1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 int zfs_arc_grow_retry = 0; 200 int zfs_arc_shrink_shift = 0; 201 int zfs_arc_p_min_shift = 0; 202 int zfs_disable_dup_eviction = 0; 203 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 204 205 /* 206 * Note that buffers can be in one of 6 states: 207 * ARC_anon - anonymous (discussed below) 208 * ARC_mru - recently used, currently cached 209 * ARC_mru_ghost - recentely used, no longer in cache 210 * ARC_mfu - frequently used, currently cached 211 * ARC_mfu_ghost - frequently used, no longer in cache 212 * ARC_l2c_only - exists in L2ARC but not other states 213 * When there are no active references to the buffer, they are 214 * are linked onto a list in one of these arc states. These are 215 * the only buffers that can be evicted or deleted. Within each 216 * state there are multiple lists, one for meta-data and one for 217 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 218 * etc.) is tracked separately so that it can be managed more 219 * explicitly: favored over data, limited explicitly. 220 * 221 * Anonymous buffers are buffers that are not associated with 222 * a DVA. These are buffers that hold dirty block copies 223 * before they are written to stable storage. By definition, 224 * they are "ref'd" and are considered part of arc_mru 225 * that cannot be freed. Generally, they will aquire a DVA 226 * as they are written and migrate onto the arc_mru list. 227 * 228 * The ARC_l2c_only state is for buffers that are in the second 229 * level ARC but no longer in any of the ARC_m* lists. The second 230 * level ARC itself may also contain buffers that are in any of 231 * the ARC_m* states - meaning that a buffer can exist in two 232 * places. The reason for the ARC_l2c_only state is to keep the 233 * buffer header in the hash table, so that reads that hit the 234 * second level ARC benefit from these fast lookups. 235 */ 236 237 typedef struct arc_state { 238 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 239 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 240 uint64_t arcs_size; /* total amount of data in this state */ 241 kmutex_t arcs_mtx; 242 } arc_state_t; 243 244 /* The 6 states: */ 245 static arc_state_t ARC_anon; 246 static arc_state_t ARC_mru; 247 static arc_state_t ARC_mru_ghost; 248 static arc_state_t ARC_mfu; 249 static arc_state_t ARC_mfu_ghost; 250 static arc_state_t ARC_l2c_only; 251 252 typedef struct arc_stats { 253 kstat_named_t arcstat_hits; 254 kstat_named_t arcstat_misses; 255 kstat_named_t arcstat_demand_data_hits; 256 kstat_named_t arcstat_demand_data_misses; 257 kstat_named_t arcstat_demand_metadata_hits; 258 kstat_named_t arcstat_demand_metadata_misses; 259 kstat_named_t arcstat_prefetch_data_hits; 260 kstat_named_t arcstat_prefetch_data_misses; 261 kstat_named_t arcstat_prefetch_metadata_hits; 262 kstat_named_t arcstat_prefetch_metadata_misses; 263 kstat_named_t arcstat_mru_hits; 264 kstat_named_t arcstat_mru_ghost_hits; 265 kstat_named_t arcstat_mfu_hits; 266 kstat_named_t arcstat_mfu_ghost_hits; 267 kstat_named_t arcstat_deleted; 268 kstat_named_t arcstat_recycle_miss; 269 /* 270 * Number of buffers that could not be evicted because the hash lock 271 * was held by another thread. The lock may not necessarily be held 272 * by something using the same buffer, since hash locks are shared 273 * by multiple buffers. 274 */ 275 kstat_named_t arcstat_mutex_miss; 276 /* 277 * Number of buffers skipped because they have I/O in progress, are 278 * indrect prefetch buffers that have not lived long enough, or are 279 * not from the spa we're trying to evict from. 280 */ 281 kstat_named_t arcstat_evict_skip; 282 kstat_named_t arcstat_evict_l2_cached; 283 kstat_named_t arcstat_evict_l2_eligible; 284 kstat_named_t arcstat_evict_l2_ineligible; 285 kstat_named_t arcstat_hash_elements; 286 kstat_named_t arcstat_hash_elements_max; 287 kstat_named_t arcstat_hash_collisions; 288 kstat_named_t arcstat_hash_chains; 289 kstat_named_t arcstat_hash_chain_max; 290 kstat_named_t arcstat_p; 291 kstat_named_t arcstat_c; 292 kstat_named_t arcstat_c_min; 293 kstat_named_t arcstat_c_max; 294 kstat_named_t arcstat_size; 295 kstat_named_t arcstat_hdr_size; 296 kstat_named_t arcstat_data_size; 297 kstat_named_t arcstat_other_size; 298 kstat_named_t arcstat_l2_hits; 299 kstat_named_t arcstat_l2_misses; 300 kstat_named_t arcstat_l2_feeds; 301 kstat_named_t arcstat_l2_rw_clash; 302 kstat_named_t arcstat_l2_read_bytes; 303 kstat_named_t arcstat_l2_write_bytes; 304 kstat_named_t arcstat_l2_writes_sent; 305 kstat_named_t arcstat_l2_writes_done; 306 kstat_named_t arcstat_l2_writes_error; 307 kstat_named_t arcstat_l2_writes_hdr_miss; 308 kstat_named_t arcstat_l2_evict_lock_retry; 309 kstat_named_t arcstat_l2_evict_reading; 310 kstat_named_t arcstat_l2_free_on_write; 311 kstat_named_t arcstat_l2_cdata_free_on_write; 312 kstat_named_t arcstat_l2_abort_lowmem; 313 kstat_named_t arcstat_l2_cksum_bad; 314 kstat_named_t arcstat_l2_io_error; 315 kstat_named_t arcstat_l2_size; 316 kstat_named_t arcstat_l2_asize; 317 kstat_named_t arcstat_l2_hdr_size; 318 kstat_named_t arcstat_l2_compress_successes; 319 kstat_named_t arcstat_l2_compress_zeros; 320 kstat_named_t arcstat_l2_compress_failures; 321 kstat_named_t arcstat_memory_throttle_count; 322 kstat_named_t arcstat_duplicate_buffers; 323 kstat_named_t arcstat_duplicate_buffers_size; 324 kstat_named_t arcstat_duplicate_reads; 325 kstat_named_t arcstat_meta_used; 326 kstat_named_t arcstat_meta_limit; 327 kstat_named_t arcstat_meta_max; 328 } arc_stats_t; 329 330 static arc_stats_t arc_stats = { 331 { "hits", KSTAT_DATA_UINT64 }, 332 { "misses", KSTAT_DATA_UINT64 }, 333 { "demand_data_hits", KSTAT_DATA_UINT64 }, 334 { "demand_data_misses", KSTAT_DATA_UINT64 }, 335 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 336 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 337 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 338 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 339 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 340 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 341 { "mru_hits", KSTAT_DATA_UINT64 }, 342 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 343 { "mfu_hits", KSTAT_DATA_UINT64 }, 344 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 345 { "deleted", KSTAT_DATA_UINT64 }, 346 { "recycle_miss", KSTAT_DATA_UINT64 }, 347 { "mutex_miss", KSTAT_DATA_UINT64 }, 348 { "evict_skip", KSTAT_DATA_UINT64 }, 349 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 350 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 351 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 352 { "hash_elements", KSTAT_DATA_UINT64 }, 353 { "hash_elements_max", KSTAT_DATA_UINT64 }, 354 { "hash_collisions", KSTAT_DATA_UINT64 }, 355 { "hash_chains", KSTAT_DATA_UINT64 }, 356 { "hash_chain_max", KSTAT_DATA_UINT64 }, 357 { "p", KSTAT_DATA_UINT64 }, 358 { "c", KSTAT_DATA_UINT64 }, 359 { "c_min", KSTAT_DATA_UINT64 }, 360 { "c_max", KSTAT_DATA_UINT64 }, 361 { "size", KSTAT_DATA_UINT64 }, 362 { "hdr_size", KSTAT_DATA_UINT64 }, 363 { "data_size", KSTAT_DATA_UINT64 }, 364 { "other_size", KSTAT_DATA_UINT64 }, 365 { "l2_hits", KSTAT_DATA_UINT64 }, 366 { "l2_misses", KSTAT_DATA_UINT64 }, 367 { "l2_feeds", KSTAT_DATA_UINT64 }, 368 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 369 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 370 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 371 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 372 { "l2_writes_done", KSTAT_DATA_UINT64 }, 373 { "l2_writes_error", KSTAT_DATA_UINT64 }, 374 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 375 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 376 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 377 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 378 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 }, 379 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 380 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 381 { "l2_io_error", KSTAT_DATA_UINT64 }, 382 { "l2_size", KSTAT_DATA_UINT64 }, 383 { "l2_asize", KSTAT_DATA_UINT64 }, 384 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 385 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 386 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 387 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 388 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 389 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 390 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 391 { "duplicate_reads", KSTAT_DATA_UINT64 }, 392 { "arc_meta_used", KSTAT_DATA_UINT64 }, 393 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 394 { "arc_meta_max", KSTAT_DATA_UINT64 } 395 }; 396 397 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 398 399 #define ARCSTAT_INCR(stat, val) \ 400 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 401 402 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 403 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 404 405 #define ARCSTAT_MAX(stat, val) { \ 406 uint64_t m; \ 407 while ((val) > (m = arc_stats.stat.value.ui64) && \ 408 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 409 continue; \ 410 } 411 412 #define ARCSTAT_MAXSTAT(stat) \ 413 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 414 415 /* 416 * We define a macro to allow ARC hits/misses to be easily broken down by 417 * two separate conditions, giving a total of four different subtypes for 418 * each of hits and misses (so eight statistics total). 419 */ 420 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 421 if (cond1) { \ 422 if (cond2) { \ 423 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 424 } else { \ 425 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 426 } \ 427 } else { \ 428 if (cond2) { \ 429 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 430 } else { \ 431 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 432 } \ 433 } 434 435 kstat_t *arc_ksp; 436 static arc_state_t *arc_anon; 437 static arc_state_t *arc_mru; 438 static arc_state_t *arc_mru_ghost; 439 static arc_state_t *arc_mfu; 440 static arc_state_t *arc_mfu_ghost; 441 static arc_state_t *arc_l2c_only; 442 443 /* 444 * There are several ARC variables that are critical to export as kstats -- 445 * but we don't want to have to grovel around in the kstat whenever we wish to 446 * manipulate them. For these variables, we therefore define them to be in 447 * terms of the statistic variable. This assures that we are not introducing 448 * the possibility of inconsistency by having shadow copies of the variables, 449 * while still allowing the code to be readable. 450 */ 451 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 452 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 453 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 454 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 455 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 456 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 457 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 458 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 459 460 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 461 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 462 463 static int arc_no_grow; /* Don't try to grow cache size */ 464 static uint64_t arc_tempreserve; 465 static uint64_t arc_loaned_bytes; 466 467 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 468 469 typedef struct arc_callback arc_callback_t; 470 471 struct arc_callback { 472 void *acb_private; 473 arc_done_func_t *acb_done; 474 arc_buf_t *acb_buf; 475 zio_t *acb_zio_dummy; 476 arc_callback_t *acb_next; 477 }; 478 479 typedef struct arc_write_callback arc_write_callback_t; 480 481 struct arc_write_callback { 482 void *awcb_private; 483 arc_done_func_t *awcb_ready; 484 arc_done_func_t *awcb_physdone; 485 arc_done_func_t *awcb_done; 486 arc_buf_t *awcb_buf; 487 }; 488 489 struct arc_buf_hdr { 490 /* protected by hash lock */ 491 dva_t b_dva; 492 uint64_t b_birth; 493 uint64_t b_cksum0; 494 495 kmutex_t b_freeze_lock; 496 zio_cksum_t *b_freeze_cksum; 497 void *b_thawed; 498 499 arc_buf_hdr_t *b_hash_next; 500 arc_buf_t *b_buf; 501 uint32_t b_flags; 502 uint32_t b_datacnt; 503 504 arc_callback_t *b_acb; 505 kcondvar_t b_cv; 506 507 /* immutable */ 508 arc_buf_contents_t b_type; 509 uint64_t b_size; 510 uint64_t b_spa; 511 512 /* protected by arc state mutex */ 513 arc_state_t *b_state; 514 list_node_t b_arc_node; 515 516 /* updated atomically */ 517 clock_t b_arc_access; 518 519 /* self protecting */ 520 refcount_t b_refcnt; 521 522 l2arc_buf_hdr_t *b_l2hdr; 523 list_node_t b_l2node; 524 }; 525 526 static arc_buf_t *arc_eviction_list; 527 static kmutex_t arc_eviction_mtx; 528 static arc_buf_hdr_t arc_eviction_hdr; 529 static void arc_get_data_buf(arc_buf_t *buf); 530 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 531 static int arc_evict_needed(arc_buf_contents_t type); 532 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 533 static void arc_buf_watch(arc_buf_t *buf); 534 535 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 536 537 #define GHOST_STATE(state) \ 538 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 539 (state) == arc_l2c_only) 540 541 /* 542 * Private ARC flags. These flags are private ARC only flags that will show up 543 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 544 * be passed in as arc_flags in things like arc_read. However, these flags 545 * should never be passed and should only be set by ARC code. When adding new 546 * public flags, make sure not to smash the private ones. 547 */ 548 549 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 550 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 551 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 552 