;
6331 case ’u’:
6332 if (snprintf(identity, 131, "\"%s\"", optarg) <= 0)
6333 die("invalid username", optarg);
6324 keysecmode = DLADM_WLAN_SECMODE_WPA;
6334 break;
6335 case ’T’:
6336 if (strcasecmp(optarg, "forever") == 0) {
6337 timeout = -1;
6338 break;
6339 }
6340 if (!str2int(optarg, &timeout) || timeout < 0)
6341 die("invalid timeout value ’%s’", optarg);
6342 break;
6343 case ’c’:
6344 flags |= DLADM_WLAN_CONNECT_CREATEIBSS;
6345 flags |= DLADM_WLAN_CONNECT_CREATEIBSS;
6346 break;
6347 default:
6348 die_opterr(optopt, option, use);
6349 break;
6350 }
6351 }

6353 if (keysecmode == DLADM_WLAN_SECMODE_NONE) {
6354 if ((attr.wa_valid & DLADM_WLAN_ATTR_SECMODE) != 0)
6345 if ((attr.wa_valid & DLADM_WLAN_ATTR_SECMODE) != 0) {
6355 die("key required for security mode ’%s’",

new/usr/src/cmd/dladm/dladm.c 5

6356 dladm_wlan_secmode2str(&attr.wa_secmode, buf));
6348 }
6357 } else {
6358 if ((attr.wa_valid & DLADM_WLAN_ATTR_SECMODE) != 0 &&
6359 attr.wa_secmode != keysecmode)
6360 die("incompatible -s and -k options");
6361 if ((keysecmode == DLADM_WLAN_SECMODE_EAP) != 0 &&
6362 identity == NULL)
6363 die("username (-u) required for security mode ’%s’",
6364 dladm_wlan_secmode2str(&attr.wa_secmode, buf));
6365 #endif /* ! codereview */
6366 attr.wa_valid |= DLADM_WLAN_ATTR_SECMODE;
6367 attr.wa_secmode = keysecmode;
6368 }

6370 if (optind == (argc - 1)) {
6371 if ((status = dladm_name2info(handle, argv[optind], &linkid,
6372 NULL, NULL, NULL)) != DLADM_STATUS_OK) {
6373 die_dlerr(status, "link %s is not valid", argv[optind]);
6374 }
6375 } else if (optind != argc) {
6376 usage();
6377 }

6379 if (linkid == DATALINK_ALL_LINKID) {
6380 wlan_count_attr_t wcattr;

6382 wcattr.wc_linkid = DATALINK_INVALID_LINKID;
6383 wcattr.wc_count = 0;
6384 (void) dladm_walk_datalink_id(do_count_wlan, handle, &wcattr,
6385 DATALINK_CLASS_PHYS | DATALINK_CLASS_SIMNET,
6386 DL_WIFI, DLADM_OPT_ACTIVE);
6387 if (wcattr.wc_count == 0) {
6388 die("no wifi links are available");
6389 } else if (wcattr.wc_count > 1) {
6390 die("link name is required when more than one wifi "
6391 "link is available");
6392 }
6393 linkid = wcattr.wc_linkid;
6394 }
6395 attrp = (attr.wa_valid == 0) ? NULL : &attr;

6353 again:
6397 if ((status = dladm_wlan_connect(handle, linkid, attrp, timeout, keys,
6398 key_count, flags, identity)) != DLADM_STATUS_OK) {
6355 key_count, flags)) != DLADM_STATUS_OK) {
6356 if ((flags & DLADM_WLAN_CONNECT_NOSCAN) != 0) {
6357 /*
6358 * Try again with scanning and filtering.
6359 */
6360 flags &= ~DLADM_WLAN_CONNECT_NOSCAN;
6361 goto again;
6362 }

6399 if (status == DLADM_STATUS_NOTFOUND) {
6400 if (attr.wa_valid == 0) {
6401 die("no wifi networks are available");
6402 } else {
6403 die("no wifi networks with the specified "
6404 "criteria are available");
6405 }
6406 }
6407 die_dlerr(status, "cannot connect");
6408 }
6409 free(keys);
6410 }
______unchanged_portion_omitted_

new/usr/src/cmd/dladm/dladm.c 6

7039 static int
7040 convert_secobj(char *buf, uint_t len, uint8_t *obj_val, uint_t *obj_lenp,
7041 dladm_secobj_class_t class)
7042 {
7043 int error = 0;

7045 if (class != DLADM_SECOBJ_CLASS_WEP) {
7046 if ((class == DLADM_SECOBJ_CLASS_PSK) && (len < 8 || len > 63))
7010 if (class == DLADM_SECOBJ_CLASS_WPA) {
7011 if (len < 8 || len > 63)
7047 return (EINVAL);
7048 (void) memcpy(obj_val, buf, len);
7049 *obj_lenp = len;
7050 return (error);
7051 } else {
7016 }

7018 if (class == DLADM_SECOBJ_CLASS_WEP) {
7052 switch (len) {
7053 case 5: /* ASCII key sizes */
7054 case 13:
7055 (void) memcpy(obj_val, buf, len);
7056 *obj_lenp = len;
7057 break;
7058 case 10: /* Hex key sizes, not preceded by 0x */
7059 case 26:
7060 error = hexascii_to_octet(buf, len, obj_val, obj_lenp);
7061 break;
7062 case 12: /* Hex key sizes, preceded by 0x */
7063 case 28:
7064 if (strncmp(buf, "0x", 2) != 0)
7065 return (EINVAL);
7066 error = hexascii_to_octet(buf + 2, len - 2,
7067 obj_val, obj_lenp);
7068 break;
7069 default:
7070 return (EINVAL);
7071 }
7072 return (error);
7073 }

7075 return (ENOENT);
7076 }
______unchanged_portion_omitted_

new/usr/src/cmd/svc/milestone/net-physical 1

**
 15413 Tue Jun 12 19:54:49 2012
new/usr/src/cmd/svc/milestone/net-physical
removed wificonfig tool
are /dev/wifi/* devices links now deprecated?
**
______unchanged_portion_omitted_

150 #
151 # All the IPv4 and IPv6 interfaces are plumbed before doing any
152 # interface configuration. This prevents errors from plumb failures
153 # getting mixed in with the configured interface lists that the script
154 # outputs.
155 #

157 #
158 # First deal with /etc/hostname
159 #
160 # Get the list of IPv4 interfaces to configure by breaking
161 # /etc/hostname.* into separate args by using "." as a shell separator
162 # character.
163 #
164 interface_names="‘echo /etc/hostname.*[0-9] 2>/dev/null‘"
165 if ["$interface_names" != "/etc/hostname.*[0-9]"]; then
166 ORIGIFS="$IFS"
167 IFS="$IFS."
168 set -- $interface_names
169 IFS="$ORIGIFS"
170 while [$# -ge 2]; do
171 shift
172 intf_name=$1
173 while [$# -gt 1 -a "$2" != "/etc/hostname"]; do
174 intf_name="$intf_name.$2"
175 shift
176 done
177 shift

179 # skip IP tunnel interfaces plumbed by net-iptun.
180 if is_iptun $intf_name; then
181 continue
182 fi

184 read one rest < /etc/hostname.$intf_name
185 if ["$one" = ipmp]; then
186 ipmp_list="$ipmp_list $intf_name"
187 else
188 inet_list="$inet_list $intf_name"
189 fi
190 done
191 fi

193 #
194 # Get the list of IPv6 interfaces to configure by breaking
195 # /etc/hostname6.* into separate args by using "." as a shell separator
196 # character.
197 #
198 interface_names="‘echo /etc/hostname6.*[0-9] 2>/dev/null‘"
199 if ["$interface_names" != "/etc/hostname6.*[0-9]"]; then
200 ORIGIFS="$IFS"
201 IFS="$IFS."
202 set -- $interface_names
203 IFS="$ORIGIFS"
204 while [$# -ge 2]; do
205 shift
206 intf_name=$1
207 while [$# -gt 1 -a "$2" != "/etc/hostname6"]; do

new/usr/src/cmd/svc/milestone/net-physical 2

208 intf_name="$intf_name.$2"
209 shift
210 done
211 shift

213 # skip IP tunnel interfaces plumbed by net-iptun.
214 if is_iptun $intf_name; then
215 continue
216 fi

218 read one rest < /etc/hostname6.$intf_name
219 if ["$one" = ipmp]; then
220 ipmp6_list="$ipmp6_list $intf_name"
221 else
222 inet6_list="$inet6_list $intf_name"
223 fi
224 done
225 fi

227 #
228 # Create all of the IPv4 IPMP interfaces.
229 #
230 if [-n "$ipmp_list"]; then
231 set -- $ipmp_list
232 while [$# -gt 0]; do
233 if /sbin/ifconfig $1 ipmp; then
234 ipmp_created="$ipmp_created $1"
235 else
236 ipmp_failed="$ipmp_failed $1"
237 fi
238 shift
239 done
240 [-n "$ipmp_failed"] && warn_failed_ifs "create IPv4 IPMP" \
241 "$ipmp_failed"
242 fi

244 #
245 # Step through the IPv4 interface list and try to plumb every interface.
246 # Generate list of plumbed and failed IPv4 interfaces.
247 #
248 if [-n "$inet_list"]; then
249 set -- $inet_list
250 while [$# -gt 0]; do
251 /sbin/ifconfig $1 plumb
252 if /sbin/ifconfig $1 inet >/dev/null 2>&1; then
253 inet_plumbed="$inet_plumbed $1"
254 else
255 inet_failed="$inet_failed $1"
256 fi
257 shift
258 done
259 [-n "$inet_failed"] && warn_failed_ifs "plumb IPv4" "$inet_failed"
260 fi

262 # Run autoconf to connect to a WLAN if the interface is a wireless one
263 if [-x /sbin/wificonfig -a -n "$inet_plumbed"]; then
264 set -- $inet_plumbed
265 while [$# -gt 0]; do
266 if [-r /dev/wifi/$1]; then
267 /sbin/wificonfig -i $1 startconf >/dev/null
268 fi
269 shift
270 done
271 fi

262 #

new/usr/src/cmd/svc/milestone/net-physical 3

263 # Step through the IPv6 interface list and plumb every interface.
264 # Generate list of plumbed and failed IPv6 interfaces. Each plumbed
265 # interface will be brought up later, after processing any contents of
266 # the /etc/hostname6.* file.
267 #
268 if [-n "$inet6_list"]; then
269 set -- $inet6_list
270 while [$# -gt 0]; do
271 /sbin/ifconfig $1 inet6 plumb
272 if /sbin/ifconfig $1 inet6 >/dev/null 2>&1; then
273 inet6_plumbed="$inet6_plumbed $1"
274 else
275 inet6_failed="$inet6_failed $1"
276 fi
277 shift
278 done
279 [-n "$inet6_failed"] && warn_failed_ifs "plumb IPv6" "$inet6_failed"
280 fi

282 #
283 # Create all of the IPv6 IPMP interfaces.
284 #
285 if [-n "$ipmp6_list"]; then
286 set -- $ipmp6_list
287 while [$# -gt 0]; do
288 if /sbin/ifconfig $1 inet6 ipmp; then
289 ipmp6_created="$ipmp6_created $1"
290 else
291 ipmp6_failed="$ipmp6_failed $1"
292 fi
293 shift
294 done
295 [-n "$ipmp6_failed"] && warn_failed_ifs "create IPv6 IPMP" \
296 "$ipmp6_failed"
297 fi

299 #
300 # Finally configure interfaces set up with ipadm. Any /etc/hostname*.intf
301 # files take precedence over ipadm defined configurations except when
302 # we are in a non-global zone and Layer-3 protection of IP addresses is
303 # enforced on the interface by the global zone.
304 #
305 for showif_output in ‘/sbin/ipadm show-if -p -o ifname,state,current‘; do
306 intf=‘echo $showif_output | /usr/bin/cut -f1 -d:‘
307 state=‘echo $showif_output | /usr/bin/cut -f2 -d:‘
308 current=‘echo $showif_output | /usr/bin/cut -f3 -d:‘
309 if [["$state" != "disabled" && $current != *Z*]]; then
310 #
311 # skip if not a persistent interface, or if it should get IP
312 # configuration from the global zone (’Z’ flag is set)
313 #
314 continue;
315 elif is_iptun $intf; then
316 # skip IP tunnel interfaces plumbed by net-iptun
317 continue;
318 elif [-f /etc/hostname.$intf] || [-f /etc/hostname6.$intf]; then
319 if [[$current != *Z*]]; then
320 echo "found /etc/hostname.$intf "\
321 "or /etc/hostname6.$intf, "\
322 "ignoring ipadm configuration" > /dev/msglog
323 continue;
324 else
325 echo "Ignoring /etc/hostname*.$intf" > /dev/msglog
326 /sbin/ifconfig $intf unplumb > /dev/null 2>&1
327 /sbin/ifconfig $intf inet6 unplumb > /dev/null 2>&1
328 fi

new/usr/src/cmd/svc/milestone/net-physical 4

329 fi

331 # Enable the interface managed by ipadm
332 /sbin/ipadm enable-if -t $intf
333 done

335 #
336 # Process the /etc/hostname[6].* files for IPMP interfaces. Processing these
337 # before non-IPMP interfaces avoids accidental implicit IPMP group creation.
338 #
339 [-n "$ipmp_created"] && if_configure inet "IPMP" $ipmp_created
340 [-n "$ipmp6_created"] && if_configure inet6 "IPMP" $ipmp6_created

342 #
343 # Process the /etc/hostname[6].* files for non-IPMP interfaces.
344 #
345 [-n "$inet_plumbed"] && if_configure inet "" $inet_plumbed
346 [-n "$inet6_plumbed"] && if_configure inet6 "" $inet6_plumbed

348 #
349 # For the IPv4 and IPv6 interfaces that failed to plumb, find (or create)
350 # IPMP meta-interfaces to host their data addresses.
351 #
352 [-n "$inet_failed"] && move_addresses inet
353 [-n "$inet6_failed"] && move_addresses inet6

355 # Run DHCP if requested. Skip boot-configured interface.
356 interface_names="‘echo /etc/dhcp.*[0-9] 2>/dev/null‘"
357 if ["$interface_names" != ’/etc/dhcp.*[0-9]’]; then
358 #
359 # First find the primary interface. Default to the first
360 # interface if not specified. First primary interface found
361 # "wins". Use care not to "reconfigure" a net-booted interface
362 # configured using DHCP. Run through the list of interfaces
363 # again, this time trying DHCP.
364 #
365 i4d_fail=
366 firstif=
367 primary=
368 ORIGIFS="$IFS"
369 IFS="${IFS}."
370 set -- $interface_names

372 while [$# -ge 2]; do
373 shift
374 [-z "$firstif"] && firstif=$1

376 for i in ‘shcat /etc/dhcp\.$1‘; do
377 if ["$i" = primary]; then
378 primary=$1
379 break
380 fi
381 done

383 [-n "$primary"] && break
384 shift
385 done

387 [-z "$primary"] && primary="$firstif"
388 cmdline=‘shcat /etc/dhcp\.${primary}‘

390 if ["$_INIT_NET_IF" != "$primary"]; then
391 echo "starting DHCP on primary interface $primary"
392 /sbin/ifconfig $primary auto-dhcp primary $cmdline
393 # Exit code 4 means ifconfig timed out waiting for dhcpagent
394 [$? != 0] && [$? != 4] && i4d_fail="$i4d_fail $primary"

new/usr/src/cmd/svc/milestone/net-physical 5

395 fi

397 set -- $interface_names

399 while [$# -ge 2]; do
400 shift
401 cmdline=‘shcat /etc/dhcp\.$1‘
402 if ["$1" != "$primary" -a \
403 "$1" != "$_INIT_NET_IF"]; then
404 echo "starting DHCP on interface $1"
405 /sbin/ifconfig $1 dhcp start wait 0 $cmdline
406 # Exit code can’t be timeout when wait is 0
407 [$? != 0] && i4d_fail="$i4d_fail $1"
408 fi
409 shift
410 done
411 IFS="$ORIGIFS"
412 unset ORIGIFS
413 [-n "$i4d_fail"] && warn_failed_ifs "configure IPv4 DHCP" "$i4d_fail"
414 fi

416 # In order to avoid bringing up the interfaces that have
417 # intentionally been left down, perform RARP only if the system
418 # has no configured hostname in /etc/nodename
419 hostname="‘shcat /etc/nodename 2>/dev/null‘"
420 if ["$_INIT_NET_STRATEGY" = "rarp" -o -z "$hostname"]; then
421 /sbin/ifconfig -adD4 auto-revarp netmask + broadcast + up
422 fi

424 #
425 # If the /etc/defaultrouter file exists, process it now so that the next
426 # stage of booting will have access to NFS.
427 #
428 if [-f /etc/defaultrouter]; then
429 while read router rubbish; do
430 case "$router" in
431 ’#’* | ’’) ;; # Ignore comments, empty lines
432 *) /sbin/route -n add default -gateway $router ;;
433 esac
434 done </etc/defaultrouter
435 fi

437 #
438 # If we get here and were not asked to plumb any IPv4 interfaces, look
439 # for boot properties that direct us.
440 #
441 # - The "network-interface" property is required and indicates the
442 # interface name.
443 # - The "xpv-hcp" property, if present, is used by the hypervisor
444 # tools to indicate how the specified interface should be configured.
445 # Permitted values are "dhcp" and "off", where "off" indicates static
446 # IP configuration.
447 #
448 # In the case where "xpv-hcp" is set to "dhcp", no further properties
449 # are required or examined.
450 #
451 # In the case where "xpv-hcp" is not present or set to "off", the
452 # "host-ip" and "subnet-mask" properties are used to configure
453 # the specified interface. The "router-ip" property, if present,
454 # is used to add a default route.
455 #
456 nic="‘/sbin/devprop network-interface‘"
457 if smf_is_globalzone && [-z "$inet_list"] && [-n "$nic"]; then
458 hcp="‘/sbin/devprop xpv-hcp‘"
459 case "$hcp" in
460 "dhcp")

new/usr/src/cmd/svc/milestone/net-physical 6

461 /sbin/ifconfig $nic plumb 2>/dev/null
462 [-n "‘/sbin/ifconfig $nic 2>/dev/null‘"] && (
463 # The interface is successfully plumbed, so
464 # modify "inet_list" to force the exit code
465 # checks to work.
466 inet_list=$nic;
467 # Given that this is the only IPv4 interface,
468 # we assert that it is primary.
469 echo "starting DHCP on primary interface $primary";
470 /sbin/ifconfig $nic auto-dhcp primary;
471 # Exit code 4 means ifconfig timed out waiting
472 # for dhcpagent
473 [$? != 0] && [$? != 4] && \
474 i4d_fail="$i4d_fail $nic";
475)
476 ;;

478 "off"|"")
479 /sbin/devprop host-ip subnet-mask router-ip | (
480 read ip;
481 read mask;
482 read router;
483 [-n "$ip"] && [-n "$mask"] && \
484 /sbin/ifconfig $nic plumb 2>/dev/null
485 [-n "‘/sbin/ifconfig $nic 2>/dev/null‘"] && (
486 # The interface is successfully
487 # plumbed, so modify "inet_list" to
488 # force the exit code checks to work.
489 inet_list=$nic;
490 /sbin/ifconfig $nic inet $ip \
491 netmask $mask broadcast + up 2>/dev/null;
492 [-n "$router"] && route add \
493 default $router 2>/dev/null;
494)
495)
496 ;;
497 esac
498 fi

500 #
501 # We tell smf this service is online if any of the following is true:
502 # - no interfaces were configured for plumbing and no DHCP failures
503 # - any non-loopback IPv4 interfaces are up and have a non-zero address
504 # - there are any DHCP interfaces started
505 # - any non-loopback IPv6 interfaces are up
506 #
507 # If we weren’t asked to configure any interfaces, exit
508 if [-z "$inet_list"] && [-z "$inet6_list"]; then
509 # Config error if DHCP was attempted without plumbed interfaces
510 [-n "$i4d_fail"] && exit $SMF_EXIT_ERR_CONFIG
511 exit $SMF_EXIT_OK
512 fi

514 # Any non-loopback IPv4 interfaces with usable addresses up?
515 if [-n "‘/sbin/ifconfig -a4u‘"]; then
516 /sbin/ifconfig -a4u | while read intf addr rest; do
517 [$intf = inet] && [$addr != 127.0.0.1] &&
518 [$addr != 0.0.0.0] && exit $SMF_EXIT_OK
519 done && exit $SMF_EXIT_OK
520 fi

522 # Any DHCP interfaces started?
523 [-n "‘/sbin/ifconfig -a4 dhcp status 2>/dev/null‘"] && exit $SMF_EXIT_OK

525 # Any non-loopback IPv6 interfaces up?
526 if [-n "‘/sbin/ifconfig -au6‘"]; then

new/usr/src/cmd/svc/milestone/net-physical 7

527 /sbin/ifconfig -au6 | while read intf addr rest; do
528 [$intf = inet6] && [$addr != ::1/128] && exit $SMF_EXIT_OK
529 done && exit $SMF_EXIT_OK
530 fi

532 # This service was supposed to configure something yet didn’t. Exit
533 # with config error.
534 exit $SMF_EXIT_ERR_CONFIG

new/usr/src/cmd/svc/milestone/network-physical.xml 1

**
 5126 Tue Jun 12 19:54:50 2012
new/usr/src/cmd/svc/milestone/network-physical.xml
removed wpa.h header file
updated wpa_supplicant manifest to use global ctrl interface
some changes to libdlwlan, i need to finish ctrl_if integration
**

1 <?xml version="1.0"?>
2 <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">
3 <!--
4 Copyright 2010 Sun Microsystems, Inc. All rights reserved.
5 Use is subject to license terms.

7 CDDL HEADER START

9 The contents of this file are subject to the terms of the
10 Common Development and Distribution License (the "License").
11 You may not use this file except in compliance with the License.

13 You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
14 or http://www.opensolaris.org/os/licensing.
15 See the License for the specific language governing permissions
16 and limitations under the License.

18 When distributing Covered Code, include this CDDL HEADER in each
19 file and include the License file at usr/src/OPENSOLARIS.LICENSE.
20 If applicable, add the following below this CDDL HEADER, with the
21 fields enclosed by brackets "[]" replaced with your own identifying
22 information: Portions Copyright [yyyy] [name of copyright owner]

24 CDDL HEADER END

26 NOTE: This service manifest is not editable; its contents will
27 be overwritten by package or patch operations, including
28 operating system upgrade. Make customizations in a different
29 file.
30 -->

32 <service_bundle type=’manifest’ name=’SUNWcsr:network-physical’>

34 <service
35 name=’network/physical’
36 type=’service’
37 version=’1’>

39 <!-- ifconfig needs loopback for IPC with dhcpagent -->
40 <dependency
41 name=’loopback’
42 grouping=’require_all’
43 restart_on=’none’
44 type=’service’>
45 <service_fmri value=’svc:/network/loopback’ />
46 </dependency>

48 <instance name=’default’ enabled=’true’>

50 <!--
51 physical:default and physical:nwam are mutually exclusive.
52 Use a one-way dependency for now since two-way exclude_all
53 does not work; enforcement of single_instance in the future
54 will fix this.
55 -->
56 <dependency
57 name=’physical_nwam’
58 grouping=’exclude_all’
59 restart_on=’none’

new/usr/src/cmd/svc/milestone/network-physical.xml 2

60 type=’service’>
61 <service_fmri value=’svc:/network/physical:nwam’ />
62 </dependency>

64 <exec_method
65 type=’method’
66 name=’start’
67 exec=’/lib/svc/method/net-physical’
68 timeout_seconds=’600’ />

70 <exec_method
71 type=’method’
72 name=’stop’
73 exec=’:true’
74 timeout_seconds=’3’ />

76 <property_group name=’startd’ type=’framework’>
77 <propval name=’duration’ type=’astring’ value=’transient’ />
78 </property_group>

80 <template>
81 <common_name>
82 <loctext xml:lang=’C’>
83 physical network interfaces
84 </loctext>
85 </common_name>
86 <documentation>
87 <manpage title=’ifconfig’ section=’1M’
88 manpath=’/usr/share/man’ />
89 </documentation>
90 </template>

92 </instance>

94 <instance name=’nwam’ enabled=’false’>

96 <!--
97 wpa_supplicant just opens global control interface and waits for
98 wpa_ctrl to add an interface (could be wired OR wireless)
99 -->
100 <!--
101 <dependency
102 name=’wpa_supplicant’
103 grouping=’require_all’
104 restart_on=’none’
105 type=’service’>
106 <service_fmri value=’svc:/network/wpa_supplicant’ />
107 </dependency>
108 -->

110 #endif /* ! codereview */
111 <exec_method
112 type=’method’
113 name=’start’
114 exec=’/lib/svc/method/net-nwam start’
115 timeout_seconds=’120’ >
116 <method_context>
117 <method_credential user=’root’ group=’root’
118 supp_groups=’netadm’ privileges=’zone’ />
119 </method_context>
120 </exec_method>

122 <exec_method
123 type=’method’
124 name=’stop’
125 exec=’/lib/svc/method/net-nwam stop’

new/usr/src/cmd/svc/milestone/network-physical.xml 3

126 timeout_seconds=’60’ >
127 <method_context>
128 <method_credential user=’root’ group=’root’
129 supp_groups=’netadm’ privileges=’zone’ />
130 </method_context>
131 </exec_method>

133 <exec_method
134 type=’method’
135 name=’refresh’
136 exec=’/lib/svc/method/net-nwam refresh’
137 timeout_seconds=’60’ >
138 <method_context>
139 <method_credential user=’root’ group=’root’
140 supp_groups=’netadm’ privileges=’zone’ />
141 </method_context>
142 </exec_method>

144 <property_group name=’general’ type=’framework’>
145 <!-- to start/stop NWAM services -->
146 <propval name=’action_authorization’ type=’astring’
147 value=’solaris.smf.manage.nwam’ />
148 <propval name=’value_authorization’ type=’astring’
149 value=’solaris.smf.manage.nwam’ />
150 </property_group>

152 <property_group name=’nwamd’ type=’application’>
153 <stability value=’Unstable’ />
154 <propval name=’debug’ type=’boolean’ value=’false’ />
155 <propval name=’autoconf’ type=’boolean’ value=’false’ />
156 <propval name=’ncu_wait_time’ type=’count’ value=’60’ />
157 <propval name=’condition_check_interval’ type=’count’
158 value=’120’ />
159 <propval name=’scan_interval’ type=’count’ value=’120’ />
160 <propval name=’scan_level’ type=’astring’ value=’weak’ />
161 <propval name=’strict_bssid’ type=’boolean’ value=’false’ />
162 <propval name=’active_ncp’ type=’astring’ value=’Automatic’ />
163 <propval name=’value_authorization’ type=’astring’
164 value=’solaris.smf.value.nwam’ />
165 </property_group>

167 <template>
168 <common_name>
169 <loctext xml:lang=’C’>
170 physical network interface autoconfiguration
171 </loctext>
172 </common_name>
173 <documentation>
174 <manpage title=’nwamd’ section=’1M’
175 manpath=’/usr/share/man’ />
176 <doc_link
177 name=’Network Auto-Magic OpenSolaris Project Page’
178 uri=’http://hub.opensolaris.org/bin/view/Project
179 />
180 </documentation>
181 </template>

183 </instance>

185 <stability value=’Unstable’ />

187 </service>

189 </service_bundle>

new/usr/src/lib/libdladm/Makefile 1

**
 2142 Tue Jun 12 19:54:51 2012
new/usr/src/lib/libdladm/Makefile
Fixed minor compile errors
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 #
24 #

26 include $(SRC)/lib/Makefile.lib

28 HDRS = libdladm.h libdladm_impl.h libdllink.h libdlaggr.h \
29 libdlwlan.h libdlwlan_impl.h libdlvnic.h libdlvlan.h \
30 libdlmgmt.h libdlflow.h libdlflow_impl.h libdlstat.h \
31 libdlether.h libdlsim.h libdlbridge.h libdliptun.h \
32 libdlib.h

34 HDRDIR = common

36 SUBDIRS = $(MACH)
37 $(BUILD64)SUBDIRS += $(MACH64)

39 POFILE = libdladm.po
40 MSGFILES = common/libdladm.c common/linkprop.c common/secobj.c \
41 common/libdllink.c common/libdlaggr.c common/wpa_ie.c \
42 common/wpa_if.c common/libdlwlan.c common/libdlvnic.c \
41 common/libdllink.c common/libdlaggr.c \
42 common/libdlwlan.c common/libdlvnic.c \
43 common/libdlvlan.c common/libdlmgmt.c \
44 common/flowattr.c common/flowprop.c \
45 common/propfuncs.c common/libdlflow.c \
46 common/libdlstat.c common/flowattr.c \
47 common/libdlether.c common/libdlsim.c \
48 common/libdlbridge.c common/libdliptun.c\
49 common/libdlib.c

51 XGETFLAGS = -a -x libdladm.xcl

53 all := TARGET = all
54 clean := TARGET = clean
55 clobber := TARGET = clobber
56 install := TARGET = install
57 lint := TARGET = lint

59 .KEEP_STATE:

new/usr/src/lib/libdladm/Makefile 2

61 all clean clobber install lint: $(SUBDIRS)

63 install_h: $(ROOTHDRS)

65 check: $(CHECKHDRS)

67 $(POFILE): pofile_MSGFILES

69 _msg: $(MSGDOMAINPOFILE)

71 $(SUBDIRS): FRC
72 @cd $@; pwd; $(MAKE) $(TARGET)

74 FRC:

76 include $(SRC)/Makefile.msg.targ
77 include $(SRC)/lib/Makefile.targ

new/usr/src/lib/libdladm/Makefile.com 1

**
 1630 Tue Jun 12 19:54:52 2012
new/usr/src/lib/libdladm/Makefile.com
Fixed minor compile errors
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 #

25 LIBRARY = libdladm.a
26 VERS = .1
27 OBJECTS = libdladm.o secobj.o linkprop.o libdllink.o libdlaggr.o wpa_ie.o \
28 wpa_if.o libdlwlan.o libdlvnic.o libdlmgmt.o libdlvlan.o libdlib.o\
27 OBJECTS = libdladm.o secobj.o linkprop.o libdllink.o libdlaggr.o \
28 libdlwlan.o libdlvnic.o libdlmgmt.o libdlvlan.o libdlib.o\
29 flowattr.o flowprop.o propfuncs.o libdlflow.o libdlstat.o \
30 usage.o libdlether.o libdlsim.o libdlbridge.o libdliptun.o

32 include ../../Makefile.lib

34 # install this library in the root filesystem
35 include ../../Makefile.rootfs

37 LIBS = $(DYNLIB) $(LINTLIB)
38 LDLIBS += -ldevinfo -lc -linetutil -lsocket -lscf -lrcm -lnvpair \
39 -lexacct -lnsl -lkstat -lcurses -lpool

41 SRCDIR = ../common
42 $(LINTLIB) := SRCS = $(SRCDIR)/$(LINTSRC)

44 CFLAGS += $(CCVERBOSE)
45 CPPFLAGS += -I$(SRCDIR) -D_REENTRANT

47 .KEEP_STATE:

49 all: $(LIBS)

51 lint: lintcheck

53 include $(SRC)/lib/Makefile.targ

new/usr/src/lib/libdladm/common/libdladm.h 1

**
 9129 Tue Jun 12 19:54:53 2012
new/usr/src/lib/libdladm/common/libdladm.h
moved dladm_secobj_class_t to libdladm
**
______unchanged_portion_omitted_

184 typedef enum {
185 DLADM_SECOBJ_CLASS_WEP = 0,
186 DLADM_SECOBJ_CLASS_PSK,
187 DLADM_SECOBJ_CLASS_TLS,
188 DLADM_SECOBJ_CLASS_TTLS,
189 DLADM_SECOBJ_CLASS_PEAP
190 } dladm_secobj_class_t;

192 #endif /* ! codereview */
193 typedef struct {
194 boolean_t ds_readonly;
195 union {
196 int dsu_confid;
197 nvlist_t *dsu_nvl;
198 } ds_u;
199 } dladm_conf_t;

201 #define ds_confid ds_u.dsu_confid
202 #define ds_nvl ds_u.dsu_nvl

204 #define DLADM_INVALID_CONF 0

206 /* opaque dladm handle to libdladm functions */
207 struct dladm_handle;
208 typedef struct dladm_handle *dladm_handle_t;

210 /* open/close handle */
211 extern dladm_status_t dladm_open(dladm_handle_t *);
212 extern void dladm_close(dladm_handle_t);

214 /*
215 * retrieve the dld file descriptor from handle, only libdladm and
216 * dlmgmtd are given access to the door file descriptor.
217 */
218 extern int dladm_dld_fd(dladm_handle_t);

220 typedef struct dladm_arg_info {
221 const char *ai_name;
222 char *ai_val[DLADM_MAX_ARG_VALS];
223 uint_t ai_count;
224 } dladm_arg_info_t;

226 typedef struct dladm_arg_list {
227 dladm_arg_info_t al_info[DLADM_MAX_ARG_CNT];
228 uint_t al_count;
229 char *al_buf;
230 } dladm_arg_list_t;

232 typedef enum {
233 DLADM_LOGTYPE_LINK = 1,
234 DLADM_LOGTYPE_FLOW
235 } dladm_logtype_t;

237 typedef struct dladm_usage {
238 char du_name[MAXLINKNAMELEN];
239 uint64_t du_duration;
240 uint64_t du_stime;
241 uint64_t du_etime;
242 uint64_t du_ipackets;

new/usr/src/lib/libdladm/common/libdladm.h 2

243 uint64_t du_rbytes;
244 uint64_t du_opackets;
245 uint64_t du_obytes;
246 uint64_t du_bandwidth;
247 boolean_t du_last;
248 } dladm_usage_t;

250 extern const char *dladm_status2str(dladm_status_t, char *);
251 extern dladm_status_t dladm_set_rootdir(const char *);
252 extern const char *dladm_class2str(datalink_class_t, char *);
253 extern const char *dladm_media2str(uint32_t, char *);
254 extern uint32_t dladm_str2media(const char *);
255 extern boolean_t dladm_valid_linkname(const char *);
256 extern boolean_t dladm_str2interval(char *, uint32_t *);
257 extern dladm_status_t dladm_str2bw(char *, uint64_t *);
258 extern const char *dladm_bw2str(int64_t, char *);
259 extern dladm_status_t dladm_str2pri(char *, mac_priority_level_t *);
260 extern const char *dladm_pri2str(mac_priority_level_t, char *);
261 extern dladm_status_t dladm_str2protect(char *, uint32_t *);
262 extern const char *dladm_protect2str(uint32_t, char *);
263 extern dladm_status_t dladm_str2ipv4addr(char *, void *);
264 extern const char *dladm_ipv4addr2str(void *, char *);
265 extern dladm_status_t dladm_str2ipv6addr(char *, void *);
266 extern const char *dladm_ipv6addr2str(void *, char *);

268 extern dladm_status_t dladm_parse_flow_props(char *, dladm_arg_list_t **,
269 boolean_t);
270 extern dladm_status_t dladm_parse_link_props(char *, dladm_arg_list_t **,
271 boolean_t);
272 extern void dladm_free_props(dladm_arg_list_t *);
273 extern dladm_status_t dladm_parse_flow_attrs(char *, dladm_arg_list_t **,
274 boolean_t);
275 extern void dladm_free_attrs(dladm_arg_list_t *);

277 extern dladm_status_t dladm_start_usagelog(dladm_handle_t, dladm_logtype_t,
278 uint_t);
279 extern dladm_status_t dladm_stop_usagelog(dladm_handle_t, dladm_logtype_t);
280 extern dladm_status_t dladm_walk_usage_res(int (*)(dladm_usage_t *, void *),
281 int, char *, char *, char *, char *, void *);
282 extern dladm_status_t dladm_walk_usage_time(int (*)(dladm_usage_t *, void *),
283 int, char *, char *, char *, void *);
284 extern dladm_status_t dladm_usage_summary(int (*)(dladm_usage_t *, void *),
285 int, char *, void *);
286 extern dladm_status_t dladm_usage_dates(int (*)(dladm_usage_t *, void *),
287 int, char *, char *, void *);
288 extern dladm_status_t dladm_zone_boot(dladm_handle_t, zoneid_t);
289 extern dladm_status_t dladm_zone_halt(dladm_handle_t, zoneid_t);

291 extern dladm_status_t dladm_strs2range(char **, uint_t, mac_propval_type_t,
292 mac_propval_range_t **);
293 extern dladm_status_t dladm_range2list(mac_propval_range_t *, void*,
294 uint_t *);
295 extern int dladm_range2strs(mac_propval_range_t *, char **);
296 extern dladm_status_t dladm_list2range(void *, uint_t, mac_propval_type_t,
297 mac_propval_range_t **);

299 #ifdef __cplusplus
300 }
301 #endif

303 #endif /* _LIBDLADM_H */

new/usr/src/lib/libdladm/common/libdllink.h 1

**
 7928 Tue Jun 12 19:54:54 2012
new/usr/src/lib/libdladm/common/libdllink.h
secobjs types now are "wep, psk, eap, pin"
dladm_wlan_secmode_t and dladm_secobj_class_t are not related anymore
**
______unchanged_portion_omitted_

65 /*
66 * Maximum size of secobj value. Note that it should not be greater than
67 * DLD_SECOBJ_VAL_MAX.
68 */
69 #define DLADM_SECOBJ_VAL_MAX 256

71 /*
72 * Maximum size of secobj name. Note that it should not be greater than
73 * DLD_SECOBJ_NAME_MAX.
74 */
75 #define DLADM_SECOBJ_NAME_MAX 32

77 #define DLADM_MAX_PROP_VALCNT 32
78 /*
79 * Size of prop_val buffer passed to pd_get function must be at
80 * least DLADM_PROP_VAL_MAX
81 */
82 #define DLADM_PROP_VAL_MAX 128

84 #define DLADM_SECOBJ_CLASS_WEP 0
85 #define DLADM_SECOBJ_CLASS_WPA 1
86 typedef int dladm_secobj_class_t;

84 typedef int (dladm_walkcb_t)(const char *, void *);

86 /* possible flags for ma_flags below */
87 #define DLADM_MACADDR_USED 0x1

89 typedef enum {
90 DLADM_HWGRP_TYPE_RX = 0x1,
91 DLADM_HWGRP_TYPE_TX
92 } dladm_hwgrp_type_t;

______unchanged_portion_omitted_

new/usr/src/lib/libdladm/common/libdlwlan.c 1

**
 45964 Tue Jun 12 19:54:54 2012
new/usr/src/lib/libdladm/common/libdlwlan.c
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <libintl.h>
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <stddef.h>
32 #include <string.h>
33 #include <stropts.h>
34 #include <libdevinfo.h>
35 #include <net/if.h>
36 #include <net/if_dl.h>
37 #include <net/if_types.h>
38 #include <libdlpi.h>
39 #include <libdllink.h>
40 #include <libscf.h>
40 #include <libdlwlan.h>
41 #include <libdladm_impl.h>
42 #include <libdlwlan_impl.h>
44 #include <net/wpa.h>

44 static int wpa_instance_create(char *ifname);
45 static int wpa_instance_delete(char *ifname);
46 static int wpa_network_config(char *ifname, dladm_wlan_attr_t *attrp,
47 dladm_wlan_key_t *keys, boolean_t *create_ibss, char *identity);
46 static dladm_status_t wpa_instance_create(dladm_handle_t, datalink_id_t,
47 void *);
48 static dladm_status_t wpa_instance_delete(dladm_handle_t, datalink_id_t);

49 static dladm_status_t do_get_bsstype(dladm_handle_t, datalink_id_t, void *,
50 int);
52 static dladm_status_t do_get_essid(dladm_handle_t, datalink_id_t, void *,
53 int);
54 static dladm_status_t do_get_bssid(dladm_handle_t, datalink_id_t, void *,
55 int);

new/usr/src/lib/libdladm/common/libdlwlan.c 2

51 static dladm_status_t do_get_signal(dladm_handle_t, datalink_id_t, void *,
52 int);
53 static dladm_status_t do_get_encryption(dladm_handle_t, datalink_id_t, void *,
54 int);
55 static dladm_status_t do_get_authmode(dladm_handle_t, datalink_id_t, void *,
56 int);
57 static dladm_status_t do_get_linkstatus(dladm_handle_t, datalink_id_t, void *,
58 int);
64 static dladm_status_t do_get_esslist(dladm_handle_t, datalink_id_t, void *,
65 int);
59 static dladm_status_t do_get_rate(dladm_handle_t, datalink_id_t, void *, int);
60 static dladm_status_t do_get_mode(dladm_handle_t, datalink_id_t, void *, int);
68 static dladm_status_t do_get_capability(dladm_handle_t, datalink_id_t, void *,
69 int);
61 static dladm_status_t do_get_wpamode(dladm_handle_t, datalink_id_t, void *,
62 int);

73 static dladm_status_t do_set_bsstype(dladm_handle_t, datalink_id_t,
74 dladm_wlan_bsstype_t *);
75 static dladm_status_t do_set_authmode(dladm_handle_t, datalink_id_t,
76 dladm_wlan_auth_t *);
77 static dladm_status_t do_set_encryption(dladm_handle_t, datalink_id_t,
78 dladm_wlan_secmode_t *);
79 static dladm_status_t do_set_essid(dladm_handle_t, datalink_id_t,
80 dladm_wlan_essid_t *);
81 static dladm_status_t do_set_createibss(dladm_handle_t, datalink_id_t,
82 boolean_t *);
63 static dladm_status_t do_set_key(dladm_handle_t, datalink_id_t,
64 dladm_wlan_key_t *, uint_t);
85 static dladm_status_t do_set_channel(dladm_handle_t, datalink_id_t,
86 dladm_wlan_channel_t *);

65 static dladm_status_t do_scan(dladm_handle_t, datalink_id_t, void *, int);
89 static dladm_status_t do_connect(dladm_handle_t, datalink_id_t, void *, int,
90 dladm_wlan_attr_t *, boolean_t, void *, uint_t,
91 int);
66 static dladm_status_t do_disconnect(dladm_handle_t, datalink_id_t, void *,
67 int);
68 static boolean_t find_val_by_name(const char *, val_desc_t *,
69 uint_t, uint_t *);
70 static boolean_t find_name_by_val(uint_t, val_desc_t *, uint_t, char **);
71 static void generate_essid(dladm_wlan_essid_t *);

73 static dladm_status_t dladm_wlan_wlresult2status(wldp_t *);
74 static dladm_status_t dladm_wlan_validate(dladm_handle_t, datalink_id_t);

76 static val_desc_t linkstatus_vals[] = {
77 { "disconnected", DLADM_WLAN_LINK_DISCONNECTED },
78 { "connected", DLADM_WLAN_LINK_CONNECTED }
79 };

81 static val_desc_t secmode_vals[] = {
82 { "none", DLADM_WLAN_SECMODE_NONE },
83 { "wep", DLADM_WLAN_SECMODE_WEP },
84 { "wpa-psk", DLADM_WLAN_SECMODE_PSK },
85 { "wpa-eap", DLADM_WLAN_SECMODE_EAP }
110 { "wpa", DLADM_WLAN_SECMODE_WPA }
86 };

______unchanged_portion_omitted_

104 /* capital chars*/
105 #endif /* ! codereview */
106 static val_desc_t auth_vals[] = {
107 { "OPEN", DLADM_WLAN_AUTH_OPEN },
108 { "SHARED", DLADM_WLAN_AUTH_SHARED }
129 { "open", DLADM_WLAN_AUTH_OPEN },

new/usr/src/lib/libdladm/common/libdlwlan.c 3

130 { "shared", DLADM_WLAN_AUTH_SHARED }
109 };

111 static val_desc_t bsstype_vals[] = {
112 { "bss", DLADM_WLAN_BSSTYPE_BSS },
113 { "ibss", DLADM_WLAN_BSSTYPE_IBSS }
135 { "ibss", DLADM_WLAN_BSSTYPE_IBSS },
136 { "any", DLADM_WLAN_BSSTYPE_ANY }
114 };

139 #define WLDP_BUFSIZE (MAX_BUF_LEN - WIFI_BUF_OFFSET)

116 static dladm_status_t
117 dladm_wlan_wlresult2status(wldp_t *gbuf)
118 {
119 switch (gbuf->wldp_result) {
120 case WL_SUCCESS:
121 return (DLADM_STATUS_OK);

123 case WL_NOTSUPPORTED:
124 case WL_LACK_FEATURE:
125 return (DLADM_STATUS_NOTSUP);

127 case WL_READONLY:
128 return (DLADM_STATUS_PROPRDONLY);

130 default:
131 break;
132 }

134 return (DLADM_STATUS_FAILED);
135 }

______unchanged_portion_omitted_

208 #define IEEE80211_RATE 0x7f
183 static void
184 fill_wlan_attr(wl_ess_conf_t *wlp, dladm_wlan_attr_t *attrp)
185 {
186 int i;

188 (void) memset(attrp, 0, sizeof (*attrp));

190 attrp->wa_essid.we_length = wlp->wl_ess_conf_essid.wl_essid_length;
191 (void) memcpy(attrp->wa_essid.we_bytes, wlp->wl_ess_conf_essid.wl_essid_
192 attrp->wa_essid.we_length);
216 (void) snprintf(attrp->wa_essid.we_bytes, DLADM_WLAN_MAX_ESSID_LEN,
217 "%s", wlp->wl_ess_conf_essid.wl_essid_essid);
193 attrp->wa_valid |= DLADM_WLAN_ATTR_ESSID;

195 /*
196 * Note: SSID is an array of octets, i.e.,
197 * it is not nul terminated and can, at least in theory,
198 * contain control characters (including nul) and as such,
199 * should be processed as binary data, not a printable string.
200 *
201 *the following call has been replaced with the one above:
202 *(void) snprintf(attrp->wa_essid.we_bytes, DLADM_WLAN_MAX_ESSID_LEN,
203 * "%s", wlp->wl_ess_conf_essid.wl_essid_essid);
204 */

206 #endif /* ! codereview */
207 (void) memcpy(attrp->wa_bssid.wb_bytes, wlp->wl_ess_conf_bssid,
208 DLADM_WLAN_BSSID_LEN);
209 attrp->wa_valid |= DLADM_WLAN_ATTR_BSSID;

211 /*

new/usr/src/lib/libdladm/common/libdlwlan.c 4

212 * Open/Shared is simply not present in the AP’s beacon. It is a
213 * deficiency of WEP, which WPA fixed by only allowing open
214 * authentication for WPA connections. There is simply no way to tell
215 * whether an AP is using shared auth or open system auth because a WEP
216 * AP never broadcasts that information.
217 * [net80211 sets it to 1 (OPEN) by default for scanned nodes]
218 *
219 * If wpa_ie is not present and IEEE80211_CAP_PRIVACY is on => WEP
220 * If wpa_ie is not present and IEEE80211_CAP_PRIVACY is off => NONE
221 */

223 if (wlp->wl_ess_conf_wpa_ie_len == 0) {
224 if (wlp->wl_ess_conf_caps & IEEE80211_CAP_PRIVACY) {
225 attrp->wa_auth = DLADM_WLAN_AUTH_SHARED;
226 attrp->wa_secmode = DLADM_WLAN_SECMODE_WEP;
227 } else {
228 attrp->wa_auth = DLADM_WLAN_AUTH_NONE;
229 attrp->wa_secmode = DLADM_WLAN_SECMODE_NONE;
230 }
231 } else {
232 attrp->wa_auth = DLADM_WLAN_AUTH_OPEN;
233 wpa_parse_wpa_ie(wlp->wl_ess_conf_wpa_ie,
234 wlp->wl_ess_conf_wpa_ie_len, &attrp->wa_ie);
235 /*
236 * check wpa_ie.c defines
237 */
238 if (attrp->wa_ie.key_mgmt == 0)
239 attrp->wa_secmode = DLADM_WLAN_SECMODE_EAP;
240 if (attrp->wa_ie.key_mgmt == 2)
241 attrp->wa_secmode = DLADM_WLAN_SECMODE_PSK;
242 }
243 attrp->wa_valid |= DLADM_WLAN_ATTR_AUTH;
220 attrp->wa_secmode = (wlp->wl_ess_conf_wepenabled ==
221 WL_ENC_WEP ? DLADM_WLAN_SECMODE_WEP : DLADM_WLAN_SECMODE_NONE);
222 if (wlp->wl_ess_conf_reserved[0] > 0)
223 attrp->wa_secmode = DLADM_WLAN_SECMODE_WPA;
244 attrp->wa_valid |= DLADM_WLAN_ATTR_SECMODE;

246 /* caps values are not mutually-exclusive here */
247 if (wlp->wl_ess_conf_caps & IEEE80211_CAP_IBSS)
248 attrp->wa_bsstype = DLADM_WLAN_BSSTYPE_IBSS;
249 if (wlp->wl_ess_conf_caps & IEEE80211_CAP_ESS)
250 attrp->wa_bsstype = DLADM_WLAN_BSSTYPE_BSS;
226 attrp->wa_bsstype = (wlp->wl_ess_conf_bsstype == WL_BSS_BSS ?
227 DLADM_WLAN_BSSTYPE_BSS : DLADM_WLAN_BSSTYPE_IBSS);
251 attrp->wa_valid |= DLADM_WLAN_ATTR_BSSTYPE;

230 attrp->wa_auth = (wlp->wl_ess_conf_authmode == 0 ?
231 DLADM_WLAN_AUTH_OPEN : DLADM_WLAN_AUTH_SHARED);
232 attrp->wa_valid |= DLADM_WLAN_ATTR_AUTH;

253 attrp->wa_strength = DLADM_WLAN_SIGNAL2STRENGTH(wlp->wl_ess_conf_sl);
254 attrp->wa_valid |= DLADM_WLAN_ATTR_STRENGTH;

256 attrp->wa_mode = do_convert_mode((wl_phy_conf_t *)&wlp->wl_phy_conf);
257 attrp->wa_valid |= DLADM_WLAN_ATTR_MODE;

259 for (i = 0; i < MAX_SCAN_SUPPORT_RATES; i++) {
260 wlp->wl_supported_rates[i] &= IEEE80211_RATE;
261 if (wlp->wl_supported_rates[i] > attrp->wa_speed)
262 attrp->wa_speed = wlp->wl_supported_rates[i];
263 }
264 if (attrp->wa_speed > 0)
265 attrp->wa_valid |= DLADM_WLAN_ATTR_SPEED;

267 if (i_dladm_wlan_convert_chan((wl_phy_conf_t *)&wlp->wl_phy_conf,

new/usr/src/lib/libdladm/common/libdlwlan.c 5

268 &attrp->wa_channel))
269 attrp->wa_valid |= DLADM_WLAN_ATTR_CHANNEL;
270 }

272 #define WLDP_BUFSIZE (MAX_BUF_LEN - WIFI_BUF_OFFSET)

274 #endif /* ! codereview */
275 dladm_status_t
276 dladm_wlan_scan(dladm_handle_t handle, datalink_id_t linkid, void *arg,
277 boolean_t (*func)(void *, dladm_wlan_attr_t *))
278 {
279 int i;
280 uint32_t count;
281 wl_ess_conf_t *wlp;
282 wl_ess_list_t *wls = NULL;
283 char buf[WLDP_BUFSIZE];
284 wl_linkstatus_t wl_status;
285 dladm_wlan_attr_t wlattr;
286 dladm_status_t status;

288 if ((status = dladm_wlan_validate(handle, linkid)) != DLADM_STATUS_OK)
289 goto done;

291 status = do_get_linkstatus(handle, linkid, &wl_status,
292 sizeof (wl_status));
293 if (status != DLADM_STATUS_OK)
294 goto done;

296 if ((status = do_scan(handle, linkid, buf, sizeof (buf))) !=
297 DLADM_STATUS_OK)
298 goto done;

300 if (func == NULL) {
301 status = DLADM_STATUS_OK;
302 goto done;
303 }

305 wls = malloc(WLDP_BUFSIZE);
306 if (wls == NULL) {
307 status = DLADM_STATUS_NOMEM;
308 goto done;
309 }

311 if ((status = dladm_wlan_get_esslist(handle, linkid, wls, WLDP_BUFSIZE))
253 if ((status = do_get_esslist(handle, linkid, wls, WLDP_BUFSIZE))
312 != DLADM_STATUS_OK)
313 goto done;

315 wlp = wls->wl_ess_list_ess;
316 count = wls->wl_ess_list_num;

318 for (i = 0; i < count; i++, wlp++) {
319 fill_wlan_attr(wlp, &wlattr);
320 if (!func(arg, &wlattr))
321 break;
322 }

324 if (wl_status != WL_CONNECTED) {
325 status = do_get_linkstatus(handle, linkid, &wl_status,
326 sizeof (&wl_status));
327 if (status != DLADM_STATUS_OK)
328 goto done;
329 if (wl_status == WL_CONNECTED)
330 (void) do_disconnect(handle, linkid, buf, sizeof (buf));
331 }

new/usr/src/lib/libdladm/common/libdlwlan.c 6

333 status = DLADM_STATUS_OK;
334 done:
335 free(wls);
336 return (status);
337 }

______unchanged_portion_omitted_

380 /*
381 * Callback function used by dladm_wlan_connect() to filter out unwanted
382 * WLANs when scanning for available WLANs. Always returns B_TRUE to
383 * continue the scan.
384 */
385 static boolean_t
386 connect_cb(void *arg, dladm_wlan_attr_t *attrp)
387 {
388 attr_node_t *nodep;
389 dladm_wlan_attr_t *fattrp;
390 connect_state_t *statep = (connect_state_t *)arg;

392 fattrp = statep->cs_attr;
393 if (fattrp == NULL)
394 goto append;

396 if ((fattrp->wa_valid & attrp->wa_valid) != fattrp->wa_valid)
397 return (B_TRUE);

399 if ((fattrp->wa_valid & DLADM_WLAN_ATTR_ESSID) != 0 &&
400 memcmp(fattrp->wa_essid.we_bytes, attrp->wa_essid.we_bytes,
401 attrp->wa_essid.we_length) != 0)
342 strncmp(fattrp->wa_essid.we_bytes, attrp->wa_essid.we_bytes,
343 DLADM_WLAN_MAX_ESSID_LEN) != 0)
402 return (B_TRUE);

404 if ((fattrp->wa_valid & DLADM_WLAN_ATTR_SECMODE) != 0 &&
405 fattrp->wa_secmode != attrp->wa_secmode)
406 return (B_TRUE);

408 if ((fattrp->wa_valid & DLADM_WLAN_ATTR_MODE) != 0 &&
409 fattrp->wa_mode != attrp->wa_mode)
410 return (B_TRUE);

412 if ((fattrp->wa_valid & DLADM_WLAN_ATTR_STRENGTH) != 0 &&
413 fattrp->wa_strength != attrp->wa_strength)
414 return (B_TRUE);

416 if ((fattrp->wa_valid & DLADM_WLAN_ATTR_SPEED) != 0 &&
417 fattrp->wa_speed != attrp->wa_speed)
418 return (B_TRUE);

420 if ((fattrp->wa_valid & DLADM_WLAN_ATTR_AUTH) != 0) {
421 attrp->wa_auth = fattrp->wa_auth;
422 attrp->wa_valid |= DLADM_WLAN_ATTR_AUTH;
423 }

425 if ((fattrp->wa_valid & DLADM_WLAN_ATTR_BSSTYPE) != 0 &&
426 fattrp->wa_bsstype != attrp->wa_bsstype)
427 return (B_TRUE);

429 if ((fattrp->wa_valid & DLADM_WLAN_ATTR_BSSID) != 0 &&
430 memcmp(fattrp->wa_bssid.wb_bytes, attrp->wa_bssid.wb_bytes,
431 DLADM_WLAN_BSSID_LEN) != 0)
432 return (B_TRUE);
433 append:
434 nodep = malloc(sizeof (attr_node_t));
435 if (nodep == NULL)
436 return (B_TRUE);

new/usr/src/lib/libdladm/common/libdlwlan.c 7

438 (void) memcpy(&nodep->an_attr, attrp, sizeof (dladm_wlan_attr_t));
439 nodep->an_next = statep->cs_list;
440 statep->cs_list = nodep;
441 statep->cs_count++;

443 return (B_TRUE);
444 }

388 #define IEEE80211_C_WPA 0x01800000

390 static dladm_status_t
391 do_connect(dladm_handle_t handle, datalink_id_t linkid, void *buf, int bufsize,
392 dladm_wlan_attr_t *attrp, boolean_t create_ibss, void *keys,
393 uint_t key_count, int timeout)
394 {
395 dladm_wlan_secmode_t secmode;
396 dladm_wlan_auth_t authmode;
397 dladm_wlan_bsstype_t bsstype;
398 dladm_wlan_essid_t essid;
399 boolean_t essid_valid = B_FALSE;
400 dladm_status_t status;
401 dladm_wlan_channel_t channel;
402 hrtime_t start;
403 wl_capability_t *caps;
404 wl_linkstatus_t wl_status;

406 if ((attrp->wa_valid & DLADM_WLAN_ATTR_CHANNEL) != 0) {
407 channel = attrp->wa_channel;
408 status = do_set_channel(handle, linkid, &channel);
409 if (status != DLADM_STATUS_OK)
410 goto fail;
411 }

413 secmode = ((attrp->wa_valid & DLADM_WLAN_ATTR_SECMODE) != 0) ?
414 attrp->wa_secmode : DLADM_WLAN_SECMODE_NONE;

416 if ((status = do_set_encryption(handle, linkid, &secmode)) !=
417 DLADM_STATUS_OK)
418 goto fail;

420 authmode = ((attrp->wa_valid & DLADM_WLAN_ATTR_AUTH) != 0) ?
421 attrp->wa_auth : DLADM_WLAN_AUTH_OPEN;

423 if ((status = do_set_authmode(handle, linkid, &authmode)) !=
424 DLADM_STATUS_OK)
425 goto fail;

427 bsstype = ((attrp->wa_valid & DLADM_WLAN_ATTR_BSSTYPE) != 0) ?
428 attrp->wa_bsstype : DLADM_WLAN_BSSTYPE_BSS;

430 if ((status = do_set_bsstype(handle, linkid, &bsstype)) !=
431 DLADM_STATUS_OK)
432 goto fail;

434 if (secmode == DLADM_WLAN_SECMODE_WEP) {
435 if (keys == NULL || key_count == 0 ||
436 key_count > MAX_NWEPKEYS) {
437 status = DLADM_STATUS_BADARG;
438 goto fail;
439 }
440 status = do_set_key(handle, linkid, keys, key_count);
441 if (status != DLADM_STATUS_OK)
442 goto fail;
443 } else if (secmode == DLADM_WLAN_SECMODE_WPA) {
444 if (keys == NULL || key_count == 0 ||

new/usr/src/lib/libdladm/common/libdlwlan.c 8

445 key_count > MAX_NWEPKEYS) {
446 status = DLADM_STATUS_BADARG;
447 goto fail;
448 }
449 status = do_get_capability(handle, linkid, buf, bufsize);
450 if (status != DLADM_STATUS_OK)
451 goto fail;
452 caps = (wl_capability_t *)buf;
453 if ((caps->caps & IEEE80211_C_WPA) == 0)
454 return (DLADM_STATUS_NOTSUP);
455 }

457 if (create_ibss) {
458 status = do_set_channel(handle, linkid, &channel);
459 if (status != DLADM_STATUS_OK)
460 goto fail;

462 status = do_set_createibss(handle, linkid, &create_ibss);
463 if (status != DLADM_STATUS_OK)
464 goto fail;

466 if ((attrp->wa_valid & DLADM_WLAN_ATTR_ESSID) == 0) {
467 generate_essid(&essid);
468 essid_valid = B_TRUE;
469 }
470 }

472 if ((attrp->wa_valid & DLADM_WLAN_ATTR_ESSID) != 0) {
473 essid = attrp->wa_essid;
474 essid_valid = B_TRUE;
475 }

477 if (!essid_valid) {
478 status = DLADM_STATUS_FAILED;
479 goto fail;
480 }

482 if ((status = do_set_essid(handle, linkid, &essid)) != DLADM_STATUS_OK)
483 goto fail;

485 /*
486 * Because wpa daemon needs getting essid from driver,
487 * we need call do_set_essid() first, then call wpa_instance_create().
488 */
489 if (secmode == DLADM_WLAN_SECMODE_WPA && keys != NULL)
490 (void) wpa_instance_create(handle, linkid, keys);

492 start = gethrtime();
493 for (;;) {
494 status = do_get_linkstatus(handle, linkid, &wl_status,
495 sizeof (wl_status));
496 if (status != DLADM_STATUS_OK)
497 goto fail;

499 if (wl_status == WL_CONNECTED)
500 break;

502 (void) poll(NULL, 0, DLADM_WLAN_CONNECT_POLLRATE);
503 if ((timeout >= 0) && (gethrtime() - start) /
504 NANOSEC >= timeout) {
505 status = DLADM_STATUS_TIMEDOUT;
506 goto fail;
507 }
508 }
509 status = DLADM_STATUS_OK;
510 fail:

new/usr/src/lib/libdladm/common/libdlwlan.c 9

511 return (status);
512 }

446 dladm_status_t
447 dladm_wlan_connect(dladm_handle_t handle, datalink_id_t linkid,
448 dladm_wlan_attr_t *attrp, int timeout, void *keys,
449 uint_t key_count, uint_t flags, char *identity)
516 dladm_wlan_attr_t *attrp, int timeout, void *keys, uint_t key_count,
517 uint_t flags)
450 {
451 char ifname[MAXLINKNAMELEN];
452 boolean_t create_ibss;
519 int i;
520 char buf[WLDP_BUFSIZE];
521 connect_state_t state = {0, NULL, NULL};
522 attr_node_t *nodep = NULL;
523 boolean_t create_ibss, set_authmode;
524 dladm_wlan_attr_t **wl_list = NULL;
453 dladm_status_t status;
454 wl_linkstatus_t wl_status;
455 hrtime_t start;
456 #endif /* ! codereview */

458 if ((status = dladm_wlan_validate(handle, linkid)) != DLADM_STATUS_OK)
459 return (status);

461 if ((status = dladm_datalink_id2info(handle, linkid, NULL, NULL, NULL,
462 ifname, sizeof (ifname))) != DLADM_STATUS_OK)
463 goto done;

465 #endif /* ! codereview */
466 if ((status = do_get_linkstatus(handle, linkid, &wl_status,
467 sizeof (wl_status))) != DLADM_STATUS_OK)
468 goto done;

470 if (wl_status == WL_CONNECTED) {
471 status = DLADM_STATUS_ISCONN;
472 goto done;
473 }

475 if (wpa_instance_create(ifname))
476 goto done;

478 if (wpa_network_config(ifname, attrp, keys, &create_ibss, identity)) {
479 status = DLADM_STATUS_BADVAL;
480 goto done;
481 }

483 /*
484 * DLADM_WLAN_CONNECT_CREATEIBSS:
485 * If this flag is set and the bsstype attribute attr->wa_bsstype is
486 * set to DLADM_WLAN_BSSTYPE_IBSS:
487 * If the essid attribute attr->wa_essid is specified and there exists
488 * no WLAN on the discovered WLAN with this particular essid, an adhoc
489 * WLAN with essid equal to attr->wa_essid will be created.
490 * If the essid attribute is not specified, an adhoc WLAN with a random
491 * essid will be created, irrespective of which WLANs are available.
492 */

494 /* we will manage this inside wpa_network config
527 set_authmode = ((attrp != NULL) &&
528 (attrp->wa_valid & DLADM_WLAN_ATTR_MODE) != 0);
495 create_ibss = ((flags & DLADM_WLAN_CONNECT_CREATEIBSS) != 0 &&
496 attrp != NULL && (attrp->wa_valid & DLADM_WLAN_ATTR_BSSTYPE) != 0 &&
530 attrp != NULL &&
531 (attrp->wa_valid & DLADM_WLAN_ATTR_BSSTYPE) != 0 &&

new/usr/src/lib/libdladm/common/libdlwlan.c 10

497 attrp->wa_bsstype == DLADM_WLAN_BSSTYPE_IBSS);

499 if ((create_ibss && attrp != NULL &&
534 if ((flags & DLADM_WLAN_CONNECT_NOSCAN) != 0 ||
535 (create_ibss && attrp != NULL &&
500 (attrp->wa_valid & DLADM_WLAN_ATTR_ESSID) == 0)) {
501 status = do_connect(handle, linkid, buf, sizeof (buf), attrp,
502 create_ibss, keys, key_count, timeout);
503 goto done;
540 }

542 state.cs_attr = attrp;
543 state.cs_list = NULL;
544 state.cs_count = 0;

546 status = dladm_wlan_scan(handle, linkid, &state, connect_cb);
547 if (status != DLADM_STATUS_OK)
548 goto done;

505 if (state.cs_count == 0) {
506 if (!create_ibss) {
507 status = DLADM_STATUS_NOTFOUND;
508 goto done;
509 }
510 } */
555 status = do_connect(handle, linkid, buf, sizeof (buf),
556 attrp, create_ibss, keys, key_count, timeout);
557 goto done;
558 }

512 start = gethrtime();
513 for (;;) {
514 status = do_get_linkstatus(handle, linkid, &wl_status,
515 sizeof (wl_status));
516 if (status != DLADM_STATUS_OK)
560 wl_list = malloc(state.cs_count * sizeof (dladm_wlan_attr_t *));
561 if (wl_list == NULL) {
562 status = DLADM_STATUS_NOMEM;
517 goto done;
564 }

519 if (wl_status == WL_CONNECTED)
566 nodep = state.cs_list;
567 for (i = 0; i < state.cs_count; i++) {
568 wl_list[i] = &nodep->an_attr;
569 nodep = nodep->an_next;
570 }
571 qsort(wl_list, state.cs_count, sizeof (dladm_wlan_attr_t *),
572 attr_compare);

574 for (i = 0; i < state.cs_count; i++) {
575 dladm_wlan_attr_t *ap = wl_list[i];

577 status = do_connect(handle, linkid, buf, sizeof (buf),
578 ap, create_ibss, keys, key_count, timeout);
579 if (status == DLADM_STATUS_OK)
580 break;

582 if (!set_authmode) {
583 ap->wa_auth = DLADM_WLAN_AUTH_SHARED;
584 ap->wa_valid |= DLADM_WLAN_ATTR_AUTH;
585 status = do_connect(handle, linkid, buf, sizeof (buf),
586 ap, create_ibss, keys, key_count, timeout);
587 if (status == DLADM_STATUS_OK)
520 break;

new/usr/src/lib/libdladm/common/libdlwlan.c 11

522 (void) poll(NULL, 0, DLADM_WLAN_CONNECT_POLLRATE);
523 if ((timeout >= 0) && (gethrtime() - start) /
524 NANOSEC >= timeout) {
525 status = DLADM_STATUS_TIMEDOUT;
526 goto done;
527 #endif /* ! codereview */
528 }
529 }

531 #endif /* ! codereview */
532 done:
533 if ((status != DLADM_STATUS_OK) && (status != DLADM_STATUS_ISCONN))
534 (void) do_disconnect(handle, linkid, NULL, NULL);
589 (void) do_disconnect(handle, linkid, buf, sizeof (buf));

591 while (state.cs_list != NULL) {
592 nodep = state.cs_list;
593 state.cs_list = nodep->an_next;
594 free(nodep);
595 }
596 free(wl_list);
536 return (status);
537 }

______unchanged_portion_omitted_

576 dladm_status_t
577 dladm_wlan_get_linkattr(dladm_handle_t handle, datalink_id_t linkid,
578 dladm_wlan_linkattr_t *attrp)
579 {
580 wl_rssi_t signal;
581 wl_bss_type_t bsstype;
582 wl_authmode_t authmode;
583 /* used only in dladm show-wifi */
584 #endif /* ! codereview */
585 wl_encryption_t encryption;
586 wl_rates_t *ratesp = NULL;
587 dladm_wlan_attr_t *wl_attrp;
588 dladm_status_t status;
589 wl_bssid_t wl_bssid;
644 char buf[WLDP_BUFSIZE];
590 wl_essid_t wls;
591 wl_phy_conf_t wl_phy_conf;
592 wl_linkstatus_t wl_status;

594 if (attrp == NULL)
595 return (DLADM_STATUS_BADARG);

597 if ((status = dladm_wlan_validate(handle, linkid)) != DLADM_STATUS_OK)
598 goto done;

600 (void) memset(attrp, 0, sizeof (*attrp));
601 wl_attrp = &attrp->la_wlan_attr;

603 if ((status = do_get_linkstatus(handle, linkid, &wl_status,
604 sizeof (wl_status))) != DLADM_STATUS_OK)
605 goto done;

607 attrp->la_valid |= DLADM_WLAN_LINKATTR_STATUS;
608 if (wl_status != WL_CONNECTED)
609 attrp->la_status = DLADM_WLAN_LINK_DISCONNECTED;
610 else
611 attrp->la_status = DLADM_WLAN_LINK_CONNECTED;

613 /* essid */
614 if ((status = dladm_wlan_get_essid(handle, linkid, &wls, sizeof (wls)))
668 if ((status = do_get_essid(handle, linkid, &wls, sizeof (wls)))

new/usr/src/lib/libdladm/common/libdlwlan.c 12

615 != DLADM_STATUS_OK)
616 goto done;
617 wl_attrp->wa_essid.we_length = wls.wl_essid_length;
618 (void) memcpy(wl_attrp->wa_essid.we_bytes, wls.wl_essid_essid,
619 wls.wl_essid_length);

672 (void) strlcpy(wl_attrp->wa_essid.we_bytes, wls.wl_essid_essid,
673 DLADM_WLAN_MAX_ESSID_LEN);

620 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_ESSID;

622 /* bssid */
623 if ((status = dladm_wlan_get_bssid(handle, linkid, wl_bssid, sizeof (wl_
677 if ((status = do_get_bssid(handle, linkid, buf, sizeof (buf)))
624 != DLADM_STATUS_OK)
625 goto done;
626 (void) memcpy(wl_attrp->wa_bssid.wb_bytes, wl_bssid, DLADM_WLAN_BSSID_LE

681 (void) memcpy(wl_attrp->wa_bssid.wb_bytes, buf, DLADM_WLAN_BSSID_LEN);

627 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_BSSID;

629 if (attrp->la_status == DLADM_WLAN_LINK_DISCONNECTED) {
630 attrp->la_valid |= DLADM_WLAN_LINKATTR_WLAN;
631 status = DLADM_STATUS_OK;
632 goto done;
633 }

635 /* returned values used only in dladm show-wifi */
636 #endif /* ! codereview */
637 if ((status = do_get_encryption(handle, linkid, &encryption,
638 sizeof (encryption))) != DLADM_STATUS_OK)
639 goto done;

641 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_SECMODE;

643 /* !!!! FIX ME!!!! */
644 /*
645 * this should be alligned with protocol/scan results,
646 * not types of keys used
647 */
648 #endif /* ! codereview */
649 switch (encryption) {
650 case WL_NOENCRYPTION:
651 wl_attrp->wa_secmode = DLADM_WLAN_SECMODE_NONE;
652 break;
653 case WL_ENC_WEP:
654 wl_attrp->wa_secmode = DLADM_WLAN_SECMODE_WEP;
655 break;
656 case WL_ENC_WPA:
657 wl_attrp->wa_secmode = DLADM_WLAN_SECMODE_PSK;
691 wl_attrp->wa_secmode = DLADM_WLAN_SECMODE_WPA;
658 break;
659 default:
660 wl_attrp->wa_valid &= ~DLADM_WLAN_ATTR_SECMODE;
661 break;
662 }

664 if ((status = do_get_signal(handle, linkid, &signal, sizeof (signal)))
665 != DLADM_STATUS_OK)
666 goto done;

668 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_STRENGTH;
669 wl_attrp->wa_strength = DLADM_WLAN_SIGNAL2STRENGTH(signal);

671 ratesp = malloc(WLDP_BUFSIZE);

new/usr/src/lib/libdladm/common/libdlwlan.c 13

672 if (ratesp == NULL) {
673 status = DLADM_STATUS_NOMEM;
674 goto done;
675 }

677 if ((status = do_get_rate(handle, linkid, ratesp, WLDP_BUFSIZE))
678 != DLADM_STATUS_OK)
679 goto done;

681 if (ratesp->wl_rates_num > 0) {
682 uint_t i, r = 0;

684 for (i = 0; i < ratesp->wl_rates_num; i++) {
685 if (ratesp->wl_rates_rates[i] > r)
686 r = ratesp->wl_rates_rates[i];
687 }
688 wl_attrp->wa_speed = r;
689 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_SPEED;
690 }

692 if ((status = do_get_authmode(handle, linkid, &authmode,
693 sizeof (authmode))) != DLADM_STATUS_OK)
694 goto done;

696 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_AUTH;

698 switch (authmode) {
699 case WL_OPENSYSTEM:
700 wl_attrp->wa_auth = DLADM_WLAN_AUTH_OPEN;
701 break;
702 case WL_SHAREDKEY:
703 wl_attrp->wa_auth = DLADM_WLAN_AUTH_SHARED;
704 break;
705 default:
706 wl_attrp->wa_valid &= ~DLADM_WLAN_ATTR_AUTH;
707 break;
708 }

710 if ((status = do_get_bsstype(handle, linkid, &bsstype,
711 sizeof (bsstype))) != DLADM_STATUS_OK)
712 goto done;

714 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_BSSTYPE;

716 switch (bsstype) {
717 case WL_BSS_BSS:
718 wl_attrp->wa_bsstype = DLADM_WLAN_BSSTYPE_BSS;
719 break;
720 case WL_BSS_IBSS:
721 wl_attrp->wa_bsstype = DLADM_WLAN_BSSTYPE_IBSS;
722 break;
757 case WL_BSS_ANY:
758 wl_attrp->wa_bsstype = DLADM_WLAN_BSSTYPE_ANY;
759 break;
723 default:
724 wl_attrp->wa_valid &= ~DLADM_WLAN_ATTR_BSSTYPE;
725 break;
726 }

728 if ((status = do_get_mode(handle, linkid, &wl_phy_conf,
729 sizeof (wl_phy_conf))) != DLADM_STATUS_OK)
730 goto done;

732 wl_attrp->wa_mode = do_convert_mode(&wl_phy_conf);
733 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_MODE;
734 if (wl_attrp->wa_mode != DLADM_WLAN_MODE_NONE)

new/usr/src/lib/libdladm/common/libdlwlan.c 14

735 wl_attrp->wa_valid |= DLADM_WLAN_ATTR_MODE;

737 attrp->la_valid |= DLADM_WLAN_LINKATTR_WLAN;
738 status = DLADM_STATUS_OK;

740 done:
741 free(ratesp);
742 return (status);
743 }

______unchanged_portion_omitted_

791 /* data to string */

793 #endif /* ! codereview */
794 const char *
795 dladm_wlan_essid2str(dladm_wlan_essid_t *essid, char *buf)
796 {
797 (void) snprintf(buf, essid->we_length+1, "%s", essid->we_bytes);
828 (void) snprintf(buf, DLADM_STRSIZE, "%s", essid->we_bytes);
798 return (buf);
799 }

______unchanged_portion_omitted_

820 /*
821 * SECMODE SHOULD NEVER BE PRINTED, in known-wlan.conf and secobj.conf we’ll use
822 * secobj_class values, and for scan results wpa_s values
823 */
824 #endif /* ! codereview */
825 const char *
826 dladm_wlan_secmode2str(dladm_wlan_secmode_t *secmode, char *buf)
827 {
828 return (dladm_wlan_val2str((uint_t)*secmode, secmode_vals,
829 VALCNT(secmode_vals), buf));
830 }

832 const char *
833 dladm_wlan_strength2str(dladm_wlan_strength_t *strength, char *buf)
834 {
835 return (dladm_wlan_val2str((uint_t)*strength, strength_vals,
836 VALCNT(strength_vals), buf));
837 }

839 const char *
840 dladm_wlan_mode2str(dladm_wlan_mode_t *mode, char *buf)
841 {
842 return (dladm_wlan_val2str((uint_t)*mode, mode_vals,
843 VALCNT(mode_vals), buf));
844 }

846 const char *
847 dladm_wlan_speed2str(dladm_wlan_speed_t *speed, char *buf)
848 {
849 (void) snprintf(buf, DLADM_STRSIZE, "%.*f", *speed % 2,
850 (float)(*speed) / 2);
851 return (buf);
852 }

854 const char *
855 dladm_wlan_auth2str(dladm_wlan_auth_t *auth, char *buf)
856 {
857 return (dladm_wlan_val2str((uint_t)*auth, auth_vals,
858 VALCNT(auth_vals), buf));
859 }

861 const char *
862 dladm_wlan_bsstype2str(dladm_wlan_bsstype_t *bsstype, char *buf)

new/usr/src/lib/libdladm/common/libdlwlan.c 15

863 {
864 return (dladm_wlan_val2str((uint_t)*bsstype, bsstype_vals,
865 VALCNT(bsstype_vals), buf));
866 }

868 const char *
869 dladm_wlan_linkstatus2str(dladm_wlan_linkstatus_t *linkstatus, char *buf)
870 {
871 return (dladm_wlan_val2str((uint_t)*linkstatus, linkstatus_vals,
872 VALCNT(linkstatus_vals), buf));
873 }

875 /* string to data */

877 #endif /* ! codereview */
878 dladm_status_t
879 dladm_wlan_str2essid(const char *str, dladm_wlan_essid_t *essid)
880 {
881 if (str[0] == ’\0’ || strnlen(str, DLADM_WLAN_MAX_ESSID_LEN + 2) ==
882 DLADM_WLAN_MAX_ESSID_LEN + 2)
851 if (str[0] == ’\0’ || strlen(str) > DLADM_WLAN_MAX_ESSID_LEN - 1)
883 return (DLADM_STATUS_BADARG);

885 essid->we_length=strnlen(str, DLADM_WLAN_MAX_ESSID_LEN + 1);
886 (void) memcpy(essid->we_bytes, str, essid->we_length);
854 (void) strlcpy(essid->we_bytes, str, DLADM_WLAN_MAX_ESSID_LEN);
887 return (DLADM_STATUS_OK);
888 }

______unchanged_portion_omitted_

991 /* legacy ioctl for WL_SCAN and WL_DISASSOCIATE */

993 #endif /* ! codereview */
994 dladm_status_t
995 i_dladm_wlan_legacy_ioctl(dladm_handle_t handle, datalink_id_t linkid,
996 wldp_t *gbuf, uint_t id, size_t len, uint_t cmd, size_t cmdlen)
997 {
998 char linkname[MAXPATHLEN];
999 int fd, rc;
1000 struct strioctl stri;
1001 uint32_t flags;
1002 dladm_status_t status;
1003 uint32_t media;
1004 char link[MAXLINKNAMELEN];

1006 if ((status = dladm_datalink_id2info(handle, linkid, &flags, NULL,
1007 &media, link, MAXLINKNAMELEN)) != DLADM_STATUS_OK) {
1008 return (status);
1009 }

1011 if (media != DL_WIFI)
1012 return (DLADM_STATUS_BADARG);

1014 if (!(flags & DLADM_OPT_ACTIVE))
1015 return (DLADM_STATUS_TEMPONLY);

1017 /*
1018 * dlpi_open() is not used here because libdlpi depends on libdladm,
1019 * and we do not want to introduce recursive dependencies.
1020 */
1021 (void) snprintf(linkname, MAXPATHLEN, "/dev/net/%s", link);
1022 if ((fd = open(linkname, O_RDWR)) < 0)
1023 return (dladm_errno2status(errno));

1025 gbuf->wldp_type = NET_802_11;
1026 gbuf->wldp_id = id;

new/usr/src/lib/libdladm/common/libdlwlan.c 16

1027 gbuf->wldp_length = len;

1029 stri.ic_timout = 0;
1030 stri.ic_dp = (char *)gbuf;
1031 stri.ic_cmd = cmd;
1032 stri.ic_len = cmdlen;

1034 if ((rc = ioctl(fd, I_STR, &stri)) != 0) {
1035 if (rc > 0) {
1036 /*
1037 * Non-negative return value indicates the specific
1038 * operation failed and the reason for the failure
1039 * was stored in gbuf->wldp_result.
1040 */
1041 status = dladm_wlan_wlresult2status(gbuf);
1042 } else {
1043 /*
1044 * Negative return value indicates the ioctl failed.
1045 */
1046 status = dladm_errno2status(errno);
1047 }
1048 }
1049 (void) close(fd);
1050 return (status);
1051 }

1053 static dladm_status_t
1054 do_cmd_ioctl(dladm_handle_t handle, datalink_id_t linkid, void *buf,
1055 int buflen, uint_t cmd)
1056 {
1057 wldp_t *gbuf;
1058 dladm_status_t status = DLADM_STATUS_OK;

1060 if ((gbuf = malloc(MAX_BUF_LEN)) == NULL)
1061 return (DLADM_STATUS_NOMEM);

1063 (void) memset(gbuf, 0, MAX_BUF_LEN);
1064 status = i_dladm_wlan_legacy_ioctl(handle, linkid, gbuf, cmd,
1065 WLDP_BUFSIZE, WLAN_COMMAND, sizeof (wldp_t));
1066 (void) memcpy(buf, gbuf->wldp_buf, buflen);
1067 free(gbuf);
1068 return (status);
1069 }

1071 static dladm_status_t
1072 do_scan(dladm_handle_t handle, datalink_id_t linkid, void *buf, int buflen)
1073 {
1074 return (do_cmd_ioctl(handle, linkid, buf, buflen, WL_SCAN));
1075 }

1077 static dladm_status_t
1078 do_disconnect(dladm_handle_t handle, datalink_id_t linkid, void *buf,
1079 int buflen)
1080 {
1081 char ifname[MAXLINKNAMELEN];
1082 if ((dladm_datalink_id2info(handle, linkid, NULL, NULL, NULL, ifname,
1083 sizeof (ifname))) != DLADM_STATUS_OK)
1084 return DLADM_STATUS_FAILED;
1085 (void) wpa_instance_delete(ifname);
959 if (do_get_wpamode(handle, linkid, buf, buflen) == 0 &&
960 ((wl_wpa_t *)(buf))->wpa_flag > 0)
961 (void) wpa_instance_delete(handle, linkid);

1087 return (do_cmd_ioctl(handle, linkid, buf, buflen, WL_DISASSOCIATE));
1088 }

new/usr/src/lib/libdladm/common/libdlwlan.c 17

1090 /*
1091 * ’net80211’ ioctls wrappers
1092 * wlan properties are not currenlty merged into the Brussels framework.
1093 * we should implement a common interface like this:http://pastebin.com/B05BkQJ2
1094 */

1096 dladm_status_t
1097 dladm_wlan_get_esslist(dladm_handle_t handle, datalink_id_t linkid, void *buf,
966 static dladm_status_t
967 do_get_esslist(dladm_handle_t handle, datalink_id_t linkid, void *buf,
1098 int buflen)
1099 {
1100 return (i_dladm_wlan_param(handle, linkid, buf, MAC_PROP_WL_ESS_LIST,
1101 buflen, B_FALSE));
1102 }

1104 dladm_status_t
1105 dladm_wlan_get_bssid(dladm_handle_t handle, datalink_id_t linkid, void *buf, int
974 static dladm_status_t
975 do_get_bssid(dladm_handle_t handle, datalink_id_t linkid, void *buf, int buflen)
1106 {
1107 return (i_dladm_wlan_param(handle, linkid, buf, MAC_PROP_WL_BSSID,
1108 buflen, B_FALSE));
1109 }

1111 dladm_status_t
1112 dladm_wlan_get_essid(dladm_handle_t handle, datalink_id_t linkid, void *buf, int
981 static dladm_status_t
982 do_get_essid(dladm_handle_t handle, datalink_id_t linkid, void *buf, int buflen)
1113 {
1114 return (i_dladm_wlan_param(handle, linkid, buf, MAC_PROP_WL_ESSID,
1115 buflen, B_FALSE));
1116 }
______unchanged_portion_omitted_

1172 dladm_status_t
1173 dladm_wlan_set_bsstype(dladm_handle_t handle, datalink_id_t linkid,
1042 static dladm_status_t
1043 do_set_bsstype(dladm_handle_t handle, datalink_id_t linkid,
1174 dladm_wlan_bsstype_t *bsstype)
1175 {
1176 wl_bss_type_t ibsstype;

1178 switch (*bsstype) {
1179 case DLADM_WLAN_BSSTYPE_BSS:
1180 ibsstype = WL_BSS_BSS;
1181 break;
1182 case DLADM_WLAN_BSSTYPE_IBSS:
1183 ibsstype = WL_BSS_IBSS;
1184 break;
1185 default:
1186 ibsstype = WL_BSS_BSS;
1056 ibsstype = WL_BSS_ANY;
1187 break;
1188 }
1189 return (i_dladm_wlan_param(handle, linkid, &ibsstype,
1190 MAC_PROP_WL_BSSTYPE, sizeof (ibsstype), B_TRUE));
1191 }

1193 dladm_status_t
1194 dladm_wlan_set_authmode(dladm_handle_t handle, datalink_id_t linkid,
1063 static dladm_status_t
1064 do_set_authmode(dladm_handle_t handle, datalink_id_t linkid,
1195 dladm_wlan_auth_t *auth)
1196 {
1197 wl_authmode_t auth_mode;

new/usr/src/lib/libdladm/common/libdlwlan.c 18

1199 switch (*auth) {
1200 case DLADM_WLAN_AUTH_NONE:
1201 return (DLADM_STATUS_OK);
1202 #endif /* ! codereview */
1203 case DLADM_WLAN_AUTH_OPEN:
1204 auth_mode = WL_OPENSYSTEM;
1205 break;
1206 case DLADM_WLAN_AUTH_SHARED:
1207 auth_mode = WL_SHAREDKEY;
1208 break;
1209 default:
1210 return (DLADM_STATUS_NOTSUP);
1211 }
1212 return (i_dladm_wlan_param(handle, linkid, &auth_mode,
1213 MAC_PROP_WL_AUTH_MODE, sizeof (auth_mode), B_TRUE));
1214 }

1216 /* should be renamed to a more appropriate name since it is only for WEP !!*/
1217 dladm_status_t
1218 dladm_wlan_set_encryption(dladm_handle_t handle, datalink_id_t linkid,
1070 static dladm_status_t
1071 do_set_encryption(dladm_handle_t handle, datalink_id_t linkid,
1219 dladm_wlan_secmode_t *secmode)
1220 {
1221 wl_encryption_t encryption;

1223 switch (*secmode) {
1224 case DLADM_WLAN_SECMODE_NONE:
1225 encryption = WL_NOENCRYPTION;
1226 break;
1227 case DLADM_WLAN_SECMODE_WEP:
1228 encryption = WL_ENC_WEP;
1229 break;
1230 case DLADM_WLAN_SECMODE_PSK:
1083 case DLADM_WLAN_SECMODE_WPA:
1231 return (0);
1232 default:
1233 return (DLADM_STATUS_NOTSUP);
1234 }
1235 return (i_dladm_wlan_param(handle, linkid, &encryption,
1236 MAC_PROP_WL_ENCRYPTION, sizeof (encryption), B_TRUE));
1237 }
______unchanged_portion_omitted_

1273 dladm_status_t
1274 dladm_wlan_set_essid(dladm_handle_t handle, datalink_id_t linkid,
1275 const uint8_t *essid, size_t essid_len)
1126 static dladm_status_t
1127 do_set_essid(dladm_handle_t handle, datalink_id_t linkid,
1128 dladm_wlan_essid_t *essid)
1276 {
1277 wl_essid_t iessid;

1279 (void) memset(&iessid, 0, essid_len);
1132 (void) memset(&iessid, 0, sizeof (essid));

1281 if (essid != NULL && essid_len != 0) {
1282 iessid.wl_essid_length = essid_len;
1283 (void) memcpy(iessid.wl_essid_essid, essid,
1284 iessid.wl_essid_length);
1134 if (essid != NULL && essid->we_bytes[0] != ’\0’) {
1135 iessid.wl_essid_length = strlen(essid->we_bytes);
1136 (void) strlcpy(iessid.wl_essid_essid, essid->we_bytes,
1137 sizeof (iessid.wl_essid_essid));
1285 } else {

new/usr/src/lib/libdladm/common/libdlwlan.c 19

1286 return (DLADM_STATUS_BADARG);
1287 }
1288 return (i_dladm_wlan_param(handle, linkid, &iessid, MAC_PROP_WL_ESSID,
1289 sizeof (iessid), B_TRUE));
1290 }

1292 dladm_status_t
1293 do_set_bssid(dladm_handle_t handle, datalink_id_t linkid,
1294 dladm_wlan_bssid_t *bssid)
1295 {
1296 wl_bssid_t ibssid;

1298 if (bssid != NULL && bssid->wb_bytes != 0) {
1299 (void) memcpy(ibssid, bssid->wb_bytes, DLADM_WLAN_BSSID_LEN);
1300 } else {
1301 return (DLADM_STATUS_BADARG);
1302 }
1303 return (i_dladm_wlan_param(handle, linkid, &ibssid, MAC_PROP_WL_BSSID,
1304 sizeof (ibssid), B_TRUE));
1305 }

1307 dladm_status_t
1308 dladm_wlan_set_channel(dladm_handle_t handle, datalink_id_t linkid,
1145 static dladm_status_t
1146 do_set_channel(dladm_handle_t handle, datalink_id_t linkid,
1309 dladm_wlan_channel_t *channel)
1310 {
1311 wl_phy_conf_t phy_conf;

1313 if (*channel > MAX_CHANNEL_NUM)
1314 return (DLADM_STATUS_BADVAL);

1316 (void) memset(&phy_conf, 0xff, sizeof (phy_conf));
1317 phy_conf.wl_phy_dsss_conf.wl_dsss_channel = *channel;

1319 return (i_dladm_wlan_param(handle, linkid, &phy_conf,
1320 MAC_PROP_WL_PHY_CONFIG, sizeof (phy_conf), B_TRUE));
1321 }

1323 dladm_status_t
1161 static dladm_status_t
1324 do_set_createibss(dladm_handle_t handle, datalink_id_t linkid,
1325 boolean_t *create_ibss)
1326 {
1327 wl_create_ibss_t cr = (wl_create_ibss_t)(*create_ibss);

1329 return (i_dladm_wlan_param(handle, linkid, &cr, MAC_PROP_WL_CREATE_IBSS,
1330 sizeof (cr), B_TRUE));
1331 }

1333 static void
1334 generate_essid(dladm_wlan_essid_t *essid)
1335 {
1336 char ssid_temp[DLADM_WLAN_MAX_ESSID_LEN];
1337 #endif /* ! codereview */
1338 srandom(gethrtime());
1339 snprintf(ssid_temp, DLADM_WLAN_MAX_ESSID_LEN, "Illumos-%s", random());
1340 (void) memcpy(essid->we_bytes,ssid_temp,16);
1341 essid->we_length=16;
1174 (void) snprintf(essid->we_bytes, DLADM_WLAN_MAX_ESSID_LEN, "%d",
1175 random());
1342 }

1344 dladm_status_t
1178 static dladm_status_t
1345 do_get_capability(dladm_handle_t handle, datalink_id_t linkid, void *buf,

new/usr/src/lib/libdladm/common/libdlwlan.c 20

1346 int buflen)
1347 {
1348 return (i_dladm_wlan_param(handle, linkid, buf, MAC_PROP_WL_CAPABILITY,
1349 buflen, B_FALSE));
1350 }
______unchanged_portion_omitted_

1360 /* WPA support routines */
1194 dladm_status_t
1195 dladm_wlan_wpa_get_sr(dladm_handle_t handle, datalink_id_t linkid,
1196 dladm_wlan_ess_t *sr, uint_t escnt, uint_t *estot)
1197 {
1198 int i, n;
1199 wl_wpa_ess_t *es;
1200 dladm_status_t status;

1202 es = malloc(WLDP_BUFSIZE);
1203 if (es == NULL)
1204 return (DLADM_STATUS_NOMEM);

1206 status = i_dladm_wlan_param(handle, linkid, es, MAC_PROP_WL_SCANRESULTS,
1207 WLDP_BUFSIZE, B_FALSE);

1209 if (status == DLADM_STATUS_OK) {
1210 n = (es->count > escnt) ? escnt : es->count;
1211 for (i = 0; i < n; i ++) {
1212 (void) memcpy(sr[i].we_bssid.wb_bytes, es->ess[i].bssid,
1213 DLADM_WLAN_BSSID_LEN);
1214 sr[i].we_ssid_len = es->ess[i].ssid_len;
1215 (void) memcpy(sr[i].we_ssid.we_bytes, es->ess[i].ssid,
1216 es->ess[i].ssid_len);
1217 sr[i].we_wpa_ie_len = es->ess[i].wpa_ie_len;
1218 (void) memcpy(sr[i].we_wpa_ie, es->ess[i].wpa_ie,
1219 es->ess[i].wpa_ie_len);
1220 sr[i].we_freq = es->ess[i].freq;
1221 }
1222 *estot = n;
1223 }

1225 free(es);
1226 return (status);
1227 }

1362 dladm_status_t
1363 dladm_wlan_wpa_set_ie(dladm_handle_t handle, datalink_id_t linkid,
1364 const uint8_t *wpa_ie, size_t wpa_ie_len)
1231 uint8_t *wpa_ie, uint_t wpa_ie_len)
1365 {
1366 wl_wpa_ie_t *ie;
1367 uint_t len;
1368 dladm_status_t status;

1370 if (wpa_ie_len > DLADM_WLAN_MAX_WPA_IE_LEN)
1371 return (DLADM_STATUS_BADARG);
1372 len = sizeof (wl_wpa_ie_t) + wpa_ie_len;
1373 ie = malloc(len);
1374 if (ie == NULL)
1375 return (DLADM_STATUS_NOMEM);

1377 (void) memset(ie, 0, len);
1378 ie->wpa_ie_len = wpa_ie_len;
1379 (void) memcpy(ie->wpa_ie, wpa_ie, wpa_ie_len);

1381 status = i_dladm_wlan_param(handle, linkid, ie, MAC_PROP_WL_SETOPTIE,
1382 len, B_TRUE);
1383 free(ie);

new/usr/src/lib/libdladm/common/libdlwlan.c 21

1385 return (status);
1386 }
______unchanged_portion_omitted_

1461 dladm_status_t
1462 dladm_wlan_wpa_set_mlme(dladm_handle_t handle, datalink_id_t linkid,
1463 dladm_wlan_mlme_op_t op, dladm_wlan_reason_t reason, const uint8_t *bssid)
1330 dladm_wlan_mlme_op_t op, dladm_wlan_reason_t reason,
1331 dladm_wlan_bssid_t *bssid)
1464 {
1465 wl_mlme_t mlme;

1467 (void) memset(&mlme, 0, sizeof (wl_mlme_t));
1468 switch (op) {
1469 case DLADM_WLAN_MLME_ASSOC:
1470 mlme.im_op = IEEE80211_MLME_ASSOC;
1471 break;
1472 case DLADM_WLAN_MLME_DISASSOC:
1473 mlme.im_op = IEEE80211_MLME_DISASSOC;
1474 break;
1475 default:
1476 return (DLADM_STATUS_BADARG);
1477 }
1478 mlme.im_reason = reason;
1479 if (bssid != NULL)
1480 memcpy(mlme.im_macaddr, bssid, DLADM_WLAN_BSSID_LEN);
1348 (void) memcpy(mlme.im_macaddr, bssid->wb_bytes,
1349 DLADM_WLAN_BSSID_LEN);

1482 return (i_dladm_wlan_param(handle, linkid, &mlme, MAC_PROP_WL_MLME,
1483 sizeof (mlme), B_TRUE));
1484 }

1486 /*
1487 * This routine is used for opening a control interface to wpa_supplicant
1488 * global interface ctrl_path, /var/run/wpa_supplicant-global. This path
1489 * is configured in network/wpa_supplicant service manifest.
1490 * network/wpa_supplicant service must be running.
1355 /*
1356 * routines of create instance
1491 */
1492 static int
1493 wpa_instance_create(char *ifname)
1358 static scf_propertygroup_t *
1359 add_property_group_to_instance(scf_handle_t *handle, scf_instance_t *instance,
1360 const char *pg_name, const char *pg_type)
1494 {
1495 struct wpa_ctrl *ctrl_global;
1496 const char *global_path = CTRL_IFACE_GLOBAL;

1498 /*
1499 * When we’ll have a configuration backend that supports know_wlans.conf
1500 * we could add this file direclty in the third parameter
1501 */
1502 char *interface_add[] = {"interface_add", ifname, """", "solaris",
1503 CTRL_IFACE_DIR};
1362 scf_propertygroup_t *pg;

1505 if (ifname == NULL)
1506 return -1;
1364 pg = scf_pg_create(handle);
1365 if (pg == NULL)
1366 return (NULL);

1508 ctrl_global = wpa_ctrl_open(global_path);

new/usr/src/lib/libdladm/common/libdlwlan.c 22

1509 if (ctrl_global == NULL) {
1510 return -1;
1368 if (scf_instance_add_pg(instance, pg_name, pg_type, 0, pg) != 0) {
1369 scf_pg_destroy(pg);
1370 return (NULL);
1511 }

1513 if (wpa_request(ctrl_global, 5, interface_add))
1514 return -1;
1373 return (pg);
1374 }

1376 static dladm_status_t
1377 add_new_property(scf_handle_t *handle, const char *prop_name,
1378 scf_type_t type, const char *val, scf_transaction_t *tx)
1379 {
1380 scf_value_t *value = NULL;
1381 scf_transaction_entry_t *entry = NULL;

1516 wpa_ctrl_close(ctrl_global);
1383 entry = scf_entry_create(handle);
1384 if (entry == NULL)
1385 goto out;

1518 /* wpa_s now executes wpa_driver_solaris_init */
1387 value = scf_value_create(handle);
1388 if (value == NULL)
1389 goto out;

1520 return 0;
1391 if (scf_transaction_property_new(tx, entry, prop_name, type) != 0)
1392 goto out;

1394 if (scf_value_set_from_string(value, type, val) != 0)
1395 goto out;

1397 if (scf_entry_add_value(entry, value) != 0)
1398 goto out;

1400 return (DLADM_STATUS_OK);

1402 out:
1403 if (value != NULL)
1404 scf_value_destroy(value);
1405 if (entry != NULL)
1406 scf_entry_destroy(entry);

1408 return (DLADM_STATUS_FAILED);
1521 }

1523 static int
1524 wpa_instance_delete(char *ifname)
1411 static dladm_status_t
1412 add_pg_method(scf_handle_t *handle, scf_instance_t *instance,
1413 const char *pg_name, const char *flags)
1525 {
1526 /*struct wpa_ctrl *ctrl_conn;*/
1527 struct wpa_ctrl *ctrl_global;
1415 int rv, size;
1416 dladm_status_t status = DLADM_STATUS_FAILED;
1417 char *command = NULL;
1418 scf_transaction_t *tran = NULL;
1419 scf_propertygroup_t *pg;

1421 pg = add_property_group_to_instance(handle, instance,
1422 pg_name, SCF_GROUP_METHOD);

new/usr/src/lib/libdladm/common/libdlwlan.c 23

1423 if (pg == NULL)
1424 goto out;

1426 tran = scf_transaction_create(handle);
1427 if (tran == NULL)
1428 goto out;

1430 size = strlen(SVC_METHOD) + strlen(" ") + strlen(flags) + 1;
1431 command = malloc(size);
1432 if (command == NULL) {
1433 status = DLADM_STATUS_NOMEM;
1434 goto out;
1435 }
1436 (void) snprintf(command, size, "%s %s", SVC_METHOD, flags);

1529 const char *global_path = CTRL_IFACE_GLOBAL;
1530 /*char *cfile = NULL;*/
1531 char *interface_remove[] = {"interface_remove", ifname};
1532 /* char *cmd_disconnect[] = {"disconnect"}; */
1533 /* int flen, res;*/
1438 do {
1439 if (scf_transaction_start(tran, pg) != 0)
1440 goto out;

1535 if (ifname == NULL)
1536 return -1;
1442 if (add_new_property(handle, SCF_PROPERTY_EXEC,
1443 SCF_TYPE_ASTRING, command, tran) != DLADM_STATUS_OK) {
1444 goto out;
1445 }

1538 /*
1447 rv = scf_transaction_commit(tran);
1448 switch (rv) {
1449 case 1:
1450 status = DLADM_STATUS_OK;
1451 goto out;
1452 case 0:
1453 scf_transaction_destroy_children(tran);
1454 if (scf_pg_update(pg) == -1) {
1455 goto out;
1456 }
1457 break;
1458 case -1:
1459 default:
1460 goto out;
1461 }
1462 } while (rv == 0);

1464 out:
1465 if (tran != NULL) {
1466 scf_transaction_destroy_children(tran);
1467 scf_transaction_destroy(tran);
1468 }

1540 * Get the instance name of the existing control interface.
1541 * Control interface will use the link name as the UNIX socket filename
1542 * in CTRL_IFACE_DIR
1470 if (pg != NULL)
1471 scf_pg_destroy(pg);

1544 if (cfile == NULL) {
1545 flen = strlen(CTRL_IFACE_DIR) + strlen(ifname) + 2;
1546 cfile = malloc(flen);
1547 if (cfile == NULL)
1548 return -1;

new/usr/src/lib/libdladm/common/libdlwlan.c 24

1549 res = snprintf(cfile, flen, "%s/%s", CTRL_IFACE_DIR, ifname);
1550 if (res < 0 || res >= flen) {
1551 free(cfile);
1552 return -1;
1473 if (command != NULL)
1474 free(command);

1476 return (status);
1477 }

1479 static dladm_status_t
1480 do_create_instance(scf_handle_t *handle, scf_service_t *svc,
1481 const char *instance_name, const char *command)
1482 {
1483 dladm_status_t status = DLADM_STATUS_FAILED;
1484 char *buf;
1485 ssize_t max_fmri_len;
1486 scf_instance_t *instance;

1488 instance = scf_instance_create(handle);
1489 if (instance == NULL)
1490 goto out;

1492 if (scf_service_add_instance(svc, instance_name, instance) != 0) {
1493 if (scf_error() == SCF_ERROR_EXISTS)
1494 /* Let the caller deal with the duplicate instance */
1495 status = DLADM_STATUS_EXIST;
1496 goto out;
1497 }

1499 if (add_pg_method(handle, instance, "start",
1500 command) != DLADM_STATUS_OK) {
1501 goto out;
1502 }

1504 /* enabling the instance */
1505 max_fmri_len = scf_limit(SCF_LIMIT_MAX_FMRI_LENGTH);
1506 if ((buf = malloc(max_fmri_len + 1)) == NULL)
1507 goto out;

1509 if (scf_instance_to_fmri(instance, buf, max_fmri_len + 1) > 0) {
1510 if ((smf_disable_instance(buf, 0) != 0) ||
1511 (smf_enable_instance(buf, SMF_TEMPORARY) != 0)) {
1512 goto out;
1553 }
1514 status = DLADM_STATUS_OK;
1554 }

1556 ctrl_conn = wpa_ctrl_open(cfile);
1517 out:
1518 if (instance != NULL)
1519 scf_instance_destroy(instance);
1520 return (status);
1521 }

1558 free(cfile);
1523 static dladm_status_t
1524 create_instance(const char *instance_name, const char *command)
1525 {
1526 dladm_status_t status = DLADM_STATUS_FAILED;
1527 scf_service_t *svc = NULL;
1528 scf_handle_t *handle = NULL;

1560 if (ctrl_conn == NULL)
1561 return -1;
1530 handle = scf_handle_create(SCF_VERSION);

new/usr/src/lib/libdladm/common/libdlwlan.c 25

1531 if (handle == NULL)
1532 goto out;

1563 if (wpa_request(ctrl_conn, 1, cmd_disconnect))
1564 return -1;
1534 if (scf_handle_bind(handle) == -1)
1535 goto out;

1566 wpa_ctrl_close(ctrl_conn);
1567 */
1537 if ((svc = scf_service_create(handle)) == NULL)
1538 goto out;

1569 /* remove interface */
1570 ctrl_global = wpa_ctrl_open(global_path);
1571 if (ctrl_global == NULL) {
1572 return -1;
1573 }
1540 if (scf_handle_decode_fmri(handle, SERVICE_NAME, NULL, svc,
1541 NULL, NULL, NULL, SCF_DECODE_FMRI_EXACT) != 0)
1542 goto out;

1544 status = do_create_instance(handle, svc, instance_name, command);

1575 if (wpa_request(ctrl_global, 2, interface_remove))
1576 return -1;
1546 out:
1547 if (svc != NULL)
1548 scf_service_destroy(svc);

1578 wpa_ctrl_close(ctrl_global);
1550 if (handle != NULL) {
1551 (void) scf_handle_unbind(handle);
1552 scf_handle_destroy(handle);
1553 }

1580 return 0;
1555 return (status);
1581 }

1583 #define MAC2STR(a) (a)[0], (a)[1], (a)[2], (a)[3], (a)[4], (a)[5]
1584 #define MACSTR "%02x:%02x:%02x:%02x:%02x:%02x"
1558 /*
1559 * routines of delete instance
1560 */
1561 #define DEFAULT_TIMEOUT 60000000
1562 #define INIT_WAIT_USECS 50000

1586 static int wpa_network_config(char *ifname, dladm_wlan_attr_t *attrp,
1587 dladm_wlan_key_t *keys, boolean_t *create_ibss, char *identity)
1564 static void
1565 wait_until_disabled(scf_handle_t *handle, char *fmri)
1566 {
1567 char *state;
1568 useconds_t max;
1569 useconds_t usecs;
1570 uint64_t *cp = NULL;
1571 scf_simple_prop_t *sp = NULL;

1573 max = DEFAULT_TIMEOUT;

1575 if (((sp = scf_simple_prop_get(handle, fmri, "stop",
1576 SCF_PROPERTY_TIMEOUT)) != NULL) &&
1577 ((cp = scf_simple_prop_next_count(sp)) != NULL) && (*cp != 0))
1578 max = (*cp) * 1000000; /* convert to usecs */

new/usr/src/lib/libdladm/common/libdlwlan.c 26

1580 if (sp != NULL)
1581 scf_simple_prop_free(sp);

1583 for (usecs = INIT_WAIT_USECS; max > 0; max -= usecs) {
1584 /* incremental wait */
1585 usecs *= 2;
1586 usecs = (usecs > max) ? max : usecs;

1588 (void) usleep(usecs);

1590 /* Check state after the wait */
1591 if ((state = smf_get_state(fmri)) != NULL) {
1592 if (strcmp(state, "disabled") == 0)
1593 return;
1594 }
1595 }
1596 }

1598 static dladm_status_t
1599 delete_instance(const char *instance_name)
1588 {
1589 struct wpa_ctrl *ctrl_conn;
1601 dladm_status_t status = DLADM_STATUS_FAILED;
1602 char *buf;
1603 ssize_t max_fmri_len;
1604 scf_scope_t *scope = NULL;
1605 scf_service_t *svc = NULL;
1606 scf_handle_t *handle = NULL;
1607 scf_instance_t *instance;

1591 char *cfile = NULL;
1592 int i, flen, res;
1609 handle = scf_handle_create(SCF_VERSION);
1610 if (handle == NULL)
1611 goto out;

1594 char *ap_scan[] = {"ap_scan", "1"};
1595 char *add_network[] = {"add_network"};
1596 char *enable_network[] = {"enable_network", "0"};
1597 char *set_network[] = {"set_network", "0", NULL, NULL };
1598 char *network_props[] = { "ssid", "key_mgmt", "pairwise", "group",
1599 "auth_alg", "proto"};
1600 char *network_vals[6];
1601 char *hexascii = NULL;
1602 char ap_bssid[DLADM_WLAN_BSSID_LEN*3];
1603 char *cmd_bssid[] = { "bssid", "0", ap_bssid };
1613 if (scf_handle_bind(handle) == -1)
1614 goto out;

1605 if (ifname == NULL)
1606 return -1;
1616 if ((scope = scf_scope_create(handle)) == NULL)
1617 goto out;

1608 for (i=0; i<6; i++)
1609 network_vals[1] = NULL;
1619 if ((svc = scf_service_create(handle)) == NULL)
1620 goto out;

1622 if (scf_handle_get_scope(handle, SCF_SCOPE_LOCAL, scope) == -1)
1623 goto out;

1625 if (scf_scope_get_service(scope, SERVICE_NAME, svc) < 0)
1626 goto out;

1628 instance = scf_instance_create(handle);

new/usr/src/lib/libdladm/common/libdlwlan.c 27

1629 if (instance == NULL)
1630 goto out;

1632 if (scf_service_get_instance(svc, instance_name, instance) != 0) {
1633 scf_error_t scf_errnum = scf_error();

1635 if (scf_errnum == SCF_ERROR_NOT_FOUND)
1636 status = DLADM_STATUS_OK;

1638 scf_instance_destroy(instance);
1639 goto out;
1640 }

1642 max_fmri_len = scf_limit(SCF_LIMIT_MAX_FMRI_LENGTH);
1643 if ((buf = malloc(max_fmri_len + 1)) == NULL) {
1644 scf_instance_destroy(instance);
1645 goto out;
1646 }

1648 if (scf_instance_to_fmri(instance, buf, max_fmri_len + 1) > 0) {
1649 char *state;

1651 state = smf_get_state(buf);
1652 if (state && (strcmp(state, SCF_STATE_STRING_ONLINE) == 0 ||
1653 strcmp(state, SCF_STATE_STRING_DEGRADED) == 0)) {
1654 if (smf_disable_instance(buf, 0) == 0) {
1611 /*
1612 * Control interface will use the link name as the UNIX socket filename
1613 * in CTRL_IFACE_DIR
1656 * Wait for some time till timeout to avoid
1657 * a race with scf_instance_delete() below.
1614 */
1615 if (cfile == NULL) {
1616 flen = strlen(CTRL_IFACE_DIR) + strlen(ifname) + 2;
1617 cfile = malloc(flen);
1618 if (cfile == NULL)
1619 return -1;
1620 res = snprintf(cfile, flen, "%s/%s", CTRL_IFACE_DIR, ifname);
1621 if (res < 0 || res >= flen) {
1622 free(cfile);
1623 return -1;
1659 wait_until_disabled(handle, buf);
1660 }
1624 }
1625 }

1627 ctrl_conn = wpa_ctrl_open(cfile);
1628 free(cfile);

1630 if (ctrl_conn == NULL)
1631 return -1;

1633 /* set ap_scan=2 */
1634 if (wpa_request(ctrl_conn, 2, ap_scan))
1635 return -1;

1637 /* add empty wifi network block */
1638 (void) wpa_request(ctrl_conn, 1, add_network);

1640 /* leave bssid out if strict_bssid=false?*/
1641 snprintf(ap_bssid, 3 * DLADM_WLAN_BSSID_LEN, MACSTR,
1642 MAC2STR(attrp->wa_bssid.wb_bytes));
1643 (void) wpa_request(ctrl_conn, 3, cmd_bssid);

1645 /* ssid string needs to be quoted */
1646 network_vals[0] = malloc(attrp->wa_essid.we_length + 3);

new/usr/src/lib/libdladm/common/libdlwlan.c 28

1647 snprintf(network_vals[0], attrp->wa_essid.we_length + 3, "\"%s\"",
1648 attrp->wa_essid.we_bytes);
1649 /* we will add support for static WEP config. with wpa_s later */
1650 network_vals[4] = (char*)dladm_wlan_auth2str(&attrp->wa_auth, malloc(5))
1664 if (scf_instance_delete(instance) != 0) {
1665 scf_instance_destroy(instance);
1666 goto out;
1667 }

1652 /*
1653 if (*create_ibss) {
1654 network_vals[1]="WPA-NONE";
1655 network_vals[2]="NONE";
1656 network_vals[3]="TKIP";
1657 network_vals[5]="WPA";
1658 * mode=1
1659 * frequency=2412
1660 * psk="secret passphrase"
1661 * ssid="test adhoc"
1662 } else {
1663 network_vals[1] = wpa_key_mgmt_txt(attrp->wa_ie.key_mgmt);
1664 network_vals[2] = wpa_cipher_txt(attrp->wa_ie.pairwise_cipher);
1665 network_vals[3] = wpa_cipher_txt(attrp->wa_ie.group_cipher);
1666 network_vals[5] = ((attrp->wa_ie.proto == 2) ? "RSN" : "WPA");
1667 }

1669 for (i=0; i<6; i++) {
1670 set_network[2] = network_props[i];
1671 set_network[3] = network_vals[i];
1672 (void) wpa_request(ctrl_conn, 4, set_network);
1673 } */

1675 set_network[2] = network_props[0];
1676 set_network[3] = network_vals[0];
1677 wpa_request(ctrl_conn, 4, set_network);
1678 free(network_vals[0]);
1679 free(network_vals[4]);
1669 scf_instance_destroy(instance);

1671 status = DLADM_STATUS_OK;

1673 out:
1674 if (svc != NULL)
1675 scf_service_destroy(svc);

1677 if (scope != NULL)
1678 scf_scope_destroy(scope);

1680 if (handle != NULL) {
1681 (void) scf_handle_unbind(handle);
1682 scf_handle_destroy(handle);
1683 }

1685 return (status);
1686 }

1688 static dladm_status_t
1689 wpa_instance_create(dladm_handle_t handle, datalink_id_t linkid, void *key)
1690 {
1691 dladm_status_t status = DLADM_STATUS_FAILED;
1692 char *command = NULL;
1693 char *wk_name = ((dladm_wlan_key_t *)key)->wk_name;
1694 int size;
1695 char instance_name[MAXLINKNAMELEN];

1681 /*

new/usr/src/lib/libdladm/common/libdlwlan.c 29

1682 * If we use hexascii strings, wpa_s does not require quotation, and
1683 * we would be able to pass it directly to wpa_request.
1684 * Currently getsecobj returns the string value, not hexascii
1698 * Use the link name as the instance name of the network/wpad service.
1685 */
1686 hexascii = malloc(keys->wk_len + 3);
1687 snprintf(hexascii, keys->wk_len + 3, "\"%s\"", keys->wk_val);
1700 status = dladm_datalink_id2info(handle, linkid, NULL, NULL, NULL,
1701 instance_name, sizeof (instance_name));
1702 if (status != DLADM_STATUS_OK)
1703 goto out;

1689 if (keys->wk_class == DLADM_SECOBJ_CLASS_PSK) {
1690 set_network[2] = "psk";
1691 set_network[3] = hexascii;
1692 (void) wpa_request(ctrl_conn, 4, set_network);
1693 } else {
1694 char *cmd_eap[] = {"set_network", "0", "eap", NULL};
1695 set_network[2] = "identity";
1696 set_network[3] = identity;
1697 (void) wpa_request(ctrl_conn, 4, set_network);
1698 set_network[2] = "ca_cert";
1699 set_network[3] = "\"/etc/cert/ca.pem\"";
1700 (void) wpa_request(ctrl_conn, 4, set_network);
1701 */
1702 if (keys->wk_class == DLADM_SECOBJ_CLASS_TLS) {
1703 char *tls_props[] = {"engine", "engine_id", "key_id",
1704 "pin", "client_cert"};
1705 char *tls_vals[] = {"1", "pkcs11", "TODO", hexascii,
1706 "DEFAULT_PATH"};
1707 cmd_eap[3] = "TLS";
1708 (void) wpa_request(ctrl_conn, 4, cmd_eap);
1709 for (i=0; i<6; i++) {
1710 char *cmd_tls[] = {"set_network", "0",
1711 tls_props[i], tls_vals[i]};
1712 (void) wpa_request(ctrl_conn, 4, cmd_tls);
1705 size = strlen(instance_name) + strlen(" -i -k ") + strlen(wk_name) + 1;
1706 command = malloc(size);
1707 if (command == NULL) {
1708 status = DLADM_STATUS_NOMEM;
1709 goto out;
1713 }
1714 } else {
1715 set_network[2] = "password";
1716 set_network[3] = hexascii;
1717 (void) wpa_request(ctrl_conn, 4, set_network);
1718 if (keys->wk_class == DLADM_SECOBJ_CLASS_TTLS) {
1719 cmd_eap[3] = "TTLS";
1720 (void) wpa_request(ctrl_conn, 4, cmd_eap);
1721 /* optional
1722 set_network[2] = "anonymous_identity";
1723 set_network[3] = "DEFAULT_ANONYMOUS";
1724 (void) wpa_request(ctrl_conn, 4, set_network);*/
1725 set_network[2] = "phase2";
1726 set_network[3] = "\"auth=PAP\"";
1711 (void) snprintf(command, size, "-i %s -k %s", instance_name, wk_name);

1713 status = create_instance(instance_name, command);
1714 if (status == DLADM_STATUS_EXIST) {
1727 /*
1728 * other possible values are: auth=MSCHAPV2 auth
1729 * we do not support autheap=TLS for eap-ttls
1716 * Delete the existing instance and create a new instance
1717 * with the supplied arguments.
1730 */
1731 (void) wpa_request(ctrl_conn, 4, set_network);

new/usr/src/lib/libdladm/common/libdlwlan.c 30

1732 } else {
1733 cmd_eap[3] = "PEAP";
1734 (void) wpa_request(ctrl_conn, 4, cmd_eap);
1735 set_network[2] = "phase2";
1736 set_network[3] = "\"auth=MSCHAPV2\"";
1737 (void) wpa_request(ctrl_conn, 4, set_network);
1719 if ((status = delete_instance(instance_name)) ==
1720 DLADM_STATUS_OK) {
1721 status = create_instance(instance_name, command);
1738 }
1739 }
1740 }
1741 (void) wpa_request(ctrl_conn, 2, enable_network);
1742 /*
1743 * the wpa_s driver interface starts interacting with net80211 module
1744 */
1745 #endif /* ! codereview */

1747 wpa_ctrl_close(ctrl_conn);
1724 out:
1725 if (command != NULL)
1726 free(command);

1749 free(hexascii);
1728 return (status);
1729 }

1731 static dladm_status_t
1732 wpa_instance_delete(dladm_handle_t handle, datalink_id_t linkid)
1733 {
1734 char instance_name[MAXLINKNAMELEN];

1736 /*
1737 * Get the instance name of the network/wpad service (the same as
1738 * the link name).
1739 */
1740 if (dladm_datalink_id2info(handle, linkid, NULL, NULL, NULL,
1741 instance_name, sizeof (instance_name)) != DLADM_STATUS_OK)
1742 return (DLADM_STATUS_FAILED);

1751 return 0;
1744 return (delete_instance(instance_name));
1752 }
______unchanged_portion_omitted_

new/usr/src/lib/libdladm/common/libdlwlan.h 1

**
 12242 Tue Jun 12 19:54:57 2012
new/usr/src/lib/libdladm/common/libdlwlan.h
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 #endif /* ! codereview */
23 /*
24 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 #ifndef _LIBDLWLAN_H
29 #define _LIBDLWLAN_H

31 /*
32 * This file includes structures, macros and routines used by WLAN link
33 * administration.
34 */

36 #include <sys/types.h>
37 #include <sys/un.h>
38 #endif /* ! codereview */
39 #include <libdladm.h>

41 /*
42 * General libdlwlan definitions and functions.
43 *
44 * These interfaces are ON consolidation-private.
45 * For documentation, refer to PSARC/2006/623.
46 */

48 #ifdef __cplusplus
49 extern "C" {
50 #endif

52 #define DLADM_WLAN_MAX_ESSID_LEN 32 /* per 802.11 spec */
21 #define DLADM_WLAN_MAX_ESSID_LEN (32 + 1) /* per 802.11 spec */
22 /* max essid length is 32 */
23 /* one more for ’\0’ */
53 #define DLADM_WLAN_BSSID_LEN 6 /* per 802.11 spec */
54 #define DLADM_WLAN_WPA_KEY_LEN 32 /* per 802.11i spec */
55 #define DLADM_WLAN_MAX_WPA_IE_LEN 40 /* per 802.11i spec */

new/usr/src/lib/libdladm/common/libdlwlan.h 2

57 #define DLADM_WLAN_CONNECT_TIMEOUT_DEFAULT 10
58 #define DLADM_WLAN_CONNECT_CREATEIBSS 0x00000001

60 #define IEEE80211_CAP_ESS 0x0001
61 #define IEEE80211_CAP_IBSS 0x0002
62 #define IEEE80211_CAP_PRIVACY 0x0010
63 #define IEEE80211_CAP_RSN 0x0800
64 #define IEEE80211_RATE 0x7f
65 /* device driver capability, not net80211 ones*/
66 #define IEEE80211_C_WPA 0x01800000

68 #define IEEE80211_CIPHER_WEP 0
69 #define IEEE80211_CIPHER_TKIP 1
70 #define IEEE80211_CIPHER_AES_OCB 2
71 #define IEEE80211_CIPHER_AES_CCM 3
72 #define IEEE80211_CIPHER_CKIP 4
73 #define IEEE80211_CIPHER_NONE 5 /* pseudo value */

75 #define IEEE80211_MLME_ASSOC 1 /* associate station */
76 #define IEEE80211_MLME_DISASSOC 2 /* disassociate station */
77 #define IEEE80211_MLME_DEAUTH 3 /* deauthenticate station */
78 #define IEEE80211_MLME_AUTHORIZE 4 /* authorize station */
79 #define IEEE80211_MLME_UNAUTHORIZE 5 /* unauthorize station */

81 /* Key Flags */
82 #define IEEE80211_KEY_XMIT 0x01 /* key used for xmit */
83 #define IEEE80211_KEY_RECV 0x02 /* key used for recv */
84 #define IEEE80211_KEY_GROUP /* key used for WPA group operation */ \
85 0x04
86 #define IEEE80211_KEY_SWCRYPT 0x10 /* host-based encrypt/decrypt */
87 #define IEEE80211_KEY_SWMIC 0x20 /* host-based enmic/demic */
88 #define IEEE80211_KEY_COMMON /* common flags passed in by apps */ \
89 (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV | IEEE80211_KEY_GROUP)

91 #define IEEE80211_KEY_DEFAULT 0x80 /* default xmit key */
30 #define DLADM_WLAN_CONNECT_NOSCAN 0x00000002

93 typedef struct dladm_wlan_essid {
94 uint32_t we_length;
95 uint8_t we_bytes[DLADM_WLAN_MAX_ESSID_LEN];
33 char we_bytes[DLADM_WLAN_MAX_ESSID_LEN];
96 } dladm_wlan_essid_t;

______unchanged_portion_omitted_

40 typedef struct dladm_wlan_ess {
41 dladm_wlan_bssid_t we_bssid;
42 dladm_wlan_essid_t we_ssid;
43 uint_t we_ssid_len;
44 uint8_t we_wpa_ie[DLADM_WLAN_MAX_WPA_IE_LEN];
45 uint_t we_wpa_ie_len;
46 int we_freq;
47 } dladm_wlan_ess_t;

102 typedef enum {
103 DLADM_WLAN_CIPHER_WEP = 0,
104 DLADM_WLAN_CIPHER_TKIP,
105 DLADM_WLAN_CIPHER_AES_OCB,
106 DLADM_WLAN_CIPHER_AES_CCM,
107 DLADM_WLAN_CIPHER_CKIP,
108 DLADM_WLAN_CIPHER_NONE
109 } dladm_wlan_cipher_t;

______unchanged_portion_omitted_

121 typedef enum {
122 DLADM_WLAN_SECMODE_NONE = 1,
123 DLADM_WLAN_SECMODE_WEP,

new/usr/src/lib/libdladm/common/libdlwlan.h 3

124 DLADM_WLAN_SECMODE_PSK,
125 DLADM_WLAN_SECMODE_EAP
71 DLADM_WLAN_SECMODE_WPA
126 } dladm_wlan_secmode_t;

______unchanged_portion_omitted_

145 /*
146 * auth_alg: list of allowed IEEE 802.11 authentication algorithms
147 * OPEN = Open System authentication (required for WPA/WPA2)
148 * SHARED = Shared Key authentication (requires extern WEP keys)
149 * an AP could have also no auth_alg. this is the only case where key_mgmt=NONE
150 * in wpa_s configuration should be used.
151 *
152 * when DLADM_WLAN_AUTH_NONE is set, DLADM_WLAN_SECMODE_NONE should be set too
153 */
154 #endif /* ! codereview */
155 typedef enum {
156 DLADM_WLAN_AUTH_NONE,
157 #endif /* ! codereview */
158 DLADM_WLAN_AUTH_OPEN = 1,
159 DLADM_WLAN_AUTH_SHARED
160 } dladm_wlan_auth_t;

162 typedef enum {
163 DLADM_WLAN_BSSTYPE_BSS = 0,
91 DLADM_WLAN_BSSTYPE_BSS = 1,
164 DLADM_WLAN_BSSTYPE_IBSS,
165 DLADM_WLAN_BSSTYPE_AP
93 DLADM_WLAN_BSSTYPE_ANY
166 } dladm_wlan_bsstype_t;

______unchanged_portion_omitted_

173 typedef uint32_t dladm_wlan_speed_t;
174 typedef uint32_t dladm_wlan_channel_t;

176 /*
177 * wa_valid is a bitfield used for indicating the validity of each attribute.
178 * wa_valid may have 0 or more of the following bits set:
179 */
180 #endif /* ! codereview */
181 enum {
182 DLADM_WLAN_ATTR_ESSID = 0x00000001,
183 DLADM_WLAN_ATTR_BSSID = 0x00000002,
184 DLADM_WLAN_ATTR_SECMODE = 0x00000004,
185 DLADM_WLAN_ATTR_STRENGTH = 0x00000008,
186 DLADM_WLAN_ATTR_MODE = 0x00000010,
187 DLADM_WLAN_ATTR_SPEED = 0x00000020,
188 DLADM_WLAN_ATTR_AUTH = 0x00000040,
189 DLADM_WLAN_ATTR_BSSTYPE = 0x00000080,
190 DLADM_WLAN_ATTR_CHANNEL = 0x00000100
191 };

193 struct wpa_ie_data {
194 int proto;
195 int pairwise_cipher;
196 int group_cipher;
197 int key_mgmt;
198 int capabilities;
199 size_t num_pmkid;
200 const uint8_t *pmkid;
201 int mgmt_group_cipher;
202 };

204 #endif /* ! codereview */
205 typedef struct dladm_wlan_attr {
206 uint_t wa_valid;

new/usr/src/lib/libdladm/common/libdlwlan.h 4

207 dladm_wlan_essid_t wa_essid;
208 dladm_wlan_bssid_t wa_bssid;
209 dladm_wlan_secmode_t wa_secmode;
210 dladm_wlan_strength_t wa_strength;
211 dladm_wlan_mode_t wa_mode;
212 dladm_wlan_speed_t wa_speed;
213 dladm_wlan_auth_t wa_auth;
214 dladm_wlan_bsstype_t wa_bsstype;
215 dladm_wlan_channel_t wa_channel;
216 struct wpa_ie_data wa_ie;
217 #endif /* ! codereview */
218 } dladm_wlan_attr_t;

220 enum {
221 DLADM_WLAN_LINKATTR_STATUS = 0x00000001,
222 DLADM_WLAN_LINKATTR_WLAN = 0x00000002
223 };

225 #endif /* ! codereview */
226 typedef struct dladm_wlan_linkattr {
227 uint_t la_valid;
228 dladm_wlan_linkstatus_t la_status;
229 dladm_wlan_attr_t la_wlan_attr;
230 } dladm_wlan_linkattr_t;

232 #define DLADM_WLAN_WEPKEY64_LEN 5 /* per WEP spec */
233 #define DLADM_WLAN_WEPKEY128_LEN 13 /* per WEP spec */
234 #define DLADM_WLAN_MAX_KEY_LEN 64 /* per WEP/WPA spec */
235 #define DLADM_WLAN_MAX_WEPKEYS 4 /* MAX_NWEPKEYS */
236 #define DLADM_WLAN_MAX_KEYNAME_LEN 64

238 #endif /* ! codereview */
239 typedef struct dladm_wlan_key {
240 uint_t wk_idx;
241 uint_t wk_len;
242 uint8_t wk_val[DLADM_WLAN_MAX_KEY_LEN];
243 char wk_name[DLADM_WLAN_MAX_KEYNAME_LEN];
244 dladm_secobj_class_t wk_class;
104 uint_t wk_class;
245 } dladm_wlan_key_t;

247 #define CTRL_IFACE_DIR "/var/run/wpa_supplicant"
248 #define CTRL_IFACE_GLOBAL "/var/run/wpa_supplicant-global"

250 /*
251 * struct wpa_ctrl - Internal structure for control interface library
252 *
253 * This structure is used by the wpa_supplicant/hostapd control interface
254 * library to store internal data. Programs using the library should not touch
255 * this data directly. They can only use the pointer to the data structure as
256 * an identifier for the control interface connection and use this as one of
257 * the arguments for most of the control interface library functions.
258 */
259 struct wpa_ctrl {
260 int s;
261 struct sockaddr_un local;
262 struct sockaddr_un dest;
263 };

265 #endif /* ! codereview */
266 extern dladm_status_t dladm_wlan_scan(dladm_handle_t, datalink_id_t, void *,
267 boolean_t(*)(void *, dladm_wlan_attr_t *));
107 boolean_t (*)(void *, dladm_wlan_attr_t *));
268 extern dladm_status_t dladm_wlan_connect(dladm_handle_t, datalink_id_t,
269 dladm_wlan_attr_t *, int, void *, uint_t, uint_t, char *);
109 dladm_wlan_attr_t *, int, void *, uint_t, uint_t);

new/usr/src/lib/libdladm/common/libdlwlan.h 5

270 extern dladm_status_t dladm_wlan_disconnect(dladm_handle_t, datalink_id_t);

272 /*GET*/
273 extern dladm_status_t dladm_wlan_get_linkattr(dladm_handle_t, datalink_id_t, dla

275 extern dladm_status_t dladm_wlan_get_essid(dladm_handle_t, datalink_id_t, void *
276 extern dladm_status_t dladm_wlan_get_bssid(dladm_handle_t, datalink_id_t, void *
277 extern dladm_status_t dladm_wlan_get_esslist(dladm_handle_t, datalink_id_t, void
278 extern dladm_status_t dladm_wlan_get_capability(dladm_handle_t, datalink_id_t, v