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 553 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 554 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 555 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 556 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 557 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 558 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 559 560 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 561 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 562 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 563 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 564 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 565 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 566 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 567 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 568 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 569 (hdr)->b_l2hdr != NULL) 570 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 571 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 572 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 573 574 /* 575 * Other sizes 576 */ 577 578 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 579 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 580 581 /* 582 * Hash table routines 583 */ 584 585 #define HT_LOCK_PAD 64 586 587 struct ht_lock { 588 kmutex_t ht_lock; 589 #ifdef _KERNEL 590 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 591 #endif 592 }; 593 594 #define BUF_LOCKS 256 595 typedef struct buf_hash_table { 596 uint64_t ht_mask; 597 arc_buf_hdr_t **ht_table; 598 struct ht_lock ht_locks[BUF_LOCKS]; 599 } buf_hash_table_t; 600 601 static buf_hash_table_t buf_hash_table; 602 603 #define BUF_HASH_INDEX(spa, dva, birth) \ 604 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 605 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 606 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 607 #define HDR_LOCK(hdr) \ 608 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 609 610 uint64_t zfs_crc64_table[256]; 611 612 /* 613 * Level 2 ARC 614 */ 615 616 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 617 #define L2ARC_HEADROOM 2 /* num of writes */ 618 /* 619 * If we discover during ARC scan any buffers to be compressed, we boost 620 * our headroom for the next scanning cycle by this percentage multiple. 621 */ 622 #define L2ARC_HEADROOM_BOOST 200 623 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 624 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 625 626 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 627 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 628 629 /* L2ARC Performance Tunables */ 630 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 631 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 632 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 633 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 634 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 635 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 636 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 637 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 638 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 639 640 /* 641 * L2ARC Internals 642 */ 643 typedef struct l2arc_dev { 644 vdev_t *l2ad_vdev; /* vdev */ 645 spa_t *l2ad_spa; /* spa */ 646 uint64_t l2ad_hand; /* next write location */ 647 uint64_t l2ad_start; /* first addr on device */ 648 uint64_t l2ad_end; /* last addr on device */ 649 uint64_t l2ad_evict; /* last addr eviction reached */ 650 boolean_t l2ad_first; /* first sweep through */ 651 boolean_t l2ad_writing; /* currently writing */ 652 list_t *l2ad_buflist; /* buffer list */ 653 list_node_t l2ad_node; /* device list node */ 654 } l2arc_dev_t; 655 656 static list_t L2ARC_dev_list; /* device list */ 657 static list_t *l2arc_dev_list; /* device list pointer */ 658 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 659 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 660 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 661 static list_t L2ARC_free_on_write; /* free after write buf list */ 662 static list_t *l2arc_free_on_write; /* free after write list ptr */ 663 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 664 static uint64_t l2arc_ndev; /* number of devices */ 665 666 typedef struct l2arc_read_callback { 667 arc_buf_t *l2rcb_buf; /* read buffer */ 668 spa_t *l2rcb_spa; /* spa */ 669 blkptr_t l2rcb_bp; /* original blkptr */ 670 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 671 int l2rcb_flags; /* original flags */ 672 enum zio_compress l2rcb_compress; /* applied compress */ 673 } l2arc_read_callback_t; 674 675 typedef struct l2arc_write_callback { 676 l2arc_dev_t *l2wcb_dev; /* device info */ 677 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 678 } l2arc_write_callback_t; 679 680 struct l2arc_buf_hdr { 681 /* protected by arc_buf_hdr mutex */ 682 l2arc_dev_t *b_dev; /* L2ARC device */ 683 uint64_t b_daddr; /* disk address, offset byte */ 684 /* compression applied to buffer data */ 685 enum zio_compress b_compress; 686 /* real alloc'd buffer size depending on b_compress applied */ 687 int b_asize; 688 /* temporary buffer holder for in-flight compressed data */ 689 void *b_tmp_cdata; 690 }; 691 692 typedef struct l2arc_data_free { 693 /* protected by l2arc_free_on_write_mtx */ 694 void *l2df_data; 695 size_t l2df_size; 696 void (*l2df_func)(void *, size_t); 697 list_node_t l2df_list_node; 698 } l2arc_data_free_t; 699 700 static kmutex_t l2arc_feed_thr_lock; 701 static kcondvar_t l2arc_feed_thr_cv; 702 static uint8_t l2arc_thread_exit; 703 704 static void l2arc_read_done(zio_t *zio); 705 static void l2arc_hdr_stat_add(void); 706 static void l2arc_hdr_stat_remove(void); 707 708 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); 709 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 710 enum zio_compress c); 711 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); 712 713 static uint64_t 714 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 715 { 716 uint8_t *vdva = (uint8_t *)dva; 717 uint64_t crc = -1ULL; 718 int i; 719 720 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 721 722 for (i = 0; i < sizeof (dva_t); i++) 723 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 724 725 crc ^= (spa>>8) ^ birth; 726 727 return (crc); 728 } 729 730 #define BUF_EMPTY(buf) \ 731 ((buf)->b_dva.dva_word[0] == 0 && \ 732 (buf)->b_dva.dva_word[1] == 0 && \ 733 (buf)->b_cksum0 == 0) 734 735 #define BUF_EQUAL(spa, dva, birth, buf) \ 736 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 737 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 738 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 739 740 static void 741 buf_discard_identity(arc_buf_hdr_t *hdr) 742 { 743 hdr->b_dva.dva_word[0] = 0; 744 hdr->b_dva.dva_word[1] = 0; 745 hdr->b_birth = 0; 746 hdr->b_cksum0 = 0; 747 } 748 749 static arc_buf_hdr_t * 750 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 751 { 752 const dva_t *dva = BP_IDENTITY(bp); 753 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 754 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 755 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 756 arc_buf_hdr_t *buf; 757 758 mutex_enter(hash_lock); 759 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 760 buf = buf->b_hash_next) { 761 if (BUF_EQUAL(spa, dva, birth, buf)) { 762 *lockp = hash_lock; 763 return (buf); 764 } 765 } 766 mutex_exit(hash_lock); 767 *lockp = NULL; 768 return (NULL); 769 } 770 771 /* 772 * Insert an entry into the hash table. If there is already an element 773 * equal to elem in the hash table, then the already existing element 774 * will be returned and the new element will not be inserted. 