280 extern dladm_status_t dladm_wlan_set_bsstype(dladm_handle_t, datalink_id_t,
281 dladm_wlan_bsstype_t *);
282 extern dladm_status_t dladm_wlan_set_authmode(dladm_handle_t, datalink_id_t,
283 dladm_wlan_auth_t *);
284 extern dladm_status_t dladm_wlan_set_encryption(dladm_handle_t, datalink_id_t,
285 dladm_wlan_secmode_t *);
286 extern dladm_status_t dladm_wlan_set_essid(dladm_handle_t, datalink_id_t,
287 const uint8_t *, size_t);
288 extern dladm_status_t dladm_wlan_set_bssid(dladm_handle_t, datalink_id_t,
289 dladm_wlan_bssid_t *);
290 extern dladm_status_t dladm_wlan_set_createibss(dladm_handle_t, datalink_id_t,
291 boolean_t *);
292 extern dladm_status_t dladm_wlan_set_channel(dladm_handle_t, datalink_id_t,
293 dladm_wlan_channel_t *);
111 extern dladm_status_t dladm_wlan_get_linkattr(dladm_handle_t, datalink_id_t,
112 dladm_wlan_linkattr_t *);
113 /* WPA support routines */
114 extern dladm_status_t dladm_wlan_wpa_get_sr(dladm_handle_t, datalink_id_t,
115 dladm_wlan_ess_t *, uint_t, uint_t *);
294 extern dladm_status_t dladm_wlan_wpa_set_ie(dladm_handle_t, datalink_id_t,
295 const uint8_t *, size_t);
117 uint8_t *, uint_t);
296 extern dladm_status_t dladm_wlan_wpa_set_wpa(dladm_handle_t, datalink_id_t,
297 boolean_t);
298 extern dladm_status_t dladm_wlan_wpa_del_key(dladm_handle_t, datalink_id_t,
299 uint_t, const dladm_wlan_bssid_t *);
300 extern dladm_status_t dladm_wlan_wpa_set_key(dladm_handle_t, datalink_id_t,
301 dladm_wlan_cipher_t, const dladm_wlan_bssid_t *, boolean_t, uint64_t,
302 uint_t, uint8_t *, uint_t);
123 dladm_wlan_cipher_t, const dladm_wlan_bssid_t *,
124 boolean_t, uint64_t, uint_t, uint8_t *, uint_t);
303 extern dladm_status_t dladm_wlan_wpa_set_mlme(dladm_handle_t, datalink_id_t,
304 dladm_wlan_mlme_op_t, dladm_wlan_reason_t, const uint8_t *);
126 dladm_wlan_mlme_op_t,
127 dladm_wlan_reason_t, dladm_wlan_bssid_t *);

306 extern const char *dladm_wlan_essid2str(dladm_wlan_essid_t *, char *);
307 extern const char *dladm_wlan_bssid2str(dladm_wlan_bssid_t *, char *);
308 extern const char *dladm_wlan_secmode2str(dladm_wlan_secmode_t *, char *);
309 extern const char *dladm_wlan_strength2str(dladm_wlan_strength_t *, char *);
132 extern const char *dladm_wlan_strength2str(dladm_wlan_strength_t *,
133 char *);
310 extern const char *dladm_wlan_mode2str(dladm_wlan_mode_t *, char *);
311 extern const char *dladm_wlan_speed2str(dladm_wlan_speed_t *, char *);
312 extern const char *dladm_wlan_auth2str(dladm_wlan_auth_t *, char *);
313 extern const char *dladm_wlan_bsstype2str(dladm_wlan_bsstype_t *, char *);
314 extern const char *dladm_wlan_linkstatus2str(dladm_wlan_linkstatus_t *, char *);
138 extern const char *dladm_wlan_linkstatus2str(dladm_wlan_linkstatus_t *,
139 char *);

316 extern dladm_status_t dladm_wlan_str2essid(const char *, dladm_wlan_essid_t *);
317 extern dladm_status_t dladm_wlan_str2bssid(const char *, dladm_wlan_bssid_t *);
141 extern dladm_status_t dladm_wlan_str2essid(const char *,
142 dladm_wlan_essid_t *);
143 extern dladm_status_t dladm_wlan_str2bssid(const char *,
144 dladm_wlan_bssid_t *);

new/usr/src/lib/libdladm/common/libdlwlan.h 6

318 extern dladm_status_t dladm_wlan_str2secmode(const char *,
319 dladm_wlan_secmode_t *);
320 extern dladm_status_t dladm_wlan_str2strength(const char *,
321 dladm_wlan_strength_t *);
322 extern dladm_status_t dladm_wlan_str2mode(const char *, dladm_wlan_mode_t *);
323 extern dladm_status_t dladm_wlan_str2speed(const char *, dladm_wlan_speed_t *);
324 extern dladm_status_t dladm_wlan_str2auth(const char *, dladm_wlan_auth_t *);
149 extern dladm_status_t dladm_wlan_str2mode(const char *,
150 dladm_wlan_mode_t *);
151 extern dladm_status_t dladm_wlan_str2speed(const char *,
152 dladm_wlan_speed_t *);
153 extern dladm_status_t dladm_wlan_str2auth(const char *,
154 dladm_wlan_auth_t *);
325 extern dladm_status_t dladm_wlan_str2bsstype(const char *,
326 dladm_wlan_bsstype_t *);
327 extern dladm_status_t dladm_wlan_str2linkstatus(const char *,
328 dladm_wlan_linkstatus_t *);

330 /* wpa_ie parsing support routines */

332 /*
333 * wpa_parse_wpa_ie - Parse WPA/RSN IE
334 * @wpa_ie: Pointer to WPA or RSN IE
335 * @wpa_ie_len: Length of the WPA/RSN IE
336 * @data: Pointer to data area for parsing results
337 * Returns: 0 on success, -1 on failure
338 *
339 * Parse the contents of WPA or RSN IE and write the parsed data into data.
340 */
341 extern int wpa_parse_wpa_ie(const uint8_t *wpa_ie, size_t wpa_ie_len,
342 struct wpa_ie_data *data);

344 extern char * wpa_cipher_txt(int cipher);
345 extern char * wpa_key_mgmt_txt(int key_mgmt);

347 /* wpa_supplicant control interface client routines */

349 /*
350 * wpa_ctrl_open - Open a control interface to wpa_supplicant/hostapd
351 * @ctrl_path: Path for UNIX domain sockets;
352 * Returns: Pointer to abstract control interface data or %NULL on failure
353 */
354 extern struct wpa_ctrl * wpa_ctrl_open(const char *ctrl_path);

356 /*
357 * wpa_ctrl_close - Close a control interface to wpa_supplicant
358 * @ctrl: Control interface data from wpa_ctrl_open()
359 *
360 * This function is used to close a control interface.
361 */
362 extern void wpa_ctrl_close(struct wpa_ctrl *ctrl);

364 extern int wpa_request(struct wpa_ctrl *ctrl, int argc, char *argv[]);

366 #endif /* ! codereview */
367 #ifdef __cplusplus
368 }
369 #endif

371 #endif /* _LIBDLWLAN_H */

new/usr/src/lib/libdladm/common/libdlwlan_impl.h 1

**
 2939 Tue Jun 12 19:54:59 2012
new/usr/src/lib/libdladm/common/libdlwlan_impl.h
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**
______unchanged_portion_omitted_

66 /*
67 * not implemented:
68 * powermode: Specifies the power management mode of the WiFi link.
69 * Possible values are:
70 * off (disable power management),
71 * max (maximum power savings), and
72 * fast (performance sensitive power management).
73 * Default is off.
74 *
75 * radio: Specifies whether the radio is on or off; default is on.
76 */

78 #endif /* ! codereview */
79 typedef enum {
80 DLADM_WLAN_RADIO_ON = 1,
81 DLADM_WLAN_RADIO_OFF
82 } dladm_wlan_radio_t;

84 typedef enum {
85 DLADM_WLAN_PM_OFF = 1,
86 DLADM_WLAN_PM_MAX,
87 DLADM_WLAN_PM_FAST
88 } dladm_wlan_powermode_t;

90 extern dladm_status_t i_dladm_wlan_legacy_ioctl(dladm_handle_t,
91 datalink_id_t, wldp_t *, uint_t, size_t, uint_t,
92 size_t);
93 extern dladm_status_t i_dladm_wlan_param(dladm_handle_t, datalink_id_t,
94 void *, mac_prop_id_t, size_t, boolean_t);
95 extern boolean_t i_dladm_wlan_convert_chan(wl_phy_conf_t *, uint32_t *);

97 #ifdef __cplusplus
98 }
99 #endif

101 #endif /* _LIBDLWLAN_IMPL_H */

new/usr/src/lib/libdladm/common/linkprop.c 1

**
 119693 Tue Jun 12 19:54:59 2012
new/usr/src/lib/libdladm/common/linkprop.c
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #include <stdlib.h>
26 #include <string.h>
27 #include <strings.h>
28 #include <errno.h>
29 #include <ctype.h>
30 #include <stddef.h>
31 #include <sys/types.h>
32 #include <sys/stat.h>
33 #include <sys/dld.h>
34 #include <sys/zone.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <libdevinfo.h>
38 #include <zone.h>
39 #include <libdllink.h>
40 #include <libdladm_impl.h>
41 #include <libdlwlan_impl.h>
42 #include <libdlwlan.h>
43 #include <libdlvlan.h>
44 #include <libdlvnic.h>
45 #include <libdlib.h>
46 #include <libintl.h>
47 #include <dlfcn.h>
48 #include <link.h>
49 #include <inet/wifi_ioctl.h>
50 #include <libdladm.h>
51 #include <libdlstat.h>
52 #include <sys/param.h>
53 #include <sys/debug.h>
54 #include <sys/dld.h>
55 #include <inttypes.h>
56 #include <sys/ethernet.h>
57 #include <inet/iptun.h>
58 #include <net/wpa.h>
58 #include <sys/sysmacros.h>

new/usr/src/lib/libdladm/common/linkprop.c 2

59 #include <sys/vlan.h>
60 #include <libdlbridge.h>
61 #include <stp_in.h>
62 #include <netinet/dhcp.h>
63 #include <netinet/dhcp6.h>
64 #include <net/if_types.h>
65 #include <libinetutil.h>
66 #include <pool.h>

68 /*
69 * The linkprop get() callback.
70 * - pd: pointer to the prop_desc_t
71 * - propstrp: a property string array to keep the returned property.
72 * Caller allocated.
73 * - cntp: number of returned properties.
74 * Caller also uses it to indicate how many it expects.
75 */
76 struct prop_desc;
77 typedef struct prop_desc prop_desc_t;

79 typedef dladm_status_t pd_getf_t(dladm_handle_t, prop_desc_t *pdp,
80 datalink_id_t, char **propstp, uint_t *cntp,
81 datalink_media_t, uint_t, uint_t *);

83 /*
84 * The linkprop set() callback.
85 * - propval: a val_desc_t array which keeps the property values to be set.
86 * - cnt: number of properties to be set.
87 * - flags: additional flags passed down the system call.
88 *
89 * pd_set takes val_desc_t given by pd_check(), translates it into
90 * a format suitable for kernel consumption. This may require allocation
91 * of ioctl buffers etc. pd_set() may call another common routine (used
92 * by all other pd_sets) which invokes the ioctl.
93 */
94 typedef dladm_status_t pd_setf_t(dladm_handle_t, prop_desc_t *, datalink_id_t,
95 val_desc_t *propval, uint_t cnt, uint_t flags,
96 datalink_media_t);

98 /*
99 * The linkprop check() callback.
100 * - propstrp: property string array which keeps the property to be checked.
101 * - cnt: number of properties.
102 * - propval: return value; the property values of the given property strings.
103 *
104 * pd_check checks that the input values are valid. It does so by
105 * iteraring through the pd_modval list for the property. If
106 * the modifiable values cannot be expressed as a list, a pd_check
107 * specific to this property can be used. If the input values are
108 * verified to be valid, pd_check allocates a val_desc_t and fills it
109 * with either a val_desc_t found on the pd_modval list or something
110 * generated on the fly.
111 */
112 typedef dladm_status_t pd_checkf_t(dladm_handle_t, prop_desc_t *pdp,
113 datalink_id_t, char **propstrp, uint_t *cnt,
114 uint_t flags, val_desc_t **propval,
115 datalink_media_t);

117 typedef struct link_attr_s {
118 mac_prop_id_t pp_id;
119 size_t pp_valsize;
120 char *pp_name;
121 } link_attr_t;

______unchanged_portion_omitted_

229 #define MAC_PROP_BUFSIZE(v) sizeof (dld_ioc_macprop_t) + (v) - 1

new/usr/src/lib/libdladm/common/linkprop.c 3

231 /*
232 * Supported link properties enumerated in the prop_table[] array are
233 * computed using the callback functions in that array. To compute the
234 * property value, multiple distinct system calls may be needed (e.g.,
235 * for wifi speed, we need to issue system calls to get desired/supported
236 * rates). The link_attr[] table enumerates the interfaces to the kernel,
237 * and the type/size of the data passed in the user-kernel interface.
238 */
239 static link_attr_t link_attr[] = {
240 { MAC_PROP_DUPLEX, sizeof (link_duplex_t), "duplex"},

242 { MAC_PROP_SPEED, sizeof (uint64_t), "speed"},

244 { MAC_PROP_STATUS, sizeof (link_state_t), "state"},

246 { MAC_PROP_AUTONEG, sizeof (uint8_t), "adv_autoneg_cap"},

248 { MAC_PROP_MTU, sizeof (uint32_t), "mtu"},

250 { MAC_PROP_FLOWCTRL, sizeof (link_flowctrl_t), "flowctrl"},

252 { MAC_PROP_ZONE, sizeof (dld_ioc_zid_t), "zone"},

254 { MAC_PROP_AUTOPUSH, sizeof (struct dlautopush), "autopush"},

256 { MAC_PROP_ADV_10GFDX_CAP, sizeof (uint8_t), "adv_10gfdx_cap"},

258 { MAC_PROP_EN_10GFDX_CAP, sizeof (uint8_t), "en_10gfdx_cap"},

260 { MAC_PROP_ADV_1000FDX_CAP, sizeof (uint8_t), "adv_1000fdx_cap"},

262 { MAC_PROP_EN_1000FDX_CAP, sizeof (uint8_t), "en_1000fdx_cap"},

264 { MAC_PROP_ADV_1000HDX_CAP, sizeof (uint8_t), "adv_1000hdx_cap"},

266 { MAC_PROP_EN_1000HDX_CAP, sizeof (uint8_t), "en_1000hdx_cap"},

268 { MAC_PROP_ADV_100FDX_CAP, sizeof (uint8_t), "adv_100fdx_cap"},

270 { MAC_PROP_EN_100FDX_CAP, sizeof (uint8_t), "en_100fdx_cap"},

272 { MAC_PROP_ADV_100HDX_CAP, sizeof (uint8_t), "adv_100hdx_cap"},

274 { MAC_PROP_EN_100HDX_CAP, sizeof (uint8_t), "en_100hdx_cap"},

276 { MAC_PROP_ADV_10FDX_CAP, sizeof (uint8_t), "adv_10fdx_cap"},

278 { MAC_PROP_EN_10FDX_CAP, sizeof (uint8_t), "en_10fdx_cap"},

280 { MAC_PROP_ADV_10HDX_CAP, sizeof (uint8_t), "adv_10hdx_cap"},

282 { MAC_PROP_EN_10HDX_CAP, sizeof (uint8_t), "en_10hdx_cap"},

284 { MAC_PROP_WL_ESSID, sizeof (wl_linkstatus_t), "essid"},

286 { MAC_PROP_WL_BSSID, sizeof (wl_bssid_t), "bssid"},

288 { MAC_PROP_WL_BSSTYPE, sizeof (wl_bss_type_t), "bsstype"},

290 { MAC_PROP_WL_LINKSTATUS, sizeof (wl_linkstatus_t), "wl_linkstatus"},

292 /* wl_rates_t has variable length */
293 { MAC_PROP_WL_DESIRED_RATES, sizeof (wl_rates_t), "desired_rates"},

295 /* wl_rates_t has variable length */

new/usr/src/lib/libdladm/common/linkprop.c 4

296 { MAC_PROP_WL_SUPPORTED_RATES, sizeof (wl_rates_t), "supported_rates"},

298 { MAC_PROP_WL_AUTH_MODE, sizeof (wl_authmode_t), "authmode"},

300 { MAC_PROP_WL_ENCRYPTION, sizeof (wl_encryption_t), "encryption"},

302 { MAC_PROP_WL_RSSI, sizeof (wl_rssi_t), "signal"},

304 { MAC_PROP_WL_PHY_CONFIG, sizeof (wl_phy_conf_t), "phy_conf"},

306 { MAC_PROP_WL_CAPABILITY, sizeof (wl_capability_t), "capability"},

308 { MAC_PROP_WL_WPA, sizeof (wl_wpa_t), "wpa"},

311 /* wl_wpa_ess_t has variable length */
312 { MAC_PROP_WL_SCANRESULTS, sizeof (wl_wpa_ess_t), "scan_results"},

310 { MAC_PROP_WL_POWER_MODE, sizeof (wl_ps_mode_t), "powermode"},

312 { MAC_PROP_WL_RADIO, sizeof (dladm_wlan_radio_t), "wl_radio"},

314 { MAC_PROP_WL_ESS_LIST, sizeof (wl_ess_list_t), "wl_ess_list"},

316 { MAC_PROP_WL_KEY_TAB, sizeof (wl_wep_key_tab_t), "wl_wep_key"},

318 { MAC_PROP_WL_CREATE_IBSS, sizeof (wl_create_ibss_t), "createibss"},

320 /* wl_wpa_ie_t has variable length */
321 { MAC_PROP_WL_SETOPTIE, sizeof (wl_wpa_ie_t), "set_ie"},

323 { MAC_PROP_WL_DELKEY, sizeof (wl_del_key_t), "wpa_del_key"},

325 { MAC_PROP_WL_KEY, sizeof (wl_key_t), "wl_key"},

327 { MAC_PROP_WL_MLME, sizeof (wl_mlme_t), "mlme"},

329 { MAC_PROP_TAGMODE, sizeof (link_tagmode_t), "tagmode"},

331 { MAC_PROP_IPTUN_HOPLIMIT, sizeof (uint32_t), "hoplimit"},

333 { MAC_PROP_IPTUN_ENCAPLIMIT, sizeof (uint32_t), "encaplimit"},

335 { MAC_PROP_PVID, sizeof (uint16_t), "default_tag"},

337 { MAC_PROP_LLIMIT, sizeof (uint32_t), "learn_limit"},

339 { MAC_PROP_LDECAY, sizeof (uint32_t), "learn_decay"},

341 { MAC_PROP_RESOURCE, sizeof (mac_resource_props_t), "resource"},

343 { MAC_PROP_RESOURCE_EFF, sizeof (mac_resource_props_t),
344 "resource-effective"},

346 { MAC_PROP_RXRINGSRANGE, sizeof (mac_propval_range_t), "rxrings"},

348 { MAC_PROP_TXRINGSRANGE, sizeof (mac_propval_range_t), "txrings"},

350 { MAC_PROP_MAX_TX_RINGS_AVAIL, sizeof (uint_t),
351 "txrings-available"},

353 { MAC_PROP_MAX_RX_RINGS_AVAIL, sizeof (uint_t),
354 "rxrings-available"},

356 { MAC_PROP_MAX_RXHWCLNT_AVAIL, sizeof (uint_t), "rxhwclnt-available"},

358 { MAC_PROP_MAX_TXHWCLNT_AVAIL, sizeof (uint_t), "txhwclnt-available"},

new/usr/src/lib/libdladm/common/linkprop.c 5

360 { MAC_PROP_IB_LINKMODE, sizeof (uint32_t), "linkmode"},

362 { MAC_PROP_PRIVATE, 0, "driver-private"}
363 };

______unchanged_portion_omitted_

new/usr/src/lib/libdladm/common/mapfile-vers 1

**
 6340 Tue Jun 12 19:55:03 2012
new/usr/src/lib/libdladm/common/mapfile-vers
cleaned lint warnings
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 #

25 #
26 # MAPFILE HEADER START
27 #
28 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
29 # Object versioning must comply with the rules detailed in
30 #
31 # usr/src/lib/README.mapfiles
32 #
33 # You should not be making modifications here until you’ve read the most current
34 # copy of that file. If you need help, contact a gatekeeper for guidance.
35 #
36 # MAPFILE HEADER END
37 #

39 $mapfile_version 2

41 SYMBOL_VERSION SUNWprivate_1.1 {
42 global:
43 dladm_open;
44 dladm_close;
45 dladm_dld_fd;
46 dladm_door_fd;
47 dladm_info;
48 dladm_walk;
49 dladm_status2str;
50 dladm_linkstate2str;
51 dladm_linkduplex2str;
52 dladm_set_rootdir;
53 dladm_valid_linkname;
54 dladm_mac_walk;
55 dladm_init_linkprop;
56 dladm_get_linkprop;
57 dladm_get_linkprop_values;
58 dladm_set_linkprop;
59 dladm_walk_linkprop;
60 dladm_attr_is_linkprop;
61 dladm_linkprop_is_set;

new/usr/src/lib/libdladm/common/mapfile-vers 2

62 dladm_valid_secobj_name;
63 dladm_init_secobj;
64 dladm_get_secobj;
65 dladm_set_secobj;
66 dladm_unset_secobj;
67 dladm_walk_secobj;
68 dladm_str2interval;
69 dladm_bw2str;
70 dladm_str2bw;
71 dladm_secobjclass2str;
72 dladm_str2secobjclass;
73 dladm_aggr_up;
74 dladm_aggr_add;
75 dladm_aggr_create;
76 dladm_aggr_delete;
77 dladm_aggr_modify;
78 dladm_aggr_remove;
79 dladm_aggr_lacpmode2str;
80 dladm_aggr_lacptimer2str;
81 dladm_aggr_macaddr2str;
82 dladm_aggr_policy2str;
83 dladm_aggr_portstate2str;
84 dladm_aggr_str2lacpmode;
85 dladm_aggr_str2lacptimer;
86 dladm_aggr_str2macaddr;
87 dladm_aggr_str2policy;
88 dladm_aggr_info;
89 dladm_key2linkid;
90 dladm_wlan_scan;
91 dladm_wlan_connect;
92 dladm_wlan_disconnect;
93 dladm_wlan_get_bssid;
94 dladm_wlan_get_essid;
95 dladm_wlan_get_esslist;
96 #endif /* ! codereview */
97 dladm_wlan_get_linkattr;
98 dladm_wlan_set_authmode;
99 dladm_wlan_set_bsstype;
100 dladm_wlan_set_channel;
101 dladm_wlan_set_encryption;
102 dladm_wlan_set_essid;
103 #endif /* ! codereview */
104 dladm_wlan_essid2str;
105 dladm_wlan_bssid2str;
106 dladm_wlan_secmode2str;
107 dladm_wlan_strength2str;
108 dladm_wlan_mode2str;
109 dladm_wlan_speed2str;
110 dladm_wlan_auth2str;
111 dladm_wlan_bsstype2str;
112 dladm_wlan_linkstatus2str;
113 dladm_wlan_str2essid;
114 dladm_wlan_str2bssid;
115 dladm_wlan_str2secmode;
116 dladm_wlan_str2strength;
117 dladm_wlan_str2mode;
118 dladm_wlan_str2speed;
119 dladm_wlan_str2auth;
120 dladm_wlan_str2bsstype;
121 dladm_wlan_str2linkstatus;
122 dladm_iptun_create;
123 dladm_iptun_delete;
124 dladm_iptun_modify;
125 dladm_iptun_getparams;
126 dladm_iptun_up;
127 dladm_iptun_down;

new/usr/src/lib/libdladm/common/mapfile-vers 3

128 dladm_iptun_set6to4relay;
129 dladm_iptun_get6to4relay;
130 dladm_vlan_create;
131 dladm_vlan_delete;
132 dladm_vlan_up;
133 dladm_vlan_info;
134 dladm_class2str;
135 dladm_media2str;
136 dladm_str2media;
137 dladm_rename_link;
138 dladm_phys_info;
139 dladm_phys_delete;
140 dladm_dev2linkid;
141 dladm_linkid2legacyname;
142 dladm_create_datalink_id;
143 dladm_destroy_datalink_id;
144 dladm_remap_datalink_id;
145 dladm_up_datalink_id;
146 dladm_name2info;
147 dladm_datalink_id2info;
148 dladm_walk_datalink_id;
149 dladm_create_conf;
150 dladm_open_conf;
151 dladm_getsnap_conf;
152 dladm_write_conf;
153 dladm_remove_conf;
154 dladm_destroy_conf;
155 dladm_get_conf_field;
156 dladm_set_conf_field;
157 dladm_unset_conf_field;
93 dladm_wlan_wpa_get_sr;
158 dladm_wlan_wpa_set_ie;
159 dladm_wlan_wpa_set_wpa;
160 dladm_wlan_wpa_del_key;
161 dladm_wlan_wpa_set_key;
162 dladm_wlan_wpa_set_mlme;
163 dladm_vnic_create;
164 dladm_vnic_delete;
165 dladm_vnic_info;
166 dladm_vnic_str2macaddrtype;
167 dladm_vnic_up;
168 dladm_walk_macaddr;
169 dladm_walk_hwgrp;
170 dladm_pri2str;
171 dladm_str2pri;
172 dladm_protect2str;
173 dladm_str2protect;
174 dladm_ipv4addr2str;
175 dladm_str2ipv4addr;
176 dladm_ipv6addr2str;
177 dladm_str2ipv6addr;
178 dladm_start_usagelog;
179 dladm_stop_usagelog;
180 dladm_walk_usage_res;
181 dladm_walk_usage_time;
182 dladm_usage_summary;
183 dladm_usage_dates;
184 dladm_zone_boot;
185 dladm_zone_halt;

187 dladm_flow_add;
188 dladm_flow_remove;
189 dladm_flow_parse_db;
190 dladm_walk_flow;
191 dladm_flow_init;
192 dladm_flow_info;

new/usr/src/lib/libdladm/common/mapfile-vers 4

193 dladm_prefixlen2mask;
194 dladm_mask2prefixlen;
195 dladm_str2proto;
196 dladm_proto2str;

198 dladm_free_attrs;
199 dladm_parse_flow_attrs;

201 dladm_flow_attr_ip2str;
202 dladm_flow_attr_proto2str;
203 dladm_flow_attr_port2str;
204 dladm_flow_attr_dsfield2str;

206 dladm_free_props;
207 dladm_parse_link_props;
208 dladm_get_linkprop;
209 dladm_set_linkprop;
210 dladm_walk_linkprop;
211 dladm_parse_flow_props;
212 dladm_get_flowprop;
213 dladm_set_flowprop;
214 dladm_walk_flowprop;

216 dladm_parselink;

218 dladm_continuous;
219 dladm_kstat_lookup;
220 dladm_get_stats;
221 dladm_kstat_value;
222 dladm_get_single_mac_stat;
223 dladm_stats_total;
224 dladm_stats_diff;
225 dladm_ether_info;
226 dladm_ether_autoneg2str;
227 dladm_ether_pause2str;
228 dladm_ether_spdx2str;
229 dladm_ether_info_done;

231 dladm_simnet_create;
232 dladm_simnet_modify;
233 dladm_simnet_delete;
234 dladm_simnet_info;
235 dladm_simnet_up;
236 dladm_bridge_str2prot;
237 dladm_bridge_prot2str;
238 dladm_bridge_get_properties;
239 dladm_bridge_run_properties;
240 dladm_bridge_configure;
241 dladm_bridge_enable;
242 dladm_bridge_delete;
243 dladm_bridge_state;
244 dladm_bridge_get_portlist;
245 dladm_bridge_free_portlist;
246 dladm_bridge_setlink;
247 dladm_bridge_getlink;
248 dladm_bridge_link_state;
249 dladm_valid_bridgename;
250 dladm_observe_to_bridge;
251 dladm_bridge_get_fwdtable;
252 dladm_bridge_free_fwdtable;
253 dladm_bridge_get_trillnick;
254 dladm_bridge_free_trillnick;
255 dladm_bridge_get_nick;
256 dladm_bridge_set_nick;
257 dladm_bridge_get_privprop;

new/usr/src/lib/libdladm/common/mapfile-vers 5

259 dladm_link_stat_query;
260 dladm_link_stat_diffchain;
261 dladm_link_stat_free;
262 dladm_link_stat_query_all;
263 dladm_link_stat_query_all_free;

265 dladm_flow_stat_query;
266 dladm_flow_stat_diff;
267 dladm_flow_stat_free;
268 dladm_flow_stat_query_all;
269 dladm_flow_stat_query_all_free;

271 dladm_part_create;
272 dladm_part_delete;
273 dladm_part_info;
274 dladm_part_up;
275 dladm_ib_info;
276 dladm_free_ib_info;

278 dladm_range2strs;
279 dladm_strs2range;
280 dladm_range2list;
281 dladm_list2range;
282 local:
283 *;
284 };

______unchanged_portion_omitted_

new/usr/src/lib/libdladm/common/secobj.c 1

**
 17009 Tue Jun 12 19:55:04 2012
new/usr/src/lib/libdladm/common/secobj.c
secobjs types now are "wep, psk, eap, pin"
dladm_wlan_secmode_t and dladm_secobj_class_t are not related anymore
**
______unchanged_portion_omitted_

53 static secobj_class_info_t secobj_class_table[] = {
54 {"wep", DLD_SECOBJ_CLASS_WEP},
55 {"psk", DLD_SECOBJ_CLASS_PSK},
56 {"eap-tls", DLD_SECOBJ_CLASS_TLS},
57 {"eap-ttls", DLD_SECOBJ_CLASS_TTLS},
58 {"peap", DLD_SECOBJ_CLASS_PEAP}
55 {"wpa", DLD_SECOBJ_CLASS_WPA}
59 };

______unchanged_portion_omitted_

new/usr/src/lib/libdladm/common/wpa_ie.c 1

**
 17925 Tue Jun 12 19:55:06 2012
new/usr/src/lib/libdladm/common/wpa_ie.c
secobjs types now are "wep, psk, eap, pin"
dladm_wlan_secmode_t and dladm_secobj_class_t are not related anymore
**

1 /*
2 * Copyright (c) 2002-2012, Jouni Malinen <j@w1.fi>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Alternatively, this software may be distributed under the terms of BSD
9 * license.

10 */

12 #include <unistd.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <strings.h>
16 #include <errno.h>
17 #include <ctype.h>
18 #include <fcntl.h>
19 #include <libdlwlan.h>

21 /* IEEE 802.11i */
22 #define PMKID_LEN 16

24 #define WPA_SELECTOR_LEN 4
25 #define WPA_VERSION 1
26 #define RSN_SELECTOR_LEN 4
27 #define RSN_VERSION 1

29 #define BIT(x) (1 << (x))

31 /* key_mgmt: */
32 #define WPA_KEY_MGMT_IEEE8021X BIT(0)
33 #define WPA_KEY_MGMT_PSK BIT(1)
34 #define WPA_KEY_MGMT_NONE BIT(2)
35 #define WPA_KEY_MGMT_IEEE8021X_NO_WPA BIT(3)
36 #define WPA_KEY_MGMT_WPA_NONE BIT(4)

38 /* proto: */
39 #define WPA_PROTO_WPA BIT(0)
40 #define WPA_PROTO_RSN BIT(1)

42 /* pairwise: and group: cyphers */
43 #define WPA_CIPHER_NONE BIT(0)
44 #define WPA_CIPHER_WEP40 BIT(1)
45 #define WPA_CIPHER_WEP104 BIT(2)
46 #define WPA_CIPHER_TKIP BIT(3)
47 #define WPA_CIPHER_CCMP BIT(4)

49 /* not supported by net80211*/
50 #define WPA_KEY_MGMT_FT_IEEE8021X BIT(5)
51 #define WPA_KEY_MGMT_FT_PSK BIT(6)
52 #define WPA_KEY_MGMT_IEEE8021X_SHA256 BIT(7)
53 #define WPA_KEY_MGMT_PSK_SHA256 BIT(8)
54 #define WPA_KEY_MGMT_WPS BIT(9)

56 /* Information Element IDs */
57 #define WLAN_EID_SSID 0
58 #define WLAN_EID_RSN 48
59 #define WLAN_EID_VENDOR_SPECIFIC 221

new/usr/src/lib/libdladm/common/wpa_ie.c 2

61 #define WPA_GET_LE16(a) ((uint16_t) (((a)[1] << 8) | (a)[0]))
62 #define WPA_GET_BE16(a) ((uint16_t) (((a)[0] << 8) | (a)[1]))
63 #define WPA_PUT_BE16(a, val) \
64 do { \
65 (a)[0] = ((uint16_t) (val)) >> 8; \
66 (a)[1] = ((uint16_t) (val)) & 0xff; \
67 } while (0)

70 #define RSN_SELECTOR(a, b, c, d) \
71 ((((uint32_t) (a)) << 24) | (((uint32_t) (b)) << 16) | (((uint32_t) (c))
72 (uint32_t) (d))

74 #define WPA_AUTH_KEY_MGMT_NONE RSN_SELECTOR(0x00, 0x50, 0xf2, 0)
75 #define WPA_AUTH_KEY_MGMT_UNSPEC_802_1X RSN_SELECTOR(0x00, 0x50, 0xf2, 1)
76 #define WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X RSN_SELECTOR(0x00, 0x50, 0xf2, 2)
77 #define WPA_CIPHER_SUITE_NONE RSN_SELECTOR(0x00, 0x50, 0xf2, 0)
78 #define WPA_CIPHER_SUITE_WEP40 RSN_SELECTOR(0x00, 0x50, 0xf2, 1)
79 #define WPA_CIPHER_SUITE_TKIP RSN_SELECTOR(0x00, 0x50, 0xf2, 2)
80 #define WPA_CIPHER_SUITE_WRAP RSN_SELECTOR(0x00, 0x50, 0xf2, 3)
81 #define WPA_CIPHER_SUITE_CCMP RSN_SELECTOR(0x00, 0x50, 0xf2, 4)
82 #define WPA_CIPHER_SUITE_WEP104 RSN_SELECTOR(0x00, 0x50, 0xf2, 5)

85 #define RSN_AUTH_KEY_MGMT_UNSPEC_802_1X RSN_SELECTOR(0x00, 0x0f, 0xac, 1)
86 #define RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X RSN_SELECTOR(0x00, 0x0f, 0xac, 2)

88 #define RSN_AUTH_KEY_MGMT_802_1X_SHA256 RSN_SELECTOR(0x00, 0x0f, 0xac, 5)
89 #define RSN_AUTH_KEY_MGMT_PSK_SHA256 RSN_SELECTOR(0x00, 0x0f, 0xac, 6)
90 #define RSN_AUTH_KEY_MGMT_TPK_HANDSHAKE RSN_SELECTOR(0x00, 0x0f, 0xac, 7)

92 #define RSN_CIPHER_SUITE_NONE RSN_SELECTOR(0x00, 0x0f, 0xac, 0)
93 #define RSN_CIPHER_SUITE_WEP40 RSN_SELECTOR(0x00, 0x0f, 0xac, 1)
94 #define RSN_CIPHER_SUITE_TKIP RSN_SELECTOR(0x00, 0x0f, 0xac, 2)
95 #define RSN_CIPHER_SUITE_WRAP RSN_SELECTOR(0x00, 0x0f, 0xac, 3
96 #define RSN_CIPHER_SUITE_CCMP RSN_SELECTOR(0x00, 0x0f, 0xac, 4)
97 #define RSN_CIPHER_SUITE_WEP104 RSN_SELECTOR(0x00, 0x0f, 0xac, 5)
98 #define RSN_CIPHER_SUITE_AES_128_CMAC RSN_SELECTOR(0x00, 0x0f, 0xac, 6)

100 #define WPA_OUI_TYPE RSN_SELECTOR(0x00, 0x50, 0xf2, 1)

102 #define RSN_SELECTOR_PUT(a, val) WPA_PUT_BE32((uint8_t *) (a), (val))
103 #define RSN_SELECTOR_GET(a) WPA_GET_BE32((const uint8_t *) (a))

105 #define RSN_NUM_REPLAY_COUNTERS_1 0
106 #define RSN_NUM_REPLAY_COUNTERS_2 1
107 #define RSN_NUM_REPLAY_COUNTERS_4 2
108 #define RSN_NUM_REPLAY_COUNTERS_16 3

110 /* IEEE 802.11, 7.3.2.25.3 RSN Capabilities */
111 #define WPA_CAPABILITY_PREAUTH BIT(0)
112 #define WPA_CAPABILITY_NO_PAIRWISE BIT(1)

114 #define WPA_GET_BE32(a) ((((uint32_t) (a)[0]) << 24) | (((uint32_t) (a)[1]) << 1
115 (((uint32_t) (a)[2]) << 8) | ((uint32_t) (a)[3]))

117 /* B14-B15: Reserved */

119 /* WPA IE version 1
120 * 00-50-f2:1 (OUI:OUI type)
121 * 0x01 0x00 (version; little endian)
122 * (all following fields are optional:)
123 * Group Suite Selector (4 octets) (default: TKIP)
124 * Pairwise Suite Count (2 octets, little endian) (default: 1)
125 * Pairwise Suite List (4 * n octets) (default: TKIP)
126 * Authenticated Key Management Suite Count (2 octets, little endian)

new/usr/src/lib/libdladm/common/wpa_ie.c 3

127 * (default: 1)
128 * Authenticated Key Management Suite List (4 * n octets)
129 * (default: unspec 802.1X)
130 * WPA Capabilities (2 octets, little endian) (default: 0)
131 */

133 #pragma pack(1)
134 struct wpa_ie_hdr {
135 uint8_t elem_id;
136 uint8_t len;
137 uint8_t oui[4]; /* 24-bit OUI followed by 8-bit OUI type */
138 uint8_t version[2]; /* little endian */
139 };
140 #pragma pack()

142 /* 1/4: PMKID
143 * 2/4: RSN IE
144 * 3/4: one or two RSN IEs + GTK IE (encrypted)
145 * 4/4: empty
146 * 1/2: GTK IE (encrypted)
147 * 2/2: empty
148 */

150 /* RSN IE version 1
151 * 0x01 0x00 (version; little endian)
152 * (all following fields are optional:)
153 * Group Suite Selector (4 octets) (default: CCMP)
154 * Pairwise Suite Count (2 octets, little endian) (default: 1)
155 * Pairwise Suite List (4 * n octets) (default: CCMP)
156 * Authenticated Key Management Suite Count (2 octets, little endian)
157 * (default: 1)
158 * Authenticated Key Management Suite List (4 * n octets)
159 * (default: unspec 802.1X)
160 * RSN Capabilities (2 octets, little endian) (default: 0)
161 * PMKID Count (2 octets) (default: 0)
162 * PMKID List (16 * n octets)
163 * Management Group Cipher Suite (4 octets) (default: AES-128-CMAC)
164 */

166 #pragma pack(1)
167 struct rsn_ie_hdr {
168 uint8_t elem_id; /* WLAN_EID_RSN */
169 uint8_t len;
170 uint8_t version[2]; /* little endian */
171 };
172 #pragma pack()

174 /* local functions prototypes */

176 static int wpa_parse_wpa_ie_wpa(const uint8_t *wpa_ie, size_t wpa_ie_len,
177 struct wpa_ie_data *data);
178 static int wpa_parse_wpa_ie_rsn(const uint8_t *rsn_ie, size_t rsn_ie_len,
179 struct wpa_ie_data *data);
180 /**
181 * wpa_cipher_txt - Convert cipher suite to a text string
182 * @cipher: Cipher suite (WPA_CIPHER_* enum)
183 * Returns: Pointer to a text string of the cipher suite name
184 */
185 char * wpa_cipher_txt(int cipher)
186 {
187 switch (cipher) {
188 case WPA_CIPHER_NONE:
189 return "NONE";
190 case WPA_CIPHER_WEP40:
191 return "WEP-40";
192 case WPA_CIPHER_WEP104:

new/usr/src/lib/libdladm/common/wpa_ie.c 4

193 return "WEP-104";
194 case WPA_CIPHER_TKIP:
195 return "TKIP";
196 case WPA_CIPHER_CCMP:
197 return "CCMP";
198 default:
199 return "UNKNOWN";
200 }
201 }

203 /**
204 * wpa_key_mgmt_txt - Convert key management suite to a text string
205 * @key_mgmt: Key management suite (WPA_KEY_MGMT_* enum)
206 * @proto: WPA/WPA2 version (WPA_PROTO_*)
207 * Returns: Pointer to a text string of the key management suite name
208 */
209 char * wpa_key_mgmt_txt(int key_mgmt)
210 {
211 switch (key_mgmt) {
212 case WPA_KEY_MGMT_IEEE8021X:
213 return "WPA-EAP";
214 case WPA_KEY_MGMT_PSK:
215 return "WPA-PSK";
216 case WPA_KEY_MGMT_NONE:
217 return "NONE";
218 case WPA_KEY_MGMT_IEEE8021X_NO_WPA:
219 return "IEEE8021X";
220 default:
221 return "UNKNOWN";
222 }
223 }

225 static int wpa_cypher_to_bitfield(const uint8_t *s)
226 {
227 if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_NONE)
228 return WPA_CIPHER_NONE;
229 if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_WEP40)
230 return WPA_CIPHER_WEP40;
231 if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_TKIP)
232 return WPA_CIPHER_TKIP;
233 if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_CCMP)
234 return WPA_CIPHER_CCMP;
235 if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_WEP104)
236 return WPA_CIPHER_WEP104;
237 return 0;
238 }

240 static int wpa_key_mgmt_to_bitfield(const uint8_t *s)
241 {
242 if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_UNSPEC_802_1X)
243 return WPA_KEY_MGMT_IEEE8021X;
244 if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X)
245 return WPA_KEY_MGMT_PSK;
246 if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_NONE)
247 return WPA_KEY_MGMT_WPA_NONE;
248 return 0;
249 }

251 static int wpa_parse_wpa_ie_wpa(const uint8_t *wpa_ie, size_t wpa_ie_len,
252 struct wpa_ie_data *data)
253 {
254 const struct wpa_ie_hdr *hdr;
255 const uint8_t *pos;
256 int left;
257 int i, count;

new/usr/src/lib/libdladm/common/wpa_ie.c 5

259 memset(data, 0, sizeof(*data));
260 data->proto = WPA_PROTO_WPA;
261 data->pairwise_cipher = WPA_CIPHER_TKIP;
262 data->group_cipher = WPA_CIPHER_TKIP;
263 data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
264 data->capabilities = 0;
265 data->pmkid = NULL;
266 data->num_pmkid = 0;
267 data->mgmt_group_cipher = 0;

269 if (wpa_ie_len == 0) {
270 /* No WPA IE - fail silently */
271 return -1;
272 }

274 if (wpa_ie_len < sizeof(struct wpa_ie_hdr)) {
275 printf("wpa_parse_wpa_ie_wpa: ie len too short %lu",
276 (unsigned long) wpa_ie_len);
277 return -1;
278 }

280 hdr = (const struct wpa_ie_hdr *) wpa_ie;

282 if (hdr->elem_id != WLAN_EID_VENDOR_SPECIFIC ||
283 hdr->len != wpa_ie_len - 2 ||
284 RSN_SELECTOR_GET(hdr->oui) != WPA_OUI_TYPE ||
285 WPA_GET_LE16(hdr->version) != WPA_VERSION) {
286 printf("wpa_parse_wpa_ie_wpa: malformed ie or unknown version");
287 return -2;
288 }

290 pos = (const uint8_t *) (hdr + 1);
291 left = wpa_ie_len - sizeof(*hdr);

293 if (left >= WPA_SELECTOR_LEN) {
294 data->group_cipher = wpa_cypher_to_bitfield(pos);
295 pos += WPA_SELECTOR_LEN;
296 left -= WPA_SELECTOR_LEN;
297 } else if (left > 0) {
298 printf("wpa_parse_wpa_ie_wpa: ie length mismatch, %u too much",
299 left);
300 return -3;
301 }

303 if (left >= 2) {
304 data->pairwise_cipher = 0;
305 count = WPA_GET_LE16(pos);
306 pos += 2;
307 left -= 2;
308 if (count == 0 || left < count * WPA_SELECTOR_LEN) {
309 printf("wpa_parse_wpa_ie_wpa: ie count botch (pairwise)\
310 , count %u left %u", count, left);
311 return -4;
312 }
313 for (i = 0; i < count; i++) {
314 data->pairwise_cipher |= wpa_cypher_to_bitfield(pos);
315 pos += WPA_SELECTOR_LEN;
316 left -= WPA_SELECTOR_LEN;
317 }
318 } else if (left == 1) {
319 printf("wpa_parse_wpa_ie_wpa: ie too short (for key mgmt)");
320 return -5;
321 }

323 if (left >= 2) {
324 data->key_mgmt = 0;

new/usr/src/lib/libdladm/common/wpa_ie.c 6

325 count = WPA_GET_LE16(pos);
326 pos += 2;
327 left -= 2;
328 if (count == 0 || left < count * WPA_SELECTOR_LEN) {
329 printf("wpa_parse_wpa_ie_wpa: ie count botch (key mgmt)\
330 , count %u left %u", count, left);
331 return -6;
332 }
333 for (i = 0; i < count; i++) {
334 data->key_mgmt |= wpa_key_mgmt_to_bitfield(pos);
335 pos += WPA_SELECTOR_LEN;
336 left -= WPA_SELECTOR_LEN;
337 }
338 } else if (left == 1) {
339 printf("wpa_parse_wpa_ie_wpa: ie too short (for capabilities)");
340 return -7;
341 }

343 if (left >= 2) {
344 data->capabilities = WPA_GET_LE16(pos);
345 pos += 2;
346 left -= 2;
347 }

349 if (left > 0) {
350 printf("wpa_parse_wpa_ie_wpa: ie has %u trailing bytes \
351 - ignored", left);
352 }

354 return 0;
355 }

357 /**
358 * wpa_parse_wpa_ie_rsn - Parse RSN IE
359 * @rsn_ie: Buffer containing RSN IE
360 * @rsn_ie_len: RSN IE buffer length (including IE number and length octets)
361 * @data: Pointer to structure that will be filled in with parsed data
362 * Returns: 0 on success, <0 on failure
363 */
364 static int wpa_parse_wpa_ie_rsn(const uint8_t *rsn_ie, size_t rsn_ie_len,
365 struct wpa_ie_data *data)
366 {
367 const struct rsn_ie_hdr *hdr;
368 const uint8_t *pos;
369 int left;
370 int i, count;

372 memset(data, 0, sizeof(*data));
373 data->proto = WPA_PROTO_RSN;
374 data->pairwise_cipher = WPA_CIPHER_CCMP;
375 data->group_cipher = WPA_CIPHER_CCMP;
376 data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
377 data->capabilities = 0;
378 data->pmkid = NULL;
379 data->num_pmkid = 0;
380 data->mgmt_group_cipher = 0;

382 if (rsn_ie_len == 0) {
383 /* No RSN IE - fail silently */
384 return -1;
385 }

387 if (rsn_ie_len < sizeof(struct rsn_ie_hdr)) {
388 printf("wpa_parse_wpa_ie_rsn: ie len too short %lu",
389 (unsigned long) rsn_ie_len);
390 return -1;

new/usr/src/lib/libdladm/common/wpa_ie.c 7

391 }

393 hdr = (const struct rsn_ie_hdr *) rsn_ie;

395 if (hdr->elem_id != WLAN_EID_RSN ||
396 hdr->len != rsn_ie_len - 2 ||
397 WPA_GET_LE16(hdr->version) != RSN_VERSION) {
398 printf("wpa_parse_wpa_ie_rsn: malformed ie or unknown version");
399 return -2;
400 }

402 pos = (const uint8_t *) (hdr + 1);
403 left = rsn_ie_len - sizeof(*hdr);

405 if (left >= RSN_SELECTOR_LEN) {
406 data->group_cipher = wpa_cypher_to_bitfield(pos);
407 pos += RSN_SELECTOR_LEN;
408 left -= RSN_SELECTOR_LEN;
409 } else if (left > 0) {
410 printf("wpa_parse_wpa_ie_rsn: ie length mismatch, %u too much",
411 left);
412 return -3;
413 }

415 if (left >= 2) {
416 data->pairwise_cipher = 0;
417 count = WPA_GET_LE16(pos);
418 pos += 2;
419 left -= 2;
420 if (count == 0 || left < count * RSN_SELECTOR_LEN) {
421 printf("wpa_parse_wpa_ie_rsn: ie count botch (pairwise)\
422 , count %u left %u", count, left);
423 return -4;
424 }
425 for (i = 0; i < count; i++) {
426 data->pairwise_cipher |= wpa_cypher_to_bitfield(pos);
427 pos += RSN_SELECTOR_LEN;
428 left -= RSN_SELECTOR_LEN;
429 }
430 } else if (left == 1) {
431 printf("wpa_parse_wpa_ie_rsn: ie too short (for key mgmt)");
432 return -5;
433 }

435 if (left >= 2) {
436 data->key_mgmt = 0;
437 count = WPA_GET_LE16(pos);
438 pos += 2;
439 left -= 2;
440 if (count == 0 || left < count * RSN_SELECTOR_LEN) {
441 printf("wpa_parse_wpa_ie_rsn: ie count botch (key mgmt)\
442 , count %u left %u", count, left);
443 return -6;
444 }
445 for (i = 0; i < count; i++) {
446 data->key_mgmt |= wpa_key_mgmt_to_bitfield(pos);
447 pos += RSN_SELECTOR_LEN;
448 left -= RSN_SELECTOR_LEN;
449 }
450 } else if (left == 1) {
451 printf("wpa_parse_wpa_ie_rsn: ie too short (for capabilities)");
452 return -7;
453 }

455 if (left >= 2) {
456 data->capabilities = WPA_GET_LE16(pos);

new/usr/src/lib/libdladm/common/wpa_ie.c 8

457 pos += 2;
458 left -= 2;
459 }

461 if (left >= 2) {
462 data->num_pmkid = WPA_GET_LE16(pos);
463 pos += 2;
464 left -= 2;
465 if (left < (int) data->num_pmkid * PMKID_LEN) {
466 printf("wpa_parse_wpa_ie_rsn: PMKID underflow "
467 "(num_pmkid=%lu left=%d)",
468 (unsigned long) data->num_pmkid,
469 left);
470 data->num_pmkid = 0;
471 return -9;
472 } else {
473 data->pmkid = pos;
474 pos += data->num_pmkid * PMKID_LEN;
475 left -= data->num_pmkid * PMKID_LEN;
476 }
477 }

479 if (left > 0)
480 printf("wpa_parse_wpa_ie_rsn: ie has %u trailing bytes \
481 - ignored", left);

483 return 0;
484 }

486 int wpa_parse_wpa_ie(const uint8_t *wpa_ie, size_t wpa_ie_len,
487 struct wpa_ie_data *data)
488 {
489 if (wpa_ie_len >= 1 && wpa_ie[0] == WLAN_EID_RSN)
490 return wpa_parse_wpa_ie_rsn(wpa_ie, wpa_ie_len, data);
491 else
492 return wpa_parse_wpa_ie_wpa(wpa_ie, wpa_ie_len, data);
493 }

495 /*
496 char * wpa_supplicant_ie_txt(char *pos, char *end, const char *proto,
497 const uint8_t *ie, size_t ie_len)
498 {
499 struct wpa_ie_data data;
500 int first, ret;

502 ret = os_snprintf(pos, end - pos, "[%s-", proto);
503 if (ret < 0 || ret >= end - pos)
504 return pos;
505 pos += ret;

507 if (wpa_parse_wpa_ie(ie, ie_len, &data) < 0) {
508 ret = os_snprintf(pos, end - pos, "?]");
509 if (ret < 0 || ret >= end - pos)
510 return pos;
511 pos += ret;
512 return pos;
513 }

515 first = 1;
516 if (data.key_mgmt & WPA_KEY_MGMT_IEEE8021X) {
517 ret = os_snprintf(pos, end - pos, "%sEAP", first ? "" : "+");
518 if (ret < 0 || ret >= end - pos)
519 return pos;
520 pos += ret;
521 first = 0;
522 }

new/usr/src/lib/libdladm/common/wpa_ie.c 9

523 if (data.key_mgmt & WPA_KEY_MGMT_PSK) {
524 ret = os_snprintf(pos, end - pos, "%sPSK", first ? "" : "+");
525 if (ret < 0 || ret >= end - pos)
526 return pos;
527 pos += ret;
528 first = 0;
529 }
530 if (data.key_mgmt & WPA_KEY_MGMT_WPA_NONE) {
531 ret = os_snprintf(pos, end - pos, "%sNone", first ? "" : "+");
532 if (ret < 0 || ret >= end - pos)
533 return pos;
534 pos += ret;
535 first = 0;
536 }

538 pos = wpa_supplicant_cipher_txt(pos, end, data.pairwise_cipher);

540 if (data.capabilities & WPA_CAPABILITY_PREAUTH) {
541 ret = os_snprintf(pos, end - pos, "-preauth");
542 if (ret < 0 || ret >= end - pos)
543 return pos;
544 pos += ret;
545 }

547 ret = os_snprintf(pos, end - pos, "]");
548 if (ret < 0 || ret >= end - pos)
549 return pos;
550 pos += ret;

552 return pos;
553 }

555 static const uint8_t * wpa_bss_get_vendor_ie(const struct wpa_bss *bss, uint32_t
556 {
557 const uint8_t *end, *pos;

559 pos = (const uint8_t *) (bss + 1);
560 end = pos + bss->ie_len;

562 while (pos + 1 < end) {
563 if (pos + 2 + pos[1] > end)
564 break;
565 if (pos[0] == WLAN_EID_VENDOR_SPECIFIC && pos[1] >= 4 &&
566 vendor_type == WPA_GET_BE32(&pos[2]))
567 return pos;
568 pos += 2 + pos[1];
569 }

571 return NULL;
572 }

574 static const uint8_t * wpa_bss_get_ie(const struct wpa_bss *bss, uint8_t ie)
575 {
576 const uint8_t *end, *pos;

578 pos = (const uint8_t *) (bss + 1);
579 end = pos + bss->ie_len;

581 while (pos + 1 < end) {
582 if (pos + 2 + pos[1] > end)
583 break;
584 if (pos[0] == ie)
585 return pos;
586 pos += 2 + pos[1];
587 }

new/usr/src/lib/libdladm/common/wpa_ie.c 10

589 return NULL;
590 }

592 Format one result on one text line into a buffer.
593 int wpa_supplicant_ctrl_iface_scan_result(
594 struct wpa_supplicant *wpa_s,
595 const struct wpa_bss *bss, char *buf, size_t buflen)
596 {
597 char *pos, *end;
598 int ret;
599 const uint8_t *ie, *ie2;

601 pos = buf;
602 end = buf + buflen;

604 ie = wpa_bss_get_vendor_ie(bss, WPA_IE_VENDOR_TYPE);
605 if (ie)
606 pos = wpa_supplicant_ie_txt(pos, end, "WPA", ie, 2 + ie[1]);
607 ie2 = wpa_bss_get_ie(bss, WLAN_EID_RSN);
608 if (ie2)
609 pos = wpa_supplicant_ie_txt(pos, end, "WPA2", ie2, 2 + ie2[1]);
610 pos = wpa_supplicant_wps_ie_txt(wpa_s, pos, end, bss);
611 if (!ie && !ie2 && bss->caps & IEEE80211_CAP_PRIVACY) {
612 ret = os_snprintf(pos, end - pos, "[WEP]");
613 if (ret < 0 || ret >= end - pos)
614 return -1;
615 pos += ret;
616 }
617 if (bss->caps & IEEE80211_CAP_IBSS) {
618 ret = os_snprintf(pos, end - pos, "[IBSS]");
619 if (ret < 0 || ret >= end - pos)
620 return -1;
621 pos += ret;
622 }
623 if (bss->caps & IEEE80211_CAP_ESS) {
624 ret = os_snprintf(pos, end - pos, "[ESS]");
625 if (ret < 0 || ret >= end - pos)
626 return -1;
627 pos += ret;
628 }

630 ret = os_snprintf(pos, end - pos, "\t%s",
631 wpa_ssid_txt(bss->ssid, bss->ssid_len));
632 if (ret < 0 || ret >= end - pos)
633 return -1;
634 pos += ret;

636 ret = os_snprintf(pos, end - pos, "\n");
637 if (ret < 0 || ret >= end - pos)
638 return -1;
639 pos += ret;

641 return pos - buf;
642 }

645 int wpa_supplicant_ctrl_iface_scan_results(
646 struct wpa_supplicant *wpa_s, char *buf, size_t buflen)
647 {
648 char *pos, *end;
649 struct wpa_bss *bss;
650 int ret;

652 pos = buf;
653 end = buf + buflen;
654 ret = os_snprintf(pos, end - pos, "bssid / frequency / signal level / "

new/usr/src/lib/libdladm/common/wpa_ie.c 11

655 "flags / ssid\n");
656 if (ret < 0 || ret >= end - pos)
657 return pos - buf;
658 pos += ret;

660 dl_list_for_each(bss, &wpa_s->bss_id, struct wpa_bss, list_id) {
661 ret = wpa_supplicant_ctrl_iface_scan_result(wpa_s, bss, pos,
662 end - pos);
663 if (ret < 0 || ret >= end - pos)
664 return pos - buf;
665 pos += ret;
666 }

668 return pos - buf;
669 }
670 */
671 #endif /* ! codereview */

new/usr/src/lib/libdladm/common/wpa_if.c 1

**
 20277 Tue Jun 12 19:55:06 2012
new/usr/src/lib/libdladm/common/wpa_if.c
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 /*
2 * Copyright (c) 2002-2012, Jouni Malinen <j@w1.fi>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Alternatively, this software may be distributed under the terms of BSD
9 * license.

10 */

12 #include <unistd.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <strings.h>
16 #include <errno.h>
17 #include <ctype.h>
18 #include <fcntl.h>
19 #include <sys/socket.h>
20 #include <libdlwlan.h>

22 #define WPA_CTRL_RSP "CTRL-RSP-"

24 enum wpa_cmd_flags {
25 cli_cmd_flag_none = 0x00,
26 cli_cmd_flag_sensitive = 0x01
27 };

29 struct wpa_cmd {
30 const char *cmd;
31 int (*handler)(struct wpa_ctrl *ctrl, int argc, char *argv[]);
32 enum wpa_cmd_flags flags;
33 const char *usage;
34 };

36 /**
37 * wpa_ctrl_request - Send a command to wpa_supplicant/hostapd
38 * @ctrl: Control interface data from wpa_ctrl_open()
39 * @cmd: Command; usually, ASCII text, e.g., "PING"
40 * @cmd_len: Length of the cmd in bytes
41 * @reply: Buffer for the response
42 * @reply_len: Reply buffer length
43 * @msg_cb: Callback function for unsolicited messages or %NULL if not used
44 * Returns: 0 on success, -1 on error (send or receive failed), -2 on timeout
45 *
46 * This function is used to send commands to wpa_supplicant/hostapd. Received
47 * response will be written to reply and reply_len is set to the actual length
48 * of the reply. This function will block for up to two seconds while waiting
49 * for the reply. If unsolicited messages are received, the blocking time may
50 * be longer.
51 *
52 * msg_cb can be used to register a callback function that will be called for
53 * unsolicited messages received while waiting for the command response. These
54 * messages may be received if wpa_ctrl_request() is called at the same time as
55 * wpa_supplicant/hostapd is sending such a message. This can happen only if
56 * the program has used wpa_ctrl_attach() to register itself as a monitor for
57 * event messages. Alternatively to msg_cb, programs can register two control
58 * interface connections and use one of them for commands and the other one for
59 * receiving event messages, in other words, call wpa_ctrl_attach() only for

new/usr/src/lib/libdladm/common/wpa_if.c 2

60 * the control interface connection that will be used for event messages.
61 */
62 static int wpa_ctrl_request(struct wpa_ctrl *ctrl, const char *cmd,
63 size_t cmd_len, char *reply, size_t *reply_len,
64 void (*msg_cb)(char *msg, size_t len));

66 /* These are temporary UNIX sockets created for receiving requests messages*/
67 #define CTRL_IFACE_CLIENT_DIR "/var/run"
68 #define CTRL_IFACE_CLIENT_PREFIX "wpa_ctrl_"

70 struct wpa_ctrl * wpa_ctrl_open(const char *ctrl_path)
71 {
72 struct wpa_ctrl *ctrl;
73 static int counter = 0;
74 int ret;
75 size_t res;
76 int tries = 0;

78 ctrl = malloc(sizeof(*ctrl));
79 if (ctrl == NULL)
80 return NULL;
81 memset(ctrl, 0, sizeof(*ctrl));

83 ctrl->s = socket(PF_UNIX, SOCK_DGRAM, 0);
84 if (ctrl->s < 0) {
85 free(ctrl);
86 return NULL;
87 }

89 ctrl->local.sun_family = AF_UNIX;
90 counter++;
91 try_again:
92 ret = snprintf(ctrl->local.sun_path, sizeof(ctrl->local.sun_path),
93 CTRL_IFACE_CLIENT_DIR "/"
94 CTRL_IFACE_CLIENT_PREFIX "%d-%d", (int) getpid(), counter);
95 if (ret < 0 || (size_t) ret >= sizeof(ctrl->local.sun_path)) {
96 close(ctrl->s);
97 free(ctrl);
98 return NULL;
99 }
100 tries++;
101 if (bind(ctrl->s, (struct sockaddr *) &ctrl->local,
102 sizeof(ctrl->local)) < 0) {
103 if (errno == EADDRINUSE && tries < 2) {
104 /*
105 * getpid() returns unique identifier for this instance
106 * of wpa_ctrl, so the existing socket file must have
107 * been left by unclean termination of an earlier run.
108 * Remove the file and try again.
109 */
110 unlink(ctrl->local.sun_path);
111 goto try_again;
112 }
113 close(ctrl->s);
114 free(ctrl);
115 return NULL;
116 }

118 ctrl->dest.sun_family = AF_UNIX;
119 res = strlcpy(ctrl->dest.sun_path, ctrl_path,
120 sizeof(ctrl->dest.sun_path));
121 if (res >= sizeof(ctrl->dest.sun_path)) {
122 close(ctrl->s);
123 free(ctrl);
124 return NULL;
125 }

new/usr/src/lib/libdladm/common/wpa_if.c 3

126 if (connect(ctrl->s, (struct sockaddr *) &ctrl->dest,
127 sizeof(ctrl->dest)) < 0) {
128 close(ctrl->s);
129 unlink(ctrl->local.sun_path);
130 free(ctrl);
131 return NULL;
132 }

134 return ctrl;
135 }

137 void wpa_ctrl_close(struct wpa_ctrl *ctrl)
138 {
139 if (ctrl == NULL)
140 return;
141 unlink(ctrl->local.sun_path);
142 if (ctrl->s >= 0)
143 close(ctrl->s);
144 free(ctrl);
145 }

147 static int wpa_ctrl_request(struct wpa_ctrl *ctrl, const char *cmd, size_t cmd_l
148 char *reply, size_t *reply_len,
149 void (*msg_cb)(char *msg, size_t len))
150 {
151 struct timeval tv;
152 int res;
153 fd_set rfds;
154 const char *_cmd;
155 char *cmd_buf = NULL;
156 size_t _cmd_len;

158 {
159 _cmd = cmd;
160 _cmd_len = cmd_len;
161 }

163 if (send(ctrl->s, _cmd, _cmd_len, 0) < 0) {
164 free(cmd_buf);
165 return -1;
166 }
167 free(cmd_buf);

169 for (;;) {
170 tv.tv_sec = 10;
171 tv.tv_usec = 0;
172 FD_ZERO(&rfds);
173 FD_SET(ctrl->s, &rfds);
174 res = select(ctrl->s + 1, &rfds, NULL, NULL, &tv);
175 if (res < 0)
176 return res;
177 if (FD_ISSET(ctrl->s, &rfds)) {
178 res = recv(ctrl->s, reply, *reply_len, 0);
179 if (res < 0)
180 return res;
181 if (res > 0 && reply[0] == ’<’) {
182 /* This is an unsolicited message from
183 * wpa_supplicant, not the reply to the
184 * request. Use msg_cb to report this to the
185 * caller. */
186 if (msg_cb) {
187 /* Make sure the message is nul
188 * terminated. */
189 if ((size_t) res == *reply_len)
190 res = (*reply_len) - 1;
191 reply[res] = ’\0’;

new/usr/src/lib/libdladm/common/wpa_if.c 4

192 msg_cb(reply, res);
193 }
194 continue;
195 }
196 *reply_len = res;
197 break;
198 } else {
199 return -2;
200 }
201 }
202 return 0;
203 }

205 static void wpa_msg_cb(char *msg, size_t len)
206 {
207 snprintf(msg, len, "%s\n");
208 }

210 static int _wpa_ctrl_command(struct wpa_ctrl *ctrl, char *cmd, int print)
211 {
212 char buf[2048];
213 size_t len;
214 int ret;

216 len = sizeof(buf) - 1;
217 ret = wpa_ctrl_request(ctrl, cmd, strlen(cmd), buf, &len,
218 wpa_msg_cb);
219 if (ret == -2) {
220 printf("’%s’ command timed out.\n", cmd);
221 return -2;
222 } else if (ret < 0) {
223 printf("’%s’ command failed.\n", cmd);
224 return -1;
225 }
226 if (print) {
227 buf[len] = ’\0’;
228 printf("%s", buf);
229 }
230 return 0;
231 }

233 static int wpa_ctrl_command(struct wpa_ctrl *ctrl, char *cmd)
234 {
235 return _wpa_ctrl_command(ctrl, cmd, 1);
236 }

238 /* control interface commands routines */

240 static int wpa_cmd_level(struct wpa_ctrl *ctrl, int argc, char *argv[])
241 {
242 char cmd[256];
243 int res;

245 if (argc != 1) {
246 printf("Invalid LEVEL command: needs one argument (debug "
247 "level)\n");
248 return -1;
249 }
250 res = snprintf(cmd, sizeof(cmd), "LEVEL %s", argv[0]);
251 if (res < 0 || (size_t) res >= sizeof(cmd) - 1) {
252 printf("Too long LEVEL command.\n");
253 return -1;
254 }
255 return wpa_ctrl_command(ctrl, cmd);
256 }

new/usr/src/lib/libdladm/common/wpa_if.c 5

258 static int wpa_cmd_reassociate(struct wpa_ctrl *ctrl, int argc,
259 char *argv[])
260 {
261 return wpa_ctrl_command(ctrl, "REASSOCIATE");
262 }

264 static int wpa_cmd_identity(struct wpa_ctrl *ctrl, int argc, char *argv[])
265 {
266 char cmd[256], *pos, *end;
267 int i, ret;

269 if (argc < 2) {
270 printf("Invalid IDENTITY command: needs two arguments "
271 "(network id and identity)\n");
272 return -1;
273 }

275 end = cmd + sizeof(cmd);
276 pos = cmd;
277 ret = snprintf(pos, end - pos, WPA_CTRL_RSP "IDENTITY-%s:%s",
278 argv[0], argv[1]);
279 if (ret < 0 || ret >= end - pos) {
280 printf("Too long IDENTITY command.\n");
281 return -1;
282 }
283 pos += ret;
284 for (i = 2; i < argc; i++) {
285 ret = snprintf(pos, end - pos, " %s", argv[i]);
286 if (ret < 0 || ret >= end - pos) {
287 printf("Too long IDENTITY command.\n");
288 return -1;
289 }
290 pos += ret;
291 }

293 return wpa_ctrl_command(ctrl, cmd);
294 }

296 static int wpa_cmd_password(struct wpa_ctrl *ctrl, int argc, char *argv[])
297 {
298 char cmd[256], *pos, *end;
299 int i, ret;

301 if (argc < 2) {
302 printf("Invalid PASSWORD command: needs two arguments "
303 "(network id and password)\n");
304 return -1;
305 }

307 end = cmd + sizeof(cmd);
308 pos = cmd;
309 ret = snprintf(pos, end - pos, WPA_CTRL_RSP "PASSWORD-%s:%s",
310 argv[0], argv[1]);
311 if (ret < 0 || ret >= end - pos) {
312 printf("Too long PASSWORD command.\n");
313 return -1;
314 }
315 pos += ret;
316 for (i = 2; i < argc; i++) {
317 ret = snprintf(pos, end - pos, " %s", argv[i]);
318 if (ret < 0 || ret >= end - pos) {
319 printf("Too long PASSWORD command.\n");
320 return -1;
321 }
322 pos += ret;
323 }

new/usr/src/lib/libdladm/common/wpa_if.c 6

325 return wpa_ctrl_command(ctrl, cmd);
326 }

328 static int wpa_cmd_new_password(struct wpa_ctrl *ctrl, int argc,
329 char *argv[])
330 {
331 char cmd[256], *pos, *end;
332 int i, ret;

334 if (argc < 2) {
335 printf("Invalid NEW_PASSWORD command: needs two arguments "
336 "(network id and password)\n");
337 return -1;
338 }

340 end = cmd + sizeof(cmd);
341 pos = cmd;
342 ret = snprintf(pos, end - pos, WPA_CTRL_RSP "NEW_PASSWORD-%s:%s",
343 argv[0], argv[1]);
344 if (ret < 0 || ret >= end - pos) {
345 printf("Too long NEW_PASSWORD command.\n");
346 return -1;
347 }
348 pos += ret;
349 for (i = 2; i < argc; i++) {
350 ret = snprintf(pos, end - pos, " %s", argv[i]);
351 if (ret < 0 || ret >= end - pos) {
352 printf("Too long NEW_PASSWORD command.\n");
353 return -1;
354 }
355 pos += ret;
356 }

358 return wpa_ctrl_command(ctrl, cmd);
359 }

362 static int wpa_cmd_pin(struct wpa_ctrl *ctrl, int argc, char *argv[])
363 {
364 char cmd[256], *pos, *end;
365 int i, ret;

367 if (argc < 2) {
368 printf("Invalid PIN command: needs two arguments "
369 "(network id and pin)\n");
370 return -1;
371 }

373 end = cmd + sizeof(cmd);
374 pos = cmd;
375 ret = snprintf(pos, end - pos, WPA_CTRL_RSP "PIN-%s:%s",
376 argv[0], argv[1]);
377 if (ret < 0 || ret >= end - pos) {
378 printf("Too long PIN command.\n");
379 return -1;
380 }
381 pos += ret;
382 for (i = 2; i < argc; i++) {
383 ret = snprintf(pos, end - pos, " %s", argv[i]);
384 if (ret < 0 || ret >= end - pos) {
385 printf("Too long PIN command.\n");
386 return -1;
387 }
388 pos += ret;
389 }

new/usr/src/lib/libdladm/common/wpa_if.c 7

390 return wpa_ctrl_command(ctrl, cmd);
391 }

393 static int wpa_cmd_passphrase(struct wpa_ctrl *ctrl, int argc,
394 char *argv[])
395 {
396 char cmd[256], *pos, *end;
397 int i, ret;

399 if (argc < 2) {
400 printf("Invalid PASSPHRASE command: needs two arguments "
401 "(network id and passphrase)\n");
402 return -1;
403 }

405 end = cmd + sizeof(cmd);
406 pos = cmd;
407 ret = snprintf(pos, end - pos, WPA_CTRL_RSP "PASSPHRASE-%s:%s",
408 argv[0], argv[1]);
409 if (ret < 0 || ret >= end - pos) {
410 printf("Too long PASSPHRASE command.\n");
411 return -1;
412 }
413 pos += ret;
414 for (i = 2; i < argc; i++) {
415 ret = snprintf(pos, end - pos, " %s", argv[i]);
416 if (ret < 0 || ret >= end - pos) {
417 printf("Too long PASSPHRASE command.\n");
418 return -1;
419 }
420 pos += ret;
421 }

423 return wpa_ctrl_command(ctrl, cmd);
424 }

427 static int wpa_cmd_bssid(struct wpa_ctrl *ctrl, int argc, char *argv[])
428 {
429 char cmd[256], *pos, *end;
430 int i, ret;

432 if (argc < 2) {
433 printf("Invalid BSSID command: needs two arguments (network "
434 "id and BSSID)\n");
435 return -1;
436 }

438 end = cmd + sizeof(cmd);
439 pos = cmd;
440 ret = snprintf(pos, end - pos, "BSSID");
441 if (ret < 0 || ret >= end - pos) {
442 printf("Too long BSSID command.\n");
443 return -1;
444 }
445 pos += ret;
446 for (i = 0; i < argc; i++) {
447 ret = snprintf(pos, end - pos, " %s", argv[i]);
448 if (ret < 0 || ret >= end - pos) {
449 printf("Too long BSSID command.\n");
450 return -1;
451 }
452 pos += ret;
453 }

455 return wpa_ctrl_command(ctrl, cmd);

new/usr/src/lib/libdladm/common/wpa_if.c 8

456 }

458 static int wpa_cmd_log_level(struct wpa_ctrl *ctrl, int argc, char *argv[])
459 {
460 char cmd[256], *pos, *end;
461 int i, ret;

463 end = cmd + sizeof(cmd);
464 pos = cmd;
465 ret = snprintf(pos, end - pos, "LOG_LEVEL");
466 if (ret < 0 || ret >= end - pos) {
467 printf("Too long LOG_LEVEL command.\n");
468 return -1;
469 }
470 pos += ret;
471 for (i = 0; i < argc; i++) {
472 ret = snprintf(pos, end - pos, " %s", argv[i]);
473 if (ret < 0 || ret >= end - pos) {
474 printf("Too long LOG_LEVEL command.\n");
475 return -1;
476 }
477 pos += ret;
478 }

480 return wpa_ctrl_command(ctrl, cmd);
481 }

483 static int wpa_cmd_select_network(struct wpa_ctrl *ctrl, int argc,
484 char *argv[])
485 {
486 char cmd[32];
487 int res;

489 if (argc < 1) {
490 printf("Invalid SELECT_NETWORK command: needs one argument "
491 "(network id)\n");
492 return -1;
493 }

495 res = snprintf(cmd, sizeof(cmd), "SELECT_NETWORK %s", argv[0]);
496 if (res < 0 || (size_t) res >= sizeof(cmd))
497 return -1;
498 cmd[sizeof(cmd) - 1] = ’\0’;

500 return wpa_ctrl_command(ctrl, cmd);
501 }

504 static int wpa_cmd_enable_network(struct wpa_ctrl *ctrl, int argc,
505 char *argv[])
506 {
507 char cmd[32];
508 int res;

510 if (argc < 1) {
511 printf("Invalid ENABLE_NETWORK command: needs one argument "
512 "(network id)\n");
513 return -1;
514 }

516 res = snprintf(cmd, sizeof(cmd), "ENABLE_NETWORK %s", argv[0]);
517 if (res < 0 || (size_t) res >= sizeof(cmd))
518 return -1;
519 cmd[sizeof(cmd) - 1] = ’\0’;

521 return wpa_ctrl_command(ctrl, cmd);

new/usr/src/lib/libdladm/common/wpa_if.c 9

522 }

525 static int wpa_cmd_disable_network(struct wpa_ctrl *ctrl, int argc,
526 char *argv[])
527 {
528 char cmd[32];
529 int res;

531 if (argc < 1) {
532 printf("Invalid DISABLE_NETWORK command: needs one argument "
533 "(network id)\n");
534 return -1;
535 }

537 res = snprintf(cmd, sizeof(cmd), "DISABLE_NETWORK %s", argv[0]);
538 if (res < 0 || (size_t) res >= sizeof(cmd))
539 return -1;
540 cmd[sizeof(cmd) - 1] = ’\0’;

542 return wpa_ctrl_command(ctrl, cmd);
543 }

546 static int wpa_cmd_add_network(struct wpa_ctrl *ctrl, int argc,
547 char *argv[])
548 {
549 return wpa_ctrl_command(ctrl, "ADD_NETWORK");
550 }

553 static int wpa_cmd_remove_network(struct wpa_ctrl *ctrl, int argc,
554 char *argv[])
555 {
556 char cmd[32];
557 int res;

559 if (argc < 1) {
560 printf("Invalid REMOVE_NETWORK command: needs one argument "
561 "(network id)\n");
562 return -1;
563 }

565 res = snprintf(cmd, sizeof(cmd), "REMOVE_NETWORK %s", argv[0]);
566 if (res < 0 || (size_t) res >= sizeof(cmd))
567 return -1;
568 cmd[sizeof(cmd) - 1] = ’\0’;

570 return wpa_ctrl_command(ctrl, cmd);
571 }

573 static int wpa_cmd_set_network(struct wpa_ctrl *ctrl, int argc,
574 char *argv[])
575 {
576 char cmd[256];
577 int res;

579 if (argc != 3) {
580 printf("Invalid SET_NETWORK command: needs three arguments\n"
581 "(network id, variable name, and value)\n");
582 return -1;
583 }

585 res = snprintf(cmd, sizeof(cmd), "SET_NETWORK %s %s %s",
586 argv[0], argv[1], argv[2]);
587 if (res < 0 || (size_t) res >= sizeof(cmd) - 1) {

new/usr/src/lib/libdladm/common/wpa_if.c 10

588 printf("Too long SET_NETWORK command.\n");
589 return -1;
590 }
591 return wpa_ctrl_command(ctrl, cmd);
592 }

594 static int wpa_cmd_disconnect(struct wpa_ctrl *ctrl, int argc,
595 char *argv[])
596 {
597 return wpa_ctrl_command(ctrl, "DISCONNECT");
598 }

600 static int wpa_cmd_reconnect(struct wpa_ctrl *ctrl, int argc,
601 char *argv[])
602 {
603 return wpa_ctrl_command(ctrl, "RECONNECT");
604 }

606 static int wpa_cmd_scan(struct wpa_ctrl *ctrl, int argc, char *argv[])
607 {
608 return wpa_ctrl_command(ctrl, "SCAN");
609 }

612 static int wpa_cmd_scan_results(struct wpa_ctrl *ctrl, int argc,
613 char *argv[])
614 {
615 return wpa_ctrl_command(ctrl, "SCAN_RESULTS");
616 }

618 static int wpa_cmd_terminate(struct wpa_ctrl *ctrl, int argc,
619 char *argv[])
620 {
621 return wpa_ctrl_command(ctrl, "TERMINATE");
622 }

624 static int wpa_cmd_interface_add(struct wpa_ctrl *ctrl, int argc,
625 char *argv[])
626 {
627 char cmd[256];
628 int res;

630 if (argc < 1) {
631 printf("Invalid INTERFACE_ADD command: needs at least one "
632 "argument (interface name)\n"
633 "All arguments: ifname confname driver ctrl_interface "
634 "driver_param bridge_name\n");
635 return -1;
636 }

638 /*
639 * INTERFACE_ADD <ifname>TAB<confname>TAB<driver>TAB<ctrl_interface>TAB
640 * <driver_param>TAB<bridge_name>
641 */
642 res = snprintf(cmd, sizeof(cmd),
643 "INTERFACE_ADD %s\t%s\t%s\t%s\t%s\t%s",
644 argv[0],
645 argc > 1 ? argv[1] : "", argc > 2 ? argv[2] : "",
646 argc > 3 ? argv[3] : "", argc > 4 ? argv[4] : "",
647 argc > 5 ? argv[5] : "");
648 if (res < 0 || (size_t) res >= sizeof(cmd))
649 return -1;
650 cmd[sizeof(cmd) - 1] = ’\0’;
651 return wpa_ctrl_command(ctrl, cmd);
652 }

new/usr/src/lib/libdladm/common/wpa_if.c 11

655 static int wpa_cmd_interface_remove(struct wpa_ctrl *ctrl, int argc,
656 char *argv[])
657 {
658 char cmd[128];
659 int res;

661 if (argc != 1) {
662 printf("Invalid INTERFACE_REMOVE command: needs one argument "
663 "(interface name)\n");
664 return -1;
665 }

667 res = snprintf(cmd, sizeof(cmd), "INTERFACE_REMOVE %s", argv[0]);
668 if (res < 0 || (size_t) res >= sizeof(cmd))
669 return -1;
670 cmd[sizeof(cmd) - 1] = ’\0’;
671 return wpa_ctrl_command(ctrl, cmd);
672 }

674 static int wpa_cmd_ap_scan(struct wpa_ctrl *ctrl, int argc, char *argv[])
675 {
676 char cmd[256];
677 int res;

679 if (argc != 1) {
680 printf("Invalid AP_SCAN command: needs one argument (ap_scan "
681 "value)\n");
682 return -1;
683 }
684 res = snprintf(cmd, sizeof(cmd), "AP_SCAN %s", argv[0]);
685 if (res < 0 || (size_t) res >= sizeof(cmd) - 1) {
686 printf("Too long AP_SCAN command.\n");
687 return -1;
688 }
689 return wpa_ctrl_command(ctrl, cmd);
690 }

692 static int wpa_cmd_suspend(struct wpa_ctrl *ctrl, int argc, char *argv[])
693 {
694 return wpa_ctrl_command(ctrl, "SUSPEND");
695 }

697 static struct wpa_cmd wpa_commands[] = {
698 { "level", wpa_cmd_level,
699 cli_cmd_flag_none,
700 "<debug level> = change debug level" },
701 { "reassociate", wpa_cmd_reassociate,
702 cli_cmd_flag_none,
703 "= force reassociation" },
704 { "identity", wpa_cmd_identity,
705 cli_cmd_flag_none,
706 "<network id> <identity> = configure identity for an SSID" },
707 { "password", wpa_cmd_password,
708 cli_cmd_flag_sensitive,
709 "<network id> <password> = configure password for an SSID" },
710 { "new_password", wpa_cmd_new_password,
711 cli_cmd_flag_sensitive,
712 "<network id> <password> = change password for an SSID" },
713 { "pin", wpa_cmd_pin,
714 cli_cmd_flag_sensitive,
715 "<network id> <pin> = configure pin for an SSID" },
716 { "passphrase", wpa_cmd_passphrase,
717 cli_cmd_flag_sensitive,
718 "<network id> <passphrase> = configure private key passphrase\n"
719 " for an SSID" },

new/usr/src/lib/libdladm/common/wpa_if.c 12

720 { "bssid", wpa_cmd_bssid,
721 cli_cmd_flag_none,
722 "<network id> <BSSID> = set preferred BSSID for an SSID" },
723 { "log_level", wpa_cmd_log_level,
724 cli_cmd_flag_none,
725 "<level> [<timestamp>] = update the log level/timestamp\n"
726 "log_level = display the current log level and log options" },
727 { "select_network", wpa_cmd_select_network,
728 cli_cmd_flag_none,
729 "<network id> = select a network (disable others)" },
730 { "enable_network", wpa_cmd_enable_network,
731 cli_cmd_flag_none,
732 "<network id> = enable a network" },
733 { "disable_network", wpa_cmd_disable_network,
734 cli_cmd_flag_none,
735 "<network id> = disable a network" },
736 { "add_network", wpa_cmd_add_network,
737 cli_cmd_flag_none,
738 "= add a network" },
739 { "remove_network", wpa_cmd_remove_network,
740 cli_cmd_flag_none,
741 "<network id> = remove a network" },
742 { "set_network", wpa_cmd_set_network,
743 cli_cmd_flag_sensitive,
744 "<network id> <variable> <value> = set network variables (shows\n"
745 " list of variables when run without arguments)" },
746 { "disconnect", wpa_cmd_disconnect,
747 cli_cmd_flag_none,
748 "= disconnect and wait for reassociate/reconnect command before\n"
749 " connecting" },
750 { "reconnect", wpa_cmd_reconnect,
751 cli_cmd_flag_none,
752 "= like reassociate, but only takes effect if already disconnected"
753 },
754 { "scan", wpa_cmd_scan,
755 cli_cmd_flag_none,
756 "= request new BSS scan" },
757 { "scan_results", wpa_cmd_scan_results,
758 cli_cmd_flag_none,
759 "= get latest scan results" },
760 { "terminate", wpa_cmd_terminate,
761 cli_cmd_flag_none,
762 "= terminate wpa_supplicant" },
763 { "interface_add", wpa_cmd_interface_add,
764 cli_cmd_flag_none,
765 "<ifname> <confname> <driver> <ctrl_interface> <driver_param>\n"
766 " <bridge_name> = adds new interface, all parameters but <ifname>\n"
767 " are optional" },
768 { "interface_remove", wpa_cmd_interface_remove,
769 cli_cmd_flag_none,
770 "<ifname> = removes the interface" },
771 { "ap_scan", wpa_cmd_ap_scan,
772 cli_cmd_flag_none,
773 "<value> = set ap_scan parameter" },
774 { "suspend", wpa_cmd_suspend, cli_cmd_flag_none,
775 "= notification of suspend/hibernate" },
776 { NULL, NULL, cli_cmd_flag_none, NULL }
777 };

779 int wpa_request(struct wpa_ctrl *ctrl, int argc, char *argv[])
780 {
781 struct wpa_cmd *cmd, *match = NULL;
782 int count;
783 int ret = 0;

785 count = 0;

new/usr/src/lib/libdladm/common/wpa_if.c 13

786 cmd = wpa_commands;
787 while (cmd->cmd) {
788 if (strncasecmp(cmd->cmd, argv[0], strlen(argv[0])) == 0)
789 {
790 match = cmd;
791 if (strcasecmp(cmd->cmd, argv[0]) == 0) {
792 /* we have an exact match */
793 count = 1;
794 break;
795 }
796 count++;
797 }
798 cmd++;
799 }

801 if (count > 1) {
802 printf("Ambiguous command ’%s’; possible commands:", argv[0]);
803 cmd = wpa_commands;
804 while (cmd->cmd) {
805 if (strncasecmp(cmd->cmd, argv[0],
806 strlen(argv[0])) == 0) {
807 printf(" %s", cmd->cmd);
808 }
809 cmd++;
810 }
811 printf("\n");
812 ret = 1;
813 } else if (count == 0) {
814 printf("Unknown command ’%s’\n", argv[0]);
815 ret = 1;
816 } else {
817 ret = match->handler(ctrl, argc - 1, &argv[1]);
818 }

820 return ret;
821 }
822 #endif /* ! codereview */

new/usr/src/lib/libnwam/common/libnwam_known_wlan.c 1

**
 23059 Tue Jun 12 19:55:06 2012
new/usr/src/lib/libnwam/common/libnwam_known_wlan.c
Implemented ctrl_if network block configuration routine
**
______unchanged_portion_omitted_

523 static nwam_error_t
524 valid_secmode(nwam_value_t value)
525 {
526 uint64_t secmode;

528 if (nwam_value_get_uint64(value, &secmode) != NWAM_SUCCESS)
529 return (NWAM_ENTITY_INVALID_VALUE);

531 if (secmode != DLADM_WLAN_SECMODE_NONE &&
532 secmode != DLADM_WLAN_SECMODE_WEP &&
533 secmode != DLADM_WLAN_SECMODE_PSK &&
534 secmode != DLADM_WLAN_SECMODE_EAP)
533 secmode != DLADM_WLAN_SECMODE_WPA)
535 return (NWAM_ENTITY_INVALID_VALUE);

537 return (NWAM_SUCCESS);
538 }

______unchanged_portion_omitted_

new/usr/src/lib/libnwam/common/libnwam_values.c 1

**
 30961 Tue Jun 12 19:55:07 2012
new/usr/src/lib/libnwam/common/libnwam_values.c
Implemented ctrl_if network block configuration routine
**
______unchanged_portion_omitted_

722 struct nwam_value_entry known_wlan_prop_security_mode_entries[] =
723 {
724 { "none", DLADM_WLAN_SECMODE_NONE },
725 { "wep", DLADM_WLAN_SECMODE_WEP },
726 { "wpa-psk", DLADM_WLAN_SECMODE_PSK },
727 { "wpa-eap", DLADM_WLAN_SECMODE_EAP },
726 { "wpa", DLADM_WLAN_SECMODE_WPA },
728 { NULL, 0 }
729 };

______unchanged_portion_omitted_

new/usr/src/lib/libsecdb/auth_attr.txt 1

**
 14198 Tue Jun 12 19:55:09 2012
new/usr/src/lib/libsecdb/auth_attr.txt
removed wificonfig tool
are /dev/wifi/* devices links now deprecated?
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.

25 #
26 # /etc/security/auth_attr
27 #
28 # authorizations. see auth_attr(4)
29 #
30 solaris.:::All Solaris Authorizations::help=AllSolAuthsHeader.html
31 solaris.grant:::Grant All Solaris Authorizations::help=PriAdmin.html
32 #
33 solaris.admin.idmap.rules:::Manage Identity Mapping Rules::help=IdmapRules.html
34 #
35 solaris.admin.wusb.:::Administer Wireless USB::help=WUSBHeader.html
36 solaris.admin.wusb.read:::Read Wireless USB Host and Device Information::help=WU
37 solaris.admin.wusb.modify:::Add or delete information of Wireless USB Device::he
38 solaris.admin.wusb.host:::Manage Wireless USB Host::help=WUSBhost.html
39 #
40 solaris.audit.:::Audit System-wide Management::help=AuditHeader.html
41 #
42 solaris.device.:::Device Allocation::help=DevAllocHeader.html
43 solaris.device.allocate:::Allocate Device::help=DevAllocate.html
44 solaris.device.config:::Configure Device Attributes::help=DevConfig.html
45 solaris.device.grant:::Delegate Device Administration::help=DevGrant.html
46 solaris.device.revoke:::Revoke or Reclaim Device::help=DevRevoke.html
47 solaris.device.cdrw:::CD-R/RW Recording Authorizations::help=DevCDRW.html
48 solaris.device.mount.:::Device Mount::help=DevMount.html
49 solaris.device.mount.alloptions.fixed:::Device Mount Fixed With All Options::hel
50 solaris.device.mount.alloptions.removable:::Device Mount Removable With All Opti
51 solaris.device.mount.fixed:::Device Mount Fixed::help=DevMount.html
52 solaris.device.mount.removable:::Device Mount Removable::help=DevMount.html
53 #
54 solaris.dhcpmgr.:::DHCP Service Management::help=DhcpmgrHeader.html
55 solaris.dhcpmgr.write:::Modify DHCP Service Configuration::help=DhcpmgrWrite.htm
56 #
57 solaris.file.:::File Operations::help=FileHeader.html
58 solaris.file.chown:::Change File Owner::help=FileChown.html
59 solaris.file.owner:::Act as File Owner::help=FileOwner.html
60 #

new/usr/src/lib/libsecdb/auth_attr.txt 2

61 solaris.hotplug.:::Hotplug::help=HotplugHeader.html
62 solaris.hotplug.modify:::Modify Hotplug Connections::help=HotplugModify.html
63 #
64 solaris.jobs.:::Job Scheduler::help=JobHeader.html
65 solaris.jobs.admin:::Manage All Jobs::help=AuthJobsAdmin.html
66 solaris.jobs.grant:::Delegate Cron & At Administration::help=JobsGrant.html
67 solaris.jobs.user:::Manage Owned Jobs::help=AuthJobsUser.html
68 #
69 solaris.label.:::Label Management::help=LabelHeader.html
70 solaris.label.file.downgrade:::Downgrade File Label::help=LabelFileDowngrade.htm
71 solaris.label.file.upgrade:::Upgrade File Label::help=LabelFileUpgrade.html
72 solaris.label.print:::View Printer Queue at All Labels::help=LabelPrint.html
73 solaris.label.range:::Set Label Outside User Accred Range::help=LabelRange.html
74 solaris.label.win.downgrade:::Downgrade DragNDrop or CutPaste Info::help=LabelWi
75 solaris.label.win.noview:::DragNDrop or CutPaste without viewing contents::help=
76 solaris.label.win.upgrade:::Upgrade DragNDrop or CutPaste Info::help=LabelWinUpg
77 #
78 solaris.login.:::Login Control::help=LoginHeader.html
79 solaris.login.enable:::Enable Logins::help=LoginEnable.html
80 solaris.login.remote:::Remote Login::help=LoginRemote.html
81 #
82 solaris.mail.:::Mail::help=MailHeader.html
83 solaris.mail.mailq:::Mail Queue::help=MailQueue.html
84 #
85 solaris.network.:::Network::help=NetworkHeader.html
86 solaris.network.autoconf.read:::View Network Auto-Magic Config::help=NetworkAuto
87 solaris.network.autoconf.select:::Enable/Disable Network Auto-Magic Config::help
88 solaris.network.autoconf.wlan:::Create Network Auto-Magic Config for Known WLANs
89 solaris.network.autoconf.write:::Create Network Auto-Magic Config::help=NetworkA
90 solaris.network.ilb.config:::Network ILB Configuration::help=NetworkILBconf.html
91 solaris.network.ilb.enable:::Network ILB Enable Configuration::help=NetworkILBen
92 solaris.network.interface.config:::Network Interface Configuration::help=Network
93 solaris.network.link.security:::Link Security::help=LinkSecurity.html
94 solaris.network.wifi.config:::Wifi Config::help=WifiConfig.html
95 solaris.network.wifi.wep:::Wifi Wep::help=WifiWep.html
94 solaris.network.vrrp:::Administer VRRP::help=NetworkVRRP.html
95 #
96 solaris.print.:::Printer Management::help=PrintHeader.html
97 solaris.print.admin:::Administer Printer::help=PrintAdmin.html
98 solaris.print.cancel:::Cancel Print Job::help=PrintCancel.html
99 solaris.print.list:::List Jobs in Printer Queue::help=PrintList.html
100 solaris.print.nobanner:::Print without Banner::help=PrintNoBanner.html
101 solaris.print.ps:::Print Postscript::help=PrintPs.html
102 solaris.print.unlabeled:::Print without Label::help=PrintUnlabeled.html
103 #
104 solaris.profmgr.:::Rights::help=ProfmgrHeader.html
105 solaris.profmgr.assign:::Assign All Rights::help=AuthProfmgrAssign.html
106 solaris.profmgr.delegate:::Assign Owned Rights::help=AuthProfmgrDelegate.html
107 solaris.profmgr.write:::Manage Rights::help=AuthProfmgrWrite.html
108 solaris.profmgr.read:::View Rights::help=AuthProfmgrRead.html
109 solaris.profmgr.execattr.write:::Manage Commands::help=AuthProfmgrExecattrWrite.
110 #
111 solaris.role.:::Roles::help=RoleHeader.html
112 solaris.role.assign:::Assign All Roles::help=AuthRoleAssign.html
113 solaris.role.delegate:::Assign Owned Roles::help=AuthRoleDelegate.html
114 solaris.role.write:::Manage Roles::help=AuthRoleWrite.html
115 #
116 solaris.smf.:::SMF Management::help=SmfHeader.html
117 solaris.smf.modify.:::Modify All SMF Service Properties::help=SmfModifyHeader.ht
118 solaris.smf.modify.method:::Modify Service Methods::help=SmfModifyMethod.html
119 solaris.smf.modify.dependency:::Modify Service Dependencies::help=SmfModifyDepen
120 solaris.smf.modify.application:::Modify Application Type Properties::help=SmfMod
121 solaris.smf.modify.framework:::Modify Framework Type Properties::help=SmfModifyF
122 solaris.smf.manage.:::Manage All SMF Service States::help=SmfManageHeader.html
123 solaris.smf.manage.allocate:::Manage Device Allocation Service::help=SmfAllocate
124 solaris.smf.manage.audit:::Manage Audit Service States::help=SmfManageAudit.html

new/usr/src/lib/libsecdb/auth_attr.txt 3

125 solaris.smf.manage.autofs:::Manage Automount Service States::help=SmfAutofsState
126 solaris.smf.manage.bind:::Manage DNS Service States::help=BindStates.html
127 solaris.smf.manage.coreadm:::Manage Coreadm Service States::help=SmfCoreadmState
128 solaris.smf.manage.cron:::Manage Cron Service States::help=SmfCronStates.html
129 solaris.smf.manage.discovery.printers.snmp:::Manage Network Attached Device Disc
130 solaris.smf.manage.extended-accounting.flow:::Manage Flow Extended Accounting Se
131 solaris.smf.manage.extended-accounting.process:::Manage Process Extended Account
132 solaris.smf.manage.extended-accounting.flow:::Manage Task Extended Accounting Se
133 solaris.smf.manage.hal:::Manage HAL Service States::help=SmfHALStates.html
134 solaris.smf.manage.hotplug:::Manage Hotplug Service::help=SmfManageHotplug.html
135 solaris.smf.manage.idmap:::Manage Identity Mapping Service States::help=SmfIdmap
136 solaris.smf.manage.ilb:::Manage Integrated Load Balancer Service States::help=Sm
137 solaris.smf.manage.inetd:::Manage inetd and inetd managed services States::help=
138 solaris.smf.manage.ipsec:::Manage IPsec Service States::help=SmfIPsecStates.html
139 solaris.smf.manage.labels:::Manage label server::help=LabelServer.html
140 solaris.smf.manage.location:::Manage Network Location Service States::help=SmfLo
141 solaris.smf.manage.mdns:::Manage Multicast DNS Service States::help=SmfMDNSState
142 solaris.smf.manage.name-service-cache:::Manage Name Service Cache Daemon Service
143 solaris.smf.manage.nwam:::Manage Network Auto-Magic Service States::help=SmfNWAM
144 solaris.smf.manage.power:::Manage Power Management Service States::help=SmfPower
145 solaris.smf.manage.smb:::Manage SMB Service States::help=SmfSMBStates.html
146 solaris.smf.manage.smbfs:::Manage SMB Client States::help=SmfSMBFSStates.html
147 solaris.smf.manage.reparse:::Manage Reparse Service States::help=SmfReparseState
148 solaris.smf.manage.rmvolmgr:::Manage Rmvolmgr Service States::help=SmfRmvolmgrSt
149 solaris.smf.manage.routing:::Manage Routing Service States::help=SmfRoutingState
150 solaris.smf.manage.rpc.bind:::Manage RPC Program number mapper::help=SmfRPCBind.
151 solaris.smf.manage.sendmail:::Manage Sendmail Service States::help=SmfSendmailSt
152 solaris.smf.manage.smtp-notify:::Manage Email Event Notification Agent::
153 solaris.smf.manage.snmp-notify:::Manage SNMP Event Notification Agent::
154 solaris.smf.manage.ssh:::Manage Secure Shell Service States::help=SmfSshStates.h
155 solaris.smf.manage.stmf:::Manage STMF Service States::help=SmfSTMFStates.html
156 solaris.smf.manage.system-log:::Manage Syslog Service States::help=SmfSyslogStat
157 solaris.smf.manage.tnctl:::Manage Refresh of Trusted Network Parameters::help=TN
158 solaris.smf.manage.tnd:::Manage Trusted Network Daemon::help=TNDaemon.html
159 solaris.smf.manage.vrrp:::Manage VRRP Service States::help=SmfVRRPStates.html
160 solaris.smf.manage.vscan:::Manage VSCAN Service States::help=SmfVscanStates.html
161 solaris.smf.manage.vt:::Manage Virtual Console Service States::help=SmfVtStates.
162 solaris.smf.manage.wpa:::Manage WPA Service States::help=SmfWpaStates.html
163 solaris.smf.manage.ndmp:::Manage NDMP Service States::help=SmfNDMPStates.html
164 solaris.smf.value.:::Change Values of SMF Service Properties::help=SmfValueHeade
165 solaris.smf.value.audit:::Configure the Audit Service::help=SmfValueAudit.html
166 solaris.smf.value.coreadm:::Change Values of SMF Coreadm Properties::help=SmfVal
167 solaris.smf.value.discovery.printers.snmp:::Manage Network Attached Device Disco
168 solaris.smf.value.extended-accounting.flow:::Change Values of Flow Extended Acco
169 solaris.smf.value.extended-accounting.process:::Change Values of Process Extende
170 solaris.smf.value.extended-accounting.task:::Change Values of Task Extended Acco
171 solaris.smf.value.firewall.config:::Change Service Firewall Config::help=SmfValu
172 solaris.smf.value.idmap:::Change Values of SMF Identity Mapping Service Properti
173 solaris.smf.value.inetd:::Change values of SMF Inetd configuration paramaters::h
174 solaris.smf.value.ipsec:::Change Values of SMF IPsec Properties::help=SmfValueIP
175 solaris.smf.value.mdns:::Change Values of MDNS Service Properties::help=SmfValue
176 solaris.smf.value.nwam:::Change Values of SMF Network Auto-Magic Properties::hel
177 solaris.smf.value.smb:::Change Values of SMB Service Properties::help=SmfValueSM
178 solaris.smf.read.smb:::Read permission for protected SMF SMB Service Properties:
179 solaris.smf.value.smtp-notify:::Change values of Email Event Notification Agent
180 solaris.smf.value.snmp-notify:::Change values of SNMP Event Notification Agent p
181 solaris.smf.read.stmf:::Read STMF Provider Private Data::help=SmfSTMFRead.html
182 solaris.smf.value.routing:::Change Values of SMF Routing Properties::help=SmfVal
183 solaris.smf.value.tnd:::Change Trusted Network Daemon Service Property Values::h
184 solaris.smf.value.vscan:::Change Values of VSCAN Properties::help=SmfValueVscan.
185 solaris.smf.value.vt:::Change Values of Virtual Console Service Properties::help
186 solaris.smf.value.ndmp:::Change Values of SMF NDMP Service Properties::help=SmfV
187 solaris.smf.read.ndmp:::Read permission for protected SMF NDMP Service Propertie
188 #
189 solaris.system.:::Machine Administration::help=SysHeader.html
190 solaris.system.date:::Set Date & Time::help=SysDate.html

new/usr/src/lib/libsecdb/auth_attr.txt 4

191 solaris.system.maintenance:::Enter Maintenance (single-user) Mode::help=SysMaint
192 solaris.system.shutdown:::Shutdown the System::help=SysShutdown.html
193 solaris.system.power.:::System Power Management::help=SysPowerMgmtHeader.html
194 solaris.system.power.suspend.:::Suspend the System::help=SysPowerMgmtSuspend.htm
195 solaris.system.power.suspend.disk:::Suspend to Disk::help=SysPowerMgmtSuspendtoD
196 solaris.system.power.suspend.ram:::Suspend to RAM::help=SysPowerMgmtSuspendToRAM
197 solaris.system.power.brightness:::Control LCD Brightness::help=SysPowerMgmtBrigh
198 solaris.system.power.cpu:::Manage CPU related power::help=SysCpuPowerMgmt.html
199 solaris.system.sysevent.read:::Retrieve Sysevents::help=SysSyseventRead.html
200 solaris.system.sysevent.write:::Publish Sysevents::help=SysSyseventWrite.html
201 #
202 solaris.smf.modify.stmf:::Modify STMF Properties::help=SmfSTMFValue.html
203 #
204 solaris.smf.manage.isns:::Manage iSNS Service States::help=isnsStates.html
205 solaris.smf.value.isns:::Modify iSNS Service Property Values::help=isnsValue.htm
206 solaris.isnsmgr.write:::Modify iSNS configuration::help=AuthISNSmgrWrite.html
207 solaris.smf.manage.wusb:::Manage Wireless USB Service::help=SmfWusbStates.html
208 solaris.zone.:::Zone Management::help=ZoneHeader.html
209 solaris.zone.clonefrom:::Clone another Zone::help=ZoneCloneFrom.html
210 solaris.zone.login:::Zone Login::help=ZoneLogin.html
211 solaris.zone.manage:::Zone Deployment::help=ZoneManage.html

new/usr/src/lib/libsecdb/help/auths/Makefile 1

**
 4724 Tue Jun 12 19:55:10 2012
new/usr/src/lib/libsecdb/help/auths/Makefile
removed wificonfig tool
are /dev/wifi/* devices links now deprecated?
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.

24 #
25 # lib/libsecdb/help/auths/Makefile
26 #

28 include ../../../../Makefile.master

30 HTMLENTS = \
31 AuditHeader.html \
32 DevAllocHeader.html \
33 DevAllocate.html \
34 DevConfig.html \
35 DevCDRW.html \
36 DevGrant.html \
37 DevRevoke.html \
38 HotplugHeader.html \
39 HotplugModify.html \
40 JobHeader.html \
41 AuthJobsAdmin.html \
42 JobsGrant.html \
43 AuthJobsUser.html \
44 LoginEnable.html \
45 LoginHeader.html \
46 LoginRemote.html \
47 MailHeader.html \
48 MailQueue.html \
49 PriAdmin.html \
50 AuthProfmgrAssign.html \
51 AuthProfmgrDelegate.html \
52 AuthProfmgrExecattrWrite.html \
53 AuthProfmgrRead.html \
54 ProfmgrHeader.html \
55 AuthProfmgrWrite.html \
56 AuthRoleAssign.html \
57 AuthRoleDelegate.html \
58 RoleHeader.html \
59 AuthRoleWrite.html \
60 SysDate.html \

new/usr/src/lib/libsecdb/help/auths/Makefile 2

61 SysHeader.html \
62 SysShutdown.html \
63 AllSolAuthsHeader.html \
64 SysMaintenance.html \
65 DhcpmgrHeader.html \
66 DhcpmgrWrite.html \
67 BindStates.html \
68 SmfAllocate.html \
69 SmfAutofsStates.html \
70 SmfCoreadmStates.html \
71 SmfCronStates.html \
72 SmfExAcctFlowStates.html \
73 SmfExAcctProcessStates.html \
74 SmfExAcctTaskStates.html \
75 SmfExAcctNetStates.html \
76 SmfHeader.html \
77 SmfILBStates.html \
78 SmfInetdStates.html \
79 SmfIPsecStates.html \
80 SmfLocationStates.html \
81 SmfManageAudit.html \
82 SmfManageHeader.html \
83 SmfManageHotplug.html \
84 SmfMDNSStates.html \
85 SmfModifyAppl.html \
86 SmfModifyDepend.html \
87 SmfModifyFramework.html \
88 SmfModifyHeader.html \
89 SmfModifyMethod.html \
90 SmfNscdStates.html \
91 SmfNADDStates.html \
92 SmfNDMPStates.html \
93 SmfNWAMStates.html \
94 SmfPowerStates.html \
95 SmfReparseStates.html \
96 SmfRoutingStates.html \
97 SmfSendmailStates.html \
98 SmfSshStates.html \
99 SmfSyslogStates.html \
100 SmfValueAudit.html \
101 SmfValueCoreadm.html \
102 SmfValueExAcctFlow.html \
103 SmfValueExAcctProcess.html \
104 SmfValueExAcctTask.html \
105 SmfValueExAcctNet.html \
106 SmfValueFirewall.html \
107 SmfVtStates.html \
108 SmfValueHeader.html \
109 SmfValueInetd.html \
110 SmfValueIPsec.html \
111 SmfValueMDNS.html \
112 SmfValueNADD.html \
113 SmfValueNDMP.html \
114 AuthReadNDMP.html \
115 SmfValueNWAM.html \
116 SmfValueRouting.html \
117 SmfValueSMB.html \
118 AuthReadSMB.html \
119 SmfSMBFSStates.html \
120 SmfSMBStates.html \
121 SmfValueVscan.html \
122 SmfVscanStates.html \
123 SmfValueVt.html \
124 SmfVRRPStates.html \
125 SmfWpaStates.html \
126 NetworkAutoconfRead.html \

new/usr/src/lib/libsecdb/help/auths/Makefile 3

127 NetworkAutoconfSelect.html \
128 NetworkAutoconfWlan.html \
129 NetworkAutoconfWrite.html \
130 NetworkILBconf.html \
131 NetworkILBenable.html \
132 NetworkHeader.html \
133 NetworkVRRP.html \
134 NetworkInterfaceConfig.html \
135 WifiConfig.html \
136 WifiWep.html \
135 LinkSecurity.html \
136 IdmapRules.html \
137 SmfIdmapStates.html \
138 SmfValueIdmap.html \
139 FileChown.html \
140 FileHeader.html \
141 FileOwner.html \
142 LabelFileDowngrade.html \
143 LabelFileUpgrade.html \
144 LabelHeader.html \
145 LabelPrint.html \
146 LabelRange.html \
147 LabelServer.html \
148 LabelWinDowngrade.html \
149 LabelWinNoView.html \
150 LabelWinUpgrade.html \
151 PrintAdmin.html \
152 PrintCancel.html \
153 PrintHeader.html \
154 PrintList.html \
155 PrintNoBanner.html \
156 PrintPs.html \
157 PrintUnlabeled.html \
158 TNDaemon.html \
159 TNctl.html \
160 ValueTND.html \
161 SysPowerMgmtHeader.html \
162 SysPowerMgmtSuspend.html \
163 SysPowerMgmtSuspendtoDisk.html \
164 SysPowerMgmtSuspendtoRAM.html \
165 SysPowerMgmtBrightness.html \
166 SysCpuPowerMgmt.html \
167 SysSyseventRead.html \
168 SysSyseventWrite.html \
169 SmfManageZFSSnap.html \
170 ZoneCloneFrom.html \
171 ZoneHeader.html \
172 ZoneLogin.html \
173 ZoneManage.html

175 HELPDIR=$(ROOT)/usr/lib/help
176 AUTHDIR=$(HELPDIR)/auths
177 LOCALEDIR=$(AUTHDIR)/locale
178 CDIR=$(LOCALEDIR)/C
179 DIRS=$(HELPDIR) $(AUTHDIR) $(LOCALEDIR) $(CDIR)
180 HELPFILES=$(HTMLENTS:%=$(CDIR)/%)

182 MSGDIR= $(LOCALEDIR)
183 MSGDIRS = $(HELPDIR) $(AUTHDIR) $(LOCALEDIR)

185 MSGFILES= $(HTMLENTS)
186 MSGS= $(MSGFILES:%=$(MSGDIR)/%)

188 FILEMODE= 0444

190 .KEEP_STATE:

new/usr/src/lib/libsecdb/help/auths/Makefile 4

192 all: $(HTMLENTS)

194 install: all $(DIRS) $(HELPFILES)

196 _msg: $(MSGDIRS) $(MSGS)

198 $(CDIR)/%: %
199 $(INS.file)

201 $(DIRS):
202 $(INS.dir)

204 $(MSGDIR)/%: %
205 $(INS.file)

207 clean clobber lint:

new/usr/src/pkg/manifests/SUNWcs.mf 1

**
 89941 Tue Jun 12 19:55:11 2012
new/usr/src/pkg/manifests/SUNWcs.mf
removed wificonfig tool
are /dev/wifi/* devices links now deprecated?
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 #

27 <include SUNWcs.man1.inc>
28 <include SUNWcs.man1m.inc>
29 <include SUNWcs.man4.inc>
30 <include SUNWcs.man5.inc>
31 <include SUNWcs.man7d.inc>
32 <include SUNWcs.man7fs.inc>
33 set name=pkg.fmri value=pkg:/SUNWcs@$(PKGVERS)
34 set name=pkg.description \
35 value="core software for a specific instruction-set architecture"
36 set name=pkg.summary value="Core Solaris"
37 set name=info.classification value=org.opensolaris.category.2008:System/Core
38 set name=variant.arch value=$(ARCH)
39 dir path=dev group=sys
40 dir path=etc group=sys
41 dir path=etc/certs group=sys
42 dir path=etc/cron.d group=sys
43 dir path=etc/crypto group=sys
44 dir path=etc/crypto/certs group=sys
45 dir path=etc/crypto/crls group=sys
46 dir path=etc/default group=sys
47 dir path=etc/dev group=sys
48 dir path=etc/devices group=sys
49 dir path=etc/dfs group=sys
50 dir path=etc/dhcp group=sys
51 dir path=etc/fs group=sys
52 dir path=etc/fs/dev group=sys
53 dir path=etc/fs/hsfs group=sys
54 dir path=etc/fs/ufs group=sys
55 dir path=etc/ftpd group=sys
56 dir path=etc/inet group=sys
57 dir path=etc/init.d group=sys
58 dir path=etc/lib group=sys
59 dir path=etc/logadm.d group=sys
60 dir path=etc/mail group=mail

new/usr/src/pkg/manifests/SUNWcs.mf 2

61 dir path=etc/net group=sys
62 dir path=etc/net/ticlts group=sys
63 dir path=etc/net/ticots group=sys
64 dir path=etc/net/ticotsord group=sys
65 dir path=etc/opt group=sys
66 dir path=etc/rc0.d group=sys
67 dir path=etc/rc1.d group=sys
68 dir path=etc/rc2.d group=sys
69 dir path=etc/rc3.d group=sys
70 dir path=etc/rcS.d group=sys
71 dir path=etc/rpcsec group=sys
72 dir path=etc/saf
73 dir path=etc/saf/zsmon group=sys
74 dir path=etc/sasl group=sys
75 dir path=etc/security group=sys
76 dir path=etc/security/audit group=sys
77 dir path=etc/security/audit/localhost group=sys
78 dir path=etc/security/auth_attr.d group=sys
79 dir path=etc/security/dev group=sys
80 dir path=etc/security/exec_attr.d group=sys
81 dir path=etc/security/lib group=sys
82 dir path=etc/security/prof_attr.d group=sys
83 dir path=etc/skel group=sys
84 dir path=etc/svc group=sys
85 dir path=etc/svc/profile group=sys
86 dir path=etc/svc/profile/site group=sys
87 dir path=etc/svc/volatile group=sys
88 dir path=etc/sysevent group=sys
89 dir path=etc/sysevent/config group=sys
90 dir path=etc/tm group=sys
91 dir path=etc/user_attr.d group=sys
92 dir path=export group=sys
93 dir path=home group=root mode=0555
94 dir path=lib
95 dir path=lib/crypto
96 dir path=lib/inet
97 dir path=lib/svc
98 dir path=lib/svc/bin
99 dir path=lib/svc/capture
100 dir path=lib/svc/manifest group=sys
101 dir path=lib/svc/manifest/application group=sys
102 dir path=lib/svc/manifest/application/management group=sys
103 dir path=lib/svc/manifest/application/security group=sys
104 dir path=lib/svc/manifest/device group=sys
105 dir path=lib/svc/manifest/milestone group=sys
106 dir path=lib/svc/manifest/network group=sys
107 dir path=lib/svc/manifest/network/dns group=sys
108 dir path=lib/svc/manifest/network/ipsec group=sys
109 dir path=lib/svc/manifest/network/ldap group=sys
110 dir path=lib/svc/manifest/network/routing group=sys
111 dir path=lib/svc/manifest/network/rpc group=sys
112 dir path=lib/svc/manifest/network/shares group=sys
113 dir path=lib/svc/manifest/network/ssl group=sys
114 dir path=lib/svc/manifest/platform group=sys
115 $(sparc_ONLY)dir path=lib/svc/manifest/platform/sun4u group=sys
116 dir path=lib/svc/manifest/site group=sys
117 dir path=lib/svc/manifest/system group=sys
118 dir path=lib/svc/manifest/system/device group=sys
119 dir path=lib/svc/manifest/system/filesystem group=sys
120 dir path=lib/svc/manifest/system/security group=sys
121 dir path=lib/svc/manifest/system/svc group=sys
122 dir path=lib/svc/method
123 dir path=lib/svc/monitor
124 dir path=lib/svc/seed
125 dir path=lib/svc/share
126 dir path=mnt group=sys

new/usr/src/pkg/manifests/SUNWcs.mf 3

127 dir path=opt group=sys
128 dir path=proc group=root mode=0555
129 dir path=root group=root mode=0700
130 dir path=sbin group=sys
131 dir path=system group=root
132 dir path=system/contract group=root mode=0555
133 dir path=system/object group=root mode=0555
134 dir path=tmp group=sys mode=1777
135 dir path=usr group=sys
136 dir path=usr/bin
137 dir path=usr/bin/$(ARCH32)
138 dir path=usr/bin/$(ARCH64)
139 dir path=usr/ccs
140 dir path=usr/ccs/bin
141 dir path=usr/demo
142 dir path=usr/games
143 dir path=usr/has
144 dir path=usr/has/bin
145 dir path=usr/has/lib
146 dir path=usr/has/man
147 dir path=usr/has/man/man1has
148 dir path=usr/kernel group=sys
149 dir path=usr/kernel/drv group=sys
150 dir path=usr/kernel/drv/$(ARCH64) group=sys
151 dir path=usr/kernel/exec group=sys
152 dir path=usr/kernel/exec/$(ARCH64) group=sys
153 dir path=usr/kernel/fs group=sys
154 dir path=usr/kernel/fs/$(ARCH64) group=sys
155 dir path=usr/kernel/pcbe group=sys
156 dir path=usr/kernel/pcbe/$(ARCH64) group=sys
157 dir path=usr/kernel/sched group=sys
158 dir path=usr/kernel/sched/$(ARCH64) group=sys
159 dir path=usr/kernel/strmod group=sys
160 dir path=usr/kernel/strmod/$(ARCH64) group=sys
161 dir path=usr/kernel/sys group=sys
162 dir path=usr/kernel/sys/$(ARCH64) group=sys
163 dir path=usr/kvm
164 dir path=usr/lib
165 dir path=usr/lib/$(ARCH64)
166 dir path=usr/lib/audit
167 dir path=usr/lib/class
168 dir path=usr/lib/class/FX
169 dir path=usr/lib/class/IA
170 dir path=usr/lib/class/RT
171 dir path=usr/lib/class/SDC
172 dir path=usr/lib/class/TS
173 dir path=usr/lib/crypto
174 dir path=usr/lib/devfsadm group=sys
175 dir path=usr/lib/devfsadm/linkmod group=sys
176 dir path=usr/lib/fs group=sys
177 dir path=usr/lib/fs/autofs group=sys
178 dir path=usr/lib/fs/autofs/$(ARCH64) group=sys
179 dir path=usr/lib/fs/cachefs group=sys
180 dir path=usr/lib/fs/ctfs group=sys
181 dir path=usr/lib/fs/dev group=sys
182 dir path=usr/lib/fs/fd group=sys
183 dir path=usr/lib/fs/hsfs group=sys
184 dir path=usr/lib/fs/lofs group=sys
185 dir path=usr/lib/fs/mntfs group=sys
186 dir path=usr/lib/fs/nfs group=sys
187 dir path=usr/lib/fs/nfs/$(ARCH64) group=sys
188 dir path=usr/lib/fs/objfs group=sys
189 dir path=usr/lib/fs/proc group=sys
190 dir path=usr/lib/fs/sharefs group=sys
191 dir path=usr/lib/fs/tmpfs group=sys
192 dir path=usr/lib/fs/ufs group=sys

new/usr/src/pkg/manifests/SUNWcs.mf 4

193 dir path=usr/lib/help
194 dir path=usr/lib/help/auths
195 dir path=usr/lib/help/auths/locale
196 dir path=usr/lib/help/auths/locale/C
197 dir path=usr/lib/help/profiles
198 dir path=usr/lib/help/profiles/locale
199 dir path=usr/lib/help/profiles/locale/C
200 dir path=usr/lib/iconv
201 dir path=usr/lib/inet
202 dir path=usr/lib/inet/$(ARCH32)
203 dir path=usr/lib/inet/$(ARCH64)
204 dir path=usr/lib/inet/dhcp
205 dir path=usr/lib/inet/dhcp/nsu
206 dir path=usr/lib/inet/dhcp/svc
207 dir path=usr/lib/locale
208 dir path=usr/lib/locale/C
209 dir path=usr/lib/locale/C/LC_COLLATE
210 dir path=usr/lib/locale/C/LC_CTYPE
211 dir path=usr/lib/locale/C/LC_MESSAGES
212 dir path=usr/lib/locale/C/LC_MONETARY
213 dir path=usr/lib/locale/C/LC_NUMERIC
214 dir path=usr/lib/locale/C/LC_TIME
215 dir path=usr/lib/netsvc group=sys
216 dir path=usr/lib/pci
217 dir path=usr/lib/rcm
218 dir path=usr/lib/rcm/modules
219 dir path=usr/lib/rcm/scripts
220 dir path=usr/lib/reparse
221 dir path=usr/lib/saf
222 dir path=usr/lib/secure
223 dir path=usr/lib/secure/$(ARCH64)
224 dir path=usr/lib/security
225 dir path=usr/lib/sysevent
226 dir path=usr/lib/sysevent/modules
227 dir path=usr/net group=sys
228 dir path=usr/net/nls group=sys
229 dir path=usr/net/servers group=sys
230 dir path=usr/old
231 dir path=usr/platform group=sys
232 dir path=usr/sadm
233 dir path=usr/sadm/bin
234 dir path=usr/sadm/install
235 dir path=usr/sadm/install/scripts
236 dir path=usr/sbin
237 $(i386_ONLY)dir path=usr/sbin/$(ARCH32)
238 dir path=usr/sbin/$(ARCH64)
239 dir path=usr/share
240 dir path=usr/share/doc group=other
241 dir path=usr/share/doc/ksh
242 dir path=usr/share/doc/ksh/images
243 dir path=usr/share/doc/ksh/images/callouts
244 dir path=usr/share/lib
245 dir path=usr/share/lib/mailx
246 dir path=usr/share/lib/pub
247 dir path=usr/share/lib/tabset
248 dir path=usr/share/lib/xml group=sys
249 dir path=usr/share/lib/xml/dtd group=sys
250 dir path=usr/share/lib/xml/style group=sys
251 dir path=usr/share/man
252 dir path=usr/share/man/man1
253 dir path=usr/share/man/man1m
254 dir path=usr/share/man/man4
255 dir path=usr/share/man/man5
256 dir path=usr/share/man/man7d
257 dir path=usr/share/man/man7fs
258 dir path=usr/share/src group=sys

new/usr/src/pkg/manifests/SUNWcs.mf 5

259 dir path=var group=sys
260 dir path=var/adm group=sys mode=0775
261 dir path=var/adm/exacct group=adm owner=adm
262 dir path=var/adm/log group=adm owner=adm
263 dir path=var/adm/streams group=sys
264 dir path=var/audit group=sys
265 dir path=var/cores group=sys
266 dir path=var/cron group=sys
267 dir path=var/games
268 dir path=var/idmap group=daemon owner=daemon
269 dir path=var/inet group=sys
270 dir path=var/ld
271 dir path=var/ld/$(ARCH64)
272 dir path=var/log group=sys
273 dir path=var/logadm
274 dir path=var/mail group=mail mode=1777
275 dir path=var/mail/:saved group=mail mode=0775
276 dir path=var/news
277 dir path=var/opt group=sys
278 dir path=var/preserve mode=1777
279 dir path=var/run group=sys
280 dir path=var/sadm group=sys
281 dir path=var/sadm/system group=sys
282 dir path=var/sadm/system/admin group=sys
283 dir path=var/saf
284 dir path=var/saf/zsmon group=sys
285 dir path=var/spool
286 dir path=var/spool/cron group=sys
287 dir path=var/spool/cron/atjobs group=sys
288 dir path=var/spool/cron/crontabs group=sys
289 dir path=var/spool/locks group=uucp owner=uucp
290 dir path=var/svc group=sys
291 dir path=var/svc/log group=sys
292 dir path=var/svc/manifest group=sys
293 dir path=var/svc/manifest/application group=sys
294 dir path=var/svc/manifest/application/management group=sys
295 dir path=var/svc/manifest/application/print group=sys
296 dir path=var/svc/manifest/application/security group=sys
297 dir path=var/svc/manifest/device group=sys
298 dir path=var/svc/manifest/milestone group=sys
299 dir path=var/svc/manifest/network group=sys
300 dir path=var/svc/manifest/network/dns group=sys
301 dir path=var/svc/manifest/network/ipsec group=sys
302 dir path=var/svc/manifest/network/ldap group=sys
303 dir path=var/svc/manifest/network/nfs group=sys
304 dir path=var/svc/manifest/network/nis group=sys
305 dir path=var/svc/manifest/network/routing group=sys
306 dir path=var/svc/manifest/network/rpc group=sys
307 dir path=var/svc/manifest/network/security group=sys
308 dir path=var/svc/manifest/network/shares group=sys
309 dir path=var/svc/manifest/network/ssl group=sys
310 dir path=var/svc/manifest/platform group=sys
311 $(sparc_ONLY)dir path=var/svc/manifest/platform/sun4u group=sys
312 $(sparc_ONLY)dir path=var/svc/manifest/platform/sun4v group=sys
313 dir path=var/svc/manifest/site group=sys
314 dir path=var/svc/manifest/system group=sys
315 dir path=var/svc/manifest/system/device group=sys
316 dir path=var/svc/manifest/system/filesystem group=sys
317 dir path=var/svc/manifest/system/security group=sys
318 dir path=var/svc/manifest/system/svc group=sys
319 dir path=var/svc/profile group=sys
320 dir path=var/tmp group=sys mode=1777
321 driver name=dump perms="dump 0660 root sys"
322 driver name=fssnap \
323 policy="ctl read_priv_set=sys_config write_priv_set=sys_config" \
324 perms="* 0640 root sys" perms="ctl 0666 root sys"

new/usr/src/pkg/manifests/SUNWcs.mf 6

325 driver name=kstat perms="* 0666 root sys"
326 driver name=ksyms perms="* 0666 root sys"
327 driver name=logindmux
328 driver name=ptm clone_perms="ptmx 0666 root sys"
329 driver name=pts perms="* 0644 root sys" perms="0 0620 root tty" \
330 perms="1 0620 root tty" perms="2 0620 root tty" perms="3 0620 root tty"
331 file path=etc/.login group=sys preserve=renamenew
332 file path=etc/certs/SUNWObjectCA group=sys
333 file path=etc/certs/SUNWSolarisCA group=sys
334 file path=etc/certs/SUNW_SunOS_5.10 group=sys
335 file path=etc/cron.d/.proto group=sys mode=0744
336 file path=etc/cron.d/at.deny group=sys preserve=true
337 file path=etc/cron.d/cron.deny group=sys preserve=true
338 file path=etc/cron.d/queuedefs group=sys
339 file path=etc/crypto/certs/CA group=sys
340 file path=etc/crypto/certs/SUNW_SunOS_5.10 group=sys
341 file path=etc/crypto/kmf.conf group=sys preserve=true
342 file path=etc/crypto/pkcs11.conf group=sys preserve=true
343 file path=etc/datemsk group=sys mode=0444
344 file path=etc/default/cron group=sys preserve=true
345 file path=etc/default/devfsadm group=sys preserve=true
346 file path=etc/default/fs group=sys preserve=true
347 file path=etc/default/init group=sys preserve=true
348 file path=etc/default/keyserv group=sys preserve=true
349 file path=etc/default/login group=sys preserve=true
350 file path=etc/default/nss group=sys preserve=true
351 file path=etc/default/passwd group=sys preserve=true
352 file path=etc/default/su group=sys preserve=true
353 file path=etc/default/syslogd group=sys preserve=true
354 file path=etc/default/tar group=sys preserve=true
355 file path=etc/default/utmpd group=sys preserve=true
356 file path=etc/dev/reserved_devnames group=sys preserve=true
357 file path=etc/device.tab group=root mode=0444 preserve=true
358 file path=etc/dfs/dfstab group=sys preserve=true
359 file path=etc/dfs/fstypes group=root preserve=true
360 file path=etc/dfs/sharetab group=root mode=0444 preserve=true
361 file path=etc/dgroup.tab group=sys mode=0444 preserve=true
362 file path=etc/dhcp/inittab group=sys preserve=true
363 file path=etc/dhcp/inittab6 group=sys preserve=true
364 file path=etc/dumpdates group=sys mode=0664 preserve=true
365 file path=etc/format.dat group=sys preserve=true
366 file path=etc/fs/dev/mount mode=0555
367 file path=etc/fs/hsfs/mount mode=0555
368 file path=etc/fs/ufs/mount mode=0555
369 file path=etc/ftpd/ftpusers group=sys preserve=true
370 file path=etc/group group=sys preserve=true
371 file path=etc/inet/hosts group=sys preserve=true
372 file path=etc/inet/inetd.conf group=sys preserve=true
373 file path=etc/inet/ipaddrsel.conf group=sys preserve=true
374 file path=etc/inet/netmasks group=sys preserve=true
375 file path=etc/inet/networks group=sys preserve=true
376 file path=etc/inet/protocols group=sys preserve=true
377 file path=etc/inet/services group=sys preserve=true
378 file path=etc/inet/wanboot.conf.sample group=sys mode=0444
379 file path=etc/init.d/PRESERVE group=sys mode=0744 preserve=true
380 file path=etc/init.d/README group=sys preserve=true
381 file path=etc/init.d/cachefs.daemon group=sys mode=0744 preserve=true
382 file path=etc/init.d/ldap.client group=sys mode=0744
383 file path=etc/init.d/nscd group=sys mode=0744
384 file path=etc/init.d/sysetup group=sys mode=0744 preserve=true
385 file path=etc/init.d/ufs_quota group=sys mode=0744 preserve=true
386 file path=etc/inittab group=sys preserve=true
387 file path=etc/ioctl.syscon group=sys preserve=true
388 file path=etc/ksh.kshrc group=sys preserve=renameold
389 file path=etc/logadm.conf group=sys preserve=true timestamp=19700101T000000Z
390 file path=etc/logindevperm group=sys preserve=true