775 * Otherwise returns NULL. 776 */ 777 static arc_buf_hdr_t * 778 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 779 { 780 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 781 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 782 arc_buf_hdr_t *fbuf; 783 uint32_t i; 784 785 ASSERT(!DVA_IS_EMPTY(&buf->b_dva)); 786 ASSERT(buf->b_birth != 0); 787 ASSERT(!HDR_IN_HASH_TABLE(buf)); 788 *lockp = hash_lock; 789 mutex_enter(hash_lock); 790 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 791 fbuf = fbuf->b_hash_next, i++) { 792 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 793 return (fbuf); 794 } 795 796 buf->b_hash_next = buf_hash_table.ht_table[idx]; 797 buf_hash_table.ht_table[idx] = buf; 798 buf->b_flags |= ARC_IN_HASH_TABLE; 799 800 /* collect some hash table performance data */ 801 if (i > 0) { 802 ARCSTAT_BUMP(arcstat_hash_collisions); 803 if (i == 1) 804 ARCSTAT_BUMP(arcstat_hash_chains); 805 806 ARCSTAT_MAX(arcstat_hash_chain_max, i); 807 } 808 809 ARCSTAT_BUMP(arcstat_hash_elements); 810 ARCSTAT_MAXSTAT(arcstat_hash_elements); 811 812 return (NULL); 813 } 814 815 static void 816 buf_hash_remove(arc_buf_hdr_t *buf) 817 { 818 arc_buf_hdr_t *fbuf, **bufp; 819 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 820 821 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 822 ASSERT(HDR_IN_HASH_TABLE(buf)); 823 824 bufp = &buf_hash_table.ht_table[idx]; 825 while ((fbuf = *bufp) != buf) { 826 ASSERT(fbuf != NULL); 827 bufp = &fbuf->b_hash_next; 828 } 829 *bufp = buf->b_hash_next; 830 buf->b_hash_next = NULL; 831 buf->b_flags &= ~ARC_IN_HASH_TABLE; 832 833 /* collect some hash table performance data */ 834 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 835 836 if (buf_hash_table.ht_table[idx] && 837 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 838 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 839 } 840 841 /* 842 * Global data structures and functions for the buf kmem cache. 843 */ 844 static kmem_cache_t *hdr_cache; 845 static kmem_cache_t *buf_cache; 846 847 static void 848 buf_fini(void) 849 { 850 int i; 851 852 kmem_free(buf_hash_table.ht_table, 853 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 854 for (i = 0; i < BUF_LOCKS; i++) 855 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 856 kmem_cache_destroy(hdr_cache); 857 kmem_cache_destroy(buf_cache); 858 } 859 860 /* 861 * Constructor callback - called when the cache is empty 862 * and a new buf is requested. 863 */ 864 /* ARGSUSED */ 865 static int 866 hdr_cons(void *vbuf, void *unused, int kmflag) 867 { 868 arc_buf_hdr_t *buf = vbuf; 869 870 bzero(buf, sizeof (arc_buf_hdr_t)); 871 refcount_create(&buf->b_refcnt); 872 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 873 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 874 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 875 876 return (0); 877 } 878 879 /* ARGSUSED */ 880 static int 881 buf_cons(void *vbuf, void *unused, int kmflag) 882 { 883 arc_buf_t *buf = vbuf; 884 885 bzero(buf, sizeof (arc_buf_t)); 886 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 887 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 888 889 return (0); 890 } 891 892 /* 893 * Destructor callback - called when a cached buf is 894 * no longer required. 895 */ 896 /* ARGSUSED */ 897 static void 898 hdr_dest(void *vbuf, void *unused) 899 { 900 arc_buf_hdr_t *buf = vbuf; 901 902 ASSERT(BUF_EMPTY(buf)); 903 refcount_destroy(&buf->b_refcnt); 904 cv_destroy(&buf->b_cv); 905 mutex_destroy(&buf->b_freeze_lock); 906 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 907 } 908 909 /* ARGSUSED */ 910 static void 911 buf_dest(void *vbuf, void *unused) 912 { 913 arc_buf_t *buf = vbuf; 914 915 mutex_destroy(&buf->b_evict_lock); 916 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 917 } 918 919 /* 920 * Reclaim callback -- invoked when memory is low. 921 */ 922 /* ARGSUSED */ 923 static void 924 hdr_recl(void *unused) 925 { 926 dprintf("hdr_recl called\n"); 927 /* 928 * umem calls the reclaim func when we destroy the buf cache, 929 * which is after we do arc_fini(). 930 */ 931 if (!arc_dead) 932 cv_signal(&arc_reclaim_thr_cv); 933 } 934 935 static void 936 buf_init(void) 937 { 938 uint64_t *ct; 939 uint64_t hsize = 1ULL << 12; 940 int i, j; 941 942 /* 943 * The hash table is big enough to fill all of physical memory 944 * with an average block size of zfs_arc_average_blocksize (default 8K). 945 * By default, the table will take up 946 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 947 */ 948 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 949 hsize <<= 1; 950 retry: 951 buf_hash_table.ht_mask = hsize - 1; 952 buf_hash_table.ht_table = 953 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 954 if (buf_hash_table.ht_table == NULL) { 955 ASSERT(hsize > (1ULL << 8)); 956 hsize >>= 1; 957 goto retry; 958 } 959 960 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 961 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 962 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 963 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 964 965 for (i = 0; i < 256; i++) 966 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 967 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 968 969 for (i = 0; i < BUF_LOCKS; i++) { 970 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 971 NULL, MUTEX_DEFAULT, NULL); 972 } 973 } 974 975 #define ARC_MINTIME (hz>>4) /* 62 ms */ 976 977 static void 978 arc_cksum_verify(arc_buf_t *buf) 979 { 980 zio_cksum_t zc; 981 982 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 983 return; 984 985 mutex_enter(&buf->b_hdr->b_freeze_lock); 986 if (buf->b_hdr->b_freeze_cksum == NULL || 987 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 988 mutex_exit(&buf->b_hdr->b_freeze_lock); 989 return; 990 } 991 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 992 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 993 panic("buffer modified while frozen!"); 994 mutex_exit(&buf->b_hdr->b_freeze_lock); 995 } 996 997 static int 998 arc_cksum_equal(arc_buf_t *buf) 999 { 1000 zio_cksum_t zc; 1001 int equal; 1002 1003 mutex_enter(&buf->b_hdr->b_freeze_lock); 1004 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1005 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1006 mutex_exit(&buf->b_hdr->b_freeze_lock); 1007 1008 return (equal); 1009 } 1010 1011 static void 1012 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1013 { 1014 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1015 return; 1016 1017 mutex_enter(&buf->b_hdr->b_freeze_lock); 1018 if (buf->b_hdr->b_freeze_cksum != NULL) { 1019 mutex_exit(&buf->b_hdr->b_freeze_lock); 1020 return; 1021 } 1022 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1023 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1024 buf->b_hdr->b_freeze_cksum); 1025 mutex_exit(&buf->b_hdr->b_freeze_lock); 1026 arc_buf_watch(buf); 1027 } 1028 1029 #ifndef _KERNEL 1030 typedef struct procctl { 1031 long cmd; 1032 prwatch_t prwatch; 1033 } procctl_t; 1034 #endif 1035 1036 /* ARGSUSED */ 1037 static void 1038 arc_buf_unwatch(arc_buf_t *buf) 1039 { 1040 #ifndef _KERNEL 1041 if (arc_watch) { 1042 int result; 1043 procctl_t ctl; 1044 ctl.cmd = PCWATCH; 1045 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1046 ctl.prwatch.pr_size = 0; 1047 ctl.prwatch.pr_wflags = 0; 1048 result = write(arc_procfd, &ctl, sizeof (ctl)); 1049 ASSERT3U(result, ==, sizeof (ctl)); 1050 } 1051 #endif 1052 } 1053 1054 /* ARGSUSED */ 1055 static void 1056 arc_buf_watch(arc_buf_t *buf) 1057 { 1058 #ifndef _KERNEL 1059 if (arc_watch) { 1060 int result; 1061 procctl_t ctl; 1062 ctl.cmd = PCWATCH; 1063 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1064 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1065 ctl.prwatch.pr_wflags = WA_WRITE; 1066 result = write(arc_procfd, &ctl, sizeof (ctl)); 1067 ASSERT3U(result, ==, sizeof (ctl)); 1068 } 1069 #endif 1070 } 1071 1072 void 1073 arc_buf_thaw(arc_buf_t *buf) 1074 { 1075 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1076 if (buf->b_hdr->b_state != arc_anon) 1077 panic("modifying non-anon buffer!"); 1078 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1079 panic("modifying buffer while i/o in progress!"); 1080 arc_cksum_verify(buf); 1081 } 1082 1083 mutex_enter(&buf->b_hdr->b_freeze_lock); 1084 if (buf->b_hdr->b_freeze_cksum != NULL) { 1085 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1086 buf->b_hdr->b_freeze_cksum = NULL; 1087 } 1088 1089 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1090 if (buf->b_hdr->b_thawed) 1091 kmem_free(buf->b_hdr->b_thawed, 1); 1092 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1093 } 1094 1095 mutex_exit(&buf->b_hdr->b_freeze_lock); 1096 1097 arc_buf_unwatch(buf); 1098 } 1099 1100 void 1101 arc_buf_freeze(arc_buf_t *buf) 1102 { 1103 kmutex_t *hash_lock; 1104 1105 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1106 return; 1107 1108 hash_lock = HDR_LOCK(buf->b_hdr); 1109 mutex_enter(hash_lock); 1110 1111 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1112 buf->b_hdr->b_state == arc_anon); 1113 arc_cksum_compute(buf, B_FALSE); 1114 mutex_exit(hash_lock); 1115 1116 } 1117 1118 static void 1119 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1120 { 1121 ASSERT(MUTEX_HELD(hash_lock)); 1122 1123 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1124 (ab->b_state != arc_anon)) { 1125 uint64_t delta = ab->b_size * ab->b_datacnt; 1126 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1127 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1128 1129 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1130 mutex_enter(&ab->b_state->arcs_mtx); 1131 ASSERT(list_link_active(&ab->b_arc_node)); 1132 list_remove(list, ab); 1133 if (GHOST_STATE(ab->b_state)) { 1134 ASSERT0(ab->b_datacnt); 1135 ASSERT3P(ab->b_buf, ==, NULL); 1136 delta = ab->b_size; 1137 } 1138 ASSERT(delta > 0); 1139 ASSERT3U(*size, >=, delta); 1140 atomic_add_64(size, -delta); 1141 mutex_exit(&ab->b_state->arcs_mtx); 1142 /* remove the prefetch flag if we get a reference */ 1143 if (ab->b_flags & ARC_PREFETCH) 1144 ab->b_flags &= ~ARC_PREFETCH; 1145 } 1146 } 1147 1148 static int 1149 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1150 { 1151 int cnt; 1152 arc_state_t *state = ab->b_state; 1153 1154 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1155 ASSERT(!GHOST_STATE(state)); 1156 1157 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1158 (state != arc_anon)) { 1159 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1160 1161 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1162 mutex_enter(&state->arcs_mtx); 1163 ASSERT(!list_link_active(&ab->b_arc_node)); 1164 list_insert_head(&state->arcs_list[ab->b_type], ab); 1165 ASSERT(ab->b_datacnt > 0); 1166 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1167 mutex_exit(&state->arcs_mtx); 1168 } 1169 return (cnt); 1170 } 1171 1172 /* 1173 * Move the supplied buffer to the indicated state. The mutex 1174 * for the buffer must be held by the caller. 1175 */ 1176 static void 1177 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1178 { 1179 arc_state_t *old_state = ab->b_state; 1180 int64_t refcnt = refcount_count(&ab->b_refcnt); 1181 uint64_t from_delta, to_delta; 1182 1183 ASSERT(MUTEX_HELD(hash_lock)); 1184 ASSERT3P(new_state, !=, old_state); 1185 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1186 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1187 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1188 1189 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1190 1191 /* 1192 * If this buffer is evictable, transfer it from the 1193 * old state list to the new state list. 1194 */ 1195 if (refcnt == 0) { 1196 if (old_state != arc_anon) { 1197 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1198 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1199 1200 if (use_mutex) 1201 mutex_enter(&old_state->arcs_mtx); 1202 1203 ASSERT(list_link_active(&ab->b_arc_node)); 1204 list_remove(&old_state->arcs_list[ab->b_type], ab); 1205 1206 /* 1207 * If prefetching out of the ghost cache, 1208 * we will have a non-zero datacnt. 