new/usr/src/pkg/manifests/SUNWcs.mf 7

391 file path=etc/magic mode=0444
392 file path=etc/mail/mailx.rc preserve=true
393 file path=etc/mailcap preserve=true
394 file path=etc/mime.types preserve=true
395 file path=etc/mnttab group=root mode=0444 preserve=true
396 file path=etc/motd group=sys preserve=true
397 file path=etc/net/ticlts/hosts group=sys
398 file path=etc/net/ticlts/services group=sys preserve=true
399 file path=etc/net/ticots/hosts group=sys
400 file path=etc/net/ticots/services group=sys preserve=true
401 file path=etc/net/ticotsord/hosts group=sys
402 file path=etc/net/ticotsord/services group=sys preserve=true
403 file path=etc/netconfig group=sys preserve=true
404 file path=etc/nscd.conf group=sys preserve=true
405 file path=etc/nsswitch.ad group=sys
406 file path=etc/nsswitch.conf group=sys preserve=true
407 file path=etc/nsswitch.dns group=sys
408 file path=etc/nsswitch.files group=sys
409 file path=etc/nsswitch.ldap group=sys
410 file path=etc/pam.conf group=sys preserve=true
411 file path=etc/passwd group=sys preserve=true
412 file path=etc/profile group=sys preserve=true
413 file path=etc/project group=sys preserve=true
414 file path=etc/rc2.d/README group=sys
415 file path=etc/rc3.d/README group=sys
416 file path=etc/rcS.d/README group=sys
417 file path=etc/remote preserve=true
418 file path=etc/rpc group=sys preserve=true
419 file path=etc/saf/_sactab group=sys preserve=true
420 file path=etc/saf/_sysconfig group=sys preserve=true
421 file path=etc/saf/zsmon/_pmtab group=sys preserve=true
422 file path=etc/security/audit_class group=sys preserve=renamenew
423 file path=etc/security/audit_event group=sys preserve=renamenew
424 file path=etc/security/audit_warn group=sys mode=0740 preserve=renamenew
425 file path=etc/security/auth_attr group=sys preserve=true \
426 timestamp=19700101T000000Z
427 file path=etc/security/auth_attr.d/SUNWcs group=sys
428 file path=etc/security/crypt.conf group=sys preserve=renamenew
429 file path=etc/security/dev/audio mode=0400
430 file path=etc/security/dev/fd0 mode=0400
431 file path=etc/security/dev/sr0 mode=0400
432 file path=etc/security/dev/st0 mode=0400
433 file path=etc/security/dev/st1 mode=0400
434 file path=etc/security/exec_attr group=sys preserve=true \
435 timestamp=19700101T000000Z
436 file path=etc/security/exec_attr.d/SUNWcs group=sys
437 file path=etc/security/kmfpolicy.xml
438 file path=etc/security/lib/audio_clean group=sys mode=0555
439 file path=etc/security/lib/fd_clean group=sys mode=0555
440 file path=etc/security/lib/sr_clean group=sys mode=0555
441 file path=etc/security/lib/st_clean group=sys mode=0555
442 file path=etc/security/policy.conf group=sys preserve=true
443 file path=etc/security/priv_names group=sys preserve=renameold
444 file path=etc/security/prof_attr group=sys preserve=true \
445 timestamp=19700101T000000Z
446 file path=etc/security/prof_attr.d/SUNWcs group=sys
447 file path=etc/shadow group=sys mode=0400 preserve=true
448 file path=etc/skel/.profile group=other preserve=true
449 file path=etc/skel/local.cshrc group=sys preserve=true
450 file path=etc/skel/local.login group=sys preserve=true
451 file path=etc/skel/local.profile group=sys preserve=true
452 file path=etc/svc/profile/generic_limited_net.xml group=sys mode=0444
453 file path=etc/svc/profile/generic_open.xml group=sys mode=0444
454 file path=etc/svc/profile/inetd_generic.xml group=sys mode=0444
455 file path=etc/svc/profile/inetd_upgrade.xml group=sys mode=0444
456 file path=etc/svc/profile/ns_dns.xml group=sys mode=0444

new/usr/src/pkg/manifests/SUNWcs.mf 8

457 file path=etc/svc/profile/ns_files.xml group=sys mode=0444
458 file path=etc/svc/profile/ns_ldap.xml group=sys mode=0444
459 file path=etc/svc/profile/ns_nis.xml group=sys mode=0444
460 file path=etc/svc/profile/ns_none.xml group=sys mode=0444
461 $(sparc_ONLY)file path=etc/svc/profile/platform_SUNW,SPARC-Enterprise.xml \
462 group=sys mode=0444
463 $(sparc_ONLY)file path=etc/svc/profile/platform_SUNW,Sun-Fire-15000.xml \
464 group=sys mode=0444
465 $(sparc_ONLY)file path=etc/svc/profile/platform_SUNW,Sun-Fire-880.xml \
466 group=sys mode=0444
467 $(sparc_ONLY)file path=etc/svc/profile/platform_SUNW,Sun-Fire.xml group=sys \
468 mode=0444
469 $(sparc_ONLY)file \
470 path=etc/svc/profile/platform_SUNW,Ultra-Enterprise-10000.xml group=sys \
471 mode=0444
472 $(sparc_ONLY)file \
473 path=etc/svc/profile/platform_SUNW,UltraSPARC-IIi-Netract.xml group=sys \
474 mode=0444
475 file path=etc/svc/profile/platform_none.xml group=sys mode=0444
476 $(sparc_ONLY)file path=etc/svc/profile/platform_sun4v.xml group=sys mode=0444
477 file path=etc/sysevent/config/README group=sys mode=0444
478 file path=etc/sysevent/config/SUNW,EC_dr,ESC_dr_req,sysevent.conf group=sys
479 file path=etc/syslog.conf group=sys preserve=true
480 file path=etc/ttydefs group=sys preserve=true
481 file path=etc/ttysrch group=sys preserve=true
482 file path=etc/user_attr group=sys preserve=true timestamp=19700101T000000Z
483 file path=etc/user_attr.d/SUNWcs group=sys
484 file path=etc/vfstab group=sys preserve=true
485 file path=lib/inet/in.mpathd mode=0555
486 file path=lib/inet/ipmgmtd mode=0555
487 file path=lib/inet/netcfgd mode=0555
488 file path=lib/inet/nwamd mode=0555
489 file path=lib/svc/bin/lsvcrun group=sys mode=0555
490 file path=lib/svc/bin/mfstscan group=sys mode=0555
491 file path=lib/svc/bin/restore_repository group=sys mode=0555
492 file path=lib/svc/bin/sqlite group=sys mode=0555
493 file path=lib/svc/bin/svc.configd group=sys mode=0555
494 file path=lib/svc/bin/svc.ipfd group=sys mode=0555
495 file path=lib/svc/bin/svc.startd group=sys mode=0555
496 file path=lib/svc/manifest/milestone/multi-user-server.xml group=sys mode=0444
497 file path=lib/svc/manifest/milestone/multi-user.xml group=sys mode=0444
498 file path=lib/svc/manifest/milestone/name-services.xml group=sys mode=0444
499 file path=lib/svc/manifest/milestone/network.xml group=sys mode=0444
500 file path=lib/svc/manifest/milestone/single-user.xml group=sys mode=0444
501 file path=lib/svc/manifest/milestone/sysconfig.xml group=sys mode=0444
502 file path=lib/svc/manifest/network/dlmgmt.xml group=sys mode=0444
503 file path=lib/svc/manifest/network/dns/client.xml group=sys mode=0444
504 file path=lib/svc/manifest/network/dns/install.xml group=sys mode=0444
505 file path=lib/svc/manifest/network/forwarding.xml group=sys mode=0444
506 file path=lib/svc/manifest/network/inetd-upgrade.xml group=sys mode=0444
507 file path=lib/svc/manifest/network/inetd.xml group=sys mode=0444
508 file path=lib/svc/manifest/network/ipsec/ike.xml group=sys mode=0444
509 file path=lib/svc/manifest/network/ipsec/ipsecalgs.xml group=sys mode=0444
510 file path=lib/svc/manifest/network/ipsec/manual-key.xml group=sys mode=0444
511 file path=lib/svc/manifest/network/ipsec/policy.xml group=sys mode=0444
512 file path=lib/svc/manifest/network/ldap/client.xml group=sys mode=0444
513 file path=lib/svc/manifest/network/network-initial.xml group=sys mode=0444
514 file path=lib/svc/manifest/network/network-install.xml group=sys mode=0444
515 file path=lib/svc/manifest/network/network-ipmgmt.xml group=sys mode=0444
516 file path=lib/svc/manifest/network/network-ipqos.xml group=sys mode=0444
517 file path=lib/svc/manifest/network/network-iptun.xml group=sys mode=0444
518 file path=lib/svc/manifest/network/network-location.xml group=sys mode=0444
519 file path=lib/svc/manifest/network/network-loopback.xml group=sys mode=0444
520 file path=lib/svc/manifest/network/network-netcfg.xml group=sys mode=0444
521 file path=lib/svc/manifest/network/network-netmask.xml group=sys mode=0444
522 file path=lib/svc/manifest/network/network-physical.xml group=sys mode=0444

new/usr/src/pkg/manifests/SUNWcs.mf 9

523 file path=lib/svc/manifest/network/network-routing-setup.xml group=sys \
524 mode=0444
525 file path=lib/svc/manifest/network/network-service.xml group=sys mode=0444
526 file path=lib/svc/manifest/network/routing/legacy-routing.xml group=sys \
527 mode=0444
528 file path=lib/svc/manifest/network/rpc/bind.xml group=sys mode=0444
529 file path=lib/svc/manifest/network/rpc/keyserv.xml group=sys mode=0444
530 file path=lib/svc/manifest/network/shares/group.xml group=sys mode=0444
531 file path=lib/svc/manifest/network/shares/reparsed.xml group=sys mode=0444
532 file path=lib/svc/manifest/network/socket-filter-kssl.xml group=sys mode=0444
533 file path=lib/svc/manifest/network/ssl/kssl-proxy.xml group=sys mode=0444
534 file path=lib/svc/manifest/system/auditd.xml group=sys mode=0444
535 file path=lib/svc/manifest/system/auditset.xml group=sys mode=0444
536 file path=lib/svc/manifest/system/boot-archive-update.xml group=sys mode=0444
537 file path=lib/svc/manifest/system/boot-archive.xml group=sys mode=0444
538 file path=lib/svc/manifest/system/boot-config.xml group=sys mode=0444
539 file path=lib/svc/manifest/system/consadm.xml group=sys mode=0444
540 file path=lib/svc/manifest/system/console-login.xml group=sys mode=0444
541 file path=lib/svc/manifest/system/coreadm.xml group=sys mode=0444
542 file path=lib/svc/manifest/system/cron.xml group=sys mode=0444
543 file path=lib/svc/manifest/system/cryptosvc.xml group=sys mode=0444
544 file path=lib/svc/manifest/system/device/allocate.xml group=sys mode=0444
545 file path=lib/svc/manifest/system/device/devices-audio.xml group=sys mode=0444
546 file path=lib/svc/manifest/system/device/devices-local.xml group=sys mode=0444
547 file path=lib/svc/manifest/system/device/mpxio-upgrade.xml group=sys mode=0444
548 file path=lib/svc/manifest/system/early-manifest-import.xml group=sys \
549 mode=0444
550 file path=lib/svc/manifest/system/extended-accounting.xml group=sys mode=0444
551 file path=lib/svc/manifest/system/filesystem/local-fs.xml group=sys mode=0444
552 file path=lib/svc/manifest/system/filesystem/minimal-fs.xml group=sys \
553 mode=0444
554 file path=lib/svc/manifest/system/filesystem/root-fs.xml group=sys mode=0444
555 file path=lib/svc/manifest/system/filesystem/usr-fs.xml group=sys mode=0444
556 $(i386_ONLY)file path=lib/svc/manifest/system/hostid.xml group=sys mode=0444
557 file path=lib/svc/manifest/system/hotplug.xml group=sys mode=0444
558 file path=lib/svc/manifest/system/identity.xml group=sys mode=0444
559 file path=lib/svc/manifest/system/idmap.xml group=sys mode=0444
560 file path=lib/svc/manifest/system/keymap.xml group=sys mode=0444
561 file path=lib/svc/manifest/system/logadm-upgrade.xml group=sys mode=0444
562 file path=lib/svc/manifest/system/manifest-import.xml group=sys mode=0444
563 file path=lib/svc/manifest/system/name-service-cache.xml group=sys mode=0444
564 file path=lib/svc/manifest/system/pfexecd.xml group=sys mode=0444
565 file path=lib/svc/manifest/system/rbac.xml group=sys mode=0444
566 file path=lib/svc/manifest/system/rmtmpfiles.xml group=sys mode=0444
567 file path=lib/svc/manifest/system/sac.xml group=sys mode=0444
568 file path=lib/svc/manifest/system/svc/global.xml group=sys mode=0444
569 file path=lib/svc/manifest/system/svc/restarter.xml group=sys mode=0444
570 file path=lib/svc/manifest/system/system-log.xml group=sys mode=0444
571 file path=lib/svc/manifest/system/utmp.xml group=sys mode=0444
572 file path=lib/svc/manifest/system/vtdaemon.xml group=sys mode=0444
573 file path=lib/svc/method/boot-archive mode=0555
574 file path=lib/svc/method/boot-archive-update mode=0555
575 file path=lib/svc/method/console-login mode=0555
576 file path=lib/svc/method/devices-audio mode=0555
577 file path=lib/svc/method/devices-local mode=0555
578 file path=lib/svc/method/dns-install mode=0555
579 file path=lib/svc/method/fs-local mode=0555
580 file path=lib/svc/method/fs-minimal mode=0555
581 file path=lib/svc/method/fs-root mode=0555
582 file path=lib/svc/method/fs-usr mode=0555
583 file path=lib/svc/method/identity-domain mode=0555
584 file path=lib/svc/method/identity-node mode=0555
585 file path=lib/svc/method/inetd-upgrade mode=0555
586 file path=lib/svc/method/keymap mode=0555
587 file path=lib/svc/method/ldap-client mode=0555
588 file path=lib/svc/method/logadm-upgrade mode=0555

new/usr/src/pkg/manifests/SUNWcs.mf 10

589 file path=lib/svc/method/manifest-import mode=0555
590 file path=lib/svc/method/mpxio-upgrade mode=0555
591 file path=lib/svc/method/net-init mode=0555
592 file path=lib/svc/method/net-install mode=0555
593 file path=lib/svc/method/net-ipmgmt mode=0555
594 file path=lib/svc/method/net-ipqos mode=0555
595 file path=lib/svc/method/net-iptun mode=0555
596 file path=lib/svc/method/net-loc mode=0555
597 file path=lib/svc/method/net-loopback mode=0555
598 file path=lib/svc/method/net-netmask mode=0555
599 file path=lib/svc/method/net-nwam mode=0555
600 file path=lib/svc/method/net-physical mode=0555
601 file path=lib/svc/method/net-routing-setup mode=0555
602 file path=lib/svc/method/net-svc mode=0555
603 file path=lib/svc/method/rmtmpfiles mode=0555
604 file path=lib/svc/method/rpc-bind mode=0555
605 file path=lib/svc/method/svc-allocate mode=0555
606 file path=lib/svc/method/svc-auditd mode=0555
607 file path=lib/svc/method/svc-auditset mode=0555
608 file path=lib/svc/method/svc-boot-config mode=0555
609 file path=lib/svc/method/svc-consadm mode=0555
610 file path=lib/svc/method/svc-cron mode=0555
611 file path=lib/svc/method/svc-dlmgmtd mode=0555
612 file path=lib/svc/method/svc-forwarding mode=0555
613 $(i386_ONLY)file path=lib/svc/method/svc-hostid mode=0555
614 file path=lib/svc/method/svc-hotplug mode=0555
615 file path=lib/svc/method/svc-legacy-routing mode=0555
616 file path=lib/svc/method/svc-nscd mode=0555
617 file path=lib/svc/method/svc-rbac mode=0555
618 file path=lib/svc/method/svc-sockfilter mode=0555
619 file path=lib/svc/method/svc-utmpd mode=0555
620 file path=lib/svc/method/system-log mode=0555
621 file path=lib/svc/method/vtdaemon mode=0555
622 file path=lib/svc/method/yp mode=0555
623 # global.db is not needed in non-global zones, and it’s pretty large.
624 file path=lib/svc/seed/global.db group=sys mode=0444 \
625 variant.opensolaris.zone=global
626 # symmetrically, nonglobal.db is not needed in global zones.
627 file path=lib/svc/seed/nonglobal.db group=sys mode=0444 \
628 variant.opensolaris.zone=nonglobal
629 file path=lib/svc/share/README mode=0444
630 file path=lib/svc/share/fs_include.sh mode=0444
631 file path=lib/svc/share/ipf_include.sh mode=0444
632 file path=lib/svc/share/mfsthistory mode=0444
633 file path=lib/svc/share/net_include.sh mode=0444
634 file path=lib/svc/share/routing_include.sh mode=0444
635 file path=lib/svc/share/smf_include.sh mode=0444
636 file path=root/.bashrc group=root preserve=true
637 file path=root/.profile group=root preserve=true
638 file path=sbin/autopush mode=0555
639 $(i386_ONLY)file path=sbin/biosdev mode=0555
640 file path=sbin/bootadm mode=0555
641 file path=sbin/cryptoadm mode=0555
642 file path=sbin/devprop mode=0555
643 file path=sbin/dhcpagent mode=0555
644 file path=sbin/dhcpinfo mode=0555
645 file path=sbin/dlmgmtd mode=0555
646 file path=sbin/fdisk mode=0555
647 file path=sbin/fiocompress mode=0555
648 file path=sbin/hostconfig mode=0555
649 file path=sbin/ifconfig mode=0555
650 file path=sbin/ifparse mode=0555
651 file path=sbin/init group=sys mode=0555
652 $(i386_ONLY)file path=sbin/installgrub group=sys mode=0555
653 file path=sbin/ipmpstat mode=0555
654 file path=sbin/mount mode=0555

new/usr/src/pkg/manifests/SUNWcs.mf 11

655 file path=sbin/mountall group=sys mode=0555
656 file path=sbin/netstrategy mode=0555
657 file path=sbin/rc0 group=sys mode=0744
658 file path=sbin/rc1 group=sys mode=0744
659 file path=sbin/rc2 group=sys mode=0744
660 file path=sbin/rc3 group=sys mode=0744
661 file path=sbin/rcS group=sys mode=0744
662 file path=sbin/route mode=0555
663 file path=sbin/routeadm mode=0555
664 file path=sbin/soconfig mode=0555
665 file path=sbin/su.static group=sys mode=0555
666 file path=sbin/sulogin mode=0555
667 file path=sbin/swapadd group=sys mode=0744
668 file path=sbin/sync mode=0555
669 file path=sbin/tzreload mode=0555
670 file path=sbin/uadmin group=sys mode=0555
671 file path=sbin/umount mode=0555
672 file path=sbin/umountall group=sys mode=0555
673 file path=sbin/uname mode=0555
674 file path=sbin/wusbadm mode=0555
675 file path=sbin/zonename mode=0555
676 $(i386_ONLY)file path=usr/bin/$(ARCH32)/amt mode=0555
677 file path=usr/bin/$(ARCH32)/decrypt mode=0555
678 file path=usr/bin/$(ARCH32)/digest mode=0555
679 file path=usr/bin/$(ARCH32)/ksh93 mode=0555
680 $(i386_ONLY)file path=usr/bin/$(ARCH32)/newtask group=sys mode=4555
681 $(i386_ONLY)file path=usr/bin/$(ARCH32)/nohup mode=0555
682 $(i386_ONLY)file path=usr/bin/$(ARCH32)/prctl mode=0555
683 $(i386_ONLY)file path=usr/bin/$(ARCH32)/prstat mode=0555
684 $(i386_ONLY)file path=usr/bin/$(ARCH32)/ps mode=0555
685 file path=usr/bin/$(ARCH32)/savecore mode=0555
686 $(i386_ONLY)file path=usr/bin/$(ARCH32)/setuname mode=0555
687 $(i386_ONLY)file path=usr/bin/$(ARCH32)/uptime mode=4555
688 file path=usr/bin/$(ARCH64)/amt mode=0555
689 file path=usr/bin/$(ARCH64)/crle mode=0555
690 file path=usr/bin/$(ARCH64)/decrypt mode=0555
691 file path=usr/bin/$(ARCH64)/digest mode=0555
692 file path=usr/bin/$(ARCH64)/ksh93 mode=0555
693 file path=usr/bin/$(ARCH64)/ls mode=0555
694 file path=usr/bin/$(ARCH64)/moe mode=0555
695 file path=usr/bin/$(ARCH64)/newtask group=sys mode=4555
696 file path=usr/bin/$(ARCH64)/nohup mode=0555
697 file path=usr/bin/$(ARCH64)/prctl mode=0555
698 file path=usr/bin/$(ARCH64)/prstat mode=0555
699 file path=usr/bin/$(ARCH64)/ps mode=0555
700 file path=usr/bin/$(ARCH64)/savecore mode=0555
701 file path=usr/bin/$(ARCH64)/setuname mode=0555
702 file path=usr/bin/$(ARCH64)/uptime mode=4555
703 $(i386_ONLY)file path=usr/bin/addbadsec mode=0555
704 file path=usr/bin/alias mode=0555
705 file path=usr/bin/amt mode=0555
706 file path=usr/bin/arch mode=0555
707 file path=usr/bin/at group=sys mode=4755
708 file path=usr/bin/atq group=sys mode=4755
709 file path=usr/bin/atrm group=sys mode=4755
710 file path=usr/bin/auths mode=0555
711 file path=usr/bin/basename mode=0555
712 file path=usr/bin/busstat mode=0555
713 file path=usr/bin/captoinfo mode=0555
714 file path=usr/bin/cat mode=0555
715 file path=usr/bin/chgrp mode=0555
716 file path=usr/bin/chmod mode=0555
717 file path=usr/bin/chown mode=0555
718 file path=usr/bin/ckdate mode=0555
719 file path=usr/bin/ckgid mode=0555
720 file path=usr/bin/ckint mode=0555

new/usr/src/pkg/manifests/SUNWcs.mf 12

721 file path=usr/bin/ckitem mode=0555
722 file path=usr/bin/ckkeywd mode=0555
723 file path=usr/bin/ckpath mode=0555
724 file path=usr/bin/ckrange mode=0555
725 file path=usr/bin/ckstr mode=0555
726 file path=usr/bin/cktime mode=0555
727 file path=usr/bin/ckuid mode=0555
728 file path=usr/bin/ckyorn mode=0555
729 file path=usr/bin/clear mode=0555
730 file path=usr/bin/coreadm mode=0555
731 file path=usr/bin/cp mode=0555
732 file path=usr/bin/cpio mode=0555
733 file path=usr/bin/crle mode=0555
734 file path=usr/bin/crontab mode=4555
735 file path=usr/bin/crypt mode=0555
736 file path=usr/bin/csh mode=0555
737 file path=usr/bin/ctrun mode=0555
738 file path=usr/bin/ctstat mode=0555
739 file path=usr/bin/ctwatch mode=0555
740 file path=usr/bin/date mode=0555
741 file path=usr/bin/dd mode=0555
742 file path=usr/bin/devattr mode=0555
743 file path=usr/bin/devfree mode=0555
744 file path=usr/bin/devreserv mode=0555
745 file path=usr/bin/dirname mode=0555
746 $(i386_ONLY)file path=usr/bin/diskscan mode=0555
747 file path=usr/bin/domainname mode=0555
748 file path=usr/bin/du mode=0555
749 file path=usr/bin/dumpcs mode=0555
750 file path=usr/bin/dumpkeys mode=0555
751 file path=usr/bin/echo mode=0555
752 file path=usr/bin/ed mode=0555
753 file path=usr/bin/egrep mode=0555
754 file path=usr/bin/eject mode=0555
755 file path=usr/bin/env mode=0555
756 file path=usr/bin/expr mode=0555
757 file path=usr/bin/false mode=0555
758 file path=usr/bin/fdetach mode=0555
759 file path=usr/bin/fdformat mode=4555
760 file path=usr/bin/fgrep mode=0555
761 file path=usr/bin/file mode=0555
762 file path=usr/bin/find mode=0555
763 file path=usr/bin/fmt mode=0555
764 file path=usr/bin/fmtmsg mode=0555
765 file path=usr/bin/fold mode=0555
766 file path=usr/bin/fsstat mode=0555
767 file path=usr/bin/geniconvtbl mode=0555
768 file path=usr/bin/getconf mode=0555
769 file path=usr/bin/getdev mode=0555
770 file path=usr/bin/getdgrp mode=0555
771 file path=usr/bin/getent mode=0555
772 file path=usr/bin/getfacl mode=0555
773 file path=usr/bin/getopt mode=0555
774 file path=usr/bin/gettext mode=0555
775 file path=usr/bin/getvol mode=0555
776 file path=usr/bin/grep mode=0555
777 file path=usr/bin/groups mode=0555
778 file path=usr/bin/head mode=0555
779 file path=usr/bin/hostid mode=0555
780 file path=usr/bin/hostname mode=0555
781 file path=usr/bin/i286 mode=0555
782 file path=usr/bin/iconv mode=0555
783 file path=usr/bin/id mode=0555
784 file path=usr/bin/infocmp mode=0555
785 file path=usr/bin/iostat mode=0555
786 file path=usr/bin/isainfo mode=0555

new/usr/src/pkg/manifests/SUNWcs.mf 13

787 file path=usr/bin/isalist mode=0555
788 file path=usr/bin/itu mode=0555
789 file path=usr/bin/kbd mode=0555
790 file path=usr/bin/keylogin mode=0555
791 file path=usr/bin/keylogout mode=0555
792 file path=usr/bin/kmfcfg mode=0555
793 file path=usr/bin/kvmstat mode=0555
794 file path=usr/bin/line mode=0555
795 file path=usr/bin/listdgrp mode=0555
796 file path=usr/bin/listusers mode=0555
797 file path=usr/bin/loadkeys mode=0555
798 file path=usr/bin/logger mode=0555
799 file path=usr/bin/login mode=4555
800 file path=usr/bin/logins mode=0750
801 file path=usr/bin/ls mode=0555
802 file path=usr/bin/m4 mode=0555
803 file path=usr/bin/mach mode=0555
804 file path=usr/bin/mail group=mail mode=2511
805 file path=usr/bin/mailx group=mail mode=2511
806 file path=usr/bin/makedev mode=0555
807 file path=usr/bin/mesg mode=0555
808 file path=usr/bin/mkbootmedia mode=0555
809 file path=usr/bin/mkdir mode=0555
810 file path=usr/bin/mkpwdict mode=0555
811 file path=usr/bin/mktemp mode=0555
812 file path=usr/bin/moe mode=0555
813 file path=usr/bin/more mode=0555
814 file path=usr/bin/mpstat mode=0555
815 file path=usr/bin/mt mode=0555
816 file path=usr/bin/netstat mode=0555
817 file path=usr/bin/newgrp group=sys mode=4755
818 file path=usr/bin/nice mode=0555
819 file path=usr/bin/optisa mode=0555
820 file path=usr/bin/pagesize mode=0555
821 file path=usr/bin/passwd group=sys mode=6555
822 file path=usr/bin/pathchk mode=0555
823 file path=usr/bin/pax mode=0555
824 file path=usr/bin/pfexec mode=0555
825 file path=usr/bin/pg mode=0555
826 file path=usr/bin/pgrep mode=0555
827 file path=usr/bin/pkg2du mode=0555
828 file path=usr/bin/pktool mode=0555
829 file path=usr/bin/pr mode=0555
830 file path=usr/bin/printf mode=0555
831 file path=usr/bin/priocntl mode=0555
832 file path=usr/bin/profiles mode=0555
833 file path=usr/bin/projects mode=0555
834 file path=usr/bin/putdev mode=0555
835 file path=usr/bin/putdgrp mode=0555
836 file path=usr/bin/pwd mode=0555
837 file path=usr/bin/renice mode=0555
838 file path=usr/bin/rm mode=0555
839 file path=usr/bin/rmdir mode=0555
840 file path=usr/bin/roles mode=0555
841 file path=usr/bin/rpcinfo mode=0555
842 file path=usr/bin/runat mode=0555
843 file path=usr/bin/script mode=0555
844 file path=usr/bin/sed mode=0555
845 file path=usr/bin/setfacl mode=0555
846 file path=usr/bin/setpgrp group=sys mode=0555
847 file path=usr/bin/settime mode=0555
848 file path=usr/bin/shcomp mode=0555
849 file path=usr/bin/strchg group=root mode=0555
850 file path=usr/bin/strconf group=root mode=0555
851 file path=usr/bin/stty mode=0555
852 file path=usr/bin/su group=sys mode=4555

new/usr/src/pkg/manifests/SUNWcs.mf 14

853 file path=usr/bin/svcprop mode=0555
854 file path=usr/bin/svcs mode=0555
855 file path=usr/bin/tabs mode=0555
856 file path=usr/bin/tail mode=0555
857 file path=usr/bin/tic mode=0555
858 file path=usr/bin/time mode=0555
859 file path=usr/bin/tip mode=4511 owner=uucp
860 file path=usr/bin/tpmadm mode=0555
861 file path=usr/bin/tput mode=0555
862 file path=usr/bin/tr mode=0555
863 file path=usr/bin/true mode=0555
864 file path=usr/bin/tty mode=0555
865 file path=usr/bin/tzselect mode=0555
866 file path=usr/bin/updatemedia mode=0555
867 file path=usr/bin/userattr mode=0555
868 file path=usr/bin/vmstat mode=0555
869 file path=usr/bin/which mode=0555
870 file path=usr/bin/who mode=0555
871 file path=usr/bin/wracct mode=0555
872 file path=usr/bin/write group=tty mode=2555
873 file path=usr/bin/xargs mode=0555
874 file path=usr/bin/xstr mode=0555
875 file path=usr/has/bin/edit mode=0555
876 file path=usr/has/bin/sh mode=0555
877 file path=usr/has/man/man1has/edit.1has
878 file path=usr/has/man/man1has/ex.1has
879 file path=usr/has/man/man1has/sh.1has
880 file path=usr/has/man/man1has/vi.1has
881 file path=usr/kernel/drv/$(ARCH64)/dump group=sys
882 file path=usr/kernel/drv/$(ARCH64)/fssnap group=sys
883 file path=usr/kernel/drv/$(ARCH64)/kstat group=sys
884 file path=usr/kernel/drv/$(ARCH64)/ksyms group=sys
885 file path=usr/kernel/drv/$(ARCH64)/logindmux group=sys
886 file path=usr/kernel/drv/$(ARCH64)/ptm group=sys
887 file path=usr/kernel/drv/$(ARCH64)/pts group=sys
888 $(i386_ONLY)file path=usr/kernel/drv/dump group=sys
889 file path=usr/kernel/drv/dump.conf group=sys
890 $(i386_ONLY)file path=usr/kernel/drv/fssnap group=sys
891 file path=usr/kernel/drv/fssnap.conf group=sys
892 $(i386_ONLY)file path=usr/kernel/drv/kstat group=sys
893 file path=usr/kernel/drv/kstat.conf group=sys
894 $(i386_ONLY)file path=usr/kernel/drv/ksyms group=sys
895 file path=usr/kernel/drv/ksyms.conf group=sys
896 $(i386_ONLY)file path=usr/kernel/drv/logindmux group=sys
897 file path=usr/kernel/drv/logindmux.conf group=sys
898 $(i386_ONLY)file path=usr/kernel/drv/ptm group=sys
899 file path=usr/kernel/drv/ptm.conf group=sys
900 $(i386_ONLY)file path=usr/kernel/drv/pts group=sys
901 file path=usr/kernel/drv/pts.conf group=sys
902 file path=usr/kernel/exec/$(ARCH64)/javaexec group=sys mode=0755
903 file path=usr/kernel/exec/$(ARCH64)/shbinexec group=sys mode=0755
904 $(i386_ONLY)file path=usr/kernel/exec/javaexec group=sys mode=0755
905 $(i386_ONLY)file path=usr/kernel/exec/shbinexec group=sys mode=0755
906 file path=usr/kernel/fs/$(ARCH64)/fdfs group=sys mode=0755
907 file path=usr/kernel/fs/$(ARCH64)/pcfs group=sys mode=0755
908 $(i386_ONLY)file path=usr/kernel/fs/fdfs group=sys mode=0755
909 $(i386_ONLY)file path=usr/kernel/fs/pcfs group=sys mode=0755
910 file path=usr/kernel/sched/$(ARCH64)/FX group=sys mode=0755
911 file path=usr/kernel/sched/$(ARCH64)/FX_DPTBL group=sys mode=0755
912 file path=usr/kernel/sched/$(ARCH64)/IA group=sys mode=0755
913 file path=usr/kernel/sched/$(ARCH64)/RT group=sys mode=0755
914 file path=usr/kernel/sched/$(ARCH64)/RT_DPTBL group=sys mode=0755
915 $(i386_ONLY)file path=usr/kernel/sched/FX group=sys mode=0755
916 $(i386_ONLY)file path=usr/kernel/sched/FX_DPTBL group=sys mode=0755
917 $(i386_ONLY)file path=usr/kernel/sched/IA group=sys mode=0755
918 $(i386_ONLY)file path=usr/kernel/sched/RT group=sys mode=0755

new/usr/src/pkg/manifests/SUNWcs.mf 15

919 $(i386_ONLY)file path=usr/kernel/sched/RT_DPTBL group=sys mode=0755
920 file path=usr/kernel/strmod/$(ARCH64)/cryptmod group=sys mode=0755
921 file path=usr/kernel/strmod/$(ARCH64)/rlmod group=sys mode=0755
922 file path=usr/kernel/strmod/$(ARCH64)/telmod group=sys mode=0755
923 $(i386_ONLY)file path=usr/kernel/strmod/cryptmod group=sys mode=0755
924 $(i386_ONLY)file path=usr/kernel/strmod/rlmod group=sys mode=0755
925 $(i386_ONLY)file path=usr/kernel/strmod/telmod group=sys mode=0755
926 file path=usr/kernel/sys/$(ARCH64)/acctctl group=sys mode=0755
927 file path=usr/kernel/sys/$(ARCH64)/exacctsys group=sys mode=0755
928 file path=usr/kernel/sys/$(ARCH64)/sysacct group=sys mode=0755
929 $(i386_ONLY)file path=usr/kernel/sys/acctctl group=sys mode=0755
930 $(i386_ONLY)file path=usr/kernel/sys/exacctsys group=sys mode=0755
931 $(i386_ONLY)file path=usr/kernel/sys/sysacct group=sys mode=0755
932 file path=usr/kvm/README group=sys
933 file path=usr/lib/$(ARCH64)/libshare.so.1
934 file path=usr/lib/audit/audit_record_attr mode=0444
935 file path=usr/lib/calprog mode=0555
936 file path=usr/lib/class/FX/FXdispadmin mode=0555
937 file path=usr/lib/class/FX/FXpriocntl mode=0555
938 file path=usr/lib/class/IA/IAdispadmin mode=0555
939 file path=usr/lib/class/IA/IApriocntl mode=0555
940 file path=usr/lib/class/RT/RTdispadmin mode=0555
941 file path=usr/lib/class/RT/RTpriocntl mode=0555
942 file path=usr/lib/class/SDC/SDCdispadmin mode=0555
943 file path=usr/lib/class/SDC/SDCpriocntl mode=0555
944 file path=usr/lib/class/TS/TSdispadmin mode=0555
945 file path=usr/lib/class/TS/TSpriocntl mode=0555
946 file path=usr/lib/devfsadm/linkmod/SUNW_audio_link.so group=sys
947 file path=usr/lib/devfsadm/linkmod/SUNW_cfg_link.so group=sys
948 file path=usr/lib/devfsadm/linkmod/SUNW_disk_link.so group=sys
949 file path=usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so group=sys
950 file path=usr/lib/devfsadm/linkmod/SUNW_ieee1394_link.so group=sys
951 file path=usr/lib/devfsadm/linkmod/SUNW_lofi_link.so group=sys
952 file path=usr/lib/devfsadm/linkmod/SUNW_md_link.so group=sys
953 file path=usr/lib/devfsadm/linkmod/SUNW_misc_link.so group=sys
954 file path=usr/lib/devfsadm/linkmod/SUNW_misc_link_$(ARCH).so group=sys
955 file path=usr/lib/devfsadm/linkmod/SUNW_port_link.so group=sys
956 file path=usr/lib/devfsadm/linkmod/SUNW_ramdisk_link.so group=sys
957 file path=usr/lib/devfsadm/linkmod/SUNW_sgen_link.so group=sys
958 file path=usr/lib/devfsadm/linkmod/SUNW_smp_link.so group=sys
959 file path=usr/lib/devfsadm/linkmod/SUNW_tape_link.so group=sys
960 file path=usr/lib/devfsadm/linkmod/SUNW_usb_link.so group=sys
961 $(i386_ONLY)file path=usr/lib/devfsadm/linkmod/SUNW_xen_link.so group=sys
962 file path=usr/lib/diffh mode=0555
963 file path=usr/lib/expreserve mode=0555
964 file path=usr/lib/exrecover mode=0555
965 file path=usr/lib/fs/cachefs/cachefsd mode=0555
966 file path=usr/lib/fs/cachefs/cachefslog mode=0555
967 file path=usr/lib/fs/cachefs/cachefspack mode=0555
968 file path=usr/lib/fs/cachefs/cachefsstat mode=0555
969 file path=usr/lib/fs/cachefs/cachefswssize mode=0555
970 file path=usr/lib/fs/cachefs/cfsadmin mode=0555
971 file path=usr/lib/fs/cachefs/cfsfstype mode=0555
972 file path=usr/lib/fs/cachefs/cfstagchk mode=0555
973 file path=usr/lib/fs/cachefs/dfshares mode=0555
974 file path=usr/lib/fs/cachefs/fsck mode=0555
975 file path=usr/lib/fs/cachefs/mount mode=0555
976 file path=usr/lib/fs/cachefs/share mode=0555
977 file path=usr/lib/fs/cachefs/umount mode=0555
978 file path=usr/lib/fs/cachefs/unshare mode=0555
979 file path=usr/lib/fs/ctfs/mount mode=0555
980 file path=usr/lib/fs/fd/mount mode=0555
981 file path=usr/lib/fs/hsfs/fstyp.so.1 mode=0555
982 file path=usr/lib/fs/hsfs/labelit mode=0555
983 file path=usr/lib/fs/lofs/mount mode=0555
984 file path=usr/lib/fs/mntfs/mount mode=0555

new/usr/src/pkg/manifests/SUNWcs.mf 16

985 file path=usr/lib/fs/objfs/mount mode=0555
986 file path=usr/lib/fs/proc/mount mode=0555
987 file path=usr/lib/fs/sharefs/mount mode=0555
988 file path=usr/lib/fs/tmpfs/mount mode=0555
989 file path=usr/lib/fs/ufs/clri mode=0555
990 file path=usr/lib/fs/ufs/df mode=0555
991 file path=usr/lib/fs/ufs/edquota mode=0555
992 file path=usr/lib/fs/ufs/ff mode=0555
993 file path=usr/lib/fs/ufs/fsck mode=0555
994 file path=usr/lib/fs/ufs/fsckall mode=0555
995 file path=usr/lib/fs/ufs/fsdb mode=0555
996 file path=usr/lib/fs/ufs/fsirand mode=0555
997 file path=usr/lib/fs/ufs/fssnap mode=0555
998 file path=usr/lib/fs/ufs/fstyp.so.1 mode=0555
999 file path=usr/lib/fs/ufs/labelit mode=0555

1000 file path=usr/lib/fs/ufs/lockfs mode=0555
1001 file path=usr/lib/fs/ufs/mkfs mode=0555
1002 file path=usr/lib/fs/ufs/ncheck mode=0555
1003 file path=usr/lib/fs/ufs/newfs mode=0555
1004 file path=usr/lib/fs/ufs/quot mode=0555
1005 file path=usr/lib/fs/ufs/quota mode=4555
1006 file path=usr/lib/fs/ufs/quotacheck mode=0555
1007 file path=usr/lib/fs/ufs/quotaoff mode=0555
1008 file path=usr/lib/fs/ufs/repquota mode=0555
1009 file path=usr/lib/fs/ufs/tunefs mode=0555
1010 file path=usr/lib/fs/ufs/ufsdump mode=4555
1011 file path=usr/lib/fs/ufs/ufsrestore mode=4555
1012 file path=usr/lib/fs/ufs/volcopy mode=0555
1013 file path=usr/lib/getoptcvt mode=0555
1014 file path=usr/lib/help/auths/locale/C/AllSolAuthsHeader.html
1015 file path=usr/lib/help/auths/locale/C/AuditHeader.html
1016 file path=usr/lib/help/auths/locale/C/AuthJobsAdmin.html
1017 file path=usr/lib/help/auths/locale/C/AuthJobsUser.html
1018 file path=usr/lib/help/auths/locale/C/AuthProfmgrAssign.html
1019 file path=usr/lib/help/auths/locale/C/AuthProfmgrDelegate.html
1020 file path=usr/lib/help/auths/locale/C/AuthProfmgrExecattrWrite.html
1021 file path=usr/lib/help/auths/locale/C/AuthProfmgrRead.html
1022 file path=usr/lib/help/auths/locale/C/AuthProfmgrWrite.html
1023 file path=usr/lib/help/auths/locale/C/AuthReadNDMP.html
1024 file path=usr/lib/help/auths/locale/C/AuthReadSMB.html
1025 file path=usr/lib/help/auths/locale/C/AuthRoleAssign.html
1026 file path=usr/lib/help/auths/locale/C/AuthRoleDelegate.html
1027 file path=usr/lib/help/auths/locale/C/AuthRoleWrite.html
1028 file path=usr/lib/help/auths/locale/C/BindStates.html
1029 file path=usr/lib/help/auths/locale/C/DevAllocHeader.html
1030 file path=usr/lib/help/auths/locale/C/DevAllocate.html
1031 file path=usr/lib/help/auths/locale/C/DevConfig.html
1032 file path=usr/lib/help/auths/locale/C/DevGrant.html
1033 file path=usr/lib/help/auths/locale/C/DevRevoke.html
1034 file path=usr/lib/help/auths/locale/C/DhcpmgrHeader.html
1035 file path=usr/lib/help/auths/locale/C/DhcpmgrWrite.html
1036 file path=usr/lib/help/auths/locale/C/HotplugHeader.html
1037 file path=usr/lib/help/auths/locale/C/HotplugModify.html
1038 file path=usr/lib/help/auths/locale/C/IdmapRules.html
1039 file path=usr/lib/help/auths/locale/C/JobHeader.html
1040 file path=usr/lib/help/auths/locale/C/JobsGrant.html
1041 file path=usr/lib/help/auths/locale/C/LinkSecurity.html
1042 file path=usr/lib/help/auths/locale/C/LoginEnable.html
1043 file path=usr/lib/help/auths/locale/C/LoginHeader.html
1044 file path=usr/lib/help/auths/locale/C/LoginRemote.html
1045 file path=usr/lib/help/auths/locale/C/NetworkAutoconfRead.html
1046 file path=usr/lib/help/auths/locale/C/NetworkAutoconfSelect.html
1047 file path=usr/lib/help/auths/locale/C/NetworkAutoconfWlan.html
1048 file path=usr/lib/help/auths/locale/C/NetworkAutoconfWrite.html
1049 file path=usr/lib/help/auths/locale/C/NetworkHeader.html
1050 file path=usr/lib/help/auths/locale/C/NetworkILBconf.html

new/usr/src/pkg/manifests/SUNWcs.mf 17

1051 file path=usr/lib/help/auths/locale/C/NetworkILBenable.html
1052 file path=usr/lib/help/auths/locale/C/NetworkInterfaceConfig.html
1053 file path=usr/lib/help/auths/locale/C/NetworkVRRP.html
1054 file path=usr/lib/help/auths/locale/C/PriAdmin.html
1055 file path=usr/lib/help/auths/locale/C/ProfmgrHeader.html
1056 file path=usr/lib/help/auths/locale/C/RoleHeader.html
1057 file path=usr/lib/help/auths/locale/C/SmfAllocate.html
1058 file path=usr/lib/help/auths/locale/C/SmfAutofsStates.html
1059 file path=usr/lib/help/auths/locale/C/SmfCoreadmStates.html
1060 file path=usr/lib/help/auths/locale/C/SmfCronStates.html
1061 file path=usr/lib/help/auths/locale/C/SmfExAcctFlowStates.html
1062 file path=usr/lib/help/auths/locale/C/SmfExAcctNetStates.html
1063 file path=usr/lib/help/auths/locale/C/SmfExAcctProcessStates.html
1064 file path=usr/lib/help/auths/locale/C/SmfExAcctTaskStates.html
1065 file path=usr/lib/help/auths/locale/C/SmfHeader.html
1066 file path=usr/lib/help/auths/locale/C/SmfILBStates.html
1067 file path=usr/lib/help/auths/locale/C/SmfIPsecStates.html
1068 file path=usr/lib/help/auths/locale/C/SmfIdmapStates.html
1069 file path=usr/lib/help/auths/locale/C/SmfInetdStates.html
1070 file path=usr/lib/help/auths/locale/C/SmfLocationStates.html
1071 file path=usr/lib/help/auths/locale/C/SmfMDNSStates.html
1072 file path=usr/lib/help/auths/locale/C/SmfManageAudit.html
1073 file path=usr/lib/help/auths/locale/C/SmfManageHeader.html
1074 file path=usr/lib/help/auths/locale/C/SmfManageHotplug.html
1075 file path=usr/lib/help/auths/locale/C/SmfManageZFSSnap.html
1076 file path=usr/lib/help/auths/locale/C/SmfModifyAppl.html
1077 file path=usr/lib/help/auths/locale/C/SmfModifyDepend.html
1078 file path=usr/lib/help/auths/locale/C/SmfModifyFramework.html
1079 file path=usr/lib/help/auths/locale/C/SmfModifyHeader.html
1080 file path=usr/lib/help/auths/locale/C/SmfModifyMethod.html
1081 file path=usr/lib/help/auths/locale/C/SmfNADDStates.html
1082 file path=usr/lib/help/auths/locale/C/SmfNDMPStates.html
1083 file path=usr/lib/help/auths/locale/C/SmfNWAMStates.html
1084 file path=usr/lib/help/auths/locale/C/SmfNscdStates.html
1085 file path=usr/lib/help/auths/locale/C/SmfPowerStates.html
1086 file path=usr/lib/help/auths/locale/C/SmfReparseStates.html
1087 file path=usr/lib/help/auths/locale/C/SmfRoutingStates.html
1088 file path=usr/lib/help/auths/locale/C/SmfSMBFSStates.html
1089 file path=usr/lib/help/auths/locale/C/SmfSMBStates.html
1090 file path=usr/lib/help/auths/locale/C/SmfSendmailStates.html
1091 file path=usr/lib/help/auths/locale/C/SmfSshStates.html
1092 file path=usr/lib/help/auths/locale/C/SmfSyslogStates.html
1093 file path=usr/lib/help/auths/locale/C/SmfVRRPStates.html
1094 file path=usr/lib/help/auths/locale/C/SmfValueAudit.html
1095 file path=usr/lib/help/auths/locale/C/SmfValueCoreadm.html
1096 file path=usr/lib/help/auths/locale/C/SmfValueExAcctFlow.html
1097 file path=usr/lib/help/auths/locale/C/SmfValueExAcctNet.html
1098 file path=usr/lib/help/auths/locale/C/SmfValueExAcctProcess.html
1099 file path=usr/lib/help/auths/locale/C/SmfValueExAcctTask.html
1100 file path=usr/lib/help/auths/locale/C/SmfValueFirewall.html
1101 file path=usr/lib/help/auths/locale/C/SmfValueHeader.html
1102 file path=usr/lib/help/auths/locale/C/SmfValueIPsec.html
1103 file path=usr/lib/help/auths/locale/C/SmfValueIdmap.html
1104 file path=usr/lib/help/auths/locale/C/SmfValueInetd.html
1105 file path=usr/lib/help/auths/locale/C/SmfValueMDNS.html
1106 file path=usr/lib/help/auths/locale/C/SmfValueNADD.html
1107 file path=usr/lib/help/auths/locale/C/SmfValueNDMP.html
1108 file path=usr/lib/help/auths/locale/C/SmfValueNWAM.html
1109 file path=usr/lib/help/auths/locale/C/SmfValueRouting.html
1110 file path=usr/lib/help/auths/locale/C/SmfValueSMB.html
1111 file path=usr/lib/help/auths/locale/C/SmfValueVscan.html
1112 file path=usr/lib/help/auths/locale/C/SmfValueVt.html
1113 file path=usr/lib/help/auths/locale/C/SmfVscanStates.html
1114 file path=usr/lib/help/auths/locale/C/SmfVtStates.html
1115 file path=usr/lib/help/auths/locale/C/SmfWpaStates.html
1116 file path=usr/lib/help/auths/locale/C/SysCpuPowerMgmt.html

new/usr/src/pkg/manifests/SUNWcs.mf 18

1117 file path=usr/lib/help/auths/locale/C/SysDate.html
1118 file path=usr/lib/help/auths/locale/C/SysHeader.html
1119 file path=usr/lib/help/auths/locale/C/SysMaintenance.html
1120 file path=usr/lib/help/auths/locale/C/SysPowerMgmtBrightness.html
1121 file path=usr/lib/help/auths/locale/C/SysPowerMgmtHeader.html
1122 file path=usr/lib/help/auths/locale/C/SysPowerMgmtSuspend.html
1123 file path=usr/lib/help/auths/locale/C/SysPowerMgmtSuspendtoDisk.html
1124 file path=usr/lib/help/auths/locale/C/SysPowerMgmtSuspendtoRAM.html
1125 file path=usr/lib/help/auths/locale/C/SysShutdown.html
1126 file path=usr/lib/help/auths/locale/C/SysSyseventRead.html
1127 file path=usr/lib/help/auths/locale/C/SysSyseventWrite.html
1128 file path=usr/lib/help/auths/locale/C/WifiConfig.html
1129 file path=usr/lib/help/auths/locale/C/WifiWep.html
1128 file path=usr/lib/help/auths/locale/C/ZoneCloneFrom.html
1129 file path=usr/lib/help/auths/locale/C/ZoneHeader.html
1130 file path=usr/lib/help/auths/locale/C/ZoneLogin.html
1131 file path=usr/lib/help/auths/locale/C/ZoneManage.html
1132 file path=usr/lib/help/profiles/locale/C/RtAcctadm.html
1133 file path=usr/lib/help/profiles/locale/C/RtAll.html
1134 file path=usr/lib/help/profiles/locale/C/RtAuditCfg.html
1135 file path=usr/lib/help/profiles/locale/C/RtAuditCtrl.html
1136 file path=usr/lib/help/profiles/locale/C/RtAuditReview.html
1137 file path=usr/lib/help/profiles/locale/C/RtCPUPowerManagement.html
1138 file path=usr/lib/help/profiles/locale/C/RtConsUser.html
1139 file path=usr/lib/help/profiles/locale/C/RtContractObserver.html
1140 file path=usr/lib/help/profiles/locale/C/RtCronMngmnt.html
1141 file path=usr/lib/help/profiles/locale/C/RtCryptoMngmnt.html
1142 file path=usr/lib/help/profiles/locale/C/RtDHCPMngmnt.html
1143 file path=usr/lib/help/profiles/locale/C/RtDatAdmin.html
1144 file path=usr/lib/help/profiles/locale/C/RtDefault.html
1145 file path=usr/lib/help/profiles/locale/C/RtDeviceMngmnt.html
1146 file path=usr/lib/help/profiles/locale/C/RtDeviceSecurity.html
1147 file path=usr/lib/help/profiles/locale/C/RtExAcctFlow.html
1148 file path=usr/lib/help/profiles/locale/C/RtExAcctNet.html
1149 file path=usr/lib/help/profiles/locale/C/RtExAcctProcess.html
1150 file path=usr/lib/help/profiles/locale/C/RtExAcctTask.html
1151 file path=usr/lib/help/profiles/locale/C/RtFTPMngmnt.html
1152 file path=usr/lib/help/profiles/locale/C/RtFileSysMngmnt.html
1153 file path=usr/lib/help/profiles/locale/C/RtFileSysSecurity.html
1154 file path=usr/lib/help/profiles/locale/C/RtHotplugMngmnt.html
1155 file path=usr/lib/help/profiles/locale/C/RtIPFilterMngmnt.html
1156 file path=usr/lib/help/profiles/locale/C/RtIdmapMngmnt.html
1157 file path=usr/lib/help/profiles/locale/C/RtIdmapNameRulesMngmnt.html
1158 file path=usr/lib/help/profiles/locale/C/RtInetdMngmnt.html
1159 file path=usr/lib/help/profiles/locale/C/RtKerberosClntMngmnt.html
1160 file path=usr/lib/help/profiles/locale/C/RtKerberosSrvrMngmnt.html
1161 file path=usr/lib/help/profiles/locale/C/RtLogMngmnt.html
1162 file path=usr/lib/help/profiles/locale/C/RtMailMngmnt.html
1163 file path=usr/lib/help/profiles/locale/C/RtMaintAndRepair.html
1164 file path=usr/lib/help/profiles/locale/C/RtMediaBkup.html
1165 file path=usr/lib/help/profiles/locale/C/RtMediaCtlg.html
1166 file path=usr/lib/help/profiles/locale/C/RtMediaRestore.html
1167 file path=usr/lib/help/profiles/locale/C/RtNDMPMngmnt.html
1168 file path=usr/lib/help/profiles/locale/C/RtNameServiceAdmin.html
1169 file path=usr/lib/help/profiles/locale/C/RtNameServiceSecure.html
1170 file path=usr/lib/help/profiles/locale/C/RtNetAutoconfAdmin.html
1171 file path=usr/lib/help/profiles/locale/C/RtNetAutoconfUser.html
1172 file path=usr/lib/help/profiles/locale/C/RtNetILB.html
1173 file path=usr/lib/help/profiles/locale/C/RtNetIPsec.html
1174 file path=usr/lib/help/profiles/locale/C/RtNetLinkSecure.html
1175 file path=usr/lib/help/profiles/locale/C/RtNetMngmnt.html
1176 file path=usr/lib/help/profiles/locale/C/RtNetObservability.html
1177 file path=usr/lib/help/profiles/locale/C/RtNetSecure.html
1178 file path=usr/lib/help/profiles/locale/C/RtNetVRRP.html
1179 file path=usr/lib/help/profiles/locale/C/RtNetWifiMngmnt.html
1180 file path=usr/lib/help/profiles/locale/C/RtNetWifiSecure.html

new/usr/src/pkg/manifests/SUNWcs.mf 19

1181 file path=usr/lib/help/profiles/locale/C/RtObAccessMngmnt.html
1182 file path=usr/lib/help/profiles/locale/C/RtOperator.html
1183 file path=usr/lib/help/profiles/locale/C/RtPriAdmin.html
1184 file path=usr/lib/help/profiles/locale/C/RtPrntAdmin.html
1185 file path=usr/lib/help/profiles/locale/C/RtProcManagement.html
1186 file path=usr/lib/help/profiles/locale/C/RtReparseMngmnt.html
1187 file path=usr/lib/help/profiles/locale/C/RtReservedProfile.html
1188 file path=usr/lib/help/profiles/locale/C/RtRightsDelegate.html
1189 file path=usr/lib/help/profiles/locale/C/RtSMBFSMngmnt.html
1190 file path=usr/lib/help/profiles/locale/C/RtSMBMngmnt.html
1191 file path=usr/lib/help/profiles/locale/C/RtSoftwareInstall.html
1192 file path=usr/lib/help/profiles/locale/C/RtSysAdmin.html
1193 file path=usr/lib/help/profiles/locale/C/RtSysEvMngmnt.html
1194 file path=usr/lib/help/profiles/locale/C/RtSysPowerMgmt.html
1195 file path=usr/lib/help/profiles/locale/C/RtSysPowerMgmtBrightness.html
1196 file path=usr/lib/help/profiles/locale/C/RtSysPowerMgmtSuspend.html
1197 file path=usr/lib/help/profiles/locale/C/RtSysPowerMgmtSuspendtoDisk.html
1198 file path=usr/lib/help/profiles/locale/C/RtSysPowerMgmtSuspendtoRAM.html
1199 file path=usr/lib/help/profiles/locale/C/RtUserMngmnt.html
1200 file path=usr/lib/help/profiles/locale/C/RtUserSecurity.html
1201 file path=usr/lib/help/profiles/locale/C/RtVscanMngmnt.html
1202 file path=usr/lib/help/profiles/locale/C/RtZFSFileSysMngmnt.html
1203 file path=usr/lib/help/profiles/locale/C/RtZFSStorageMngmnt.html
1204 file path=usr/lib/help/profiles/locale/C/RtZoneMngmnt.html
1205 file path=usr/lib/help/profiles/locale/C/RtZoneSecurity.html
1206 file path=usr/lib/hotplugd mode=0555
1207 file path=usr/lib/iconv/646da.8859.t mode=0444
1208 file path=usr/lib/iconv/646de.8859.t mode=0444
1209 file path=usr/lib/iconv/646en.8859.t mode=0444
1210 file path=usr/lib/iconv/646es.8859.t mode=0444
1211 file path=usr/lib/iconv/646fr.8859.t mode=0444
1212 file path=usr/lib/iconv/646it.8859.t mode=0444
1213 file path=usr/lib/iconv/646sv.8859.t mode=0444
1214 file path=usr/lib/iconv/8859.646.t mode=0444
1215 file path=usr/lib/iconv/8859.646da.t mode=0444
1216 file path=usr/lib/iconv/8859.646de.t mode=0444
1217 file path=usr/lib/iconv/8859.646en.t mode=0444
1218 file path=usr/lib/iconv/8859.646es.t mode=0444
1219 file path=usr/lib/iconv/8859.646fr.t mode=0444
1220 file path=usr/lib/iconv/8859.646it.t mode=0444
1221 file path=usr/lib/iconv/8859.646sv.t mode=0444
1222 file path=usr/lib/iconv/iconv_data mode=0444
1223 file path=usr/lib/idmapd mode=0555
1224 file path=usr/lib/inet/$(ARCH32)/in.iked mode=0555
1225 file path=usr/lib/inet/$(ARCH64)/in.iked mode=0555
1226 file path=usr/lib/inet/certdb mode=0555
1227 file path=usr/lib/inet/certlocal mode=0555
1228 file path=usr/lib/inet/certrldb mode=0555
1229 file path=usr/lib/inet/inetd mode=0555
1230 file path=usr/lib/intrd mode=0555
1231 file path=usr/lib/isaexec mode=0555
1232 file path=usr/lib/kssladm mode=0555
1233 $(sparc_ONLY)file path=usr/lib/ld.so
1234 file path=usr/lib/libshare.so.1
1235 file path=usr/lib/makekey mode=0555
1236 file path=usr/lib/more.help
1237 file path=usr/lib/newsyslog group=sys mode=0555
1238 file path=usr/lib/passmgmt group=sys mode=0555
1239 file path=usr/lib/pci/pcidr mode=0555
1240 file path=usr/lib/pci/pcidr_plugin.so
1241 file path=usr/lib/pfexecd mode=0555
1242 file path=usr/lib/platexec mode=0555
1243 file path=usr/lib/rcm/modules/SUNW_aggr_rcm.so mode=0555
1244 file path=usr/lib/rcm/modules/SUNW_cluster_rcm.so mode=0555
1245 file path=usr/lib/rcm/modules/SUNW_dump_rcm.so mode=0555
1246 file path=usr/lib/rcm/modules/SUNW_filesys_rcm.so mode=0555

new/usr/src/pkg/manifests/SUNWcs.mf 20

1247 file path=usr/lib/rcm/modules/SUNW_ibpart_rcm.so mode=0555
1248 file path=usr/lib/rcm/modules/SUNW_ip_anon_rcm.so mode=0555
1249 file path=usr/lib/rcm/modules/SUNW_ip_rcm.so mode=0555
1250 file path=usr/lib/rcm/modules/SUNW_mpxio_rcm.so mode=0555
1251 file path=usr/lib/rcm/modules/SUNW_network_rcm.so mode=0555
1252 file path=usr/lib/rcm/modules/SUNW_swap_rcm.so mode=0555
1253 $(sparc_ONLY)file path=usr/lib/rcm/modules/SUNW_ttymux_rcm.so mode=0555
1254 file path=usr/lib/rcm/modules/SUNW_vlan_rcm.so mode=0555
1255 file path=usr/lib/rcm/modules/SUNW_vnic_rcm.so mode=0555
1256 file path=usr/lib/rcm/rcm_daemon mode=0555
1257 file path=usr/lib/reparse/reparsed group=sys mode=0555
1258 file path=usr/lib/saf/listen group=sys mode=0755
1259 file path=usr/lib/saf/nlps_server group=sys mode=0755
1260 file path=usr/lib/saf/sac group=sys mode=0555
1261 file path=usr/lib/saf/ttymon group=sys mode=0555
1262 file path=usr/lib/sysevent/modules/datalink_mod.so
1263 file path=usr/lib/sysevent/modules/devfsadmd_mod.so
1264 file path=usr/lib/sysevent/modules/sysevent_conf_mod.so
1265 file path=usr/lib/sysevent/modules/sysevent_reg_mod.so
1266 file path=usr/lib/sysevent/syseventconfd mode=0555
1267 file path=usr/lib/sysevent/syseventd mode=0555
1268 file path=usr/lib/utmp_update mode=4555
1269 file path=usr/lib/utmpd mode=0555
1270 file path=usr/lib/vtdaemon mode=0555
1271 file path=usr/lib/vtinfo mode=0555
1272 file path=usr/lib/vtxlock mode=0555
1273 file path=usr/sadm/bin/puttext mode=0555
1274 file path=usr/sadm/install/miniroot.db group=sys mode=0444
1275 file path=usr/sadm/install/scripts/i.ipsecalgs group=sys mode=0555
1276 file path=usr/sadm/install/scripts/i.kcfconf group=sys mode=0555
1277 file path=usr/sadm/install/scripts/i.kmfconf group=sys mode=0555
1278 file path=usr/sadm/install/scripts/i.manifest group=sys mode=0555
1279 file path=usr/sadm/install/scripts/i.pkcs11conf group=sys mode=0555
1280 file path=usr/sadm/install/scripts/i.rbac group=sys mode=0555
1281 file path=usr/sadm/install/scripts/r.ipsecalgs group=sys mode=0555
1282 file path=usr/sadm/install/scripts/r.kcfconf group=sys mode=0555
1283 file path=usr/sadm/install/scripts/r.kmfconf group=sys mode=0555
1284 file path=usr/sadm/install/scripts/r.manifest group=sys mode=0555
1285 file path=usr/sadm/install/scripts/r.pkcs11conf group=sys mode=0555
1286 file path=usr/sadm/install/scripts/r.rbac group=sys mode=0555
1287 file path=usr/sadm/ugdates mode=0444
1288 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/add_drv group=sys mode=0555
1289 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/modinfo group=sys mode=0555
1290 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/modload group=sys mode=0555
1291 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/modunload group=sys mode=0555
1292 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/pbind group=sys mode=0555
1293 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/prtconf group=sys mode=2555
1294 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/psrset group=sys mode=0555
1295 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/rem_drv group=sys mode=0555
1296 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/swap group=sys mode=2555
1297 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/sysdef group=sys mode=2555
1298 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/update_drv group=sys mode=0555
1299 $(i386_ONLY)file path=usr/sbin/$(ARCH32)/whodo mode=4555
1300 file path=usr/sbin/$(ARCH64)/add_drv group=sys mode=0555
1301 file path=usr/sbin/$(ARCH64)/modinfo group=sys mode=0555
1302 file path=usr/sbin/$(ARCH64)/modload group=sys mode=0555
1303 file path=usr/sbin/$(ARCH64)/modunload group=sys mode=0555
1304 file path=usr/sbin/$(ARCH64)/pbind group=sys mode=0555
1305 file path=usr/sbin/$(ARCH64)/prtconf group=sys mode=2555
1306 file path=usr/sbin/$(ARCH64)/psrset group=sys mode=0555
1307 file path=usr/sbin/$(ARCH64)/rem_drv group=sys mode=0555
1308 file path=usr/sbin/$(ARCH64)/swap group=sys mode=2555
1309 file path=usr/sbin/$(ARCH64)/sysdef group=sys mode=2555
1310 file path=usr/sbin/$(ARCH64)/update_drv group=sys mode=0555
1311 file path=usr/sbin/$(ARCH64)/whodo mode=4555
1312 file path=usr/sbin/6to4relay mode=0555

new/usr/src/pkg/manifests/SUNWcs.mf 21

1313 file path=usr/sbin/acctadm mode=0555
1314 file path=usr/sbin/allocate mode=4555
1315 file path=usr/sbin/arp mode=0555
1316 file path=usr/sbin/audit mode=0555
1317 file path=usr/sbin/auditconfig mode=0555
1318 file path=usr/sbin/auditd mode=0555
1319 file path=usr/sbin/auditrecord mode=0555
1320 file path=usr/sbin/auditreduce mode=0555
1321 file path=usr/sbin/auditstat mode=0555
1322 file path=usr/sbin/cfgadm mode=0555
1323 file path=usr/sbin/chroot mode=0555
1324 file path=usr/sbin/clear_locks mode=0555
1325 file path=usr/sbin/clinfo mode=0555
1326 file path=usr/sbin/clri mode=0555
1327 file path=usr/sbin/consadm group=sys mode=0555
1328 file path=usr/sbin/cron group=sys mode=0555
1329 file path=usr/sbin/devfsadm group=sys mode=0755
1330 file path=usr/sbin/devinfo mode=0555
1331 file path=usr/sbin/df mode=0555
1332 file path=usr/sbin/dfmounts mode=0555
1333 file path=usr/sbin/dispadmin mode=0555
1334 file path=usr/sbin/dminfo mode=0555
1335 file path=usr/sbin/dumpadm mode=0555
1336 file path=usr/sbin/eeprom group=sys mode=2555
1337 file path=usr/sbin/ff mode=0555
1338 file path=usr/sbin/fmthard group=sys mode=0555
1339 file path=usr/sbin/format mode=0555
1340 file path=usr/sbin/fsck mode=0555
1341 file path=usr/sbin/fstyp group=sys mode=0555
1342 file path=usr/sbin/fuser mode=0555
1343 file path=usr/sbin/getdevpolicy group=sys mode=0555
1344 file path=usr/sbin/getmajor group=sys mode=0755
1345 file path=usr/sbin/groupadd group=sys mode=0555
1346 file path=usr/sbin/groupdel group=sys mode=0555
1347 file path=usr/sbin/groupmod group=sys mode=0555
1348 file path=usr/sbin/grpck mode=0555
1349 file path=usr/sbin/halt mode=0755
1350 file path=usr/sbin/hotplug mode=0555
1351 file path=usr/sbin/idmap mode=0555
1352 file path=usr/sbin/if_mpadm mode=0555
1353 file path=usr/sbin/ikeadm mode=0555
1354 file path=usr/sbin/ikecert mode=0555
1355 file path=usr/sbin/inetadm mode=0555
1356 file path=usr/sbin/inetconv mode=0555
1357 file path=usr/sbin/install mode=0555
1358 file path=usr/sbin/installboot group=sys mode=0555
1359 file path=usr/sbin/ipaddrsel mode=0555
1360 file path=usr/sbin/ipsecalgs mode=0555
1361 file path=usr/sbin/ipsecconf mode=0555
1362 file path=usr/sbin/ipseckey mode=0555
1363 file path=usr/sbin/keyserv group=sys mode=0555
1364 file path=usr/sbin/killall mode=0555
1365 file path=usr/sbin/ksslcfg mode=0555
1366 file path=usr/sbin/link mode=0555
1367 file path=usr/sbin/locator mode=0555
1368 file path=usr/sbin/lofiadm mode=0555
1369 file path=usr/sbin/logadm mode=0555
1370 file path=usr/sbin/makedbm mode=0555
1371 file path=usr/sbin/mkdevalloc mode=0555
1372 file path=usr/sbin/mkfile mode=0555
1373 file path=usr/sbin/mknod mode=0555
1374 file path=usr/sbin/mountall group=sys mode=0555
1375 file path=usr/sbin/msgid mode=0555
1376 file path=usr/sbin/mvdir mode=0555
1377 file path=usr/sbin/ndd mode=0555
1378 file path=usr/sbin/nlsadmin group=adm mode=0755

new/usr/src/pkg/manifests/SUNWcs.mf 22

1379 file path=usr/sbin/nscd mode=0555
1380 file path=usr/sbin/nwamadm mode=0555
1381 file path=usr/sbin/nwamcfg mode=0555
1382 file path=usr/sbin/pmadm group=sys mode=0555
1383 file path=usr/sbin/praudit mode=0555
1384 $(i386_ONLY)file path=usr/sbin/prtdiag group=sys mode=2755
1385 file path=usr/sbin/prtvtoc group=sys mode=0555
1386 file path=usr/sbin/psradm group=sys mode=0555
1387 file path=usr/sbin/psrinfo group=sys mode=0555
1388 file path=usr/sbin/pwck mode=0555
1389 file path=usr/sbin/pwconv group=sys mode=0555
1390 file path=usr/sbin/raidctl mode=0555
1391 file path=usr/sbin/ramdiskadm mode=0555
1392 file path=usr/sbin/rctladm mode=0555
1393 file path=usr/sbin/root_archive group=sys mode=0555
1394 file path=usr/sbin/rpcbind mode=0555
1395 $(i386_ONLY)file path=usr/sbin/rtc mode=0555
1396 file path=usr/sbin/sacadm group=sys mode=4755
1397 file path=usr/sbin/setmnt mode=0555
1398 file path=usr/sbin/shareall mode=0555
1399 file path=usr/sbin/sharectl mode=0555
1400 file path=usr/sbin/sharemgr mode=0555
1401 file path=usr/sbin/shutdown group=sys mode=0755
1402 file path=usr/sbin/smbios mode=0555
1403 file path=usr/sbin/stmsboot mode=0555
1404 file path=usr/sbin/strace group=sys mode=0555
1405 file path=usr/sbin/strclean group=sys mode=0555
1406 file path=usr/sbin/strerr group=sys mode=0555
1407 file path=usr/sbin/sttydefs group=sys mode=0755
1408 file path=usr/sbin/svcadm mode=0555
1409 file path=usr/sbin/svccfg mode=0555
1410 file path=usr/sbin/syncinit mode=0555
1411 file path=usr/sbin/syncloop mode=0555
1412 file path=usr/sbin/syncstat mode=0555
1413 file path=usr/sbin/syseventadm group=sys mode=0555
1414 file path=usr/sbin/syslogd group=sys mode=0555
1415 file path=usr/sbin/tar mode=0555
1416 file path=usr/sbin/traceroute mode=4555
1417 file path=usr/sbin/trapstat mode=0555
1418 file path=usr/sbin/ttyadm group=sys mode=0755
1419 $(i386_ONLY)file path=usr/sbin/ucodeadm mode=0555
1420 file path=usr/sbin/umountall group=sys mode=0555
1421 file path=usr/sbin/unlink mode=0555
1422 file path=usr/sbin/unshareall mode=0555
1423 file path=usr/sbin/useradd group=sys mode=0555
1424 file path=usr/sbin/userdel group=sys mode=0555
1425 file path=usr/sbin/usermod group=sys mode=0555
1426 $(sparc_ONLY)file path=usr/sbin/virtinfo mode=0555
1427 file path=usr/sbin/volcopy mode=0555
1428 file path=usr/sbin/wall group=tty mode=2555
1429 file path=usr/sbin/zdump mode=0555
1430 file path=usr/sbin/zic mode=0555
1431 file path=usr/share/doc/ksh/COMPATIBILITY
1432 file path=usr/share/doc/ksh/DESIGN
1433 file path=usr/share/doc/ksh/OBSOLETE
1434 file path=usr/share/doc/ksh/README
1435 file path=usr/share/doc/ksh/RELEASE
1436 file path=usr/share/doc/ksh/TYPES
1437 file path=usr/share/doc/ksh/images/callouts/1.png
1438 file path=usr/share/doc/ksh/images/callouts/10.png
1439 file path=usr/share/doc/ksh/images/callouts/2.png
1440 file path=usr/share/doc/ksh/images/callouts/3.png
1441 file path=usr/share/doc/ksh/images/callouts/4.png
1442 file path=usr/share/doc/ksh/images/callouts/5.png
1443 file path=usr/share/doc/ksh/images/callouts/6.png
1444 file path=usr/share/doc/ksh/images/callouts/7.png

new/usr/src/pkg/manifests/SUNWcs.mf 23

1445 file path=usr/share/doc/ksh/images/callouts/8.png
1446 file path=usr/share/doc/ksh/images/callouts/9.png
1447 file path=usr/share/doc/ksh/images/tag_bourne.png
1448 file path=usr/share/doc/ksh/images/tag_i18n.png
1449 file path=usr/share/doc/ksh/images/tag_ksh.png
1450 file path=usr/share/doc/ksh/images/tag_ksh88.png
1451 file path=usr/share/doc/ksh/images/tag_ksh93.png
1452 file path=usr/share/doc/ksh/images/tag_l10n.png
1453 file path=usr/share/doc/ksh/images/tag_perf.png
1454 file path=usr/share/doc/ksh/shell_styleguide.docbook
1455 file path=usr/share/doc/ksh/shell_styleguide.html
1456 file path=usr/share/lib/mailx/mailx.help
1457 file path=usr/share/lib/mailx/mailx.help.~
1458 file path=usr/share/lib/tabset/3101
1459 file path=usr/share/lib/tabset/beehive
1460 file path=usr/share/lib/tabset/hds
1461 file path=usr/share/lib/tabset/hds3
1462 file path=usr/share/lib/tabset/std
1463 file path=usr/share/lib/tabset/stdcrt
1464 file path=usr/share/lib/tabset/teleray
1465 file path=usr/share/lib/tabset/vt100
1466 file path=usr/share/lib/tabset/wyse-adds
1467 file path=usr/share/lib/tabset/xerox1720
1468 file path=usr/share/lib/termcap
1469 file path=usr/share/lib/unittab
1470 file path=usr/share/lib/xml/dtd/adt_record.dtd.1
1471 file path=usr/share/lib/xml/dtd/kmfpolicy.dtd
1472 file path=usr/share/lib/xml/dtd/service_bundle.dtd.1 group=sys
1473 file path=usr/share/lib/xml/style/adt_record.xsl.1
1474 file path=var/adm/aculog mode=0600 owner=uucp preserve=true
1475 file path=var/adm/spellhist mode=0666 preserve=true
1476 file path=var/adm/utmpx preserve=true
1477 file path=var/adm/wtmpx group=adm owner=adm preserve=true
1478 file path=var/log/authlog group=sys mode=0600 preserve=true
1479 file path=var/log/syslog group=sys preserve=true
1480 file path=var/sadm/system/admin/default_java group=sys mode=0444
1481 file path=var/saf/zsmon/log group=sys preserve=true
1482 file path=var/spool/cron/crontabs/adm group=sys mode=0600 preserve=true
1483 file path=var/spool/cron/crontabs/root group=sys mode=0600 preserve=true
1484 hardlink path=etc/crypto/certs/SUNWObjectCA \
1485 target=../../../etc/certs/SUNWObjectCA
1486 hardlink path=etc/rc2.d/S20sysetup target=../../etc/init.d/sysetup
1487 hardlink path=etc/rc2.d/S73cachefs.daemon \
1488 target=../../etc/init.d/cachefs.daemon
1489 hardlink path=etc/rc2.d/S89PRESERVE target=../../etc/init.d/PRESERVE
1490 $(sparc_ONLY)hardlink path=etc/svc/profile/platform_SUNW,Sun-Fire-V890.xml \
1491 target=./platform_SUNW,Sun-Fire-880.xml
1492 $(sparc_ONLY)hardlink \
1493 path=etc/svc/profile/platform_SUNW,UltraSPARC-IIe-NetraCT-40.xml \
1494 target=./platform_SUNW,UltraSPARC-IIi-Netract.xml
1495 $(sparc_ONLY)hardlink \
1496 path=etc/svc/profile/platform_SUNW,UltraSPARC-IIe-NetraCT-60.xml \
1497 target=./platform_SUNW,UltraSPARC-IIi-Netract.xml
1498 hardlink path=sbin/rc5 target=../sbin/rc0
1499 hardlink path=sbin/rc6 target=../sbin/rc0
1500 hardlink path=usr/bin/$(ARCH32)/encrypt target=decrypt
1501 hardlink path=usr/bin/$(ARCH32)/ksh target=ksh93
1502 hardlink path=usr/bin/$(ARCH32)/mac target=digest
1503 hardlink path=usr/bin/$(ARCH32)/rksh target=ksh93
1504 hardlink path=usr/bin/$(ARCH32)/rksh93 target=ksh93
1505 $(i386_ONLY)hardlink path=usr/bin/$(ARCH32)/w target=uptime
1506 hardlink path=usr/bin/$(ARCH64)/encrypt target=decrypt
1507 hardlink path=usr/bin/$(ARCH64)/ksh target=ksh93
1508 hardlink path=usr/bin/$(ARCH64)/mac target=digest
1509 hardlink path=usr/bin/$(ARCH64)/rksh target=ksh93
1510 hardlink path=usr/bin/$(ARCH64)/rksh93 target=ksh93

new/usr/src/pkg/manifests/SUNWcs.mf 24

1511 hardlink path=usr/bin/$(ARCH64)/w target=uptime
1512 hardlink path=usr/bin/bg target=../../usr/bin/alias
1513 hardlink path=usr/bin/cd target=../../usr/bin/alias
1514 hardlink path=usr/bin/cksum target=../../usr/bin/alias
1515 hardlink path=usr/bin/cmp target=../../usr/bin/alias
1516 hardlink path=usr/bin/comm target=../../usr/bin/alias
1517 hardlink path=usr/bin/command target=../../usr/bin/alias
1518 hardlink path=usr/bin/cut target=../../usr/bin/alias
1519 hardlink path=usr/bin/decrypt target=../../usr/lib/isaexec
1520 hardlink path=usr/bin/digest target=../../usr/lib/isaexec
1521 hardlink path=usr/bin/dispgid target=../../usr/bin/ckgid
1522 hardlink path=usr/bin/dispuid target=../../usr/bin/ckuid
1523 hardlink path=usr/bin/edit target=../has/bin/edit
1524 hardlink path=usr/bin/encrypt target=../../usr/lib/isaexec
1525 hardlink path=usr/bin/fc target=../../usr/bin/alias
1526 hardlink path=usr/bin/fg target=../../usr/bin/alias
1527 hardlink path=usr/bin/getopts target=../../usr/bin/alias
1528 hardlink path=usr/bin/hash target=../../usr/bin/alias
1529 hardlink path=usr/bin/i386 target=../../usr/bin/i286
1530 hardlink path=usr/bin/i486 target=../../usr/bin/i286
1531 hardlink path=usr/bin/i860 target=../../usr/bin/i286
1532 hardlink path=usr/bin/i86pc target=../../usr/bin/i286
1533 hardlink path=usr/bin/iAPX286 target=../../usr/bin/i286
1534 hardlink path=usr/bin/jobs target=../../usr/bin/alias
1535 hardlink path=usr/bin/join target=../../usr/bin/alias
1536 hardlink path=usr/bin/kill target=../../usr/bin/alias
1537 hardlink path=usr/bin/ksh target=../../usr/lib/isaexec
1538 hardlink path=usr/bin/ksh93 target=../../usr/lib/isaexec
1539 hardlink path=usr/bin/ln target=../../usr/bin/cp
1540 hardlink path=usr/bin/logname target=../../usr/bin/alias
1541 hardlink path=usr/bin/m68k target=../../usr/bin/i286
1542 hardlink path=usr/bin/mac target=../../usr/lib/isaexec
1543 hardlink path=usr/bin/mc68000 target=../../usr/bin/i286
1544 hardlink path=usr/bin/mc68010 target=../../usr/bin/i286
1545 hardlink path=usr/bin/mc68020 target=../../usr/bin/i286
1546 hardlink path=usr/bin/mc68030 target=../../usr/bin/i286
1547 hardlink path=usr/bin/mc68040 target=../../usr/bin/i286
1548 hardlink path=usr/bin/mv target=../../usr/bin/cp
1549 hardlink path=usr/bin/newtask target=../../usr/lib/isaexec
1550 hardlink path=usr/bin/nohup target=../../usr/lib/isaexec
1551 hardlink path=usr/bin/page target=../../usr/bin/more
1552 hardlink path=usr/bin/paste target=../../usr/bin/alias
1553 hardlink path=usr/bin/pdp11 target=../../usr/bin/i286
1554 hardlink path=usr/bin/pfbash target=../../usr/bin/pfexec
1555 hardlink path=usr/bin/pfcsh target=../../usr/bin/pfexec
1556 hardlink path=usr/bin/pfksh target=../../usr/bin/pfexec
1557 hardlink path=usr/bin/pfksh93 target=../../usr/bin/pfexec
1558 hardlink path=usr/bin/pfrksh target=../../usr/bin/pfexec
1559 hardlink path=usr/bin/pfrksh93 target=../../usr/bin/pfexec
1560 hardlink path=usr/bin/pfsh target=../../usr/bin/pfexec
1561 hardlink path=usr/bin/pftcsh target=../../usr/bin/pfexec
1562 hardlink path=usr/bin/pfzsh target=../../usr/bin/pfexec
1563 hardlink path=usr/bin/pkill target=../../usr/bin/pgrep
1564 hardlink path=usr/bin/prctl target=../../usr/lib/isaexec
1565 hardlink path=usr/bin/print target=../../usr/bin/alias
1566 hardlink path=usr/bin/prstat target=../../usr/lib/isaexec
1567 hardlink path=usr/bin/ps target=../../usr/lib/isaexec
1568 hardlink path=usr/bin/read target=../../usr/bin/alias
1569 hardlink path=usr/bin/red target=../../usr/bin/ed
1570 hardlink path=usr/bin/rev target=../../usr/bin/alias
1571 hardlink path=usr/bin/rksh target=../../usr/lib/isaexec
1572 hardlink path=usr/bin/rksh93 target=../../usr/lib/isaexec
1573 hardlink path=usr/bin/savecore target=../../usr/lib/isaexec
1574 hardlink path=usr/bin/setuname target=../../usr/lib/isaexec
1575 hardlink path=usr/bin/sleep target=../../usr/bin/alias
1576 hardlink path=usr/bin/sparc target=../../usr/bin/i286

new/usr/src/pkg/manifests/SUNWcs.mf 25

1577 hardlink path=usr/bin/sum target=../../usr/bin/alias
1578 hardlink path=usr/bin/sun target=../../usr/bin/i286
1579 hardlink path=usr/bin/sun2 target=../../usr/bin/i286
1580 hardlink path=usr/bin/sun3 target=../../usr/bin/i286
1581 hardlink path=usr/bin/sun3x target=../../usr/bin/i286
1582 hardlink path=usr/bin/sun4 target=../../usr/bin/i286
1583 hardlink path=usr/bin/sun4c target=../../usr/bin/i286
1584 hardlink path=usr/bin/sun4d target=../../usr/bin/i286
1585 hardlink path=usr/bin/sun4e target=../../usr/bin/i286
1586 hardlink path=usr/bin/sun4m target=../../usr/bin/i286
1587 hardlink path=usr/bin/tee target=../../usr/bin/alias
1588 hardlink path=usr/bin/test target=../../usr/bin/alias
1589 hardlink path=usr/bin/touch target=../../usr/bin/settime
1590 hardlink path=usr/bin/type target=../../usr/bin/alias
1591 hardlink path=usr/bin/u370 target=../../usr/bin/i286
1592 hardlink path=usr/bin/u3b target=../../usr/bin/i286
1593 hardlink path=usr/bin/u3b15 target=../../usr/bin/i286
1594 hardlink path=usr/bin/u3b2 target=../../usr/bin/i286
1595 hardlink path=usr/bin/u3b5 target=../../usr/bin/i286
1596 hardlink path=usr/bin/ulimit target=../../usr/bin/alias
1597 hardlink path=usr/bin/umask target=../../usr/bin/alias
1598 hardlink path=usr/bin/unalias target=../../usr/bin/alias
1599 hardlink path=usr/bin/uniq target=../../usr/bin/alias
1600 hardlink path=usr/bin/uptime target=../../usr/lib/isaexec
1601 hardlink path=usr/bin/vax target=../../usr/bin/i286
1602 hardlink path=usr/bin/vedit target=../has/bin/edit
1603 hardlink path=usr/bin/w target=../../usr/lib/isaexec
1604 hardlink path=usr/bin/wait target=../../usr/bin/alias
1605 hardlink path=usr/bin/wc target=../../usr/bin/alias
1606 hardlink path=usr/has/bin/ex target=edit
1607 hardlink path=usr/has/bin/pfsh target=../../bin/pfexec
1608 hardlink path=usr/has/bin/vedit target=edit
1609 hardlink path=usr/has/bin/vi target=edit
1610 hardlink path=usr/has/bin/view target=edit
1611 hardlink path=usr/lib/fs/hsfs/fstyp target=../../../sbin/fstyp
1612 hardlink path=usr/lib/fs/ufs/dcopy target=../../../../usr/lib/fs/ufs/clri
1613 hardlink path=usr/lib/fs/ufs/fstyp target=../../../sbin/fstyp
1614 hardlink path=usr/lib/fs/ufs/quotaon \
1615 target=../../../../usr/lib/fs/ufs/quotaoff
1616 hardlink path=usr/lib/inet/in.iked target=../../../usr/lib/isaexec
1617 hardlink path=usr/sadm/bin/dispgid target=../../../usr/bin/ckgid
1618 hardlink path=usr/sadm/bin/dispuid target=../../../usr/bin/ckuid
1619 hardlink path=usr/sadm/bin/errange target=../../../usr/bin/ckrange
1620 hardlink path=usr/sadm/bin/errdate target=../../../usr/bin/ckdate
1621 hardlink path=usr/sadm/bin/errgid target=../../../usr/bin/ckgid
1622 hardlink path=usr/sadm/bin/errint target=../../../usr/bin/ckint
1623 hardlink path=usr/sadm/bin/erritem target=../../../usr/bin/ckitem
1624 hardlink path=usr/sadm/bin/errpath target=../../../usr/bin/ckpath
1625 hardlink path=usr/sadm/bin/errstr target=../../../usr/bin/ckstr
1626 hardlink path=usr/sadm/bin/errtime target=../../../usr/bin/cktime
1627 hardlink path=usr/sadm/bin/erruid target=../../../usr/bin/ckuid
1628 hardlink path=usr/sadm/bin/erryorn target=../../../usr/bin/ckyorn
1629 hardlink path=usr/sadm/bin/helpdate target=../../../usr/bin/ckdate
1630 hardlink path=usr/sadm/bin/helpgid target=../../../usr/bin/ckgid
1631 hardlink path=usr/sadm/bin/helpint target=../../../usr/bin/ckint
1632 hardlink path=usr/sadm/bin/helpitem target=../../../usr/bin/ckitem
1633 hardlink path=usr/sadm/bin/helppath target=../../../usr/bin/ckpath
1634 hardlink path=usr/sadm/bin/helprange target=../../../usr/bin/ckrange
1635 hardlink path=usr/sadm/bin/helpstr target=../../../usr/bin/ckstr
1636 hardlink path=usr/sadm/bin/helptime target=../../../usr/bin/cktime
1637 hardlink path=usr/sadm/bin/helpuid target=../../../usr/bin/ckuid
1638 hardlink path=usr/sadm/bin/helpyorn target=../../../usr/bin/ckyorn
1639 hardlink path=usr/sadm/bin/valdate target=../../../usr/bin/ckdate
1640 hardlink path=usr/sadm/bin/valgid target=../../../usr/bin/ckgid
1641 hardlink path=usr/sadm/bin/valint target=../../../usr/bin/ckint
1642 hardlink path=usr/sadm/bin/valpath target=../../../usr/bin/ckpath

new/usr/src/pkg/manifests/SUNWcs.mf 26

1643 hardlink path=usr/sadm/bin/valrange target=../../../usr/bin/ckrange
1644 hardlink path=usr/sadm/bin/valstr target=../../../usr/bin/ckstr
1645 hardlink path=usr/sadm/bin/valtime target=../../../usr/bin/cktime
1646 hardlink path=usr/sadm/bin/valuid target=../../../usr/bin/ckuid
1647 hardlink path=usr/sadm/bin/valyorn target=../../../usr/bin/ckyorn
1648 hardlink path=usr/sbin/add_drv target=../../usr/lib/isaexec
1649 hardlink path=usr/sbin/audlinks target=./devfsadm
1650 hardlink path=usr/sbin/consadmd target=../../usr/sbin/consadm
1651 hardlink path=usr/sbin/deallocate target=../../usr/sbin/allocate
1652 hardlink path=usr/sbin/devlinks target=./devfsadm
1653 hardlink path=usr/sbin/dfshares target=../../usr/sbin/dfmounts
1654 hardlink path=usr/sbin/disks target=./devfsadm
1655 hardlink path=usr/sbin/drvconfig target=./devfsadm
1656 hardlink path=usr/sbin/list_devices target=../../usr/sbin/allocate
1657 hardlink path=usr/sbin/mkdevmaps target=../../usr/sbin/mkdevalloc
1658 hardlink path=usr/sbin/modinfo target=../../usr/lib/isaexec
1659 hardlink path=usr/sbin/modload target=../../usr/lib/isaexec
1660 hardlink path=usr/sbin/modunload target=../../usr/lib/isaexec
1661 hardlink path=usr/sbin/pbind target=../../usr/lib/isaexec
1662 hardlink path=usr/sbin/ports target=./devfsadm
1663 hardlink path=usr/sbin/poweroff target=./halt
1664 hardlink path=usr/sbin/prtconf target=../../usr/lib/isaexec
1665 $(sparc_ONLY)hardlink path=usr/sbin/prtdiag target=../../usr/lib/platexec
1666 hardlink path=usr/sbin/psrset target=../../usr/lib/isaexec
1667 hardlink path=usr/sbin/reboot target=./halt
1668 hardlink path=usr/sbin/rem_drv target=../../usr/lib/isaexec
1669 hardlink path=usr/sbin/roleadd target=../../usr/sbin/useradd
1670 hardlink path=usr/sbin/roledel target=../../usr/sbin/userdel
1671 hardlink path=usr/sbin/rolemod target=../../usr/sbin/usermod
1672 hardlink path=usr/sbin/share target=../../usr/sbin/sharemgr
1673 hardlink path=usr/sbin/swap target=../../usr/lib/isaexec
1674 hardlink path=usr/sbin/sysdef target=../../usr/lib/isaexec
1675 hardlink path=usr/sbin/tapes target=./devfsadm
1676 hardlink path=usr/sbin/unshare target=../../usr/sbin/sharemgr
1677 hardlink path=usr/sbin/update_drv target=../../usr/lib/isaexec
1678 hardlink path=usr/sbin/whodo target=../../usr/lib/isaexec
1679 legacy pkg=SUNWcsr \
1680 desc="core software for a specific instruction-set architecture" \
1681 name="Core Solaris, (Root)"
1682 legacy pkg=SUNWcsu \
1683 desc="core software for a specific instruction-set architecture" \
1684 name="Core Solaris, (Usr)"
1685 legacy pkg=SUNWftpr desc="FTP Server Configuration Files" \
1686 name="FTP Server, (Root)"
1687 license cr_Sun license=cr_Sun
1688 license lic_CDDL license=lic_CDDL
1689 license usr/src/cmd/cmd-inet/sbin/ifparse/THIRDPARTYLICENSE \
1690 license=usr/src/cmd/cmd-inet/sbin/ifparse/THIRDPARTYLICENSE
1691 license usr/src/cmd/cmd-inet/usr.lib/in.mpathd/THIRDPARTYLICENSE \
1692 license=usr/src/cmd/cmd-inet/usr.lib/in.mpathd/THIRDPARTYLICENSE
1693 license usr/src/cmd/cmd-inet/usr.sbin/THIRDPARTYLICENSE.arp \
1694 license=usr/src/cmd/cmd-inet/usr.sbin/THIRDPARTYLICENSE.arp
1695 license usr/src/cmd/cmd-inet/usr.sbin/THIRDPARTYLICENSE.route \
1696 license=usr/src/cmd/cmd-inet/usr.sbin/THIRDPARTYLICENSE.route
1697 license usr/src/cmd/cmd-inet/usr.sbin/ifconfig/THIRDPARTYLICENSE \
1698 license=usr/src/cmd/cmd-inet/usr.sbin/ifconfig/THIRDPARTYLICENSE
1699 license usr/src/cmd/cmd-inet/usr.sbin/in.ftpd/LICENSE \
1700 license=usr/src/cmd/cmd-inet/usr.sbin/in.ftpd/LICENSE
1701 license usr/src/cmd/cmd-inet/usr.sbin/traceroute/THIRDPARTYLICENSE \
1702 license=usr/src/cmd/cmd-inet/usr.sbin/traceroute/THIRDPARTYLICENSE
1703 license usr/src/cmd/cron/THIRDPARTYLICENSE \
1704 license=usr/src/cmd/cron/THIRDPARTYLICENSE
1705 license usr/src/cmd/csh/THIRDPARTYLICENSE \
1706 license=usr/src/cmd/csh/THIRDPARTYLICENSE
1707 license usr/src/cmd/eeprom/THIRDPARTYLICENSE \
1708 license=usr/src/cmd/eeprom/THIRDPARTYLICENSE

new/usr/src/pkg/manifests/SUNWcs.mf 27

1709 license usr/src/cmd/fs.d/ufs/THIRDPARTYLICENSE \
1710 license=usr/src/cmd/fs.d/ufs/THIRDPARTYLICENSE
1711 license usr/src/cmd/mt/THIRDPARTYLICENSE \
1712 license=usr/src/cmd/mt/THIRDPARTYLICENSE
1713 license usr/src/cmd/script/THIRDPARTYLICENSE \
1714 license=usr/src/cmd/script/THIRDPARTYLICENSE
1715 license usr/src/cmd/sed/THIRDPARTYLICENSE \
1716 license=usr/src/cmd/sed/THIRDPARTYLICENSE
1717 license usr/src/cmd/stat/vmstat/THIRDPARTYLICENSE \
1718 license=usr/src/cmd/stat/vmstat/THIRDPARTYLICENSE
1719 license usr/src/cmd/tail/THIRDPARTYLICENSE \
1720 license=usr/src/cmd/tail/THIRDPARTYLICENSE
1721 license usr/src/cmd/tip/THIRDPARTYLICENSE \
1722 license=usr/src/cmd/tip/THIRDPARTYLICENSE
1723 license usr/src/cmd/tr/THIRDPARTYLICENSE \
1724 license=usr/src/cmd/tr/THIRDPARTYLICENSE
1725 license usr/src/cmd/vi/THIRDPARTYLICENSE \
1726 license=usr/src/cmd/vi/THIRDPARTYLICENSE
1727 license usr/src/cmd/which/THIRDPARTYLICENSE \
1728 license=usr/src/cmd/which/THIRDPARTYLICENSE
1729 license usr/src/cmd/xstr/THIRDPARTYLICENSE \
1730 license=usr/src/cmd/xstr/THIRDPARTYLICENSE
1731 license usr/src/common/bzip2/LICENSE license=usr/src/common/bzip2/LICENSE
1732 link path=bin target=./usr/bin
1733 link path=etc/TIMEZONE target=./default/init
1734 link path=etc/autopush target=../sbin/autopush
1735 link path=etc/cfgadm target=../usr/sbin/cfgadm
1736 link path=etc/clri target=../usr/sbin/clri
1737 link path=etc/cron target=../usr/sbin/cron
1738 link path=etc/dcopy target=../usr/sbin/dcopy
1739 link path=etc/ff target=../usr/sbin/ff
1740 link path=etc/fmthard target=../usr/sbin/fmthard
1741 link path=etc/format target=../usr/sbin/format
1742 link path=etc/fsck target=../usr/sbin/fsck
1743 link path=etc/fsdb target=../usr/sbin/fsdb
1744 link path=etc/fstyp target=../usr/sbin/fstyp
1745 link path=etc/getty target=../usr/lib/saf/ttymon
1746 link path=etc/grpck target=../usr/sbin/grpck
1747 link path=etc/halt target=../usr/sbin/halt
1748 link path=etc/hosts target=./inet/hosts
1749 link path=etc/inet/ipnodes target=./hosts
1750 link path=etc/inetd.conf target=./inet/inetd.conf
1751 link path=etc/init target=../sbin/init
1752 link path=etc/install target=../usr/sbin/install
1753 link path=etc/killall target=../usr/sbin/killall
1754 link path=etc/labelit target=../usr/sbin/labelit
1755 link path=etc/lib/ld.so.1 target=../../lib/ld.so.1
1756 link path=etc/lib/libdl.so.1 target=../../lib/libdl.so.1
1757 link path=etc/lib/nss_files.so.1 target=../../lib/nss_files.so.1
1758 link path=etc/log target=../var/adm/log
1759 link path=etc/mkfs target=../usr/sbin/mkfs
1760 link path=etc/mknod target=../usr/sbin/mknod
1761 link path=etc/mount target=../sbin/mount
1762 link path=etc/mountall target=../sbin/mountall
1763 link path=etc/ncheck target=../usr/sbin/ncheck
1764 link path=etc/netmasks target=./inet/netmasks
1765 link path=etc/networks target=./inet/networks
1766 link path=etc/protocols target=./inet/protocols
1767 link path=etc/prtconf target=../usr/sbin/prtconf
1768 link path=etc/prtvtoc target=../usr/sbin/prtvtoc
1769 link path=etc/rc0 target=../sbin/rc0
1770 link path=etc/rc1 target=../sbin/rc1
1771 link path=etc/rc2 target=../sbin/rc2
1772 link path=etc/rc3 target=../sbin/rc3
1773 link path=etc/rc5 target=../sbin/rc5
1774 link path=etc/rc6 target=../sbin/rc6

new/usr/src/pkg/manifests/SUNWcs.mf 28

1775 link path=etc/rcS target=../sbin/rcS
1776 link path=etc/reboot target=../usr/sbin/halt
1777 link path=etc/security/audit/localhost/files target=../../../../var/audit
1778 link path=etc/services target=./inet/services
1779 link path=etc/setmnt target=../usr/sbin/setmnt
1780 link path=etc/shutdown target=../usr/sbin/shutdown
1781 link path=etc/sulogin target=../sbin/sulogin
1782 link path=etc/swap target=../usr/sbin/swap
1783 link path=etc/swapadd target=../sbin/swapadd
1784 link path=etc/sysdef target=../usr/sbin/sysdef
1785 link path=etc/tar target=../usr/sbin/tar
1786 link path=etc/telinit target=../sbin/init
1787 link path=etc/uadmin target=../sbin/uadmin
1788 link path=etc/umount target=../sbin/umount
1789 link path=etc/umountall target=../sbin/umountall
1790 link path=etc/utmpx target=../var/adm/utmpx
1791 link path=etc/volcopy target=../usr/sbin/volcopy
1792 link path=etc/wall target=../usr/sbin/wall
1793 link path=etc/whodo target=../usr/sbin/whodo
1794 link path=etc/wtmpx target=../var/adm/wtmpx
1795 link path=sbin/in.mpathd target=../lib/inet/in.mpathd
1796 link path=sbin/jsh target=../usr/bin/ksh93
1797 link path=sbin/pfsh target=../usr/bin/pfexec
1798 link path=sbin/sh target=../usr/bin/$(ARCH32)/ksh93
1799 link path=sbin/su target=../usr/bin/su
1800 link path=usr/adm target=../var/adm
1801 link path=usr/bin/cachefspack target=../lib/fs/cachefs/cachefspack
1802 link path=usr/bin/cachefsstat target=../lib/fs/cachefs/cachefsstat
1803 link path=usr/bin/df target=../sbin/df
1804 link path=usr/bin/jsh target=ksh93
1805 link path=usr/bin/pwconv target=../sbin/pwconv
1806 link path=usr/bin/rmail target=./mail
1807 link path=usr/bin/sh target=$(ARCH32)/ksh93
1808 link path=usr/bin/strclean target=../sbin/strclean
1809 link path=usr/bin/strerr target=../sbin/strerr
1810 link path=usr/bin/sync target=../../sbin/sync
1811 link path=usr/bin/tar target=../sbin/tar
1812 link path=usr/bin/uname target=../../sbin/uname
1813 link path=usr/ccs/bin/m4 target=../../bin/m4
1814 link path=usr/has/bin/jsh target=sh
1815 link path=usr/has/lib/rsh target=../bin/sh
1816 link path=usr/lib/$(ARCH64)/ld.so.1 target=../../../lib/$(ARCH64)/ld.so.1
1817 link path=usr/lib/cron target=../../etc/cron.d
1818 link path=usr/lib/devfsadm/devfsadmd target=../../sbin/devfsadm
1819 link path=usr/lib/embedded_su target=../bin/su
1820 link path=usr/lib/fs/dev/mount target=../../../../etc/fs/dev/mount
1821 link path=usr/lib/fs/hsfs/mount target=../../../../etc/fs/hsfs/mount
1822 link path=usr/lib/fs/ufs/mount target=../../../../etc/fs/ufs/mount
1823 link path=usr/lib/inet/in.mpathd target=../../../lib/inet/in.mpathd
1824 link path=usr/lib/ld.so.1 target=../../lib/ld.so.1
1825 link path=usr/lib/locale/POSIX target=./C
1826 link path=usr/lib/rsh target=../bin/ksh93
1827 link path=usr/lib/secure/32 target=.
1828 link path=usr/lib/secure/64 target=$(ARCH64)
1829 link path=usr/lib/wusbd target=../../sbin/wusbadm
1830 link path=usr/mail target=../var/mail
1831 link path=usr/net/nls/listen target=../../lib/saf/listen
1832 link path=usr/net/nls/nlps_server target=../../lib/saf/nlps_server
1833 link path=usr/news target=../var/news
1834 link path=usr/preserve target=../var/preserve
1835 link path=usr/pub target=./share/lib/pub
1836 link path=usr/sbin/autopush target=../../sbin/autopush
1837 link path=usr/sbin/bootadm target=../../sbin/bootadm
1838 link path=usr/sbin/cachefslog target=../lib/fs/cachefs/cachefslog
1839 link path=usr/sbin/cachefswssize target=../lib/fs/cachefs/cachefswssize
1840 link path=usr/sbin/cfsadmin target=../lib/fs/cachefs/cfsadmin

new/usr/src/pkg/manifests/SUNWcs.mf 29

1841 link path=usr/sbin/cryptoadm target=../../sbin/cryptoadm
1842 link path=usr/sbin/dcopy target=./clri
1843 link path=usr/sbin/devnm target=./df
1844 link path=usr/sbin/dladm target=../../sbin/dladm
1845 link path=usr/sbin/dlstat target=../../sbin/dlstat
1846 link path=usr/sbin/edquota target=../lib/fs/ufs/edquota
1847 link path=usr/sbin/fdisk target=../../sbin/fdisk
1848 link path=usr/sbin/fiocompress target=../../sbin/fiocompress
1849 link path=usr/sbin/flowadm target=../../sbin/flowadm
1850 link path=usr/sbin/flowstat target=../../sbin/flowstat
1851 link path=usr/sbin/fsdb target=./clri
1852 link path=usr/sbin/fsirand target=../lib/fs/ufs/fsirand
1853 link path=usr/sbin/fssnap target=./clri
1854 link path=usr/sbin/hostconfig target=../../sbin/hostconfig
1855 link path=usr/sbin/ifconfig target=../../sbin/ifconfig
1856 link path=usr/sbin/inetd target=../lib/inet/inetd
1857 link path=usr/sbin/init target=../../sbin/init
1858 $(i386_ONLY)link path=usr/sbin/installgrub target=../../sbin/installgrub
1859 link path=usr/sbin/ipadm target=../../sbin/ipadm
1860 link path=usr/sbin/ipmpstat target=../../sbin/ipmpstat
1861 link path=usr/sbin/labelit target=./clri
1862 link path=usr/sbin/lockfs target=../lib/fs/ufs/lockfs
1863 link path=usr/sbin/mkfs target=./clri
1864 link path=usr/sbin/mount target=../../sbin/mount
1865 link path=usr/sbin/ncheck target=./ff
1866 link path=usr/sbin/newfs target=../lib/fs/ufs/newfs
1867 link path=usr/sbin/quot target=../lib/fs/ufs/quot
1868 link path=usr/sbin/quota target=../lib/fs/ufs/quota
1869 link path=usr/sbin/quotacheck target=../lib/fs/ufs/quotacheck
1870 link path=usr/sbin/quotaoff target=../lib/fs/ufs/quotaoff
1871 link path=usr/sbin/quotaon target=../lib/fs/ufs/quotaon
1872 link path=usr/sbin/repquota target=../lib/fs/ufs/repquota
1873 link path=usr/sbin/route target=../../sbin/route
1874 link path=usr/sbin/routeadm target=../../sbin/routeadm
1875 link path=usr/sbin/sync target=../../sbin/sync
1876 link path=usr/sbin/tunefs target=../lib/fs/ufs/tunefs
1877 link path=usr/sbin/tzreload target=../../sbin/tzreload
1878 link path=usr/sbin/uadmin target=../../sbin/uadmin
1879 link path=usr/sbin/ufsdump target=../lib/fs/ufs/ufsdump
1880 link path=usr/sbin/ufsrestore target=../lib/fs/ufs/ufsrestore
1881 link path=usr/sbin/umount target=../../sbin/umount
1882 link path=usr/sbin/wusbadm target=../../sbin/wusbadm
1883 link path=usr/spool target=../var/spool
1884 link path=usr/src target=./share/src
1885 link path=usr/tmp target=../var/tmp
1886 link path=var/ld/32 target=.
1887 link path=var/ld/64 target=$(ARCH64)
1888 #
1889 # The bootadm binary needs the etc/release file.
1890 #
1891 depend fmri=release/name type=require
1892 #
1893 # intrd and others use the illumos-defaulted perl interpreter
1894 #
1895 depend fmri=runtime/perl-510 type=require
1896 #
1897 # The loadkeys binary needs the keytables.
1898 #
1899 depend fmri=system/data/keyboard/keytables type=require
1900 #
1901 # Depend on terminfo data.
1902 #
1903 depend fmri=system/data/terminfo type=require
1904 #
1905 # Depend on zoneinfo data.
1906 #

new/usr/src/pkg/manifests/SUNWcs.mf 30

1907 depend fmri=system/data/zoneinfo type=require

new/usr/src/pkg/manifests/consolidation-osnet-osnet-message-files.mf 1

**
 24012 Tue Jun 12 19:55:13 2012
new/usr/src/pkg/manifests/consolidation-osnet-osnet-message-files.mf
removed wificonfig tool
are /dev/wifi/* devices links now deprecated?
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.

24 set name=pkg.fmri \
25 value=pkg:/consolidation/osnet/osnet-message-files@$(PKGVERS)
26 set name=pkg.description \
27 value="localizable message files for the OS-Networking consolidation"
28 set name=pkg.summary value="Localizable ON message files"
29 set name=info.classification \
30 value=org.opensolaris.category.2008:Development/System

32 #
33 # This package should not have automated dependencies generated because
34 # it provides messages only.
35 #
36 set name=org.opensolaris.nodepend value=true
37 set name=variant.arch value=$(ARCH)
38 dir path=usr group=sys
39 dir path=usr/lib
40 dir path=usr/lib/help
41 dir path=usr/lib/help/auths
42 dir path=usr/lib/help/auths/locale
43 dir path=usr/lib/help/profiles
44 dir path=usr/lib/help/profiles/locale
45 dir path=usr/lib/locale
46 dir path=usr/lib/locale/C
47 dir path=usr/lib/locale/C/LC_MESSAGES
48 dir path=usr/lib/locale/C/LC_TIME
49 dir path=usr/share
50 dir path=usr/share/lib
51 dir path=usr/share/lib/locale
52 dir path=usr/share/lib/locale/com
53 dir path=usr/share/lib/locale/com/sun
54 dir path=usr/share/lib/locale/com/sun/admin
55 dir path=usr/share/lib/locale/com/sun/admin/pm
56 dir path=usr/share/lib/locale/com/sun/admin/pm/client
57 dir path=usr/share/lib/locale/com/sun/dhcpmgr
58 dir path=usr/share/lib/locale/com/sun/dhcpmgr/bridge
59 dir path=usr/share/lib/locale/com/sun/dhcpmgr/cli
60 dir path=usr/share/lib/locale/com/sun/dhcpmgr/cli/common

new/usr/src/pkg/manifests/consolidation-osnet-osnet-message-files.mf 2

61 dir path=usr/share/lib/locale/com/sun/dhcpmgr/cli/dhcpbatch
62 dir path=usr/share/lib/locale/com/sun/dhcpmgr/cli/dhcpconfig
63 dir path=usr/share/lib/locale/com/sun/dhcpmgr/cli/dhtadm
64 dir path=usr/share/lib/locale/com/sun/dhcpmgr/cli/pntadm
65 dir path=usr/share/lib/locale/com/sun/dhcpmgr/client
66 dir path=usr/share/lib/locale/com/sun/dhcpmgr/client/SUNWbinfiles
67 dir path=usr/share/lib/locale/com/sun/dhcpmgr/client/SUNWfiles
68 dir path=usr/share/lib/locale/com/sun/dhcpmgr/client/help
69 dir path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/art
70 dir path=usr/share/lib/locale/com/sun/dhcpmgr/common
71 dir path=usr/share/lib/locale/com/sun/dhcpmgr/data
72 dir path=usr/share/lib/locale/com/sun/dhcpmgr/ui
73 dir path=usr/share/lib/locale/com/sun/slp
74 file path=usr/lib/help/auths/locale/AllSolAuthsHeader.html
75 file path=usr/lib/help/auths/locale/AuditHeader.html
76 file path=usr/lib/help/auths/locale/AuthJobsAdmin.html
77 file path=usr/lib/help/auths/locale/AuthJobsUser.html
78 file path=usr/lib/help/auths/locale/AuthProfmgrAssign.html
79 file path=usr/lib/help/auths/locale/AuthProfmgrDelegate.html
80 file path=usr/lib/help/auths/locale/AuthProfmgrExecattrWrite.html
81 file path=usr/lib/help/auths/locale/AuthProfmgrRead.html
82 file path=usr/lib/help/auths/locale/AuthProfmgrWrite.html
83 file path=usr/lib/help/auths/locale/AuthReadNDMP.html
84 file path=usr/lib/help/auths/locale/AuthReadSMB.html
85 file path=usr/lib/help/auths/locale/AuthRoleAssign.html
86 file path=usr/lib/help/auths/locale/AuthRoleDelegate.html
87 file path=usr/lib/help/auths/locale/AuthRoleWrite.html
88 file path=usr/lib/help/auths/locale/BindStates.html
89 file path=usr/lib/help/auths/locale/DevAllocHeader.html
90 file path=usr/lib/help/auths/locale/DevAllocate.html
91 file path=usr/lib/help/auths/locale/DevCDRW.html
92 file path=usr/lib/help/auths/locale/DevConfig.html
93 file path=usr/lib/help/auths/locale/DevGrant.html
94 file path=usr/lib/help/auths/locale/DevRevoke.html
95 file path=usr/lib/help/auths/locale/DhcpmgrHeader.html
96 file path=usr/lib/help/auths/locale/DhcpmgrWrite.html
97 file path=usr/lib/help/auths/locale/FileChown.html
98 file path=usr/lib/help/auths/locale/FileHeader.html
99 file path=usr/lib/help/auths/locale/FileOwner.html
100 file path=usr/lib/help/auths/locale/HotplugHeader.html
101 file path=usr/lib/help/auths/locale/HotplugModify.html
102 file path=usr/lib/help/auths/locale/IdmapRules.html
103 file path=usr/lib/help/auths/locale/JobHeader.html
104 file path=usr/lib/help/auths/locale/JobsGrant.html
105 file path=usr/lib/help/auths/locale/LabelFileDowngrade.html
106 file path=usr/lib/help/auths/locale/LabelFileUpgrade.html
107 file path=usr/lib/help/auths/locale/LabelHeader.html
108 file path=usr/lib/help/auths/locale/LabelPrint.html
109 file path=usr/lib/help/auths/locale/LabelRange.html
110 file path=usr/lib/help/auths/locale/LabelServer.html
111 file path=usr/lib/help/auths/locale/LabelWinDowngrade.html
112 file path=usr/lib/help/auths/locale/LabelWinNoView.html
113 file path=usr/lib/help/auths/locale/LabelWinUpgrade.html
114 file path=usr/lib/help/auths/locale/LinkSecurity.html
115 file path=usr/lib/help/auths/locale/LoginEnable.html
116 file path=usr/lib/help/auths/locale/LoginHeader.html
117 file path=usr/lib/help/auths/locale/LoginRemote.html
118 file path=usr/lib/help/auths/locale/MailHeader.html
119 file path=usr/lib/help/auths/locale/MailQueue.html
120 file path=usr/lib/help/auths/locale/NetworkAutoconfRead.html
121 file path=usr/lib/help/auths/locale/NetworkAutoconfSelect.html
122 file path=usr/lib/help/auths/locale/NetworkAutoconfWlan.html
123 file path=usr/lib/help/auths/locale/NetworkAutoconfWrite.html
124 file path=usr/lib/help/auths/locale/NetworkHeader.html
125 file path=usr/lib/help/auths/locale/NetworkILBconf.html
126 file path=usr/lib/help/auths/locale/NetworkILBenable.html

new/usr/src/pkg/manifests/consolidation-osnet-osnet-message-files.mf 3

127 file path=usr/lib/help/auths/locale/NetworkInterfaceConfig.html
128 file path=usr/lib/help/auths/locale/NetworkVRRP.html
129 file path=usr/lib/help/auths/locale/PriAdmin.html
130 file path=usr/lib/help/auths/locale/PrintAdmin.html
131 file path=usr/lib/help/auths/locale/PrintCancel.html
132 file path=usr/lib/help/auths/locale/PrintHeader.html
133 file path=usr/lib/help/auths/locale/PrintList.html
134 file path=usr/lib/help/auths/locale/PrintNoBanner.html
135 file path=usr/lib/help/auths/locale/PrintPs.html
136 file path=usr/lib/help/auths/locale/PrintUnlabeled.html
137 file path=usr/lib/help/auths/locale/ProfmgrHeader.html
138 file path=usr/lib/help/auths/locale/RoleHeader.html
139 file path=usr/lib/help/auths/locale/SmfAllocate.html
140 file path=usr/lib/help/auths/locale/SmfAutofsStates.html
141 file path=usr/lib/help/auths/locale/SmfCoreadmStates.html
142 file path=usr/lib/help/auths/locale/SmfCronStates.html
143 file path=usr/lib/help/auths/locale/SmfExAcctFlowStates.html
144 file path=usr/lib/help/auths/locale/SmfExAcctNetStates.html
145 file path=usr/lib/help/auths/locale/SmfExAcctProcessStates.html
146 file path=usr/lib/help/auths/locale/SmfExAcctTaskStates.html
147 file path=usr/lib/help/auths/locale/SmfHeader.html
148 file path=usr/lib/help/auths/locale/SmfILBStates.html
149 file path=usr/lib/help/auths/locale/SmfIPsecStates.html
150 file path=usr/lib/help/auths/locale/SmfIdmapStates.html
151 file path=usr/lib/help/auths/locale/SmfInetdStates.html
152 file path=usr/lib/help/auths/locale/SmfLocationStates.html
153 file path=usr/lib/help/auths/locale/SmfMDNSStates.html
154 file path=usr/lib/help/auths/locale/SmfManageAudit.html
155 file path=usr/lib/help/auths/locale/SmfManageHeader.html
156 file path=usr/lib/help/auths/locale/SmfManageHotplug.html
157 file path=usr/lib/help/auths/locale/SmfManageZFSSnap.html
158 file path=usr/lib/help/auths/locale/SmfModifyAppl.html
159 file path=usr/lib/help/auths/locale/SmfModifyDepend.html
160 file path=usr/lib/help/auths/locale/SmfModifyFramework.html
161 file path=usr/lib/help/auths/locale/SmfModifyHeader.html
162 file path=usr/lib/help/auths/locale/SmfModifyMethod.html
163 file path=usr/lib/help/auths/locale/SmfNADDStates.html
164 file path=usr/lib/help/auths/locale/SmfNDMPStates.html
165 file path=usr/lib/help/auths/locale/SmfNWAMStates.html
166 file path=usr/lib/help/auths/locale/SmfNscdStates.html
167 file path=usr/lib/help/auths/locale/SmfPowerStates.html
168 file path=usr/lib/help/auths/locale/SmfReparseStates.html
169 file path=usr/lib/help/auths/locale/SmfRoutingStates.html
170 file path=usr/lib/help/auths/locale/SmfSMBFSStates.html
171 file path=usr/lib/help/auths/locale/SmfSMBStates.html
172 file path=usr/lib/help/auths/locale/SmfSendmailStates.html
173 file path=usr/lib/help/auths/locale/SmfSshStates.html
174 file path=usr/lib/help/auths/locale/SmfSyslogStates.html
175 file path=usr/lib/help/auths/locale/SmfVRRPStates.html
176 file path=usr/lib/help/auths/locale/SmfValueAudit.html
177 file path=usr/lib/help/auths/locale/SmfValueCoreadm.html
178 file path=usr/lib/help/auths/locale/SmfValueExAcctFlow.html
179 file path=usr/lib/help/auths/locale/SmfValueExAcctNet.html
180 file path=usr/lib/help/auths/locale/SmfValueExAcctProcess.html
181 file path=usr/lib/help/auths/locale/SmfValueExAcctTask.html
182 file path=usr/lib/help/auths/locale/SmfValueFirewall.html
183 file path=usr/lib/help/auths/locale/SmfValueHeader.html
184 file path=usr/lib/help/auths/locale/SmfValueIPsec.html
185 file path=usr/lib/help/auths/locale/SmfValueIdmap.html
186 file path=usr/lib/help/auths/locale/SmfValueInetd.html
187 file path=usr/lib/help/auths/locale/SmfValueMDNS.html
188 file path=usr/lib/help/auths/locale/SmfValueNADD.html
189 file path=usr/lib/help/auths/locale/SmfValueNDMP.html
190 file path=usr/lib/help/auths/locale/SmfValueNWAM.html
191 file path=usr/lib/help/auths/locale/SmfValueRouting.html
192 file path=usr/lib/help/auths/locale/SmfValueSMB.html

new/usr/src/pkg/manifests/consolidation-osnet-osnet-message-files.mf 4

193 file path=usr/lib/help/auths/locale/SmfValueVscan.html
194 file path=usr/lib/help/auths/locale/SmfValueVt.html
195 file path=usr/lib/help/auths/locale/SmfVscanStates.html
196 file path=usr/lib/help/auths/locale/SmfVtStates.html
197 file path=usr/lib/help/auths/locale/SmfWpaStates.html
198 file path=usr/lib/help/auths/locale/SysCpuPowerMgmt.html
199 file path=usr/lib/help/auths/locale/SysDate.html
200 file path=usr/lib/help/auths/locale/SysHeader.html
201 file path=usr/lib/help/auths/locale/SysMaintenance.html
202 file path=usr/lib/help/auths/locale/SysPowerMgmtBrightness.html
203 file path=usr/lib/help/auths/locale/SysPowerMgmtHeader.html
204 file path=usr/lib/help/auths/locale/SysPowerMgmtSuspend.html
205 file path=usr/lib/help/auths/locale/SysPowerMgmtSuspendtoDisk.html
206 file path=usr/lib/help/auths/locale/SysPowerMgmtSuspendtoRAM.html
207 file path=usr/lib/help/auths/locale/SysShutdown.html
208 file path=usr/lib/help/auths/locale/SysSyseventRead.html
209 file path=usr/lib/help/auths/locale/SysSyseventWrite.html
210 file path=usr/lib/help/auths/locale/TNDaemon.html
211 file path=usr/lib/help/auths/locale/TNctl.html
212 file path=usr/lib/help/auths/locale/ValueTND.html
213 file path=usr/lib/help/auths/locale/WifiConfig.html
214 file path=usr/lib/help/auths/locale/WifiWep.html
213 file path=usr/lib/help/auths/locale/ZoneCloneFrom.html
214 file path=usr/lib/help/auths/locale/ZoneHeader.html
215 file path=usr/lib/help/auths/locale/ZoneLogin.html
216 file path=usr/lib/help/auths/locale/ZoneManage.html
217 file path=usr/lib/help/profiles/locale/RtAcctadm.html
218 file path=usr/lib/help/profiles/locale/RtAll.html
219 file path=usr/lib/help/profiles/locale/RtAuditCfg.html
220 file path=usr/lib/help/profiles/locale/RtAuditCtrl.html
221 file path=usr/lib/help/profiles/locale/RtAuditReview.html
222 file path=usr/lib/help/profiles/locale/RtCPUPowerManagement.html
223 file path=usr/lib/help/profiles/locale/RtConsUser.html
224 file path=usr/lib/help/profiles/locale/RtContractObserver.html
225 file path=usr/lib/help/profiles/locale/RtCronMngmnt.html
226 file path=usr/lib/help/profiles/locale/RtCryptoMngmnt.html
227 file path=usr/lib/help/profiles/locale/RtDHCPMngmnt.html
228 file path=usr/lib/help/profiles/locale/RtDatAdmin.html
229 file path=usr/lib/help/profiles/locale/RtDefault.html
230 file path=usr/lib/help/profiles/locale/RtDeviceMngmnt.html
231 file path=usr/lib/help/profiles/locale/RtDeviceSecurity.html
232 file path=usr/lib/help/profiles/locale/RtExAcctFlow.html
233 file path=usr/lib/help/profiles/locale/RtExAcctNet.html
234 file path=usr/lib/help/profiles/locale/RtExAcctProcess.html
235 file path=usr/lib/help/profiles/locale/RtExAcctTask.html
236 file path=usr/lib/help/profiles/locale/RtFTPMngmnt.html
237 file path=usr/lib/help/profiles/locale/RtFileSysMngmnt.html
238 file path=usr/lib/help/profiles/locale/RtFileSysSecurity.html
239 file path=usr/lib/help/profiles/locale/RtHotplugMngmnt.html
240 file path=usr/lib/help/profiles/locale/RtIPFilterMngmnt.html
241 file path=usr/lib/help/profiles/locale/RtIdmapMngmnt.html
242 file path=usr/lib/help/profiles/locale/RtIdmapNameRulesMngmnt.html
243 file path=usr/lib/help/profiles/locale/RtInetdMngmnt.html
244 file path=usr/lib/help/profiles/locale/RtInfoSec.html
245 file path=usr/lib/help/profiles/locale/RtKerberosClntMngmnt.html
246 file path=usr/lib/help/profiles/locale/RtKerberosSrvrMngmnt.html
247 file path=usr/lib/help/profiles/locale/RtLogMngmnt.html
248 file path=usr/lib/help/profiles/locale/RtMailMngmnt.html
249 file path=usr/lib/help/profiles/locale/RtMaintAndRepair.html
250 file path=usr/lib/help/profiles/locale/RtMediaBkup.html
251 file path=usr/lib/help/profiles/locale/RtMediaCtlg.html
252 file path=usr/lib/help/profiles/locale/RtMediaRestore.html
253 file path=usr/lib/help/profiles/locale/RtNDMPMngmnt.html
254 file path=usr/lib/help/profiles/locale/RtNameServiceAdmin.html
255 file path=usr/lib/help/profiles/locale/RtNameServiceSecure.html
256 file path=usr/lib/help/profiles/locale/RtNetAutoconfAdmin.html

new/usr/src/pkg/manifests/consolidation-osnet-osnet-message-files.mf 5

257 file path=usr/lib/help/profiles/locale/RtNetAutoconfUser.html
258 file path=usr/lib/help/profiles/locale/RtNetILB.html
259 file path=usr/lib/help/profiles/locale/RtNetIPsec.html
260 file path=usr/lib/help/profiles/locale/RtNetLinkSecure.html
261 file path=usr/lib/help/profiles/locale/RtNetMngmnt.html
262 file path=usr/lib/help/profiles/locale/RtNetObservability.html
263 file path=usr/lib/help/profiles/locale/RtNetSecure.html
264 file path=usr/lib/help/profiles/locale/RtNetVRRP.html
265 file path=usr/lib/help/profiles/locale/RtNetWifiMngmnt.html
266 file path=usr/lib/help/profiles/locale/RtNetWifiSecure.html
267 file path=usr/lib/help/profiles/locale/RtObAccessMngmnt.html
268 file path=usr/lib/help/profiles/locale/RtObjectLabelMngmnt.html
269 file path=usr/lib/help/profiles/locale/RtOperator.html
270 file path=usr/lib/help/profiles/locale/RtOutsideAccred.html
271 file path=usr/lib/help/profiles/locale/RtPriAdmin.html
272 file path=usr/lib/help/profiles/locale/RtPrntAdmin.html
273 file path=usr/lib/help/profiles/locale/RtProcManagement.html
274 file path=usr/lib/help/profiles/locale/RtReparseMngmnt.html
275 file path=usr/lib/help/profiles/locale/RtReservedProfile.html
276 file path=usr/lib/help/profiles/locale/RtRightsDelegate.html
277 file path=usr/lib/help/profiles/locale/RtSMBFSMngmnt.html
278 file path=usr/lib/help/profiles/locale/RtSMBMngmnt.html
279 file path=usr/lib/help/profiles/locale/RtSoftwareInstall.html
280 file path=usr/lib/help/profiles/locale/RtSysAdmin.html
281 file path=usr/lib/help/profiles/locale/RtSysEvMngmnt.html
282 file path=usr/lib/help/profiles/locale/RtSysPowerMgmt.html
283 file path=usr/lib/help/profiles/locale/RtSysPowerMgmtBrightness.html
284 file path=usr/lib/help/profiles/locale/RtSysPowerMgmtSuspend.html
285 file path=usr/lib/help/profiles/locale/RtSysPowerMgmtSuspendtoDisk.html
286 file path=usr/lib/help/profiles/locale/RtSysPowerMgmtSuspendtoRAM.html
287 file path=usr/lib/help/profiles/locale/RtUserMngmnt.html
288 file path=usr/lib/help/profiles/locale/RtUserSecurity.html
289 file path=usr/lib/help/profiles/locale/RtVscanMngmnt.html
290 file path=usr/lib/help/profiles/locale/RtZFSFileSysMngmnt.html
291 file path=usr/lib/help/profiles/locale/RtZFSStorageMngmnt.html
292 file path=usr/lib/help/profiles/locale/RtZoneMngmnt.html
293 file path=usr/lib/help/profiles/locale/RtZoneSecurity.html
294 file path=usr/lib/locale/C/LC_MESSAGES/AMD.po
295 file path=usr/lib/locale/C/LC_MESSAGES/DISK.po
296 file path=usr/lib/locale/C/LC_MESSAGES/FMD.po
297 file path=usr/lib/locale/C/LC_MESSAGES/FMNOTIFY.po
298 file path=usr/lib/locale/C/LC_MESSAGES/GMCA.po
299 file path=usr/lib/locale/C/LC_MESSAGES/INTEL.po
300 file path=usr/lib/locale/C/LC_MESSAGES/NXGE.po
301 file path=usr/lib/locale/C/LC_MESSAGES/PCI.po
302 file path=usr/lib/locale/C/LC_MESSAGES/PCIEX.po
303 file path=usr/lib/locale/C/LC_MESSAGES/SCA1000.po
304 file path=usr/lib/locale/C/LC_MESSAGES/SCA500.po
305 file path=usr/lib/locale/C/LC_MESSAGES/SCF.po
306 file path=usr/lib/locale/C/LC_MESSAGES/SENSOR.po
307 file path=usr/lib/locale/C/LC_MESSAGES/SMF.po
308 file path=usr/lib/locale/C/LC_MESSAGES/STORAGE.po
309 file path=usr/lib/locale/C/LC_MESSAGES/SUN4.po
310 file path=usr/lib/locale/C/LC_MESSAGES/SUN4U.po
311 file path=usr/lib/locale/C/LC_MESSAGES/SUN4V.po
312 file path=usr/lib/locale/C/LC_MESSAGES/SUNOS.po
313 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_ADMIN.po group=sys
314 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_LINFO group=sys
315 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_NETRPC.po group=sys
316 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_OSCMD.po group=sys
317 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_OSLIB.po group=sys
318 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_SGS.po group=sys
319 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_SYSOSPAM.po group=sys
320 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_UCBCMD.po group=sys
321 file path=usr/lib/locale/C/LC_MESSAGES/SUNW_OST_ZONEINFO.po group=sys
322 file path=usr/lib/locale/C/LC_MESSAGES/ZFS.po

new/usr/src/pkg/manifests/consolidation-osnet-osnet-message-files.mf 6

323 file path=usr/lib/locale/C/LC_MESSAGES/libast group=sys
324 file path=usr/lib/locale/C/LC_MESSAGES/libcmd group=sys
325 file path=usr/lib/locale/C/LC_MESSAGES/libdll group=sys
326 file path=usr/lib/locale/C/LC_MESSAGES/libshell group=sys
327 file path=usr/lib/locale/C/LC_MESSAGES/libsum group=sys
328 file path=usr/lib/locale/C/LC_MESSAGES/magic group=sys
329 file path=usr/lib/locale/C/LC_MESSAGES/mailx.help group=sys
330 file path=usr/lib/locale/C/LC_MESSAGES/more.help group=sys
331 file path=usr/lib/locale/C/LC_MESSAGES/priv_names group=sys
332 file path=usr/lib/locale/C/LC_MESSAGES/uxlibc.src group=sys
333 file path=usr/lib/locale/C/LC_TIME/SUNW_OST_OSCMD.po group=sys
334 file path=usr/lib/locale/C/LC_TIME/SUNW_OST_OSLIB.po group=sys
335 file path=usr/share/lib/locale/com/sun/admin/pm/client/pmHelpResources.java \
336 group=lp
337 file path=usr/share/lib/locale/com/sun/admin/pm/client/pmResources.java \
338 group=lp
339 file \
340 path=usr/share/lib/locale/com/sun/dhcpmgr/bridge/ResourceBundle.properties
341 file \
342 path=usr/share/lib/locale/com/sun/dhcpmgr/cli/common/ResourceBundle.properti
343 file \
344 path=usr/share/lib/locale/com/sun/dhcpmgr/cli/dhcpbatch/ResourceBundle.prope
345 file \
346 path=usr/share/lib/locale/com/sun/dhcpmgr/cli/dhcpconfig/ResourceBundle.prop
347 file \
348 path=usr/share/lib/locale/com/sun/dhcpmgr/cli/dhtadm/ResourceBundle.properti
349 file \
350 path=usr/share/lib/locale/com/sun/dhcpmgr/cli/pntadm/ResourceBundle.properti
351 file \
352 path=usr/share/lib/locale/com/sun/dhcpmgr/client/OptionDescriptions.properti
353 file \
354 path=usr/share/lib/locale/com/sun/dhcpmgr/client/ResourceBundle.properties
355 file \
356 path=usr/share/lib/locale/com/sun/dhcpmgr/client/SUNWbinfiles/ResourceBundle
357 file \
358 path=usr/share/lib/locale/com/sun/dhcpmgr/client/SUNWfiles/ResourceBundle.pr
359 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/art/bannersmc.gif
360 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/art/dot1.gif
361 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/art/dot2.gif
362 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/art/folder.gif
363 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/art/macro2.gif
364 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/art/macroflow.gif
365 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/art/tip2.gif
366 file \
367 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_create.html
368 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_del.html
369 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_dup.html
370 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_how.html
371 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_mod.html
372 file \
373 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_multi.html
374 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_ref.html
375 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_rel.html
376 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_view.html
377 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_addr_wiz.html
378 file \
379 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_config_wiz.html
380 file \
381 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_convert_wiz.html
382 file \
383 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_export_wiz.html
384 file \
385 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_import_wiz.html
386 file \
387 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_macro_create.html
388 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_macro_del.html

new/usr/src/pkg/manifests/consolidation-osnet-osnet-message-files.mf 7

389 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_macro_dup.html
390 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_macro_how.html
391 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_macro_mod.html
392 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_macro_ref.html
393 file \
394 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_macro_view.html
395 file \
396 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_macros_about.html
397 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_main_hlp.html
398 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_main_how.html
399 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_main_idx.html
400 file \
401 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_main_menus.html
402 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_main_top.html
403 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_net_del.html
404 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_net_ref.html
405 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_net_wiz.html
406 file \
407 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_option_create.htm
408 file \
409 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_option_del.html
410 file \
411 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_option_dup.html
412 file \
413 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_option_how.html
414 file \
415 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_option_mod.html
416 file \
417 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_option_ref.html
418 file \
419 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_option_tags.html
420 file \
421 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_option_view.html
422 file \
423 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_relay_choose.html
424 file \
425 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_relay_config.html
426 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_relay_dis.html
427 file \
428 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_relay_enable.html
429 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_relay_how.html
430 file path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_relay_ref.html
431 file \
432 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_relay_serv.html
433 file \
434 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_relay_unconfig.ht
435 file \
436 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_server_serv.html
437 file \
438 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_server_unconfig.h
439 file \
440 path=usr/share/lib/locale/com/sun/dhcpmgr/client/help/dhcp_solaris_about.htm
441 file \
442 path=usr/share/lib/locale/com/sun/dhcpmgr/common/ResourceBundle.properties
443 file path=usr/share/lib/locale/com/sun/dhcpmgr/data/ResourceBundle.properties
444 file path=usr/share/lib/locale/com/sun/dhcpmgr/ui/ResourceBundle.properties
445 file path=usr/share/lib/locale/com/sun/slp/ClientLib_en.properties group=sys
446 file path=usr/share/lib/locale/com/sun/slp/Server_en.properties group=sys
447 legacy pkg=SUNW0on arch=all \
448 desc="localizable message files for the OS-Networking consolidation" \
449 name="Localizable ON message files" version=11.11,REV=2009.11.10
450 license cr_Sun license=cr_Sun
451 license lic_CDDL license=lic_CDDL

new/usr/src/pkg/manifests/service-network-wpa_supplicant.mf 1

**
 2299 Tue Jun 12 19:55:14 2012
new/usr/src/pkg/manifests/service-network-wpa_supplicant.mf
wpa_supplicant pkg now is created correctly in illumos-gate
wpad renamed to wpa_supplicant
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 set name=pkg.fmri value=pkg:/service/network/wpa_supplicant@$(PKGVERS)
27 set name=pkg.description \
28 value="The service implements the IEEE802.11i (WPA/WPA2) specification."
29 set name=pkg.summary value="Wireless WPA Supplicant"
30 set name=info.classification \
31 value=org.opensolaris.category.2008:System/Hardware
32 set name=variant.arch value=$(ARCH)
33 dir path=lib
34 dir path=lib/svc
35 dir path=lib/svc/manifest group=sys
36 dir path=lib/svc/manifest/network group=sys
37 dir path=usr group=sys
38 dir path=usr/lib
39 dir path=usr/lib/inet
40 dir path=usr/share/man/man1m
41 file path=lib/svc/manifest/network/wpa_supplicant.xml group=sys mode=0444
42 file path=usr/lib/inet/wpa_supplicant mode=0555
43 file path=usr/share/man/man1m/wpa_supplicant.1m
44 legacy pkg=SUNWwpar \
45 desc="The service implements the IEEE802.11i (WPA/WPA2) specification." \
46 name="Wireless WPA Supplicant, (Root)"
47 legacy pkg=SUNWwpau \
48 desc="The service implements the IEEE802.11i (WPA/WPA2) specification." \
49 name="Wireless WPA Supplicant, (Usr)"
50 license cr_Sun license=cr_Sun
51 license lic_CDDL license=lic_CDDL
52 license usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/THIRDPARTYLICENSE \
53 license=usr/src/cmd/cmd-inet/usr.lib/wpa_supplicant/THIRDPARTYLICENSE
54 depend fmri=SUNWcs type=require
55 depend fmri=SUNWcsd type=require
56 depend fmri=system/library type=require
57 depend fmri=system/library/platform type=require
58 depend fmri=system/library/processor type=require
59 #endif /* ! codereview */

new/usr/src/uts/common/inet/wifi_ioctl.h 1

**
 12294 Tue Jun 12 19:55:15 2012
new/usr/src/uts/common/inet/wifi_ioctl.h
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Macro and date structures defined for 802.11 wifi config tool.
28 * (no more used, we should remove them)
29 #endif /* ! codereview */
30 */