1209 */ 1210 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1211 /* ghost elements have a ghost size */ 1212 ASSERT(ab->b_buf == NULL); 1213 from_delta = ab->b_size; 1214 } 1215 ASSERT3U(*size, >=, from_delta); 1216 atomic_add_64(size, -from_delta); 1217 1218 if (use_mutex) 1219 mutex_exit(&old_state->arcs_mtx); 1220 } 1221 if (new_state != arc_anon) { 1222 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1223 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1224 1225 if (use_mutex) 1226 mutex_enter(&new_state->arcs_mtx); 1227 1228 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1229 1230 /* ghost elements have a ghost size */ 1231 if (GHOST_STATE(new_state)) { 1232 ASSERT(ab->b_datacnt == 0); 1233 ASSERT(ab->b_buf == NULL); 1234 to_delta = ab->b_size; 1235 } 1236 atomic_add_64(size, to_delta); 1237 1238 if (use_mutex) 1239 mutex_exit(&new_state->arcs_mtx); 1240 } 1241 } 1242 1243 ASSERT(!BUF_EMPTY(ab)); 1244 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1245 buf_hash_remove(ab); 1246 1247 /* adjust state sizes */ 1248 if (to_delta) 1249 atomic_add_64(&new_state->arcs_size, to_delta); 1250 if (from_delta) { 1251 ASSERT3U(old_state->arcs_size, >=, from_delta); 1252 atomic_add_64(&old_state->arcs_size, -from_delta); 1253 } 1254 ab->b_state = new_state; 1255 1256 /* adjust l2arc hdr stats */ 1257 if (new_state == arc_l2c_only) 1258 l2arc_hdr_stat_add(); 1259 else if (old_state == arc_l2c_only) 1260 l2arc_hdr_stat_remove(); 1261 } 1262 1263 void 1264 arc_space_consume(uint64_t space, arc_space_type_t type) 1265 { 1266 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1267 1268 switch (type) { 1269 case ARC_SPACE_DATA: 1270 ARCSTAT_INCR(arcstat_data_size, space); 1271 break; 1272 case ARC_SPACE_OTHER: 1273 ARCSTAT_INCR(arcstat_other_size, space); 1274 break; 1275 case ARC_SPACE_HDRS: 1276 ARCSTAT_INCR(arcstat_hdr_size, space); 1277 break; 1278 case ARC_SPACE_L2HDRS: 1279 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1280 break; 1281 } 1282 1283 ARCSTAT_INCR(arcstat_meta_used, space); 1284 atomic_add_64(&arc_size, space); 1285 } 1286 1287 void 1288 arc_space_return(uint64_t space, arc_space_type_t type) 1289 { 1290 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1291 1292 switch (type) { 1293 case ARC_SPACE_DATA: 1294 ARCSTAT_INCR(arcstat_data_size, -space); 1295 break; 1296 case ARC_SPACE_OTHER: 1297 ARCSTAT_INCR(arcstat_other_size, -space); 1298 break; 1299 case ARC_SPACE_HDRS: 1300 ARCSTAT_INCR(arcstat_hdr_size, -space); 1301 break; 1302 case ARC_SPACE_L2HDRS: 1303 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1304 break; 1305 } 1306 1307 ASSERT(arc_meta_used >= space); 1308 if (arc_meta_max < arc_meta_used) 1309 arc_meta_max = arc_meta_used; 1310 ARCSTAT_INCR(arcstat_meta_used, -space); 1311 ASSERT(arc_size >= space); 1312 atomic_add_64(&arc_size, -space); 1313 } 1314 1315 void * 1316 arc_data_buf_alloc(uint64_t size) 1317 { 1318 if (arc_evict_needed(ARC_BUFC_DATA)) 1319 cv_signal(&arc_reclaim_thr_cv); 1320 atomic_add_64(&arc_size, size); 1321 return (zio_data_buf_alloc(size)); 1322 } 1323 1324 void 1325 arc_data_buf_free(void *buf, uint64_t size) 1326 { 1327 zio_data_buf_free(buf, size); 1328 ASSERT(arc_size >= size); 1329 atomic_add_64(&arc_size, -size); 1330 } 1331 1332 arc_buf_t * 1333 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1334 { 1335 arc_buf_hdr_t *hdr; 1336 arc_buf_t *buf; 1337 1338 ASSERT3U(size, >, 0); 1339 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1340 ASSERT(BUF_EMPTY(hdr)); 1341 hdr->b_size = size; 1342 hdr->b_type = type; 1343 hdr->b_spa = spa_load_guid(spa); 1344 hdr->b_state = arc_anon; 1345 hdr->b_arc_access = 0; 1346 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1347 buf->b_hdr = hdr; 1348 buf->b_data = NULL; 1349 buf->b_efunc = NULL; 1350 buf->b_private = NULL; 1351 buf->b_next = NULL; 1352 hdr->b_buf = buf; 1353 arc_get_data_buf(buf); 1354 hdr->b_datacnt = 1; 1355 hdr->b_flags = 0; 1356 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1357 (void) refcount_add(&hdr->b_refcnt, tag); 1358 1359 return (buf); 1360 } 1361 1362 static char *arc_onloan_tag = "onloan"; 1363 1364 /* 1365 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1366 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1367 * buffers must be returned to the arc before they can be used by the DMU or 1368 * freed. 1369 */ 1370 arc_buf_t * 1371 arc_loan_buf(spa_t *spa, int size) 1372 { 1373 arc_buf_t *buf; 1374 1375 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1376 1377 atomic_add_64(&arc_loaned_bytes, size); 1378 return (buf); 1379 } 1380 1381 /* 1382 * Return a loaned arc buffer to the arc. 1383 */ 1384 void 1385 arc_return_buf(arc_buf_t *buf, void *tag) 1386 { 1387 arc_buf_hdr_t *hdr = buf->b_hdr; 1388 1389 ASSERT(buf->b_data != NULL); 1390 (void) refcount_add(&hdr->b_refcnt, tag); 1391 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1392 1393 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1394 } 1395 1396 /* Detach an arc_buf from a dbuf (tag) */ 1397 void 1398 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1399 { 1400 arc_buf_hdr_t *hdr; 1401 1402 ASSERT(buf->b_data != NULL); 1403 hdr = buf->b_hdr; 1404 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1405 (void) refcount_remove(&hdr->b_refcnt, tag); 1406 buf->b_efunc = NULL; 1407 buf->b_private = NULL; 1408 1409 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1410 } 1411 1412 static arc_buf_t * 1413 arc_buf_clone(arc_buf_t *from) 1414 { 1415 arc_buf_t *buf; 1416 arc_buf_hdr_t *hdr = from->b_hdr; 1417 uint64_t size = hdr->b_size; 1418 1419 ASSERT(hdr->b_state != arc_anon); 1420 1421 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1422 buf->b_hdr = hdr; 1423 buf->b_data = NULL; 1424 buf->b_efunc = NULL; 1425 buf->b_private = NULL; 1426 buf->b_next = hdr->b_buf; 1427 hdr->b_buf = buf; 1428 arc_get_data_buf(buf); 1429 bcopy(from->b_data, buf->b_data, size); 1430 1431 /* 1432 * This buffer already exists in the arc so create a duplicate 1433 * copy for the caller. If the buffer is associated with user data 1434 * then track the size and number of duplicates. These stats will be 1435 * updated as duplicate buffers are created and destroyed. 1436 */ 1437 if (hdr->b_type == ARC_BUFC_DATA) { 1438 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1439 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1440 } 1441 hdr->b_datacnt += 1; 1442 return (buf); 1443 } 1444 1445 void 1446 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1447 { 1448 arc_buf_hdr_t *hdr; 1449 kmutex_t *hash_lock; 1450 1451 /* 1452 * Check to see if this buffer is evicted. Callers 1453 * must verify b_data != NULL to know if the add_ref 1454 * was successful. 1455 */ 1456 mutex_enter(&buf->b_evict_lock); 1457 if (buf->b_data == NULL) { 1458 mutex_exit(&buf->b_evict_lock); 1459 return; 1460 } 1461 hash_lock = HDR_LOCK(buf->b_hdr); 1462 mutex_enter(hash_lock); 1463 hdr = buf->b_hdr; 1464 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1465 mutex_exit(&buf->b_evict_lock); 1466 1467 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1468 add_reference(hdr, hash_lock, tag); 1469 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1470 arc_access(hdr, hash_lock); 1471 mutex_exit(hash_lock); 1472 ARCSTAT_BUMP(arcstat_hits); 1473 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1474 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1475 data, metadata, hits); 1476 } 1477 1478 static void 1479 arc_buf_free_on_write(void *data, size_t size, 1480 void (*free_func)(void *, size_t)) 1481 { 1482 l2arc_data_free_t *df; 1483 1484 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1485 df->l2df_data = data; 1486 df->l2df_size = size; 1487 df->l2df_func = free_func; 1488 mutex_enter(&l2arc_free_on_write_mtx); 1489 list_insert_head(l2arc_free_on_write, df); 1490 mutex_exit(&l2arc_free_on_write_mtx); 1491 } 1492 1493 /* 1494 * Free the arc data buffer. If it is an l2arc write in progress, 1495 * the buffer is placed on l2arc_free_on_write to be freed later. 1496 */ 1497 static void 1498 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1499 { 1500 arc_buf_hdr_t *hdr = buf->b_hdr; 1501 1502 if (HDR_L2_WRITING(hdr)) { 1503 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func); 1504 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1505 } else { 1506 free_func(buf->b_data, hdr->b_size); 1507 } 1508 } 1509 1510 /* 1511 * Free up buf->b_data and if 'remove' is set, then pull the 1512 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 1513 */ 1514 static void 1515 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr) 1516 { 1517 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1518 1519 ASSERT(MUTEX_HELD(&l2arc_buflist_mtx)); 1520 1521 if (l2hdr->b_tmp_cdata == NULL) 1522 return; 1523 1524 ASSERT(HDR_L2_WRITING(hdr)); 1525 arc_buf_free_on_write(l2hdr->b_tmp_cdata, hdr->b_size, 1526 zio_data_buf_free); 1527 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write); 1528 l2hdr->b_tmp_cdata = NULL; 1529 } 1530 1531 static void 1532 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove) 1533 { 1534 arc_buf_t **bufp; 1535 1536 /* free up data associated with the buf */ 1537 if (buf->b_data) { 1538 arc_state_t *state = buf->b_hdr->b_state; 1539 uint64_t size = buf->b_hdr->b_size; 1540 arc_buf_contents_t type = buf->b_hdr->b_type; 1541 1542 arc_cksum_verify(buf); 1543 arc_buf_unwatch(buf); 1544 1545 if (!recycle) { 1546 if (type == ARC_BUFC_METADATA) { 1547 arc_buf_data_free(buf, zio_buf_free); 1548 arc_space_return(size, ARC_SPACE_DATA); 1549 } else { 1550 ASSERT(type == ARC_BUFC_DATA); 1551 arc_buf_data_free(buf, zio_data_buf_free); 1552 ARCSTAT_INCR(arcstat_data_size, -size); 1553 atomic_add_64(&arc_size, -size); 1554 } 1555 } 1556 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1557 uint64_t *cnt = &state->arcs_lsize[type]; 1558 1559 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1560 ASSERT(state != arc_anon); 1561 1562 ASSERT3U(*cnt, >=, size); 1563 atomic_add_64(cnt, -size); 1564 } 1565 ASSERT3U(state->arcs_size, >=, size); 1566 atomic_add_64(&state->arcs_size, -size); 1567 buf->b_data = NULL; 1568 1569 /* 1570 * If we're destroying a duplicate buffer make sure 1571 * that the appropriate statistics are updated. 1572 */ 1573 if (buf->b_hdr->b_datacnt > 1 && 1574 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1575 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1576 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1577 } 1578 ASSERT(buf->b_hdr->b_datacnt > 0); 1579 buf->b_hdr->b_datacnt -= 1; 1580 } 1581 1582 /* only remove the buf if requested */ 1583 if (!remove) 1584 return; 1585 1586 /* remove the buf from the hdr list */ 1587 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1588 continue; 1589 *bufp = buf->b_next; 1590 buf->b_next = NULL; 1591 1592 ASSERT(buf->b_efunc == NULL); 1593 1594 /* clean up the buf */ 1595 buf->b_hdr = NULL; 1596 kmem_cache_free(buf_cache, buf); 1597 } 1598 1599 static void 1600 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1601 { 1602 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1603 ASSERT3P(hdr->b_state, ==, arc_anon); 1604 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1605 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1606 1607 if (l2hdr != NULL) { 1608 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1609 /* 1610 * To prevent arc_free() and l2arc_evict() from 1611 * attempting to free the same buffer at the same time, 1612 * a FREE_IN_PROGRESS flag is given to arc_free() to 1613 * give it priority. l2arc_evict() can't destroy this 1614 * header while we are waiting on l2arc_buflist_mtx. 1615 * 1616 * The hdr may be removed from l2ad_buflist before we 1617 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1618 */ 1619 if (!buflist_held) { 1620 mutex_enter(&l2arc_buflist_mtx); 1621 l2hdr = hdr->b_l2hdr; 1622 } 1623 1624 if (l2hdr != NULL) { 1625 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1626 arc_buf_l2_cdata_free(hdr); 1627 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1628 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1629 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1630 -l2hdr->b_asize, 0, 0); 1631 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1632 if (hdr->b_state == arc_l2c_only) 1633 l2arc_hdr_stat_remove(); 1634 hdr->b_l2hdr = NULL; 1635 } 1636 1637 if (!buflist_held) 1638 mutex_exit(&l2arc_buflist_mtx); 1639 } 1640 1641 if (!BUF_EMPTY(hdr)) { 1642 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1643 buf_discard_identity(hdr); 1644 } 1645 while (hdr->b_buf) { 1646 arc_buf_t *buf = hdr->b_buf; 1647 1648 if (buf->b_efunc) { 1649 mutex_enter(&arc_eviction_mtx); 1650 mutex_enter(&buf->b_evict_lock); 1651 ASSERT(buf->b_hdr != NULL); 1652 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1653 hdr->b_buf = buf->b_next; 1654 buf->b_hdr = &arc_eviction_hdr; 1655 buf->b_next = arc_eviction_list; 1656 arc_eviction_list = buf; 1657 mutex_exit(&buf->b_evict_lock); 1658 mutex_exit(&arc_eviction_mtx); 1659 } else { 1660 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1661 } 1662 } 1663 if (hdr->b_freeze_cksum != NULL) { 1664 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1665 hdr->b_freeze_cksum = NULL; 1666 } 1667 if (hdr->b_thawed) { 1668 kmem_free(hdr->b_thawed, 1); 1669 hdr->b_thawed = NULL; 1670 } 1671 1672 ASSERT(!list_link_active(&hdr->b_arc_node)); 1673 ASSERT3P(hdr->b_hash_next, ==, NULL); 1674 ASSERT3P(hdr->b_acb, ==, NULL); 1675 kmem_cache_free(hdr_cache, hdr); 1676 } 1677 1678 void 1679 arc_buf_free(arc_buf_t *buf, void *tag) 1680 { 1681 arc_buf_hdr_t *hdr = buf->b_hdr; 1682 int hashed = hdr->b_state != arc_anon; 1683 1684 ASSERT(buf->b_efunc == NULL); 1685 ASSERT(buf->b_data != NULL); 1686 1687 if (hashed) { 1688 kmutex_t *hash_lock = HDR_LOCK(hdr); 1689 1690 mutex_enter(hash_lock); 1691 hdr = buf->b_hdr; 1692 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1693 1694 (void) remove_reference(hdr, hash_lock, tag); 1695 if (hdr->b_datacnt > 1) { 1696 arc_buf_destroy(buf, FALSE, TRUE); 1697 } else { 1698 ASSERT(buf == hdr->b_buf); 1699 ASSERT(buf->b_efunc == NULL); 1700 hdr->b_flags |= ARC_BUF_AVAILABLE; 1701 } 1702 mutex_exit(hash_lock); 1703 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1704 int destroy_hdr; 1705 /* 1706 * We are in the middle of an async write. Don't destroy 1707 * this buffer unless the write completes before we finish 1708 * decrementing the reference count. 