32 #ifndef __WIFI_IOCTL_H
33 #define __WIFI_IOCTL_H

35 #include <sys/types.h>

37 #ifdef __cplusplus
38 extern "C" {
39 #endif

41 #define MAX_KEY_LENGTH 26
28 #define MAX_ESSID_LENGTH (32 + 1) /* max essid length is 32 */
29 /* one more for ’\0’ */
42 #define MAX_CHANNEL_NUM 99
43 #define MAX_RSSI 15
44 #define MAX_NWEPKEYS 4
45 #define NET_802_11 80211
46 #define MAX_BUF_LEN 65536
47 #define MAX_SCAN_SUPPORT_RATES 8

49 /*
50 * ioctls
51 */

53 #endif /* ! codereview */
54 #define WLAN_IOCTL_BASE 0x1000
55 #define WLAN_GET_VERSION (WLAN_IOCTL_BASE + 0x0)
56 #define WLAN_SET_PARAM (WLAN_IOCTL_BASE + 0x2)
57 #define WLAN_GET_PARAM (WLAN_IOCTL_BASE + 0x3)

new/usr/src/uts/common/inet/wifi_ioctl.h 2

58 #define WLAN_COMMAND (WLAN_IOCTL_BASE + 0x4)

60 /*
61 * parameters
62 */

64 #endif /* ! codereview */
65 #define WL_PARAMETERS_BASE 0x2000
66 #define WL_BSSID (WL_PARAMETERS_BASE + 0x0)
67 #define WL_ESSID (WL_PARAMETERS_BASE + 0x1)
68 #define WL_NODE_NAME (WL_PARAMETERS_BASE + 0x2)
69 #define WL_PHY_SUPPORT (WL_PARAMETERS_BASE + 0x3)
70 #define WL_PHY_CONFIG (WL_PARAMETERS_BASE + 0x4)
71 #define WL_DOMAIN (WL_PARAMETERS_BASE + 0x5)
72 #define WL_POWER_MODE (WL_PARAMETERS_BASE + 0x6)
73 #define WL_TX_POWER (WL_PARAMETERS_BASE + 0x7)
74 #define WL_RSSI (WL_PARAMETERS_BASE + 0x8)
75 #define WL_RSSI_THRESHOLD (WL_PARAMETERS_BASE + 0x9)
76 #define WL_ESS_LIST (WL_PARAMETERS_BASE + 0xa)
77 #define WL_BSS_TYPE (WL_PARAMETERS_BASE + 0xb)
78 #define WL_CREATE_IBSS (WL_PARAMETERS_BASE + 0xc)
79 #define WL_RTS_THRESHOLD (WL_PARAMETERS_BASE + 0xd)
80 #define WL_SHORT_RETRY (WL_PARAMETERS_BASE + 0xe)
81 #define WL_LONG_RETRY (WL_PARAMETERS_BASE + 0xf)
82 #define WL_BEACON_PERIOD (WL_PARAMETERS_BASE + 0x10)
83 #define WL_TX_LIFETIME (WL_PARAMETERS_BASE + 0x11)
84 #define WL_RX_LIFETIME (WL_PARAMETERS_BASE + 0x12)
85 #define WL_FRAG_THRESHOLD (WL_PARAMETERS_BASE + 0x13)
86 #define WL_VENDOR_ID (WL_PARAMETERS_BASE + 0x14)
87 #define WL_PRODUCT_ID (WL_PARAMETERS_BASE + 0x15)
88 #define WL_NUM_ANTS (WL_PARAMETERS_BASE + 0x16)
89 #define WL_RX_ANTENNA (WL_PARAMETERS_BASE + 0x17)
90 #define WL_TX_ANTENNA (WL_PARAMETERS_BASE + 0x18)
91 #define WL_SUPPORTED_RATES (WL_PARAMETERS_BASE + 0x19)
92 #define WL_DESIRED_RATES (WL_PARAMETERS_BASE + 0x1a)
93 #define WL_WEP_KEY_TAB (WL_PARAMETERS_BASE + 0x1b)
94 #define WL_WEP_KEY_ID (WL_PARAMETERS_BASE + 0x1c)
95 #define WL_WEP_MAPPING_TAB (WL_PARAMETERS_BASE + 0x1d)
96 #define WL_WEP_MAPPING_LEN (WL_PARAMETERS_BASE + 0x1e)
97 #define WL_ENCRYPTION (WL_PARAMETERS_BASE + 0x1f)
98 #define WL_AUTH_MODE (WL_PARAMETERS_BASE + 0x20)
99 #define WL_EXCL_UNENC (WL_PARAMETERS_BASE + 0x21)
100 #define WL_RFMON (WL_PARAMETERS_BASE + 0x22)
101 #define WL_RADIO (WL_PARAMETERS_BASE + 0x23)
102 #define WL_LINKSTATUS (WL_PARAMETERS_BASE + 0x24)
103 #define WL_DEV_DEPEND (WL_PARAMETERS_BASE + 0x25)

105 #endif /* ! codereview */
106 /*
107 * commands
108 */
109 #define WL_COMMAND_BASE 0x3000
110 #define WL_SCAN (WL_COMMAND_BASE + 0x0)
111 #define WL_DISASSOCIATE (WL_COMMAND_BASE + 0x1)
112 #define WL_REASSOCIATE (WL_COMMAND_BASE + 0x2)
113 #define WL_LOAD_DEFAULTS (WL_COMMAND_BASE + 0x3)
114 #define WL_ASSOCIAT (WL_COMMAND_BASE + 0x4)

116 /*
117 * domains
118 * outdated?
119 #endif /* ! codereview */
120 */
121 /* --USA */
122 #define WL_DOMAIN_BASE 0x4000
123 #define WL_DOMAIN_FCC (WL_DOMAIN_BASE + 0x0)

new/usr/src/uts/common/inet/wifi_ioctl.h 3

124 /* --Canada */
125 #define WL_DOMAIN_DOC (WL_DOMAIN_BASE + 0x1)
126 /* --Most of Europe */
127 #define WL_DOMAIN_ETSI (WL_DOMAIN_BASE + 0x2)
128 /* --Spain */
129 #define WL_DOMAIN_SPAIN (WL_DOMAIN_BASE + 0x3)
130 /* --France */
131 #define WL_DOMAIN_FRANCE (WL_DOMAIN_BASE + 0x4)
132 /* --Japan */
133 #define WL_DOMAIN_MKK (WL_DOMAIN_BASE + 0x5)

135 /*
136 * power mode
137 * not implemented
138 #endif /* ! codereview */
139 */

141 #define WL_PM_AM 0x0
142 #define WL_PM_MPS 0x1
143 #define WL_PM_FAST 0x2
144 #define WL_PM_USER 0x3

146 /*
147 * rates
148 */
149 #define WL_RATE_BASIC_SET 0x80
150 #define WL_RATE_1M 2
151 #define WL_RATE_2M 4
152 #define WL_RATE_5_5M 11
153 #define WL_RATE_6M 12
154 #define WL_RATE_9M 18
155 #define WL_RATE_11M 22
156 #define WL_RATE_12M 24
157 #define WL_RATE_18M 36
158 #define WL_RATE_22M 44
159 #define WL_RATE_24M 48
160 #define WL_RATE_33M 66
161 #define WL_RATE_36M 72
162 #define WL_RATE_48M 96
163 #define WL_RATE_54M 108
164 /*
165 * wep operations
166 */
167 #define WL_WEP_OPERATION_BASE 0x6000
168 #define WL_ADD (WL_WEP_OPERATION_BASE + 0x0)
169 #define WL_DEL (WL_WEP_OPERATION_BASE + 0x1)
170 #define WL_NUL (WL_WEP_OPERATION_BASE + 0x2)
171 #define WL_IND (WL_WEP_OPERATION_BASE + 0x3)

173 #define WL_NOENCRYPTION 0x0
174 #define WL_ENC_WEP 0x1
175 #define WL_ENC_WPA 0x2

177 #endif /* ! codereview */
178 #define WL_OPENSYSTEM 0x1
179 #define WL_SHAREDKEY 0x2

181 /*
182 * linkstatus
183 */
184 #define WL_CONNECTED 0x0
185 #define WL_NOTCONNECTED 0x1

187 /*
188 * prives
189 */

new/usr/src/uts/common/inet/wifi_ioctl.h 4

190 #define WL_PRIV_BASE 0x7000
191 #define WL_PRIV_RW (WL_PRIV_BASE + 0x0)
192 #define WL_PRIV_R (WL_PRIV_BASE + 0x1)
193 #define WL_PRIV_W (WL_PRIV_BASE + 0x2)
194 #define WL_PRIV_INT (WL_PRIV_BASE + 0x3)
195 #define WL_PRIV_INT_ARRAY (WL_PRIV_BASE + 0x4)
196 #define WL_PRIV_BYTE (WL_PRIV_BASE + 0x5)
197 #define WL_PRIV_BYTE_ARRAY (WL_PRIV_BASE + 0x6)
198 #define WL_PRIV_STRING (WL_PRIV_BASE + 0x7)
199 #define WL_PRIV_STRING_ARRAY (WL_PRIV_BASE + 0x8)
200 /*
201 * return values
202 */
203 #define WL_SUCCESS 0x0
204 #define WL_NOTSUPPORTED EINVAL
205 #define WL_LACK_FEATURE ENOTSUP
206 #define WL_HW_ERROR EIO
207 #define WL_ACCESS_DENIED EACCES
208 #define WL_RETURN_BASE 0x7000
209 #define WL_READONLY (WL_RETURN_BASE + 0x1)
210 #define WL_WRITEONLY (WL_RETURN_BASE + 0x2)
211 #define WL_NOAP (WL_RETURN_BASE + 0x3)
212 /*
213 * other values
214 */
215 #define WL_OTHER_BASE 0x8000
216 #define WL_FHSS (WL_OTHER_BASE + 0x0)
217 #define WL_DSSS (WL_OTHER_BASE + 0x1)
218 #define WL_IRBASE (WL_OTHER_BASE + 0x2)
219 #define WL_OFDM (WL_OTHER_BASE + 0x3)
220 #define WL_HRDS (WL_OTHER_BASE + 0x4)
221 #define WL_ERP (WL_OTHER_BASE + 0x5)

223 /* aligned with wpa_s values */
224 #define WL_BSS_BSS 0
225 #define WL_BSS_IBSS 1
226 #define WL_BSS_AP 2
40 #define WL_BSS_BSS 1
41 #define WL_BSS_IBSS 3
42 #define WL_BSS_ANY 2
227 /*
228 * field_offset
229 */
230 #define WIFI_BUF_OFFSET offsetof(wldp_t, wldp_buf)

232 /*
233 * type definationes
234 */
235 typedef boolean_t wl_create_ibss_t;
236 typedef uint8_t wl_bssid_t[6];
52 typedef char wl_bssid_t[6];

238 typedef struct wl_essid {
239 uint32_t wl_essid_length;
240 uint8_t wl_essid_essid[32];
241 } wl_essid_t;
56 char wl_essid_essid[34];
57 }wl_essid_t;

243 /* there are no consumers for wl_nodename prop */
244 #endif /* ! codereview */
245 typedef struct wl_nodename {
246 uint32_t wl_nodename_length;
247 char wl_nodename_name[32];
59 char wl_nodename_name[34];
248 } wl_nodename_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/inet/wifi_ioctl.h 5

315 typedef uint32_t wl_linkstatus_t;
316 typedef uint32_t wl_tx_pwer_t;
317 typedef uint32_t wl_rssi_t;
318 typedef uint32_t wl_rssi_threshold_t;
319 typedef uint32_t wl_bss_type_t;
320 typedef uint8_t wl_authmode_t;
132 typedef uint32_t wl_authmode_t;
321 typedef uint32_t wl_encryption_t;
322 typedef uint32_t wl_wep_key_id_t;
323 typedef boolean_t wl_radio_t;
324 typedef uint32_t wl_rts_threshold_t;
325 typedef uint32_t wl_short_retry_t;
326 typedef uint32_t wl_long_retry_t;
327 typedef uint16_t wl_beacon_period_t;
328 typedef uint32_t wl_beacon_age_t;
329 typedef uint64_t wl_beacon_tsf_t;
139 typedef uint32_t wl_beacon_period_t;
330 typedef uint32_t wl_tx_lifetime_t;
331 typedef uint32_t wl_rx_lifetime_t;
332 typedef uint32_t wl_frag_threshold_t;
333 typedef char wl_vendor_t[128];
334 typedef char wl_product_t[128];
335 typedef uint32_t wl_num_ants_t;
336 typedef uint32_t wl_rx_antenna_t;
337 typedef uint32_t wl_tx_antenna_t;

339 typedef struct wl_rates {
340 uint32_t wl_rates_num;
341 char wl_rates_rates[1];
342 } wl_rates_t;

344 /*
345 * Macro and data structures defined for 802.11i.
346 */

348 typedef struct wl_wpa_ie {
349 uint32_t wpa_ie_len;
350 uint8_t wpa_ie[1]; /* it’s the head of wpa_ie */
351 } wl_wpa_ie_t;

353 typedef struct wl_wpa {
354 uint32_t wpa_flag;
355 } wl_wpa_t;

357 typedef struct wl_capability {
358 uint32_t caps;
359 } wl_capability_t;

361 typedef uint16_t wl_ess_caps;

363 /*
364 * WPA/RSN get/set key request.
365 * ik_type : wep/tkip/aes
366 * ik_keyix : should be between 0 and 3, 0 will be used as default key.
367 * ik_keylen: key length in bytes.
368 * ik_keydata and ik_keylen include the DATA key and MIC key.
369 * ik_keyrsc/ik_keytsc: rx/tx seq number.
370 */
371 #pragma pack(1)
372 typedef struct wl_key {
373 uint8_t ik_type;
374 uint8_t ik_pad;

376 uint16_t ik_keyix;
377 uint8_t ik_keylen;

new/usr/src/uts/common/inet/wifi_ioctl.h 6

378 uint8_t ik_flags;

380 uint8_t ik_macaddr[6];
381 uint64_t ik_keyrsc;
382 uint64_t ik_keytsc;

384 /* [IEEE80211_KEYBUF_SIZE+IEEE80211_MICBUF_SIZE] */
385 uint8_t ik_keydata[32];
386 } wl_key_t;
387 #pragma pack()

389 typedef struct wl_del_key {
390 uint8_t idk_keyix;
391 uint8_t idk_macaddr[6];
392 } wl_del_key_t;

394 /*
395 * structure for WL_MLME state manipulation request.
396 * im_op: operations include auth/deauth/assoc/disassoc,
397 * im_reason: 802.11 reason code
398 */
399 typedef struct wl_mlme {
400 uint8_t im_op;
401 uint16_t im_reason;
402 uint8_t im_macaddr[6];
403 } wl_mlme_t;

405 /*
406 * beacon, probe response
407 */

409 #pragma pack(1)
410 #endif /* ! codereview */
411 typedef struct wl_ess_conf {
412 uint32_t wl_ess_conf_length;
413 wl_essid_t wl_ess_conf_essid;
414 wl_bssid_t wl_ess_conf_bssid;
415 wl_beacon_period_t wl_ess_conf_beacon_period;
416 wl_beacon_tsf_t wl_ess_conf_beacon_tsf;
417 wl_beacon_age_t wl_ess_conf_beacon_age;
154 char wl_ess_conf_reserved[2];
155 wl_bss_type_t wl_ess_conf_bsstype;
156 wl_authmode_t wl_ess_conf_authmode;
157 boolean_t wl_ess_conf_wepenabled;
418 wl_rssi_t wl_ess_conf_sl;
419 char wl_supported_rates[MAX_SCAN_SUPPORT_RATES];
420 #endif /* ! codereview */
421 union {
422 wl_fhss_t wl_phy_fhss_conf;
423 wl_dsss_t wl_phy_dsss_conf;
424 wl_ofdm_t wl_phy_ofdm_conf;
425 wl_erp_t wl_phy_erp_conf;
426 } wl_phy_conf;
427 /* ieee80211_node capinfo != ieee80211com caps */
428 wl_ess_caps wl_ess_conf_caps;
429 uint32_t wl_ess_conf_wpa_ie_len;
430 uint8_t wl_ess_conf_wpa_ie[40];
159 char wl_supported_rates[MAX_SCAN_SUPPORT_RATES];
431 } wl_ess_conf_t;
432 #pragma pack()
433 #endif /* ! codereview */

435 typedef struct wl_ess_list {
436 uint32_t wl_ess_list_num;
437 wl_ess_conf_t wl_ess_list_ess[1];
438 } wl_ess_list_t;

new/usr/src/uts/common/inet/wifi_ioctl.h 7

440 typedef struct wl_wep_key {
441 uint32_t wl_wep_length;
442 char wl_wep_key[MAX_KEY_LENGTH];
443 uint32_t wl_wep_operation;
444 } wl_wep_key_t;
445 typedef wl_wep_key_t wl_wep_key_tab_t[MAX_NWEPKEYS];

447 typedef struct wep_mapping {
448 uint32_t wl_wep_map_index;
449 boolean_t wl_wep_map_wepon;
450 char wl_wep_map_mac_addr[6];
451 char wl_wep_map_reserved[2];
452 wl_wep_key_t wl_wep_map_wepkey;
453 } wep_mapping_t;
454 typedef wep_mapping_t wep_mapping_tab_t[1];

456 typedef struct wl_priv_param {
457 char wl_priv_name[8];
458 uint32_t wl_priv_type;
459 uint32_t wl_priv_size;
460 char wl_priv_value[1];
461 } wl_priv_param_t;

463 typedef struct wl_dev_depend {
464 uint32_t wl_dev_depend_num;
465 uint32_t wl_dev_depend_ret_idx;
466 wl_priv_param_t wl_dev_depend_priv[1];
467 } wl_dev_depend_t;

469 typedef struct wlan_ver {
470 uint32_t wl_ver_major;
471 uint32_t wl_ver_minor;
472 } wlan_ver_t;

474 typedef struct wldp {
475 uint32_t wldp_length;
476 uint32_t wldp_type;
477 uint32_t wldp_result;
478 uint32_t wldp_id;
479 uint32_t wldp_buf[1];
480 } wldp_t;

482 #ifdef __cplusplus
483 }
484 #endif

486 #endif /* __WIFI_IOCTL_H */

new/usr/src/uts/common/io/dld/dld_drv.c 1

**
 37539 Tue Jun 12 19:55:16 2012
new/usr/src/uts/common/io/dld/dld_drv.c
secobjs types now are "wep, psk, eap, pin"
dladm_wlan_secmode_t and dladm_secobj_class_t are not related anymore
**
______unchanged_portion_omitted_

1160 /* ARGSUSED */
1161 static int
1162 drv_ioc_secobj_set(void *karg, intptr_t arg, int mode, cred_t *cred, int *rvalp)
1163 {
1164 dld_ioc_secobj_set_t *ssp = karg;
1165 dld_secobj_t *sobjp, *objp;
1166 int err;

1168 sobjp = &ssp->ss_obj;

1170 if (sobjp->so_class == DLD_SECOBJ_CLASS_TLS)
1170 if (sobjp->so_class != DLD_SECOBJ_CLASS_WEP &&
1171 sobjp->so_class != DLD_SECOBJ_CLASS_WPA)
1171 return (EINVAL);

1173 if (sobjp->so_name[DLD_SECOBJ_NAME_MAX - 1] != ’\0’ ||
1174 sobjp->so_len > DLD_SECOBJ_VAL_MAX)
1175 return (EINVAL);

1177 rw_enter(&drv_secobj_lock, RW_WRITER);
1178 err = mod_hash_find(drv_secobj_hash, (mod_hash_key_t)sobjp->so_name,
1179 (mod_hash_val_t *)&objp);
1180 if (err == 0) {
1181 if ((ssp->ss_flags & DLD_SECOBJ_OPT_CREATE) != 0) {
1182 rw_exit(&drv_secobj_lock);
1183 return (EEXIST);
1184 }
1185 } else {
1186 ASSERT(err == MH_ERR_NOTFOUND);
1187 if ((ssp->ss_flags & DLD_SECOBJ_OPT_CREATE) == 0) {
1188 rw_exit(&drv_secobj_lock);
1189 return (ENOENT);
1190 }
1191 objp = kmem_cache_alloc(drv_secobj_cachep, KM_SLEEP);
1192 (void) strlcpy(objp->so_name, sobjp->so_name,
1193 DLD_SECOBJ_NAME_MAX);

1195 VERIFY(mod_hash_insert(drv_secobj_hash,
1196 (mod_hash_key_t)objp->so_name, (mod_hash_val_t)objp) == 0);
1197 }
1198 bcopy(sobjp->so_val, objp->so_val, sobjp->so_len);
1199 objp->so_len = sobjp->so_len;
1200 objp->so_class = sobjp->so_class;
1201 rw_exit(&drv_secobj_lock);
1202 return (0);
1203 }
______unchanged_portion_omitted_

new/usr/src/uts/common/io/mac/mac.c 1

**
 212772 Tue Jun 12 19:55:18 2012
new/usr/src/uts/common/io/mac/mac.c
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */

26 /*
27 * MAC Services Module
28 *
29 * The GLDv3 framework locking - The MAC layer
30 * --
31 *
32 * The MAC layer is central to the GLD framework and can provide the locking
33 * framework needed for itself and for the use of MAC clients. MAC end points
34 * are fairly disjoint and don’t share a lot of state. So a coarse grained
35 * multi-threading scheme is to single thread all create/modify/delete or set
36 * type of control operations on a per mac end point while allowing data threads
37 * concurrently.
38 *
39 * Control operations (set) that modify a mac end point are always serialized on
40 * a per mac end point basis, We have at most 1 such thread per mac end point
41 * at a time.
42 *
43 * All other operations that are not serialized are essentially multi-threaded.
44 * For example a control operation (get) like getting statistics which may not
45 * care about reading values atomically or data threads sending or receiving
46 * data. Mostly these type of operations don’t modify the control state. Any
47 * state these operations care about are protected using traditional locks.
48 *
49 * The perimeter only serializes serial operations. It does not imply there
50 * aren’t any other concurrent operations. However a serialized operation may
51 * sometimes need to make sure it is the only thread. In this case it needs
52 * to use reference counting mechanisms to cv_wait until any current data
53 * threads are done.
54 *
55 * The mac layer itself does not hold any locks across a call to another layer.
56 * The perimeter is however held across a down call to the driver to make the
57 * whole control operation atomic with respect to other control operations.
58 * Also the data path and get type control operations may proceed concurrently.
59 * These operations synchronize with the single serial operation on a given mac

new/usr/src/uts/common/io/mac/mac.c 2

60 * end point using regular locks. The perimeter ensures that conflicting
61 * operations like say a mac_multicast_add and a mac_multicast_remove on the
62 * same mac end point don’t interfere with each other and also ensures that the
63 * changes in the mac layer and the call to the underlying driver to say add a
64 * multicast address are done atomically without interference from a thread
65 * trying to delete the same address.
66 *
67 * For example, consider
68 * mac_multicst_add()
69 * {
70 * mac_perimeter_enter(); serialize all control operations
71 *
72 * grab list lock protect against access by data threads
73 * add to list
74 * drop list lock
75 *
76 * call driver’s mi_multicst
77 *
78 * mac_perimeter_exit();
79 * }
80 *
81 * To lessen the number of serialization locks and simplify the lock hierarchy,
82 * we serialize all the control operations on a per mac end point by using a
83 * single serialization lock called the perimeter. We allow recursive entry into
84 * the perimeter to facilitate use of this mechanism by both the mac client and
85 * the MAC layer itself.
86 *
87 * MAC client means an entity that does an operation on a mac handle
88 * obtained from a mac_open/mac_client_open. Similarly MAC driver means
89 * an entity that does an operation on a mac handle obtained from a
90 * mac_register. An entity could be both client and driver but on different
91 * handles eg. aggr. and should only make the corresponding mac interface calls
92 * i.e. mac driver interface or mac client interface as appropriate for that
93 * mac handle.
94 *
95 * General rules.
96 * -------------
97 *
98 * R1. The lock order of upcall threads is natually opposite to downcall
99 * threads. Hence upcalls must not hold any locks across layers for fear of
100 * recursive lock enter and lock order violation. This applies to all layers.
101 *
102 * R2. The perimeter is just another lock. Since it is held in the down
103 * direction, acquiring the perimeter in an upcall is prohibited as it would
104 * cause a deadlock. This applies to all layers.
105 *
106 * Note that upcalls that need to grab the mac perimeter (for example
107 * mac_notify upcalls) can still achieve that by posting the request to a
108 * thread, which can then grab all the required perimeters and locks in the
109 * right global order. Note that in the above example the mac layer iself
110 * won’t grab the mac perimeter in the mac_notify upcall, instead the upcall
111 * to the client must do that. Please see the aggr code for an example.
112 *
113 * MAC client rules
114 * ----------------
115 *
116 * R3. A MAC client may use the MAC provided perimeter facility to serialize
117 * control operations on a per mac end point. It does this by by acquring
118 * and holding the perimeter across a sequence of calls to the mac layer.
119 * This ensures atomicity across the entire block of mac calls. In this
120 * model the MAC client must not hold any client locks across the calls to
121 * the mac layer. This model is the preferred solution.
122 *
123 * R4. However if a MAC client has a lot of global state across all mac end
124 * points the per mac end point serialization may not be sufficient. In this
125 * case the client may choose to use global locks or use its own serialization.

new/usr/src/uts/common/io/mac/mac.c 3

126 * To avoid deadlocks, these client layer locks held across the mac calls
127 * in the control path must never be acquired by the data path for the reason
128 * mentioned below.
129 *
130 * (Assume that a control operation that holds a client lock blocks in the
131 * mac layer waiting for upcall reference counts to drop to zero. If an upcall
132 * data thread that holds this reference count, tries to acquire the same
133 * client lock subsequently it will deadlock).
134 *
135 * A MAC client may follow either the R3 model or the R4 model, but can’t
136 * mix both. In the former, the hierarchy is Perim -> client locks, but in
137 * the latter it is client locks -> Perim.
138 *
139 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait’able
140 * context since they may block while trying to acquire the perimeter.
141 * In addition some calls may block waiting for upcall refcnts to come down to
142 * zero.
143 *
144 * R6. MAC clients must make sure that they are single threaded and all threads
145 * from the top (in particular data threads) have finished before calling
146 * mac_client_close. The MAC framework does not track the number of client
147 * threads using the mac client handle. Also mac clients must make sure
148 * they have undone all the control operations before calling mac_client_close.
149 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
150 * mac_unicast_add/mac_multicast_add.
151 *
152 * MAC framework rules
153 * -------------------
154 *
155 * R7. The mac layer itself must not hold any mac layer locks (except the mac
156 * perimeter) across a call to any other layer from the mac layer. The call to
157 * any other layer could be via mi_* entry points, classifier entry points into
158 * the driver or via upcall pointers into layers above. The mac perimeter may
159 * be acquired or held only in the down direction, for e.g. when calling into
160 * a mi_* driver enty point to provide atomicity of the operation.
161 *
162 * R8. Since it is not guaranteed (see R14) that drivers won’t hold locks across
163 * mac driver interfaces, the MAC layer must provide a cut out for control
164 * interfaces like upcall notifications and start them in a separate thread.
165 *
166 * R9. Note that locking order also implies a plumbing order. For example
167 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
168 * to plumb in any other order must be failed at mac_open time, otherwise it
169 * could lead to deadlocks due to inverse locking order.
170 *
171 * R10. MAC driver interfaces must not block since the driver could call them
172 * in interrupt context.
173 *
174 * R11. Walkers must preferably not hold any locks while calling walker
175 * callbacks. Instead these can operate on reference counts. In simple
176 * callbacks it may be ok to hold a lock and call the callbacks, but this is
177 * harder to maintain in the general case of arbitrary callbacks.
178 *
179 * R12. The MAC layer must protect upcall notification callbacks using reference
180 * counts rather than holding locks across the callbacks.
181 *
182 * R13. Given the variety of drivers, it is preferable if the MAC layer can make
183 * sure that any pointers (such as mac ring pointers) it passes to the driver
184 * remain valid until mac unregister time. Currently the mac layer achieves
185 * this by using generation numbers for rings and freeing the mac rings only
186 * at unregister time. The MAC layer must provide a layer of indirection and
187 * must not expose underlying driver rings or driver data structures/pointers
188 * directly to MAC clients.
189 *
190 * MAC driver rules
191 * ----------------

new/usr/src/uts/common/io/mac/mac.c 4

192 *
193 * R14. It would be preferable if MAC drivers don’t hold any locks across any
194 * mac call. However at a minimum they must not hold any locks across data
195 * upcalls. They must also make sure that all references to mac data structures
196 * are cleaned up and that it is single threaded at mac_unregister time.
197 *
198 * R15. MAC driver interfaces don’t block and so the action may be done
199 * asynchronously in a separate thread as for example handling notifications.
200 * The driver must not assume that the action is complete when the call
201 * returns.
202 *
203 * R16. Drivers must maintain a generation number per Rx ring, and pass it
204 * back to mac_rx_ring(); They are expected to increment the generation
205 * number whenever the ring’s stop routine is invoked.
206 * See comments in mac_rx_ring();
207 *
208 * R17 Similarly mi_stop is another synchronization point and the driver must
209 * ensure that all upcalls are done and there won’t be any future upcall
210 * before returning from mi_stop.
211 *
212 * R18. The driver may assume that all set/modify control operations via
213 * the mi_* entry points are single threaded on a per mac end point.
214 *
215 * Lock and Perimeter hierarchy scenarios
216 * ---------------------------------------
217 *
218 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
219 *
220 * ft_lock -> fe_lock [mac_flow_lookup]
221 *
222 * mi_rw_lock -> fe_lock [mac_bcast_send]
223 *
224 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
225 *
226 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
227 *
228 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
229 *
230 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
231 * client to driver. In the case of clients that explictly use the mac provided
232 * perimeter mechanism for its serialization, the hierarchy is
233 * Perimeter -> mac layer locks, since the client never holds any locks across
234 * the mac calls. In the case of clients that use its own locks the hierarchy
235 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
236 * calls mac_perim_enter/exit in this case.
237 *
238 * Subflow creation rules
239 * ---------------------------
240 * o In case of a user specified cpulist present on underlying link and flows,
241 * the flows cpulist must be a subset of the underlying link.
242 * o In case of a user specified fanout mode present on link and flow, the
243 * subflow fanout count has to be less than or equal to that of the
244 * underlying link. The cpu-bindings for the subflows will be a subset of
245 * the underlying link.
246 * o In case if no cpulist specified on both underlying link and flow, the
247 * underlying link relies on a MAC tunable to provide out of box fanout.
248 * The subflow will have no cpulist (the subflow will be unbound)
249 * o In case if no cpulist is specified on the underlying link, a subflow can
250 * carry either a user-specified cpulist or fanout count. The cpu-bindings
251 * for the subflow will not adhere to restriction that they need to be subset
252 * of the underlying link.
253 * o In case where the underlying link is carrying either a user specified
254 * cpulist or fanout mode and for a unspecified subflow, the subflow will be
255 * created unbound.
256 * o While creating unbound subflows, bandwidth mode changes attempt to
257 * figure a right fanout count. In such cases the fanout count will override

new/usr/src/uts/common/io/mac/mac.c 5

258 * the unbound cpu-binding behavior.
259 * o In addition to this, while cycling between flow and link properties, we
260 * impose a restriction that if a link property has a subflow with
261 * user-specified attributes, we will not allow changing the link property.
262 * The administrator needs to reset all the user specified properties for the
263 * subflows before attempting a link property change.
264 * Some of the above rules can be overridden by specifying additional command
265 * line options while creating or modifying link or subflow properties.
266 */

268 #include <sys/types.h>
269 #include <sys/conf.h>
270 #include <sys/id_space.h>
271 #include <sys/esunddi.h>
272 #include <sys/stat.h>
273 #include <sys/mkdev.h>
274 #include <sys/stream.h>
275 #include <sys/strsun.h>
276 #include <sys/strsubr.h>
277 #include <sys/dlpi.h>
278 #include <sys/list.h>
279 #include <sys/modhash.h>
280 #include <sys/mac_provider.h>
281 #include <sys/mac_client_impl.h>
282 #include <sys/mac_soft_ring.h>
283 #include <sys/mac_stat.h>
284 #include <sys/mac_impl.h>
285 #include <sys/mac.h>
286 #include <sys/dls.h>
287 #include <sys/dld.h>
288 #include <sys/modctl.h>
289 #include <sys/fs/dv_node.h>
290 #include <sys/thread.h>
291 #include <sys/proc.h>
292 #include <sys/callb.h>
293 #include <sys/cpuvar.h>
294 #include <sys/atomic.h>
295 #include <sys/bitmap.h>
296 #include <sys/sdt.h>
297 #include <sys/mac_flow.h>
298 #include <sys/ddi_intr_impl.h>
299 #include <sys/disp.h>
300 #include <sys/sdt.h>
301 #include <sys/vnic.h>
302 #include <sys/vnic_impl.h>
303 #include <sys/vlan.h>
304 #include <inet/ip.h>
305 #include <inet/ip6.h>
306 #include <sys/exacct.h>
307 #include <sys/exacct_impl.h>
308 #include <inet/nd.h>
309 #include <sys/ethernet.h>
310 #include <sys/pool.h>
311 #include <sys/pool_pset.h>
312 #include <sys/cpupart.h>
313 #include <inet/wifi_ioctl.h>
314 #include <net/wpa.h>

315 #define IMPL_HASHSZ 67 /* prime */

317 kmem_cache_t *i_mac_impl_cachep;
318 mod_hash_t *i_mac_impl_hash;
319 krwlock_t i_mac_impl_lock;
320 uint_t i_mac_impl_count;
321 static kmem_cache_t *mac_ring_cache;
322 static id_space_t *minor_ids;

new/usr/src/uts/common/io/mac/mac.c 6

323 static uint32_t minor_count;
324 static pool_event_cb_t mac_pool_event_reg;

326 /*
327 * Logging stuff. Perhaps mac_logging_interval could be broken into
328 * mac_flow_log_interval and mac_link_log_interval if we want to be
329 * able to schedule them differently.
330 */
331 uint_t mac_logging_interval;
332 boolean_t mac_flow_log_enable;
333 boolean_t mac_link_log_enable;
334 timeout_id_t mac_logging_timer;

336 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
337 int mac_dbg = 0;

339 #define MACTYPE_KMODDIR "mac"
340 #define MACTYPE_HASHSZ 67
341 static mod_hash_t *i_mactype_hash;
342 /*
343 * i_mactype_lock synchronizes threads that obtain references to mactype_t
344 * structures through i_mactype_getplugin().
345 */
346 static kmutex_t i_mactype_lock;

348 /*
349 * mac_tx_percpu_cnt
350 *
351 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
352 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
353 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
354 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
355 */
356 int mac_tx_percpu_cnt;
357 int mac_tx_percpu_cnt_max = 128;

359 /*
360 * Call back functions for the bridge module. These are guaranteed to be valid
361 * when holding a reference on a link or when holding mip->mi_bridge_lock and
362 * mi_bridge_link is non-NULL.
363 */
364 mac_bridge_tx_t mac_bridge_tx_cb;
365 mac_bridge_rx_t mac_bridge_rx_cb;
366 mac_bridge_ref_t mac_bridge_ref_cb;
367 mac_bridge_ls_t mac_bridge_ls_cb;

369 static int i_mac_constructor(void *, void *, int);
370 static void i_mac_destructor(void *, void *);
371 static int i_mac_ring_ctor(void *, void *, int);
372 static void i_mac_ring_dtor(void *, void *);
373 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
374 void mac_tx_client_flush(mac_client_impl_t *);
375 void mac_tx_client_block(mac_client_impl_t *);
376 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
377 static int mac_start_group_and_rings(mac_group_t *);
378 static void mac_stop_group_and_rings(mac_group_t *);
379 static void mac_pool_event_cb(pool_event_t, int, void *);

381 typedef struct netinfo_s {
382 list_node_t ni_link;
383 void *ni_record;
384 int ni_size;
385 int ni_type;
386 } netinfo_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/io/mac/mac.c 7

2845 /*
2846 * Checks the size of the value size specified for a property as
2847 * part of a property operation. Returns B_TRUE if the size is
2848 * correct, B_FALSE otherwise.
2849 */
2850 boolean_t
2851 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2852 {
2853 uint_t minsize = 0;

2855 if (is_range)
2856 return (valsize >= sizeof (mac_propval_range_t));

2858 switch (id) {
2859 case MAC_PROP_ZONE:
2860 minsize = sizeof (dld_ioc_zid_t);
2861 break;
2862 case MAC_PROP_AUTOPUSH:
2863 if (valsize != 0)
2864 minsize = sizeof (struct dlautopush);
2865 break;
2866 case MAC_PROP_TAGMODE:
2867 minsize = sizeof (link_tagmode_t);
2868 break;
2869 case MAC_PROP_RESOURCE:
2870 case MAC_PROP_RESOURCE_EFF:
2871 minsize = sizeof (mac_resource_props_t);
2872 break;
2873 case MAC_PROP_DUPLEX:
2874 minsize = sizeof (link_duplex_t);
2875 break;
2876 case MAC_PROP_SPEED:
2877 minsize = sizeof (uint64_t);
2878 break;
2879 case MAC_PROP_STATUS:
2880 minsize = sizeof (link_state_t);
2881 break;
2882 case MAC_PROP_AUTONEG:
2883 case MAC_PROP_EN_AUTONEG:
2884 minsize = sizeof (uint8_t);
2885 break;
2886 case MAC_PROP_MTU:
2887 case MAC_PROP_LLIMIT:
2888 case MAC_PROP_LDECAY:
2889 minsize = sizeof (uint32_t);
2890 break;
2891 case MAC_PROP_FLOWCTRL:
2892 minsize = sizeof (link_flowctrl_t);
2893 break;
2894 case MAC_PROP_ADV_10GFDX_CAP:
2895 case MAC_PROP_EN_10GFDX_CAP:
2896 case MAC_PROP_ADV_1000HDX_CAP:
2897 case MAC_PROP_EN_1000HDX_CAP:
2898 case MAC_PROP_ADV_100FDX_CAP:
2899 case MAC_PROP_EN_100FDX_CAP:
2900 case MAC_PROP_ADV_100HDX_CAP:
2901 case MAC_PROP_EN_100HDX_CAP:
2902 case MAC_PROP_ADV_10FDX_CAP:
2903 case MAC_PROP_EN_10FDX_CAP:
2904 case MAC_PROP_ADV_10HDX_CAP:
2905 case MAC_PROP_EN_10HDX_CAP:
2906 case MAC_PROP_ADV_100T4_CAP:
2907 case MAC_PROP_EN_100T4_CAP:
2908 minsize = sizeof (uint8_t);
2909 break;
2910 case MAC_PROP_PVID:

new/usr/src/uts/common/io/mac/mac.c 8

2911 minsize = sizeof (uint16_t);
2912 break;
2913 case MAC_PROP_IPTUN_HOPLIMIT:
2914 minsize = sizeof (uint32_t);
2915 break;
2916 case MAC_PROP_IPTUN_ENCAPLIMIT:
2917 minsize = sizeof (uint32_t);
2918 break;
2919 case MAC_PROP_MAX_TX_RINGS_AVAIL:
2920 case MAC_PROP_MAX_RX_RINGS_AVAIL:
2921 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
2922 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
2923 minsize = sizeof (uint_t);
2924 break;
2925 case MAC_PROP_WL_ESSID:
2926 minsize = sizeof (wl_linkstatus_t);
2927 break;
2928 case MAC_PROP_WL_BSSID:
2929 minsize = sizeof (wl_bssid_t);
2930 break;
2931 case MAC_PROP_WL_BSSTYPE:
2932 minsize = sizeof (wl_bss_type_t);
2933 break;
2934 case MAC_PROP_WL_LINKSTATUS:
2935 minsize = sizeof (wl_linkstatus_t);
2936 break;
2937 case MAC_PROP_WL_DESIRED_RATES:
2938 minsize = sizeof (wl_rates_t);
2939 break;
2940 case MAC_PROP_WL_SUPPORTED_RATES:
2941 minsize = sizeof (wl_rates_t);
2942 break;
2943 case MAC_PROP_WL_AUTH_MODE:
2944 minsize = sizeof (wl_authmode_t);
2945 break;
2946 case MAC_PROP_WL_ENCRYPTION:
2947 minsize = sizeof (wl_encryption_t);
2948 break;
2949 case MAC_PROP_WL_RSSI:
2950 minsize = sizeof (wl_rssi_t);
2951 break;
2952 case MAC_PROP_WL_PHY_CONFIG:
2953 minsize = sizeof (wl_phy_conf_t);
2954 break;
2955 case MAC_PROP_WL_CAPABILITY:
2956 minsize = sizeof (wl_capability_t);
2957 break;
2958 case MAC_PROP_WL_WPA:
2959 minsize = sizeof (wl_wpa_t);
2960 break;
2962 case MAC_PROP_WL_SCANRESULTS:
2963 minsize = sizeof (wl_wpa_ess_t);
2964 break;
2961 case MAC_PROP_WL_POWER_MODE:
2962 minsize = sizeof (wl_ps_mode_t);
2963 break;
2964 case MAC_PROP_WL_RADIO:
2965 minsize = sizeof (wl_radio_t);
2966 break;
2967 case MAC_PROP_WL_ESS_LIST:
2968 minsize = sizeof (wl_ess_list_t);
2969 break;
2970 case MAC_PROP_WL_KEY_TAB:
2971 minsize = sizeof (wl_wep_key_tab_t);
2972 break;
2973 case MAC_PROP_WL_CREATE_IBSS:

new/usr/src/uts/common/io/mac/mac.c 9

2974 minsize = sizeof (wl_create_ibss_t);
2975 break;
2976 case MAC_PROP_WL_SETOPTIE:
2977 minsize = sizeof (wl_wpa_ie_t);
2978 break;
2979 case MAC_PROP_WL_DELKEY:
2980 minsize = sizeof (wl_del_key_t);
2981 break;
2982 case MAC_PROP_WL_KEY:
2983 minsize = sizeof (wl_key_t);
2984 break;
2985 case MAC_PROP_WL_MLME:
2986 minsize = sizeof (wl_mlme_t);
2987 break;
2988 }

2990 return (valsize >= minsize);
2991 }
______unchanged_portion_omitted_

new/usr/src/uts/common/io/net80211/net80211.c 1

**
 23381 Tue Jun 12 19:55:23 2012
new/usr/src/uts/common/io/net80211/net80211.c
updated libdladm public interface
prevented usr.lib/wpa_supplicant from being checked with lint
**
______unchanged_portion_omitted_

188 /*
189 * Notify state transition event message to WPA daemon
190 */
191 void
192 ieee80211_notify(ieee80211com_t *ic, wpa_event_type event)
193 {
194 if ((ic->ic_flags & IEEE80211_F_WPA) == 0)
195 return; /* Not running on WPA mode */

194 ic->ic_eventq[ic->ic_evq_tail] = event;
195 ic->ic_evq_tail ++;
196 if (ic->ic_evq_tail >= MAX_EVENT) ic->ic_evq_tail = 0;

198 /* async */
199 (void) timeout(ieee80211_event_thread, (void *)ic, 0);
200 }

______unchanged_portion_omitted_

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 1

**
 57762 Tue Jun 12 19:55:24 2012
new/usr/src/uts/common/io/net80211/net80211_ioctl.c
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 /*
2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */

6 /*
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:

10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * Alternatively, this software may be distributed under the terms of the
19 * GNU General Public License ("GPL") version 2 as published by the Free
20 * Software Foundation.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */

35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/errno.h>
38 #include <sys/strsun.h>
39 #include <sys/policy.h>
40 #include <inet/common.h>
41 #include <inet/nd.h>
42 #include <inet/mi.h>
43 #include <sys/note.h>
44 #include <sys/mac_provider.h>
45 #include <inet/wifi_ioctl.h>
46 #include "net80211_impl.h"

48 static int wl_set_essid(struct ieee80211com *, const void *);
49 static void wl_get_essid(struct ieee80211com *, void *);
50 static int wl_set_bssid(struct ieee80211com *, const void *);
51 static void wl_get_bssid(struct ieee80211com *, void *);
52 static int wl_set_bsstype(struct ieee80211com *, const void *);
53 static void wl_get_bsstype(struct ieee80211com *, void *);
54 static void wl_get_linkstatus(struct ieee80211com *, void *);
55 static int wl_set_desrates(struct ieee80211com *, const void *);
56 static void wl_get_desrates(struct ieee80211com *, void *);
57 static int wl_set_authmode(struct ieee80211com *, const void *);
58 static void wl_get_authmode(struct ieee80211com *, void *);
59 static int wl_set_encrypt(struct ieee80211com *, const void *);

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 2

60 static void wl_get_encrypt(struct ieee80211com *, void *);
61 static void wl_get_rssi(struct ieee80211com *, void *);
62 static int wl_set_phy(struct ieee80211com *, const void *);
63 static int wl_get_phy(struct ieee80211com *, void *);
64 static void wl_get_capability(struct ieee80211com *, void *);
65 static int wl_set_wpa(struct ieee80211com *, const void *);
66 static void wl_get_wpa(struct ieee80211com *, void *);
67 static void wl_get_scanresults(struct ieee80211com *, void *);
67 static void wl_get_esslist(struct ieee80211com *, void *);
68 static int wl_set_wepkey(struct ieee80211com *, const void *);
69 static int wl_set_optie(struct ieee80211com *, const void *);
70 static int wl_set_delkey(struct ieee80211com *, const void *);
71 static int wl_set_mlme(struct ieee80211com *, const void *);
72 static int wl_set_wpakey(struct ieee80211com *, const void *);
73 static void wl_get_suprates(struct ieee80211com *, void *);
74 static int wl_set_createibss(struct ieee80211com *, const void *);
75 static void wl_get_createibss(struct ieee80211com *, void *);

77 static size_t
78 wifi_strnlen(const char *s, size_t n)
79 {
80 size_t i;

82 for (i = 0; i < n && s[i] != ’\0’; i++)
83 /* noop */;
84 return (i);
85 }

______unchanged_portion_omitted_

698 #define WIFI_HAVE_CAP(in, flag) (((in)->in_capinfo & (flag)) ? 1 : 0)
699 #define WIFI_HAVE_HTCAP(in) (((in)->in_htcap != 0) ? 1 : 0)

701 /*
702 * Callback function used by ieee80211_iterate_nodes() in
703 * wifi_cfg_esslist() to get info of each node in a node table
704 * arg output buffer, pointer to wl_ess_list_t
705 * in each node in the node table
706 */
707 static void
708 wifi_read_ap(void *arg, struct ieee80211_node *in)
709 {
710 wl_ess_list_t *aps = arg;
711 ieee80211com_t *ic = in->in_ic;
712 struct ieee80211_channel *chan = in->in_chan;
713 struct ieee80211_rateset *rates = &(in->in_rates);
714 wl_ess_conf_t *conf;
715 uint8_t *end;
716 uint_t i, nrates;

718 end = (uint8_t *)aps - WIFI_BUF_OFFSET + MAX_BUF_LEN -
719 sizeof (wl_ess_list_t);
720 conf = &aps->wl_ess_list_ess[aps->wl_ess_list_num];
721 if ((uint8_t *)conf > end)
722 return;

724 conf->wl_ess_conf_length = sizeof (struct wl_ess_conf);

726 /* skip newly allocated NULL bss node */
727 if (IEEE80211_ADDR_EQ(in->in_macaddr, ic->ic_macaddr))
728 return;

730 conf->wl_ess_conf_essid.wl_essid_length = in->in_esslen;
731 bcopy(in->in_essid, conf->wl_ess_conf_essid.wl_essid_essid,
732 in->in_esslen);
733 bcopy(in->in_bssid, conf->wl_ess_conf_bssid, IEEE80211_ADDR_LEN);

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 3

735 conf->wl_ess_conf_beacon_period = in->in_intval;
736 conf->wl_ess_conf_beacon_tsf = in->in_tstamp.tsf;
737 conf->wl_ess_conf_beacon_age = in->in_rstamp;

735 conf->wl_ess_conf_wepenabled =
736 (in->in_capinfo & IEEE80211_CAPINFO_PRIVACY ?
737 WL_ENC_WEP : WL_NOENCRYPTION);
738 conf->wl_ess_conf_bsstype =
739 (in->in_capinfo & IEEE80211_CAPINFO_ESS ?
740 WL_BSS_BSS : WL_BSS_IBSS);
739 conf->wl_ess_conf_sl = wifi_getrssi(in);

741 conf->wl_ess_conf_caps = in->in_capinfo;
742 /* authmode is set to IEEE80211_AUTH_OPEN = 1 by default */

744 if (in->in_wpa_ie == NULL) {
745 conf->wl_ess_conf_wpa_ie_len = 0;
746 } else {
747 conf->wl_ess_conf_wpa_ie_len = in->in_wpa_ie[1] + 2;
748 bcopy(in->in_wpa_ie, conf->wl_ess_conf_wpa_ie,
749 conf->wl_ess_conf_wpa_ie_len);
750 }
742 conf->wl_ess_conf_reserved[0] = (in->in_wpa_ie == NULL? 0 : 1);

752 /* physical (FH, DS, ERP) parameters */
753 if (IEEE80211_IS_CHAN_A(chan) || IEEE80211_IS_CHAN_T(chan)) {
754 wl_ofdm_t *ofdm =
755 (wl_ofdm_t *)&((conf->wl_phy_conf).wl_phy_ofdm_conf);
756 ofdm->wl_ofdm_subtype = WL_OFDM;
757 ofdm->wl_ofdm_frequency = chan->ich_freq;
758 ofdm->wl_ofdm_ht_enabled = WIFI_HAVE_HTCAP(in);
759 } else {
760 switch (in->in_phytype) {
761 case IEEE80211_T_FH: {
762 wl_fhss_t *fhss = (wl_fhss_t *)
763 &((conf->wl_phy_conf).wl_phy_fhss_conf);

765 fhss->wl_fhss_subtype = WL_FHSS;
766 fhss->wl_fhss_channel = ieee80211_chan2ieee(ic, chan);
767 fhss->wl_fhss_dwelltime = in->in_fhdwell;
768 break;
769 }
770 case IEEE80211_T_DS: {
771 wl_dsss_t *dsss = (wl_dsss_t *)
772 &((conf->wl_phy_conf).wl_phy_dsss_conf);

774 dsss->wl_dsss_subtype = WL_DSSS;
775 dsss->wl_dsss_channel = ieee80211_chan2ieee(ic, chan);
776 dsss->wl_dsss_have_short_preamble = WIFI_HAVE_CAP(in,
777 IEEE80211_CAPINFO_SHORT_PREAMBLE);
778 dsss->wl_dsss_agility_enabled = WIFI_HAVE_CAP(in,
779 IEEE80211_CAPINFO_CHNL_AGILITY);
780 dsss->wl_dsss_have_pbcc = dsss->wl_dsss_pbcc_enable =
781 WIFI_HAVE_CAP(in, IEEE80211_CAPINFO_PBCC);
782 break;
783 }
784 case IEEE80211_T_OFDM: {
785 wl_erp_t *erp = (wl_erp_t *)
786 &((conf->wl_phy_conf).wl_phy_erp_conf);

788 erp->wl_erp_subtype = WL_ERP;
789 erp->wl_erp_channel = ieee80211_chan2ieee(ic, chan);
790 erp->wl_erp_have_short_preamble = WIFI_HAVE_CAP(in,
791 IEEE80211_CAPINFO_SHORT_PREAMBLE);
792 erp->wl_erp_have_agility = erp->wl_erp_agility_enabled =
793 WIFI_HAVE_CAP(in, IEEE80211_CAPINFO_CHNL_AGILITY);

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 4

794 erp->wl_erp_have_pbcc = erp->wl_erp_pbcc_enabled =
795 WIFI_HAVE_CAP(in, IEEE80211_CAPINFO_PBCC);
796 erp->wl_erp_dsss_ofdm_enabled =
797 WIFI_HAVE_CAP(in, IEEE80211_CAPINFO_DSSSOFDM);
798 erp->wl_erp_sst_enabled = WIFI_HAVE_CAP(in,
799 IEEE80211_CAPINFO_SHORT_SLOTTIME);
800 erp->wl_erp_ht_enabled = WIFI_HAVE_HTCAP(in);
801 break;
802 } /* case IEEE80211_T_OFDM */
803 } /* switch in->in_phytype */
804 }

806 /* supported rates */
807 nrates = MIN(rates->ir_nrates, MAX_SCAN_SUPPORT_RATES);
808 /*
809 * The number of supported rates might exceed
810 * MAX_SCAN_SUPPORT_RATES. Fill in highest rates
811 * first so userland command could properly show
812 * maximum speed of AP
813 */
814 for (i = 0; i < nrates; i++) {
815 conf->wl_supported_rates[i] =
816 rates->ir_rates[rates->ir_nrates - i - 1];
817 }

819 aps->wl_ess_list_num++;
820 }

______unchanged_portion_omitted_

1139 /*
1132 * To be compatible with drivers/tools of OpenSolaris.org,
1133 * we use a different ID to filter out those APs of WPA mode.
1134 */
1135 static int
1136 wifi_cfg_scanresults(struct ieee80211com *ic, uint32_t cmd, mblk_t **mp)
1137 {
1138 mblk_t *omp;
1139 wldp_t *outp;
1140 wl_wpa_ess_t *sr;
1141 ieee80211_node_t *in;
1142 ieee80211_node_table_t *nt;
1143 int len, ap_num = 0;
1144 int err = 0;

1146 if ((omp = wifi_getoutmsg(*mp, cmd, MAX_BUF_LEN - WIFI_BUF_OFFSET)) ==
1147 NULL) {
1148 return (ENOMEM);
1149 }
1150 outp = (wldp_t *)omp->b_rptr;
1151 sr = (wl_wpa_ess_t *)outp->wldp_buf;
1152 sr->count = 0;

1154 switch (cmd) {
1155 case WLAN_GET_PARAM:
1156 ieee80211_dbg(IEEE80211_MSG_WPA, "wifi_cfg_scanresults\n");
1157 nt = &ic->ic_scan;
1158 IEEE80211_NODE_LOCK(nt);
1159 in = list_head(&nt->nt_node);
1160 while (in != NULL) {
1161 /* filter out non-WPA APs */
1162 if (in->in_wpa_ie == NULL) {
1163 in = list_next(&nt->nt_node, in);
1164 continue;
1165 }
1166 bcopy(in->in_bssid, sr->ess[ap_num].bssid,
1167 IEEE80211_ADDR_LEN);

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 5

1168 sr->ess[ap_num].ssid_len = in->in_esslen;
1169 bcopy(in->in_essid, sr->ess[ap_num].ssid,
1170 in->in_esslen);
1171 sr->ess[ap_num].freq = in->in_chan->ich_freq;

1173 len = in->in_wpa_ie[1] + 2;
1174 bcopy(in->in_wpa_ie, sr->ess[ap_num].wpa_ie, len);
1175 sr->ess[ap_num].wpa_ie_len = len;

1177 ap_num ++;
1178 in = list_next(&nt->nt_node, in);
1179 }
1180 IEEE80211_NODE_UNLOCK(nt);
1181 sr->count = ap_num;
1182 outp->wldp_length = WIFI_BUF_OFFSET +
1183 offsetof(wl_wpa_ess_t, ess) +
1184 sr->count * sizeof (struct wpa_ess);
1185 omp->b_wptr = omp->b_rptr + outp->wldp_length;
1186 break;
1187 case WLAN_SET_PARAM:
1188 outp->wldp_result = WL_READONLY;
1189 err = EINVAL;
1190 break;
1191 default:
1192 ieee80211_err("wifi_cfg_scanresults: unknown cmmand %x\n", cmd);
1193 outp->wldp_result = WL_NOTSUPPORTED;
1194 err = EINVAL;
1195 break;
1196 }

1198 freemsg(*mp);
1199 *mp = omp;
1200 return (err);
1201 }

1203 /*
1140 * Manually control the state of AUTH | DEAUTH | DEASSOC | ASSOC
1141 */
1142 static int
1143 wifi_cfg_setmlme(struct ieee80211com *ic, uint32_t cmd, mblk_t **mp)
1144 {
1145 mblk_t *omp;
1146 wldp_t *outp;
1147 wldp_t *inp = (wldp_t *)(*mp)->b_rptr;
1148 wl_mlme_t *mlme = (wl_mlme_t *)inp->wldp_buf;
1149 int err = 0;

1151 if ((omp = wifi_getoutmsg(*mp, cmd, 0)) == NULL)
1152 return (ENOMEM);
1153 outp = (wldp_t *)omp->b_rptr;

1155 switch (cmd) {
1156 case WLAN_GET_PARAM:
1157 outp->wldp_result = WL_WRITEONLY;
1158 err = EINVAL;
1159 break;
1160 case WLAN_SET_PARAM:
1161 err = wl_set_mlme(ic, mlme);
1162 break;
1163 default:
1164 ieee80211_err("wifi_cfg_delkey: unknown command %x\n", cmd);
1165 outp->wldp_result = WL_NOTSUPPORTED;
1166 err = EINVAL;
1167 break;
1168 }

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 6

1170 freemsg(*mp);
1171 *mp = omp;
1172 return (err);
1173 }

1175 static int
1176 wifi_cfg_getset(struct ieee80211com *ic, mblk_t **mp, uint32_t cmd)
1177 {
1178 mblk_t *mp1 = *mp;
1179 wldp_t *wp = (wldp_t *)mp1->b_rptr;
1180 int err = 0;

1182 ASSERT(ic != NULL && mp1 != NULL);
1183 IEEE80211_LOCK_ASSERT(ic);
1184 if (MBLKL(mp1) < WIFI_BUF_OFFSET) {
1185 ieee80211_err("wifi_cfg_getset: "
1186 "invalid input buffer, size=%d\n", MBLKL(mp1));
1187 return (EINVAL);
1188 }

1190 switch (wp->wldp_id) {
1191 /* Commands */
1192 case WL_SCAN:
1193 err = wifi_cmd_scan(ic, mp1);
1194 break;
1195 case WL_LOAD_DEFAULTS:
1196 err = wifi_cmd_loaddefaults(ic, mp1);
1197 break;
1198 case WL_DISASSOCIATE:
1199 err = wifi_cmd_disassoc(ic, mp1);
1200 break;
1201 /* Parameters */
1202 case WL_ESSID:
1203 err = wifi_cfg_essid(ic, cmd, mp);
1204 break;
1205 case WL_BSSID:
1206 err = wifi_cfg_bssid(ic, cmd, mp);
1207 break;
1208 case WL_NODE_NAME:
1209 err = wifi_cfg_nodename(ic, cmd, mp);
1210 break;
1211 case WL_PHY_CONFIG:
1212 err = wifi_cfg_phy(ic, cmd, mp);
1213 break;
1214 case WL_WEP_KEY_TAB:
1215 err = wifi_cfg_wepkey(ic, cmd, mp);
1216 break;
1217 case WL_WEP_KEY_ID:
1218 err = wifi_cfg_keyid(ic, cmd, mp);
1219 break;
1220 case WL_AUTH_MODE:
1221 err = wifi_cfg_authmode(ic, cmd, mp);
1222 break;
1223 case WL_ENCRYPTION:
1224 err = wifi_cfg_encrypt(ic, cmd, mp);
1225 break;
1226 case WL_BSS_TYPE:
1227 err = wifi_cfg_bsstype(ic, cmd, mp);
1228 break;
1229 case WL_CREATE_IBSS:
1230 err = wifi_cfg_createibss(ic, cmd, mp);
1231 break;
1232 case WL_DESIRED_RATES:
1233 err = wifi_cfg_desrates(ic, cmd, mp);
1234 break;
1235 case WL_LINKSTATUS:

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 7

1236 err = wifi_cfg_linkstatus(ic, cmd, mp);
1237 break;
1238 case WL_ESS_LIST:
1239 err = wifi_cfg_esslist(ic, cmd, mp);
1240 break;
1241 case WL_SUPPORTED_RATES:
1242 err = wifi_cfg_suprates(ic, cmd, mp);
1243 break;
1244 case WL_RSSI:
1245 err = wifi_cfg_rssi(ic, cmd, mp);
1246 break;
1311 /*
1312 * WPA IOCTLs
1313 */
1314 case WL_CAPABILITY:
1315 err = wifi_cfg_caps(ic, cmd, mp);
1316 break;
1317 case WL_WPA:
1318 err = wifi_cfg_wpa(ic, cmd, mp);
1319 break;
1320 case WL_KEY:
1321 err = wifi_cfg_wpakey(ic, cmd, mp);
1322 break;
1323 case WL_DELKEY:
1324 err = wifi_cfg_delkey(ic, cmd, mp);
1325 break;
1326 case WL_SETOPTIE:
1327 err = wifi_cfg_setoptie(ic, cmd, mp);
1328 break;
1329 case WL_SCANRESULTS:
1330 err = wifi_cfg_scanresults(ic, cmd, mp);
1331 break;
1332 case WL_MLME:
1333 err = wifi_cfg_setmlme(ic, cmd, mp);
1334 break;
1247 default:
1248 wifi_setupoutmsg(mp1, 0);
1249 wp->wldp_result = WL_LACK_FEATURE;
1250 err = ENOTSUP;
1251 break;
1252 }

1254 return (err);
1255 }
______unchanged_portion_omitted_

1384 static void
1385 wl_get_essid(struct ieee80211com *ic, void *wldp_buf)
1386 {
1387 char *essid;
1388 wl_essid_t ow_essid;

1390 essid = (char *)ic->ic_des_essid;
1391 if (essid[0] == ’\0’)
1392 essid = (char *)ic->ic_bss->in_essid;

1394 bzero(&ow_essid, sizeof (wl_essid_t));
1395 ow_essid.wl_essid_length = wifi_strnlen((const char *)essid,
1396 IEEE80211_NWID_LEN);
1397 bcopy(essid, ow_essid.wl_essid_essid,
1398 ow_essid.wl_essid_length);
1399 bcopy(&ow_essid, wldp_buf, sizeof (wl_essid_t));

1400 }
______unchanged_portion_omitted_

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 8

1468 static void
1469 wl_get_bsstype(struct ieee80211com *ic, void *wldp_buf)
1470 {
1471 wl_bss_type_t ow_opmode;

1473 switch (ic->ic_opmode) {
1474 case IEEE80211_M_STA:
1475 ow_opmode = WL_BSS_BSS;
1476 break;
1477 case IEEE80211_M_IBSS:
1478 ow_opmode = WL_BSS_IBSS;
1479 break;
1480 default:
1481 ow_opmode = WL_BSS_BSS;
1570 ow_opmode = WL_BSS_ANY;
1482 break;
1483 }

1485 bcopy(&ow_opmode, wldp_buf, sizeof (wl_bss_type_t));
1486 }
______unchanged_portion_omitted_

1862 /*
1952 * MAC_PROP_WL_SCANRESULTS
1953 */

1955 static void
1956 wl_get_scanresults(struct ieee80211com *ic, void *wldp_buf)
1957 {
1958 wl_wpa_ess_t *sr;
1959 ieee80211_node_t *in;
1960 ieee80211_node_table_t *nt;
1961 int ap_num;
1962 int len;

1964 sr = (wl_wpa_ess_t *)wldp_buf;
1965 sr->count = 0;
1966 ap_num = 0;

1968 ieee80211_dbg(IEEE80211_MSG_WPA, "wl_get_scanrelults\n");

1970 nt = &ic->ic_scan;
1971 IEEE80211_NODE_LOCK(nt);
1972 in = list_head(&nt->nt_node);

1974 while (in != NULL) {
1975 /* filter out non-wpa APs */
1976 if (in->in_wpa_ie == NULL) {
1977 in = list_next(&nt->nt_node, in);
1978 continue;
1979 }
1980 bcopy(in->in_bssid, sr->ess[ap_num].bssid,
1981 IEEE80211_ADDR_LEN);
1982 sr->ess[ap_num].ssid_len = in->in_esslen;
1983 bcopy(in->in_essid, sr->ess[ap_num].ssid,
1984 in->in_esslen);
1985 sr->ess[ap_num].freq = in->in_chan->ich_freq;

1987 len = in->in_wpa_ie[1] + 2;
1988 bcopy(in->in_wpa_ie, sr->ess[ap_num].wpa_ie, len);
1989 sr->ess[ap_num].wpa_ie_len = len;

1991 ap_num++;
1992 in = list_next(&nt->nt_node, in);
1993 }
1994 IEEE80211_NODE_UNLOCK(nt);

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 9

1995 sr->count = ap_num;

1997 }

1999 /*
1863 * MAC_PROP_WL_ESS_LIST
1864 */
1865 static void
1866 wl_get_esslist(struct ieee80211com *ic, void *wldp_buf)
1867 {
1868 wl_ess_list_t *ess_list;

1870 ess_list = (wl_ess_list_t *)wldp_buf;

1872 ess_list->wl_ess_list_num = 0;
1873 ieee80211_iterate_nodes(&ic->ic_scan, wifi_read_ap, ess_list);

1875 }
______unchanged_portion_omitted_

1935 /*
1936 * MAC_PROP_WL_SETOPTIE
1937 */
1938 static int
1939 wl_set_optie(struct ieee80211com *ic, const void *wldp_buf)
1940 {
1941 int err = 0;
1942 char *ie;
1943 wl_wpa_ie_t *ie_in = (wl_wpa_ie_t *)wldp_buf;

1945 if (ic->ic_opmode != IEEE80211_M_STA) {
1946 ieee80211_err("wl_set_optie: opmode err\n");
1947 err = EINVAL;
1948 return (err);
1949 }
1950 if (ie_in->wpa_ie_len > IEEE80211_MAX_OPT_IE) {

1952 ieee80211_err("wl_set_optie: optie is too long\n");

1954 err = EINVAL;
1955 return (err);
1956 }

1958 ie = ieee80211_malloc(ie_in->wpa_ie_len);
1959 (void) memcpy(ie, ie_in->wpa_ie, ie_in->wpa_ie_len);
1960 if (ic->ic_opt_ie != NULL) {
1961 ieee80211_dbg(IEEE80211_MSG_BRUSSELS,
1962 "wl_set_optie: ic_opt_ie != NULL\n");
2099 "wl_set_optie:ic_opt_ie!=NULL\n");
1963 ieee80211_free(ic->ic_opt_ie);
1964 }
1965 ic->ic_opt_ie = ie;
1966 ic->ic_opt_ie_len = ie_in->wpa_ie_len;

1968 return (err);
1969 }
______unchanged_portion_omitted_

2000 /*
2001 * MAC_PROP_WL_MLME
2002 */

2004 static int
2005 wl_set_mlme(struct ieee80211com *ic, const void *wldp_buf)
2006 {
2007 int err = 0;

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 10

2008 uint32_t flags;
2009 ieee80211_node_t *in;
2010 wl_mlme_t *mlme = (wl_mlme_t *)wldp_buf;

2012 ieee80211_dbg(IEEE80211_MSG_WPA, "wl_set_mlme: op=%d <%s> \n",
2013 mlme->im_op, ieee80211_macaddr_sprintf(mlme->im_macaddr));
2149 ieee80211_dbg(IEEE80211_MSG_WPA, "wl_set_mlme: "
2150 "op=%d\n", mlme->im_op);

2015 switch (mlme->im_op) {
2016 case IEEE80211_MLME_DISASSOC:
2017 case IEEE80211_MLME_DEAUTH:
2018 if (ic->ic_opmode == IEEE80211_M_STA) {
2019 /*
2020 * Mask ic_flags of IEEE80211_F_WPA to disable
2021 * ieee80211_notify temporarily.
2022 */
2023 flags = ic->ic_flags;
2024 ic->ic_flags &= ~IEEE80211_F_WPA;

2026 IEEE80211_UNLOCK(ic);
2027 ieee80211_new_state(ic, IEEE80211_S_INIT,
2028 mlme->im_reason);
2029 IEEE80211_LOCK(ic);

2031 ic->ic_flags = flags;
2032 }
2033 break;
2034 case IEEE80211_MLME_ASSOC:
2035 if (ic->ic_opmode != IEEE80211_M_STA) {
2036 ieee80211_err("wifi_cfg_setmlme: opmode err\n");
2037 err = EINVAL;
2038 break;
2039 }
2040 if (ic->ic_flags & IEEE80211_F_DESBSSID) {
2041 in = ieee80211_find_node(&ic->ic_scan,
2042 ic->ic_des_bssid);
2043 } else if (ic->ic_des_esslen != 0) {
2177 if (ic->ic_des_esslen != 0) {
2044 /*
2045 * Desired ssid specified; must match both bssid and
2046 * ssid to distinguish ap advertising multiple ssid’s.
2047 */
2048 in = ieee80211_find_node_with_ssid(&ic->ic_scan,
2049 mlme->im_macaddr,
2050 ic->ic_des_esslen,
2051 ic->ic_des_essid);
2052 } else {
2053 /*
2054 * Normal case; just match bssid.
2055 */
2056 in = ieee80211_find_node(&ic->ic_scan,
2057 mlme->im_macaddr);
2058 }
2059 if (in == NULL) {
2060 ieee80211_err("wifi_cfg_setmlme: "
2061 "no matched node\n");
2062 err = EINVAL;
2063 break;
2064 }
2065 IEEE80211_UNLOCK(ic);
2066 ieee80211_sta_join(ic, in);
2067 IEEE80211_LOCK(ic);
2068 break;
2069 default:
2070 err = EINVAL;

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 11

2071 break;
2072 }

2074 return (err);
2075 }
______unchanged_portion_omitted_

2234 /*
2235 * Typically invoked by drivers in response to request for
2236 * information or to change settings from the userland.
2237 *
2238 * Return value should be checked by WiFI drivers. Return 0
2239 * on success. Otherwise, return non-zero value to indicate
2240 * the error. Driver should operate as below when the return
2241 * error is:
2242 * ENETRESET Reset wireless network and re-start to join a
2243 * WLAN, ENETRESET is returned when a configuration
2244 * parameter has been changed.
2245 * When acknowledge a M_IOCTL message, this error
2246 * is ignored
2247 */

2249 /*
2250 * Not implemented:
2251 * MAC_PROP_WL_POWER_MODE
2252 * MAC_PROP_WL_RADIO,
2253 */

2255 #endif /* ! codereview */
2256 /* ARGSUSED */
2257 int
2258 ieee80211_setprop(void *ic_arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2259 uint_t wldp_length, const void *wldp_buf)
2260 {
2261 int err = 0;
2262 struct ieee80211com *ic = ic_arg;

2264 ASSERT(ic != NULL);
2265 IEEE80211_LOCK(ic);

2267 switch (wldp_pr_num) {
2268 /* mac_prop_id */
2269 case MAC_PROP_WL_ESSID:
2270 err = wl_set_essid(ic, wldp_buf);
2271 break;
2272 case MAC_PROP_WL_BSSID:
2273 err = wl_set_bssid(ic, wldp_buf);
2274 break;
2275 case MAC_PROP_WL_PHY_CONFIG:
2276 err = wl_set_phy(ic, wldp_buf);
2277 break;
2278 case MAC_PROP_WL_KEY_TAB:
2279 err = wl_set_wepkey(ic, wldp_buf);
2280 break;
2281 case MAC_PROP_WL_AUTH_MODE:
2282 err = wl_set_authmode(ic, wldp_buf);
2283 break;
2284 case MAC_PROP_WL_ENCRYPTION:
2285 err = wl_set_encrypt(ic, wldp_buf);
2286 break;
2287 case MAC_PROP_WL_BSSTYPE:
2288 err = wl_set_bsstype(ic, wldp_buf);
2289 break;
2290 case MAC_PROP_WL_DESIRED_RATES:
2291 err = wl_set_desrates(ic, wldp_buf);
2292 break;

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 12

2293 case MAC_PROP_WL_WPA:
2294 err = wl_set_wpa(ic, wldp_buf);
2295 break;
2296 case MAC_PROP_WL_KEY:
2297 err = wl_set_wpakey(ic, wldp_buf);
2298 break;
2299 case MAC_PROP_WL_DELKEY:
2300 err = wl_set_delkey(ic, wldp_buf);
2301 break;
2302 case MAC_PROP_WL_SETOPTIE:
2303 err = wl_set_optie(ic, wldp_buf);
2304 break;
2305 case MAC_PROP_WL_MLME:
2306 err = wl_set_mlme(ic, wldp_buf);
2307 break;
2308 case MAC_PROP_WL_CREATE_IBSS:
2309 err = wl_set_createibss(ic, wldp_buf);
2310 break;
2311 case MAC_PROP_WL_LINKSTATUS:
2312 case MAC_PROP_WL_ESS_LIST:
2313 case MAC_PROP_WL_SUPPORTED_RATES:
2314 case MAC_PROP_WL_RSSI:
2315 case MAC_PROP_WL_CAPABILITY:
2382 case MAC_PROP_WL_SCANRESULTS:
2383 ieee80211_err("ieee80211_setprop: opmode err\n");
2384 err = EINVAL;
2385 break;
2316 default:
2317 ieee80211_err("ieee80211_setprop: opmode not support\n");
2318 err = ENOTSUP;
2319 break;
2320 }

2322 IEEE80211_UNLOCK(ic);

2324 return (err);
2325 }

2327 /* ARGSUSED */
2328 int
2329 ieee80211_getprop(void *ic_arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2330 uint_t wldp_length, void *wldp_buf)
2331 {
2332 int err = 0;
2333 struct ieee80211com *ic = ic_arg;

2335 ASSERT(ic != NULL);
2336 IEEE80211_LOCK(ic);

2338 switch (wldp_pr_num) {
2339 /* mac_prop_id */
2340 case MAC_PROP_WL_ESSID:
2341 wl_get_essid(ic, wldp_buf);
2342 break;
2343 case MAC_PROP_WL_BSSID:
2344 wl_get_bssid(ic, wldp_buf);
2345 break;
2346 case MAC_PROP_WL_PHY_CONFIG:
2347 err = wl_get_phy(ic, wldp_buf);
2348 break;
2349 case MAC_PROP_WL_AUTH_MODE:
2350 wl_get_authmode(ic, wldp_buf);
2351 break;
2352 case MAC_PROP_WL_ENCRYPTION:
2353 wl_get_encrypt(ic, wldp_buf);
2354 break;

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 13

2355 case MAC_PROP_WL_BSSTYPE:
2356 wl_get_bsstype(ic, wldp_buf);
2357 break;
2358 case MAC_PROP_WL_DESIRED_RATES:
2359 wl_get_desrates(ic, wldp_buf);
2360 break;
2361 case MAC_PROP_WL_LINKSTATUS:
2362 wl_get_linkstatus(ic, wldp_buf);
2363 break;
2364 case MAC_PROP_WL_ESS_LIST:
2365 wl_get_esslist(ic, wldp_buf);
2366 break;
2367 case MAC_PROP_WL_SUPPORTED_RATES:
2368 wl_get_suprates(ic, wldp_buf);
2369 break;
2370 case MAC_PROP_WL_RSSI:
2371 wl_get_rssi(ic, wldp_buf);
2372 break;
2373 case MAC_PROP_WL_CAPABILITY:
2374 wl_get_capability(ic, wldp_buf);
2375 break;
2376 case MAC_PROP_WL_WPA:
2377 wl_get_wpa(ic, wldp_buf);
2378 break;
2449 case MAC_PROP_WL_SCANRESULTS:
2450 wl_get_scanresults(ic, wldp_buf);
2451 break;
2379 case MAC_PROP_WL_CREATE_IBSS:
2380 wl_get_createibss(ic, wldp_buf);
2381 break;
2382 case MAC_PROP_WL_KEY_TAB:
2383 case MAC_PROP_WL_KEY:
2384 case MAC_PROP_WL_DELKEY:
2385 case MAC_PROP_WL_SETOPTIE:
2386 case MAC_PROP_WL_MLME:
2387 ieee80211_err("ieee80211_setprop: opmode err\n");
2388 err = EINVAL;
2389 break;
2390 default:
2391 ieee80211_err("ieee80211_setprop: opmode not support\n");
2392 err = ENOTSUP;
2393 break;
2394 }

2396 IEEE80211_UNLOCK(ic);

2398 return (err);
2399 }

2401 void ieee80211_propinfo(void *ic_arg, const char *pr_name,
2402 mac_prop_id_t wldp_pr_num, mac_prop_info_handle_t prh)
2403 {
2404 _NOTE(ARGUNUSED(pr_name, ic_arg));

2406 /*
2407 * By default permissions are read/write unless specified
2408 * otherwise by the driver.
2409 */

2411 switch (wldp_pr_num) {
2412 case MAC_PROP_WL_LINKSTATUS:
2413 case MAC_PROP_WL_ESS_LIST:
2414 case MAC_PROP_WL_SUPPORTED_RATES:
2415 case MAC_PROP_WL_RSSI:
2416 case MAC_PROP_WL_CAPABILITY:
2490 case MAC_PROP_WL_SCANRESULTS:

new/usr/src/uts/common/io/net80211/net80211_ioctl.c 14

2417 case MAC_PROP_WL_CREATE_IBSS:
2418 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
2419 }
2420 }
______unchanged_portion_omitted_

new/usr/src/uts/common/net/Makefile 1

**
 1444 Tue Jun 12 19:55:27 2012
new/usr/src/uts/common/net/Makefile
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # uts/common/net/Makefile
25 #
26 # include global definitions
27 include ../../../Makefile.master

29 HDRS= af.h if.h if_arp.h if_dl.h if_types.h route.h pfkeyv2.h pfpolicy.h \
30 ppp-comp.h ppp_defs.h pppio.h vjcompress.h sppptun.h pppoe.h radix.h \
31 simnet.h bridge.h bridge_impl.h trill.h
31 wpa.h simnet.h bridge.h bridge_impl.h trill.h

33 ROOTDIRS= $(ROOT)/usr/include/net

35 ROOTHDRS= $(HDRS:%=$(ROOT)/usr/include/net/%)

37 CHECKHDRS= $(HDRS:%.h=%.check)

39 $(ROOTDIRS)/%: %
40 $(INS.file)

42 .KEEP_STATE:

44 .PARALLEL: $(CHECKHDRS)

46 install_h: $(ROOTDIRS) $(ROOTHDRS)

48 $(ROOTDIRS):
49 $(INS.dir)

51 check: $(CHECKHDRS)

new/usr/src/uts/common/sys/dld.h 1

**
 11271 Tue Jun 12 19:55:28 2012
new/usr/src/uts/common/sys/dld.h
secobjs types now are "wep, psk, eap, pin"
dladm_wlan_secmode_t and dladm_secobj_class_t are not related anymore
**
______unchanged_portion_omitted_

120 /*
121 * Secure objects ioctls
122 * 1.WEP Static key in 64 hex-digits
123 * 2.WPA 256-bit preshared key in 64 hex-digits
124 * 3.User password string for EAP methods (except EAP-TLS) in 64 hex-digits
125 * 4.Client Private key PKCS#11 keystore PIN
126 #endif /* ! codereview */
127 */
128 typedef enum {
129 DLD_SECOBJ_CLASS_WEP = 0,
130 DLD_SECOBJ_CLASS_PSK,
131 DLD_SECOBJ_CLASS_TLS,
132 DLD_SECOBJ_CLASS_TTLS,
133 DLD_SECOBJ_CLASS_PEAP
122 DLD_SECOBJ_CLASS_WEP = 1,
123 DLD_SECOBJ_CLASS_WPA
134 } dld_secobj_class_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/mac.h 1

**
 18875 Tue Jun 12 19:55:28 2012
new/usr/src/uts/common/sys/mac.h
Fixed minor compile errors
**
______unchanged_portion_omitted_

136 #define MAXLINKPROPNAME 256 /* max property name len */

138 /*
139 * Public properties.
140 *
141 * Note that there are 2 sets of parameters: the *_EN_* values are
142 * those that the Administrator configures for autonegotiation. The
143 * _ADV_* values are those that are currently exposed over the wire.
144 */
145 typedef enum {
146 MAC_PROP_DUPLEX = 0x00000001,
147 MAC_PROP_SPEED,
148 MAC_PROP_STATUS,
149 MAC_PROP_AUTONEG,
150 MAC_PROP_EN_AUTONEG,
151 MAC_PROP_MTU,
152 MAC_PROP_ZONE,
153 MAC_PROP_AUTOPUSH,
154 MAC_PROP_FLOWCTRL,
155 MAC_PROP_ADV_1000FDX_CAP,
156 MAC_PROP_EN_1000FDX_CAP,
157 MAC_PROP_ADV_1000HDX_CAP,
158 MAC_PROP_EN_1000HDX_CAP,
159 MAC_PROP_ADV_100FDX_CAP,
160 MAC_PROP_EN_100FDX_CAP,
161 MAC_PROP_ADV_100HDX_CAP,
162 MAC_PROP_EN_100HDX_CAP,
163 MAC_PROP_ADV_10FDX_CAP,
164 MAC_PROP_EN_10FDX_CAP,
165 MAC_PROP_ADV_10HDX_CAP,
166 MAC_PROP_EN_10HDX_CAP,
167 MAC_PROP_ADV_100T4_CAP,
168 MAC_PROP_EN_100T4_CAP,
169 MAC_PROP_IPTUN_HOPLIMIT,
170 MAC_PROP_IPTUN_ENCAPLIMIT,
171 MAC_PROP_WL_ESSID,
172 MAC_PROP_WL_BSSID,
173 MAC_PROP_WL_BSSTYPE,
174 MAC_PROP_WL_LINKSTATUS,
175 MAC_PROP_WL_DESIRED_RATES,
176 MAC_PROP_WL_SUPPORTED_RATES,
177 MAC_PROP_WL_AUTH_MODE,
178 MAC_PROP_WL_ENCRYPTION,
179 MAC_PROP_WL_RSSI,
180 MAC_PROP_WL_PHY_CONFIG,
181 MAC_PROP_WL_CAPABILITY,
182 MAC_PROP_WL_WPA,
183 MAC_PROP_WL_SCANRESULTS,
183 MAC_PROP_WL_POWER_MODE,
184 MAC_PROP_WL_RADIO,
185 MAC_PROP_WL_ESS_LIST,
186 MAC_PROP_WL_KEY_TAB,
187 MAC_PROP_WL_CREATE_IBSS,
188 MAC_PROP_WL_SETOPTIE,
189 MAC_PROP_WL_DELKEY,
190 MAC_PROP_WL_KEY,
191 MAC_PROP_WL_MLME,
192 MAC_PROP_TAGMODE,
193 MAC_PROP_ADV_10GFDX_CAP,

new/usr/src/uts/common/sys/mac.h 2

194 MAC_PROP_EN_10GFDX_CAP,
195 MAC_PROP_PVID,
196 MAC_PROP_LLIMIT,
197 MAC_PROP_LDECAY,
198 MAC_PROP_RESOURCE,
199 MAC_PROP_RESOURCE_EFF,
200 MAC_PROP_RXRINGSRANGE,
201 MAC_PROP_TXRINGSRANGE,
202 MAC_PROP_MAX_TX_RINGS_AVAIL,
203 MAC_PROP_MAX_RX_RINGS_AVAIL,
204 MAC_PROP_MAX_RXHWCLNT_AVAIL,
205 MAC_PROP_MAX_TXHWCLNT_AVAIL,
206 MAC_PROP_IB_LINKMODE,
207 MAC_PROP_PRIVATE = -1
208 } mac_prop_id_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/net80211.h 1

**
 30592 Tue Jun 12 19:55:30 2012
new/usr/src/uts/common/sys/net80211.h
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**

1 /*
2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */

6 /*
7 * Copyright (c) 2001 Atsushi Onoe
8 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
9 * All rights reserved.

10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
27 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
31 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
35 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */

38 #ifndef _SYS_NET80211_H
39 #define _SYS_NET80211_H

41 #include <sys/mac.h>
42 #include <sys/mac_provider.h>
43 #include <sys/ethernet.h>
44 #include <sys/net80211_proto.h>
45 #include <sys/net80211_crypto.h>
46 #include <sys/net80211_ht.h>
47 #include <net/wpa.h>

48 /*
49 * IEEE802.11 kernel support module
50 */

52 #ifdef __cplusplus
53 extern "C" {
54 #endif

56 /* ic_caps */
57 #define IEEE80211_C_WEP 0x00000001 /* CAPABILITY: WEP available */
58 #define IEEE80211_C_TKIP 0x00000002 /* CAPABILITY: TKIP available */

new/usr/src/uts/common/sys/net80211.h 2

59 #define IEEE80211_C_AES 0x00000004 /* CAPABILITY: AES OCB avail */
60 #define IEEE80211_C_AES_CCM 0x00000008 /* CAPABILITY: AES CCM avail */
61 #define IEEE80211_C_CKIP 0x00000010 /* CAPABILITY: CKIP available */
62 #define IEEE80211_C_FF 0x00000040 /* CAPABILITY: ATH FF avail */
63 #define IEEE80211_C_TURBOP 0x00000080
64 /* CAPABILITY: ATH Turbo available */
65 #define IEEE80211_C_IBSS 0x00000100 /* CAPABILITY: IBSS available */
66 #define IEEE80211_C_PMGT 0x00000200 /* CAPABILITY: Power mgmt */
67 #define IEEE80211_C_HOSTAP 0x00000400 /* CAPABILITY: HOSTAP avail */
68 #define IEEE80211_C_AHDEMO 0x00000800 /* CAPABILITY: Old Adhoc Demo */
69 #define IEEE80211_C_SWRETRY 0x00001000 /* CAPABILITY: sw tx retry */
70 #define IEEE80211_C_TXPMGT 0x00002000 /* CAPABILITY: tx power mgmt */
71 #define IEEE80211_C_SHSLOT 0x00004000 /* CAPABILITY: short slottime */
72 #define IEEE80211_C_SHPREAMBLE 0x00008000 /* CAPABILITY: short preamble */
73 #define IEEE80211_C_MONITOR 0x00010000 /* CAPABILITY: monitor mode */
74 #define IEEE80211_C_TKIPMIC 0x00020000 /* CAPABILITY: TKIP MIC avail */
75 #define IEEE80211_C_WPA1 0x00800000 /* CAPABILITY: WPA1 avail */
76 #define IEEE80211_C_WPA2 0x01000000 /* CAPABILITY: WPA2 avail */
77 #define IEEE80211_C_WPA 0x01800000
78 /* CAPABILITY: WPA1+WPA2 avail */
79 #define IEEE80211_C_BURST 0x02000000 /* CAPABILITY: frame bursting */
80 #define IEEE80211_C_WME 0x04000000 /* CAPABILITY: WME avail */
81 #define IEEE80211_C_WDS 0x08000000 /* CAPABILITY: 4-addr support */
82 /* 0x10000000 reserved */
83 #define IEEE80211_C_BGSCAN 0x20000000 /* CAPABILITY: bg scanning */
84 #define IEEE80211_C_TXFRAG 0x40000000 /* CAPABILITY: tx fragments */
85 /* XXX protection/barker? */

87 #define IEEE80211_C_CRYPTO 0x0000001f /* CAPABILITY: crypto alg’s */

89 /*
90 * ic_htcaps: HT-specific device/driver capabilities
91 *
92 * NB: the low 16-bits are the 802.11 definitions, the upper
93 * 16-bits are used to define s/w/driver capabilities.
94 */
95 #define IEEE80211_HTC_AMPDU 0x00010000 /* CAPABILITY: A-MPDU tx */
96 #define IEEE80211_HTC_AMSDU 0x00020000 /* CAPABILITY: A-MSDU tx */
97 /* NB: HT40 is implied by IEEE80211_HTCAP_CHWIDTH40 */
98 #define IEEE80211_HTC_HT 0x00040000 /* CAPABILITY: HT operation */

100 /* ic_flags */
101 /* NB: bits 0x4c available */
102 #define IEEE80211_F_FF 0x00000001 /* CONF: ATH FF enabled */
103 #define IEEE80211_F_TURBOP 0x00000002 /* CONF: ATH Turbo enabled */
104 #define IEEE80211_F_BURST 0x00000004 /* CONF: bursting enabled */
105 /* NB: this is intentionally setup to be IEEE80211_CAPINFO_PRIVACY */
106 #define IEEE80211_F_PRIVACY 0x00000010 /* CONF: privacy enabled */
107 #define IEEE80211_F_PUREG 0x00000020 /* CONF: 11g w/o 11b sta’s */
108 #define IEEE80211_F_SCANONLY 0x00000040 /* CONF: scan only */
109 #define IEEE80211_F_SCAN 0x00000080 /* STATUS: scanning */
110 #define IEEE80211_F_ASCAN 0x00000100 /* STATUS: active scan */
111 #define IEEE80211_F_SIBSS 0x00000200 /* STATUS: start IBSS */
112 /* NB: this is intentionally setup to be IEEE80211_CAPINFO_SHORT_SLOTTIME */
113 #define IEEE80211_F_SHSLOT 0x00000400
114 /* STATUS: use short slot time */
115 #define IEEE80211_F_PMGTON 0x00000800 /* CONF: Power mgmt enable */
116 #define IEEE80211_F_DESBSSID 0x00001000 /* CONF: des_bssid is set */
117 #define IEEE80211_F_WME 0x00002000 /* CONF: enable WME use */
118 #define IEEE80211_F_BGSCAN 0x00004000
119 /* CONF: bg scan enabled (???) */
120 #define IEEE80211_F_SWRETRY 0x00008000 /* CONF: sw tx retry enabled */
121 #define IEEE80211_F_TXPOW_FIXED 0x00010000 /* TX Power: fixed rate */
122 #define IEEE80211_F_IBSSON 0x00020000 /* CONF: IBSS creation enable */
123 #define IEEE80211_F_SHPREAMBLE 0x00040000 /* STATUS: use short preamble */
124 #define IEEE80211_F_DATAPAD 0x00080000 /* CONF: do alignment pad */

new/usr/src/uts/common/sys/net80211.h 3

125 #define IEEE80211_F_USEPROT 0x00100000 /* STATUS: protection enabled */
126 #define IEEE80211_F_USEBARKER 0x00200000
127 /* STATUS: use barker preamble */
128 #define IEEE80211_F_TIMUPDATE 0x00400000 /* STATUS: update beacon tim */
129 #define IEEE80211_F_WPA1 0x00800000 /* CONF: WPA enabled */
130 #define IEEE80211_F_WPA2 0x01000000 /* CONF: WPA2 enabled */
131 #define IEEE80211_F_WPA 0x01800000 /* CONF: WPA/WPA2 enabled */
132 #define IEEE80211_F_DROPUNENC 0x02000000 /* CONF: drop unencrypted */
133 #define IEEE80211_F_COUNTERM 0x04000000 /* CONF: TKIP countermeasures */
134 #define IEEE80211_F_HIDESSID 0x08000000 /* CONF: hide SSID in beacon */
135 #define IEEE80211_F_NOBRIDGE 0x10000000 /* CONF: dis. internal bridge */
136 #define IEEE80211_F_WMEUPDATE 0x20000000 /* STATUS: update beacon wme */

138 /* ic_flags_ext */
139 #define IEEE80211_FEXT_NONHT_PR 0x00000001 /* STATUS: non-HT sta present */
140 #define IEEE80211_FEXT_INACT 0x00000002 /* CONF: sta inact handling */
141 /* 0x00000006 reserved */
142 #define IEEE80211_FEXT_BGSCAN 0x00000008
143 /* STATUS: enable full bgscan completion */
144 #define IEEE80211_FEXT_ERPUPDATE 0x00000200 /* STATUS: update ERP element */
145 #define IEEE80211_FEXT_SWBMISS 0x00000400 /* CONF: do bmiss in s/w */
146 #define IEEE80211_FEXT_PROBECHAN 0x00020000 /* CONF: probe passive chan */
147 #define IEEE80211_FEXT_HT 0x00080000 /* CONF: HT supported */
148 #define IEEE80211_FEXT_AMPDU_TX 0x00100000 /* CONF: A-MPDU tx supported */
149 #define IEEE80211_FEXT_AMPDU_RX 0x00200000 /* CONF: A-MPDU tx supported */
150 #define IEEE80211_FEXT_AMSDU_TX 0x00400000 /* CONF: A-MSDU tx supported */
151 #define IEEE80211_FEXT_AMSDU_RX 0x00800000 /* CONF: A-MSDU tx supported */
152 #define IEEE80211_FEXT_USEHT40 0x01000000 /* CONF: 20/40 use enabled */
153 #define IEEE80211_FEXT_PUREN 0x02000000 /* CONF: 11n w/o legacy sta’s */
154 #define IEEE80211_FEXT_SHORTGI20 0x04000000 /* CONF: short GI in HT20 */
155 #define IEEE80211_FEXT_SHORTGI40 0x08000000 /* CONF: short GI in HT40 */
156 #define IEEE80211_FEXT_HTCOMPAT 0x10000000 /* CONF: HT vendor OUI’s */

158 /*
159 * Channel attributes (ich_flags)
160 * bits 0-3 are for private use by drivers
161 */
162 #define IEEE80211_CHAN_TURBO 0x00000010 /* Turbo channel */
163 #define IEEE80211_CHAN_CCK 0x00000020 /* CCK channel */
164 #define IEEE80211_CHAN_OFDM 0x00000040 /* OFDM channel */
165 #define IEEE80211_CHAN_2GHZ 0x00000080 /* 2 GHz spectrum channel. */
166 #define IEEE80211_CHAN_5GHZ 0x00000100 /* 5 GHz spectrum channel */
167 #define IEEE80211_CHAN_PASSIVE 0x00000200 /* Only passive scan allowed */
168 #define IEEE80211_CHAN_DYN 0x00000400 /* Dynamic CCK-OFDM channel */
169 #define IEEE80211_CHAN_GFSK 0x00000800 /* GFSK channel (FHSS PHY) */
170 #define IEEE80211_CHAN_GSM 0x00001000 /* 900 MHz spectrum channel */
171 #define IEEE80211_CHAN_STURBO 0x00002000 /* 11a static turbo channel only */
172 #define IEEE80211_CHAN_HALF 0x00004000 /* Half rate channel */
173 #define IEEE80211_CHAN_QUARTER 0x00008000 /* Quarter rate channel */
174 #define IEEE80211_CHAN_HT20 0x00010000 /* HT 20 channel */
175 #define IEEE80211_CHAN_HT40U 0x00020000 /* HT 40 channel w/ ext above */
176 #define IEEE80211_CHAN_HT40D 0x00040000 /* HT 40 channel w/ ext below */
177 #define IEEE80211_CHAN_DFS 0x00080000 /* DFS required */
178 #define IEEE80211_CHAN_4MSXMIT 0x00100000 /* 4ms limit on frame length */
179 #define IEEE80211_CHAN_NOADHOC 0x00200000 /* adhoc mode not allowed */
180 #define IEEE80211_CHAN_NOHOSTAP 0x00400000 /* hostap mode not allowed */
181 #define IEEE80211_CHAN_11D 0x00800000 /* 802.11d required */

183 #define IEEE80211_CHAN_HT40 (IEEE80211_CHAN_HT40U | IEEE80211_CHAN_HT40D)
184 #define IEEE80211_CHAN_HT (IEEE80211_CHAN_HT20 | IEEE80211_CHAN_HT40)

186 #define IEEE80211_CHAN_MAX 255
187 #define IEEE80211_CHAN_BYTES 32 /* howmany(IEEE80211_CHAN_MAX, NBBY) */
188 #define IEEE80211_CHAN_ANY 0xffff /* token for ‘‘any channel’’ */
189 #define IEEE80211_CHAN_ANYC \
190 ((struct ieee80211_channel *)IEEE80211_CHAN_ANY)

new/usr/src/uts/common/sys/net80211.h 4

192 #define IEEE80211_IS_CHAN_2GHZ(_c) \
193 (((_c)->ich_flags & IEEE80211_CHAN_2GHZ) != 0)
194 #define IEEE80211_IS_CHAN_5GHZ(_c) \
195 (((_c)->ich_flags & IEEE80211_CHAN_5GHZ) != 0)

197 #define IEEE80211_NODE_CHWUPDATE 0x0400 /* 11n channel width change */
198 #define IEEE80211_NODE_HASHSIZE 32

200 #define IEEE80211_NODE_AUTH 0x0001 /* authorized for data */
201 #define IEEE80211_NODE_QOS 0x0002 /* QoS enabled */
202 #define IEEE80211_NODE_ERP 0x0004 /* ERP enabled */
203 /* NB: this must have the same value as IEEE80211_FC1_PWR_MGT */
204 #define IEEE80211_NODE_PWR_MGT 0x0010 /* power save mode enabled */
205 #define IEEE80211_NODE_AREF 0x0020 /* authentication ref held */
206 #define IEEE80211_NODE_HT 0x0040 /* HT enabled */
207 #define IEEE80211_NODE_HTCOMPAT 0x0080 /* HT setup w/ vendor OUI’s */
208 #define IEEE80211_NODE_AMPDU_RX 0x0400 /* AMPDU rx enabled */
209 #define IEEE80211_NODE_AMPDU_TX 0x0800 /* AMPDU tx enabled */

211 #define IEEE80211_NODE_AMPDU \
212 (IEEE80211_NODE_AMPDU_RX | IEEE80211_NODE_AMPDU_TX)

214 #define IEEE80211_FIXED_RATE_NONE 0

216 #define WME_OUI 0xf25000
217 #define WME_OUI_TYPE 0x02
218 #define WME_INFO_OUI_SUBTYPE 0x00
219 #define WME_PARAM_OUI_SUBTYPE 0x01
220 #define WME_VERSION 1

222 /* WME stream classes */
223 #define WME_AC_BE 0 /* best effort */
224 #define WME_AC_BK 1 /* background */
225 #define WME_AC_VI 2 /* video */
226 #define WME_AC_VO 3 /* voice */

228 #define MAX_EVENT 16
229 #define MAX_IEEE80211STR 256

231 /* required for ’arn’ driver */
232 #define MAX_RSSI 15

234 #endif /* ! codereview */
235 /* For IEEE80211_RADIOTAP_FLAGS */
236 #define IEEE80211_RADIOTAP_F_CFP 0x01
237 /* sent/received during CFP */
238 #define IEEE80211_RADIOTAP_F_SHORTPRE 0x02
239 /* sent/received with short preamble */
240 #define IEEE80211_RADIOTAP_F_WEP 0x04
241 /* sent/received with WEP encryption */
242 #define IEEE80211_RADIOTAP_F_FRAG 0x08
243 /* sent/received with fragmentation */
244 #define IEEE80211_RADIOTAP_F_DATAPAD 0x20
245 /*
246 * frame has padding between 802.11
247 * header and payload (to 32-bit
248 * boundary
249 */
250 #define IEEE80211_RADIOTAP_F_FCS 0x10 /* frame includes FCS */
251 #define IEEE80211_RADIOTAP_F_BADFCS 0x40 /* does not pass FCS check */
252 #define IEEE80211_RADIOTAP_F_SHORTGI 0x80 /* HT short GI */

254 /*
255 * Authentication mode.
256 * auth_algs should be only OPEN/SHARED/LEAP

new/usr/src/uts/common/sys/net80211.h 5

257 * see IEEE80211_AUTH_ALG_* in net80211_proto.h
258 * NONE/8021X/AUTO/WPA refer to key_mgmt protocols!
259 #endif /* ! codereview */
260 */
261 enum ieee80211_authmode {
262 IEEE80211_AUTH_NONE = 0,
263 IEEE80211_AUTH_OPEN = 1, /* open */
264 IEEE80211_AUTH_SHARED = 2, /* shared-key */
265 IEEE80211_AUTH_8021X = 3, /* 802.1x */
266 IEEE80211_AUTH_AUTO = 4, /* auto-select/accept */
267 /* actually, this is never used */
232 /* NB: these are used only for ioctls */
268 IEEE80211_AUTH_WPA = 5 /* WPA/RSN w/ 802.1x/PSK */
269 };

______unchanged_portion_omitted_

279 #endif /* ! codereview */
280 #define IEEE80211_S_MAX (IEEE80211_S_RUN+1)

282 #define WPA_DOOR "/var/run/wpa_door"

284 /*
285 * WPA State machine events
286 */
287 typedef enum {
288 EVENT_ASSOC,
289 EVENT_DISASSOC,
290 EVENT_SCAN_RESULTS = 3
291 } wpa_event_type;

293 typedef struct wl_events {
294 wpa_event_type event;
295 } wl_events_t;

298 #endif /* ! codereview */
299 /*
300 * 802.11 rate set.
301 */
302 #define IEEE80211_RATE_MAXSIZE 15 /* max rates we’ll handle */
303 #define IEEE80211_RATE_SIZE 8 /* 802.11 standard */
304 #define IEEE80211_XRATE_SIZE (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
305 /* size of extended supported rates */
306 struct ieee80211_rateset {
307 uint8_t ir_nrates;
308 uint8_t ir_rates[IEEE80211_RATE_MAXSIZE];
309 };

311 /*
312 * 802.11n variant of ieee80211_rateset. Instead
313 * legacy rates the entries are MCS rates. We define
314 * the structure such that it can be used interchangeably
315 * with an ieee80211_rateset (modulo structure size).
316 */
317 #define IEEE80211_HTRATE_MAXSIZE 127

319 struct ieee80211_htrateset {
320 uint8_t rs_nrates;
321 uint8_t rs_rates[IEEE80211_HTRATE_MAXSIZE];
322 };

324 #define IEEE80211_RATE_MCS 0x80

326 /*
327 * Channels are specified by frequency and attributes.
328 */

new/usr/src/uts/common/sys/net80211.h 6

329 struct ieee80211_channel {
330 uint16_t ich_freq; /* setting in Mhz */
331 uint32_t ich_flags; /* see below */
332 };

334 struct ieee80211_device_stats {
335 uint32_t is_tx_frags;
336 uint32_t is_tx_bytes;
337 uint32_t is_tx_mcast;
338 uint32_t is_tx_failed;
339 uint32_t is_tx_retries;
340 uint32_t is_rts_success;
341 uint32_t is_rts_failure;
342 uint32_t is_ack_failure;
343 uint32_t is_rx_frags;
344 uint32_t is_rx_bytes;
345 uint32_t is_rx_mcast;
346 uint32_t is_rx_dups;
347 uint32_t is_fcs_errors;
348 uint32_t is_wep_errors;
349 uint32_t is_tx_nobuf;
350 uint32_t is_tx_unknownmgt;
351 };

353 struct ieee80211_crypto_state;
354 typedef struct ieee80211_node_table ieee80211_node_table_t;
355 typedef struct ieee80211_node ieee80211_node_t;
356 typedef struct ieee80211com ieee80211com_t;

358 struct ieee80211_node_table {
359 struct ieee80211com *nt_ic; /* back reference */

361 const char *nt_name; /* for debugging */
362 /* For node inactivity processing */
363 int nt_inact_timer; /* inactivity timer */
364 int nt_inact_init; /* initial node inact setting */
365 void (*nt_timeout)(struct ieee80211_node_table *);
366 uint32_t nt_scangen; /* gen# for timeout scan */
367 kmutex_t nt_scanlock; /* on nt_scangen */
368 kmutex_t nt_nodelock; /* on node table */

370 int nt_keyixmax; /* keyixmap size */
371 struct ieee80211_node **nt_keyixmap; /* key ix -> node map */

373 list_t nt_node; /* information of all nodes */
374 list_t nt_hash[IEEE80211_NODE_HASHSIZE];
375 };

377 #define IEEE80211_TID_SIZE (WME_NUM_TID+1) /* WME TID’s +1 for non-QoS */
378 #define IEEE80211_NONQOS_TID WME_NUM_TID /* index for non-QoS sta */

380 /*
381 * Node specific information. Note that drivers are expected
382 * to derive from this structure to add device-specific per-node
383 * state. This is done by overriding the ic_node_* methods in
384 * the ieee80211com structure.
385 */
386 struct ieee80211_node {
387 struct ieee80211com *in_ic;
388 struct ieee80211_node_table *in_table;

390 uint8_t in_authmode; /* authentication algorithm */
391 uint16_t in_flags; /* special purpose state */
392 uint16_t in_associd; /* assoc response */
393 uint16_t in_txpower; /* current transmit power */
394 uint16_t in_vlan; /* vlan tag */

new/usr/src/uts/common/sys/net80211.h 7

395 /*
396 * Tx/Rx sequence number.
397 * index 0 is used when QoS is not enabled. index 1-16 is used
398 * when QoS is enabled. 1-16 corresponds to TID 0-15.
399 */
400 uint16_t in_txseqs[IEEE80211_TID_SIZE];
401 uint16_t in_rxseqs[IEEE80211_TID_SIZE];
402 clock_t in_rxfragstamp; /* time stamp of last rx frag */
403 mblk_t *in_rxfrag; /* rx frag reassembly */
404 uint32_t in_scangen; /* gen# for timeout scan */
405 uint32_t in_refcnt;

407 /* hardware */
408 uint32_t in_rstamp; /* recv timestamp */
409 uint8_t in_rssi; /* recv ssi */

411 /* header */
412 uint8_t in_macaddr[IEEE80211_ADDR_LEN];
413 uint8_t in_bssid[IEEE80211_ADDR_LEN];

415 /* beacon, probe response */
416 union {
417 uint8_t data[8];
418 uint64_t tsf;
419 } in_tstamp; /* from last rcv’d beacon */
420 uint16_t in_intval; /* beacon interval */
421 uint16_t in_capinfo; /* capabilities */
422 uint8_t in_esslen;
423 uint8_t in_essid[IEEE80211_NWID_LEN];
424 struct ieee80211_rateset in_rates; /* negotiated rate set */
425 struct ieee80211_channel *in_chan; /* XXX multiple uses */
426 enum ieee80211_phytype in_phytype;
427 uint16_t in_fhdwell; /* FH only */
428 uint8_t in_fhindex; /* FH only */
429 uint8_t in_erp; /* ERP from beacon/probe resp */
430 uint16_t in_tim_off; /* byte offset to TIM ie */
431 uint8_t in_dtim_period; /* DTIM period */
432 uint8_t in_dtim_count; /* DTIM count for last bcn */

434 uint32_t *in_challenge; /* shared-key challenge */
435 struct ieee80211_key in_ucastkey; /* unicast key */
436 uint8_t *in_wpa_ie; /* captured WPA/RSN ie */
437 uint8_t *in_wme_ie; /* captured WME ie */

439 /* 11n state */
440 uint8_t *in_htcap_ie; /* captured HTCAP ie */
441 uint16_t in_htcap; /* HT capabilities */
442 uint8_t in_htparam; /* HT params */
443 uint8_t in_htctlchan; /* HT control channel */
444 uint8_t in_ht2ndchan; /* HT 2nd channel */
445 uint8_t in_htopmode; /* HT operating mode */
446 uint8_t in_htstbc; /* HT */
447 uint8_t in_reqcw; /* requested tx channel width */
448 uint8_t in_chw; /* negotiated channel width */
449 struct ieee80211_htrateset in_htrates; /* negotiated ht rate set */
450 struct ieee80211_tx_ampdu in_tx_ampdu[WME_NUM_AC];
451 struct ieee80211_rx_ampdu in_rx_ampdu[WME_NUM_TID];

453 /* others */
454 int32_t in_fails; /* failure count to associate */
455 int16_t in_inact; /* inactivity mark count */
456 int16_t in_inact_reload; /* inactivity reload value */
457 int32_t in_txrate; /* index to in_rates[] */

459 list_node_t in_node; /* element of nt->nt_node */
460 list_node_t in_hash; /* element of nt->nt_hash */

new/usr/src/uts/common/sys/net80211.h 8

461 };

463 /*
464 * WME/WMM support.
465 */
466 struct wmeParams {
467 uint8_t wmep_acm;
468 uint8_t wmep_aifsn;
469 uint8_t wmep_logcwmin; /* log2(cwmin) */
470 uint8_t wmep_logcwmax; /* log2(cwmax) */
471 uint8_t wmep_txopLimit;
472 uint8_t wmep_noackPolicy; /* 0 (ack), 1 (no ack) */
473 };
474 #define IEEE80211_TXOP_TO_US(_txop) ((_txop)<<5)
475 #define IEEE80211_US_TO_TXOP(_us) ((_us)>>5)

477 struct chanAccParams {
478 uint8_t cap_info; /* version of the current set */
479 struct wmeParams cap_wmeParams[WME_NUM_AC];
480 };

482 struct ieee80211_wme_state {
483 uint_t wme_flags;
484 #define WME_F_AGGRMODE 0x00000001 /* STATUS: WME agressive mode */
485 uint_t wme_hipri_traffic; /* VI/VO frames in beacon interval */
486 uint_t wme_hipri_switch_thresh; /* agressive mode switch thresh */
487 uint_t wme_hipri_switch_hysteresis;
488 /* agressive mode switch hysteresis */
489 struct wmeParams wme_params[4]; /* from assoc resp for each AC */
490 struct chanAccParams wme_wmeChanParams; /* WME params applied to self */
491 struct chanAccParams wme_wmeBssChanParams;
492 /* WME params bcast to stations */
493 struct chanAccParams wme_chanParams; /* params applied to self */
494 struct chanAccParams wme_bssChanParams; /* params bcast to stations */
495 int (*wme_update)(struct ieee80211com *);
496 };

498 struct ieee80211com {
499 mac_handle_t ic_mach;

501 /* Initialized by driver */
502 uint8_t ic_macaddr[IEEE80211_ADDR_LEN];
503 uint32_t ic_caps; /* capabilities */
504 uint32_t ic_htcaps; /* HT capabilities */
505 enum ieee80211_phytype ic_phytype; /* XXX wrong for multi-mode */
506 enum ieee80211_opmode ic_opmode; /* current operation mode */
507 enum ieee80211_state ic_state; /* current 802.11 state */
508 struct ieee80211_channel ic_sup_channels[IEEE80211_CHAN_MAX+1];
509 struct ieee80211_rateset ic_sup_rates[IEEE80211_MODE_MAX];
510 enum ieee80211_phymode ic_curmode; /* OPT current mode */
511 struct ieee80211_channel *ic_curchan; /* OPT current channel */
512 struct ieee80211_channel *ic_ibss_chan; /* OPT bss channel */
513 uint8_t ic_maxrssi; /* maximum hardware RSSI */

515 /* INITIALIZED by IEEE80211, used/overridden by driver */
516 uint16_t ic_modecaps; /* set of mode capabilities */
517 uint8_t ic_chan_active[IEEE80211_CHAN_BYTES];
518 enum ieee80211_protmode ic_protmode; /* 802.11g protection mode */
519 uint16_t ic_bintval; /* beacon interval */
520 uint16_t ic_lintval; /* listen interval */
521 uint16_t ic_txpowlimit; /* global tx power limit */
522 uint8_t ic_bmissthreshold;
523 uint16_t ic_rtsthreshold;
524 uint16_t ic_fragthreshold;
525 uint8_t ic_fixed_rate; /* value of fixed rate */
526 int32_t ic_des_esslen; /* length of desired essid */

new/usr/src/uts/common/sys/net80211.h 9

527 uint8_t ic_des_essid[IEEE80211_NWID_LEN];
528 uint8_t ic_des_bssid[IEEE80211_ADDR_LEN];
529 struct ieee80211_channel *ic_des_chan; /* desired channel */
530 void *ic_opt_ie; /* user-specified IE’s */
531 uint16_t ic_opt_ie_len; /* length of ic_opt_ie */
532 uint8_t ic_nickname[IEEE80211_NWID_LEN];
533 uint16_t ic_tim_len; /* ic_tim_bitmap size (bytes) */
534 uint8_t *ic_tim_bitmap; /* powersave stations w/ data */
535 timeout_id_t ic_watchdog_timer; /* watchdog timer */
536 /* Cipher state/configuration. */
537 struct ieee80211_crypto_state ic_crypto;
538 const struct ieee80211_cipher *ic_ciphers[IEEE80211_CIPHER_MAX];

540 kmutex_t ic_doorlock;
541 char ic_wpadoor[MAX_IEEE80211STR];

543 wpa_event_type ic_eventq[MAX_EVENT];
544 uint32_t ic_evq_head, ic_evq_tail;

546 /* Runtime states */
547 uint32_t ic_flags; /* state/conf flags */
548 uint32_t ic_flags_ext; /* extended state flags */
549 struct ieee80211_node *ic_bss; /* information for this node */
550 struct ieee80211_device_stats ic_stats;
551 struct ieee80211_node_table ic_scan; /* STA: scan candidates */
552 struct ieee80211_node_table ic_sta; /* AP:stations/IBSS:neighbors */

554 struct ieee80211_wme_state ic_wme; /* WME/WMM state */

556 int ic_ampdu_rxmax; /* A-MPDU rx limit (bytes) */
557 int ic_ampdu_density; /* A-MPDU density */
558 int ic_ampdu_limit; /* A-MPDU tx limit (bytes) */
559 int ic_amsdu_limit; /* A-MSDU tx limit (bytes) */

561 uint16_t ic_sta_assoc; /* stations associated */
562 uint16_t ic_ht_sta_assoc; /* HT stations associated */
563 uint16_t ic_ht40_sta_assoc; /* HT40 station associated */
564 uint8_t ic_curhtprotmode; /* HTINFO bss state */
565 enum ieee80211_protmode ic_htprotmode; /* HT protection mode */
566 int ic_lastnonerp; /* last time nonERP sta noted */
567 int ic_lastnonht; /* last time non-HT sta noted */
568 int ic_beaconmiss; /* beacon miss counter */

571 /* callback functions */
572 /*
573 * Functions initialized by driver before calling ieee80211_attach()
574 * Those must be initialized are marked with M(andatory)
575 *
576 * ic_xmit - [M] transmit a management or null data frame
577 * return 0 on success, non-zero on error
578 * ic_watchdog - [O] periodic run function, enabled by
579 * ieee80211_start_watchdog()
580 * ic_set_tim - [O] set/clear traffic indication map
581 * ic_set_shortslot - [O] enable/disable short slot timing
582 * ic_node_newassoc - [O] driver specific operation on a newly
583 * associated or re-assoced node
584 */
585 int (*ic_xmit)(ieee80211com_t *, mblk_t *, uint8_t);
586 void (*ic_watchdog)(void *);
587 void (*ic_set_tim)(ieee80211com_t *,
588 ieee80211_node_t *, int);
589 void (*ic_set_shortslot)(ieee80211com_t *, int);
590 void (*ic_node_newassoc)(ieee80211_node_t *, int);
591 /*
592 * Functions initialized by ieee80211_attach(), driver could

new/usr/src/uts/common/sys/net80211.h 10

593 * override these functions after calling ieee80211_attach()
594 *
595 * ic_reset - reset
596 * ic_recv_mgmt - handle received management frames
597 * ic_send_mgmt - construct and transmit management frames
598 * ic_newstate - handle state transition
599 * ic_node_alloc - allocate a new BSS info node
600 * ic_node_cleanup - cleanup or free memory spaces of a node
601 * ic_node_free - free a node
602 * ic_node_getrssi - get node’s rssi
603 */
604 int (*ic_reset)(ieee80211com_t *);
605 void (*ic_recv_mgmt)(ieee80211com_t *,
606 mblk_t *, ieee80211_node_t *,
607 int, int, uint32_t);
608 int (*ic_send_mgmt)(ieee80211com_t *,
609 ieee80211_node_t *, int, int);
610 int (*ic_newstate)(ieee80211com_t *,
611 enum ieee80211_state, int);
612 struct ieee80211_node *(*ic_node_alloc)(ieee80211com_t *);
613 void (*ic_node_cleanup)(ieee80211_node_t *);
614 void (*ic_node_free)(ieee80211_node_t *);
615 uint8_t (*ic_node_getrssi)(const ieee80211_node_t *);
616 void (*ic_set_channel)(ieee80211com_t *);

618 /*
619 * 802.11n ADDBA support. A simple/generic implementation
620 * of A-MPDU tx aggregation is provided; the driver may
621 * override these methods to provide their own support.
622 * A-MPDU rx re-ordering happens automatically if the
623 * driver passes out-of-order frames to ieee80211_input
624 * from an assocated HT station.
625 */
626 void (*ic_recv_action)(ieee80211_node_t *,
627 const uint8_t *, const uint8_t *);
628 int (*ic_send_action)(ieee80211_node_t *,
629 int, int, uint16_t[4]);
630 /* start/stop doing A-MPDU tx aggregation for a station */
631 int (*ic_addba_request)(ieee80211_node_t *,
632 struct ieee80211_tx_ampdu *,
633 int, int, int);
634 int (*ic_addba_response)(ieee80211_node_t *,
635 struct ieee80211_tx_ampdu *,
636 int, int, int);
637 void (*ic_addba_stop)(ieee80211_node_t *,
638 struct ieee80211_tx_ampdu *);

640 kmutex_t ic_genlock;
641 void *ic_private; /* ieee80211 private data */
642 };
643 #define ic_nw_keys ic_crypto.cs_nw_keys
644 #define ic_def_txkey ic_crypto.cs_def_txkey

646 extern const char *ieee80211_state_name[IEEE80211_S_MAX];
647 extern const char *ieee80211_wme_acnames[];

649 #define IEEE80211_RATE(_ix) \
650 (in->in_rates.ir_rates[(_ix)] & IEEE80211_RATE_VAL)

652 #define ieee80211_new_state(_ic, _nstate, _arg) \
653 (((_ic)->ic_newstate)((_ic), (_nstate), (_arg)))

655 #define ieee80211_macaddr_sprintf(_addr) \
656 ether_sprintf((struct ether_addr *)(_addr))

658 /*

new/usr/src/uts/common/sys/net80211.h 11

659 * Node reference counting definitions.
660 *
661 * ieee80211_node_initref initialize the reference count to 1
662 * ieee80211_node_incref add a reference
663 * ieee80211_node_decref remove a reference
664 * ieee80211_node_decref_nv remove a reference and return new value
665 * ieee80211_node_refcnt reference count for printing (only)
666 */
667 #include <sys/atomic.h>
668 #define ieee80211_node_initref(_in) \
669 ((_in)->in_refcnt = 1)
670 #define ieee80211_node_incref(_in) \
671 atomic_inc_uint(&(_in)->in_refcnt)
672 #define ieee80211_node_decref(_in) \
673 atomic_dec_uint(&(_in)->in_refcnt)
674 #define ieee80211_node_decref_nv(_in) \
675 atomic_dec_uint_nv(&(_in)->in_refcnt)
676 #define ieee80211_node_refcnt(_in) \
677 (_in)->in_refcnt

679 typedef void ieee80211_iter_func(void *, ieee80211_node_t *);

681 /* Initialization */
682 void ieee80211_attach(ieee80211com_t *);
683 void ieee80211_detach(ieee80211com_t *);
684 void ieee80211_media_init(ieee80211com_t *);
685 int ieee80211_ioctl(ieee80211com_t *, queue_t *, mblk_t *);
686 void ieee80211_register_door(ieee80211com_t *, const char *, int);

688 /* Protocol Processing */
689 int ieee80211_input(ieee80211com_t *, mblk_t *, ieee80211_node_t *,
690 int32_t, uint32_t);
691 mblk_t *ieee80211_encap(ieee80211com_t *, mblk_t *, ieee80211_node_t *);

693 mblk_t *ieee80211_beacon_alloc(ieee80211com_t *, ieee80211_node_t *,
694 struct ieee80211_beacon_offsets *);
695 int ieee80211_beacon_update(ieee80211com_t *, ieee80211_node_t *,
696 struct ieee80211_beacon_offsets *, mblk_t *, int);
697 void ieee80211_beacon_miss(ieee80211com_t *);

699 void ieee80211_begin_scan(ieee80211com_t *, boolean_t);
700 void ieee80211_next_scan(ieee80211com_t *);
701 void ieee80211_end_scan(ieee80211com_t *);
702 void ieee80211_cancel_scan(ieee80211com_t *);

704 void ieee80211_sta_join(ieee80211com_t *, ieee80211_node_t *);
705 void ieee80211_sta_leave(ieee80211com_t *, ieee80211_node_t *);
706 boolean_t ieee80211_ibss_merge(ieee80211_node_t *);

708 /* Node Operation */
709 ieee80211_node_t *ieee80211_ref_node(ieee80211_node_t *);
710 void ieee80211_unref_node(ieee80211_node_t **);
711 void ieee80211_node_authorize(ieee80211_node_t *);
712 void ieee80211_node_unauthorize(ieee80211_node_t *);
713 ieee80211_node_t *ieee80211_alloc_node(ieee80211com_t *,
714 ieee80211_node_table_t *, const uint8_t *);
715 void ieee80211_free_node(ieee80211_node_t *);
716 void ieee80211_node_table_reset(ieee80211_node_table_t *);
717 void ieee80211_iterate_nodes(ieee80211_node_table_t *, ieee80211_iter_func *,
718 void *);
719 ieee80211_node_t *ieee80211_find_node(ieee80211_node_table_t *,
720 const uint8_t *);
721 ieee80211_node_t *ieee80211_find_node_with_ssid(ieee80211_node_table_t *,
722 const uint8_t *, uint32_t, const uint8_t *);
723 ieee80211_node_t *ieee80211_find_txnode(ieee80211com_t *,
724 const uint8_t daddr[IEEE80211_ADDR_LEN]);

new/usr/src/uts/common/sys/net80211.h 12

725 ieee80211_node_t *ieee80211_find_rxnode(ieee80211com_t *,
726 const struct ieee80211_frame *);

729 /* Crypto */
730 extern struct ieee80211_key *ieee80211_crypto_encap(ieee80211com_t *, mblk_t *);
731 extern struct ieee80211_key *ieee80211_crypto_decap(ieee80211com_t *, mblk_t *,
732 int);
733 extern int ieee80211_crypto_newkey(ieee80211com_t *, int, int,
734 struct ieee80211_key *);
735 extern int ieee80211_crypto_delkey(ieee80211com_t *, struct ieee80211_key *);
736 extern int ieee80211_crypto_setkey(ieee80211com_t *, struct ieee80211_key *,
737 const uint8_t macaddr[IEEE80211_ADDR_LEN]);

739 /* Helper Functions */
740 int ieee80211_stat(ieee80211com_t *ic, uint_t stat, uint64_t *val);
741 uint32_t ieee80211_chan2ieee(ieee80211com_t *, struct ieee80211_channel *);
742 enum ieee80211_phymode ieee80211_chan2mode(ieee80211com_t *,
743 struct ieee80211_channel *);
744 uint32_t ieee80211_ieee2mhz(uint32_t, uint32_t);
745 void ieee80211_reset_chan(ieee80211com_t *);
746 void ieee80211_dump_pkt(const uint8_t *, int32_t, int32_t, int32_t);
747 void ieee80211_watchdog(void *);
748 void ieee80211_start_watchdog(ieee80211com_t *, uint32_t);
749 void ieee80211_stop_watchdog(ieee80211com_t *);
750 int ieee80211_classify(struct ieee80211com *, mblk_t *,
751 struct ieee80211_node *);
752 int ieee80211_hdrsize(const void *);
753 int ieee80211_hdrspace(ieee80211com_t *, const void *);
754 int ieee80211_anyhdrsize(const void *);
755 int ieee80211_anyhdrspace(ieee80211com_t *, const void *);

757 void *ieee80211_malloc(size_t);
758 void ieee80211_free(void *);
759 int ieee80211_setprop(void *, const char *, mac_prop_id_t, uint_t,
760 const void *);
761 int ieee80211_getprop(void *, const char *, mac_prop_id_t, uint_t, void *);
762 void ieee80211_propinfo(void *, const char *, mac_prop_id_t,
763 mac_prop_info_handle_t);

766 struct ieee80211_channel *ieee80211_find_channel(ieee80211com_t *, int, int);
767 const struct ieee80211_rateset *ieee80211_get_suprates(ieee80211com_t *,
768 struct ieee80211_channel *);

770 /* HT */

772 #ifdef __cplusplus
773 }
774 #endif

776 #endif /* _SYS_NET80211_H */

new/usr/src/uts/common/sys/net80211_proto.h 1

**
 32487 Tue Jun 12 19:55:31 2012
new/usr/src/uts/common/sys/net80211_proto.h
ess_list ioctl now provides all scan results properties for wpa/libdlwlan
first integration of wpa_s control interface client code
first integration of wpa_s wpa_ie parsing code
**
______unchanged_portion_omitted_

786 #define BCM_OUI 0x4c9000 /* Broadcom OUI */
787 #define BCM_OUI_HTCAP 51 /* pre-draft HTCAP ie */
788 #define BCM_OUI_HTINFO 52 /* pre-draft HTINFO ie */

790 #define WPA_OUI 0xf25000
791 #define WPA_OUI_TYPE 0x01
792 //#define WPA_VERSION 1 /* current supported ver
792 #define WPA_VERSION 1 /* current supported version */

794 #define IEEE80211_CHALLENGE_LEN 128

796 #define IEEE80211_RATE_BASIC 0x80
797 #define IEEE80211_RATE_VAL 0x7f

799 /* EPR information element flags */
800 #define IEEE80211_ERP_NON_ERP_PRESENT 0x01
801 #define IEEE80211_ERP_USE_PROTECTION 0x02
802 #define IEEE80211_ERP_LONG_PREAMBLE 0x04

804 #define IEEE80211_AUTH_ALG_OPEN 0x0000
805 #define IEEE80211_AUTH_ALG_SHARED 0x0001
806 #define IEEE80211_AUTH_ALG_LEAP 0x0080

809 enum {
810 IEEE80211_AUTH_OPEN_REQUEST = 1,
811 IEEE80211_AUTH_OPEN_RESPONSE = 2
812 };

______unchanged_portion_omitted_