1709 */ 1710 mutex_enter(&arc_eviction_mtx); 1711 (void) remove_reference(hdr, NULL, tag); 1712 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1713 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1714 mutex_exit(&arc_eviction_mtx); 1715 if (destroy_hdr) 1716 arc_hdr_destroy(hdr); 1717 } else { 1718 if (remove_reference(hdr, NULL, tag) > 0) 1719 arc_buf_destroy(buf, FALSE, TRUE); 1720 else 1721 arc_hdr_destroy(hdr); 1722 } 1723 } 1724 1725 boolean_t 1726 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1727 { 1728 arc_buf_hdr_t *hdr = buf->b_hdr; 1729 kmutex_t *hash_lock = HDR_LOCK(hdr); 1730 boolean_t no_callback = (buf->b_efunc == NULL); 1731 1732 if (hdr->b_state == arc_anon) { 1733 ASSERT(hdr->b_datacnt == 1); 1734 arc_buf_free(buf, tag); 1735 return (no_callback); 1736 } 1737 1738 mutex_enter(hash_lock); 1739 hdr = buf->b_hdr; 1740 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1741 ASSERT(hdr->b_state != arc_anon); 1742 ASSERT(buf->b_data != NULL); 1743 1744 (void) remove_reference(hdr, hash_lock, tag); 1745 if (hdr->b_datacnt > 1) { 1746 if (no_callback) 1747 arc_buf_destroy(buf, FALSE, TRUE); 1748 } else if (no_callback) { 1749 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1750 ASSERT(buf->b_efunc == NULL); 1751 hdr->b_flags |= ARC_BUF_AVAILABLE; 1752 } 1753 ASSERT(no_callback || hdr->b_datacnt > 1 || 1754 refcount_is_zero(&hdr->b_refcnt)); 1755 mutex_exit(hash_lock); 1756 return (no_callback); 1757 } 1758 1759 int 1760 arc_buf_size(arc_buf_t *buf) 1761 { 1762 return (buf->b_hdr->b_size); 1763 } 1764 1765 /* 1766 * Called from the DMU to determine if the current buffer should be 1767 * evicted. In order to ensure proper locking, the eviction must be initiated 1768 * from the DMU. Return true if the buffer is associated with user data and 1769 * duplicate buffers still exist. 1770 */ 1771 boolean_t 1772 arc_buf_eviction_needed(arc_buf_t *buf) 1773 { 1774 arc_buf_hdr_t *hdr; 1775 boolean_t evict_needed = B_FALSE; 1776 1777 if (zfs_disable_dup_eviction) 1778 return (B_FALSE); 1779 1780 mutex_enter(&buf->b_evict_lock); 1781 hdr = buf->b_hdr; 1782 if (hdr == NULL) { 1783 /* 1784 * We are in arc_do_user_evicts(); let that function 1785 * perform the eviction. 1786 */ 1787 ASSERT(buf->b_data == NULL); 1788 mutex_exit(&buf->b_evict_lock); 1789 return (B_FALSE); 1790 } else if (buf->b_data == NULL) { 1791 /* 1792 * We have already been added to the arc eviction list; 1793 * recommend eviction. 1794 */ 1795 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1796 mutex_exit(&buf->b_evict_lock); 1797 return (B_TRUE); 1798 } 1799 1800 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1801 evict_needed = B_TRUE; 1802 1803 mutex_exit(&buf->b_evict_lock); 1804 return (evict_needed); 1805 } 1806 1807 /* 1808 * Evict buffers from list until we've removed the specified number of 1809 * bytes. Move the removed buffers to the appropriate evict state. 1810 * If the recycle flag is set, then attempt to "recycle" a buffer: 1811 * - look for a buffer to evict that is `bytes' long. 1812 * - return the data block from this buffer rather than freeing it. 1813 * This flag is used by callers that are trying to make space for a 1814 * new buffer in a full arc cache. 1815 * 1816 * This function makes a "best effort". It skips over any buffers 1817 * it can't get a hash_lock on, and so may not catch all candidates. 1818 * It may also return without evicting as much space as requested. 1819 */ 1820 static void * 1821 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1822 arc_buf_contents_t type) 1823 { 1824 arc_state_t *evicted_state; 1825 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1826 arc_buf_hdr_t *ab, *ab_prev = NULL; 1827 list_t *list = &state->arcs_list[type]; 1828 kmutex_t *hash_lock; 1829 boolean_t have_lock; 1830 void *stolen = NULL; 1831 arc_buf_hdr_t marker = { 0 }; 1832 int count = 0; 1833 1834 ASSERT(state == arc_mru || state == arc_mfu); 1835 1836 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1837 1838 mutex_enter(&state->arcs_mtx); 1839 mutex_enter(&evicted_state->arcs_mtx); 1840 1841 for (ab = list_tail(list); ab; ab = ab_prev) { 1842 ab_prev = list_prev(list, ab); 1843 /* prefetch buffers have a minimum lifespan */ 1844 if (HDR_IO_IN_PROGRESS(ab) || 1845 (spa && ab->b_spa != spa) || 1846 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1847 ddi_get_lbolt() - ab->b_arc_access < 1848 arc_min_prefetch_lifespan)) { 1849 skipped++; 1850 continue; 1851 } 1852 /* "lookahead" for better eviction candidate */ 1853 if (recycle && ab->b_size != bytes && 1854 ab_prev && ab_prev->b_size == bytes) 1855 continue; 1856 1857 /* ignore markers */ 1858 if (ab->b_spa == 0) 1859 continue; 1860 1861 /* 1862 * It may take a long time to evict all the bufs requested. 1863 * To avoid blocking all arc activity, periodically drop 1864 * the arcs_mtx and give other threads a chance to run 1865 * before reacquiring the lock. 1866 * 1867 * If we are looking for a buffer to recycle, we are in 1868 * the hot code path, so don't sleep. 1869 */ 1870 if (!recycle && count++ > arc_evict_iterations) { 1871 list_insert_after(list, ab, &marker); 1872 mutex_exit(&evicted_state->arcs_mtx); 1873 mutex_exit(&state->arcs_mtx); 1874 kpreempt(KPREEMPT_SYNC); 1875 mutex_enter(&state->arcs_mtx); 1876 mutex_enter(&evicted_state->arcs_mtx); 1877 ab_prev = list_prev(list, &marker); 1878 list_remove(list, &marker); 1879 count = 0; 1880 continue; 1881 } 1882 1883 hash_lock = HDR_LOCK(ab); 1884 have_lock = MUTEX_HELD(hash_lock); 1885 if (have_lock || mutex_tryenter(hash_lock)) { 1886 ASSERT0(refcount_count(&ab->b_refcnt)); 1887 ASSERT(ab->b_datacnt > 0); 1888 while (ab->b_buf) { 1889 arc_buf_t *buf = ab->b_buf; 1890 if (!mutex_tryenter(&buf->b_evict_lock)) { 1891 missed += 1; 1892 break; 1893 } 1894 if (buf->b_data) { 1895 bytes_evicted += ab->b_size; 1896 if (recycle && ab->b_type == type && 1897 ab->b_size == bytes && 1898 !HDR_L2_WRITING(ab)) { 1899 stolen = buf->b_data; 1900 recycle = FALSE; 1901 } 1902 } 1903 if (buf->b_efunc) { 1904 mutex_enter(&arc_eviction_mtx); 1905 arc_buf_destroy(buf, 1906 buf->b_data == stolen, FALSE); 1907 ab->b_buf = buf->b_next; 1908 buf->b_hdr = &arc_eviction_hdr; 1909 buf->b_next = arc_eviction_list; 1910 arc_eviction_list = buf; 1911 mutex_exit(&arc_eviction_mtx); 1912 mutex_exit(&buf->b_evict_lock); 1913 } else { 1914 mutex_exit(&buf->b_evict_lock); 1915 arc_buf_destroy(buf, 1916 buf->b_data == stolen, TRUE); 1917 } 1918 } 1919 1920 if (ab->b_l2hdr) { 1921 ARCSTAT_INCR(arcstat_evict_l2_cached, 1922 ab->b_size); 1923 } else { 1924 if (l2arc_write_eligible(ab->b_spa, ab)) { 1925 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1926 ab->b_size); 1927 } else { 1928 ARCSTAT_INCR( 1929 arcstat_evict_l2_ineligible, 1930 ab->b_size); 1931 } 1932 } 1933 1934 if (ab->b_datacnt == 0) { 1935 arc_change_state(evicted_state, ab, hash_lock); 1936 ASSERT(HDR_IN_HASH_TABLE(ab)); 1937 ab->b_flags |= ARC_IN_HASH_TABLE; 1938 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1939 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1940 } 1941 if (!have_lock) 1942 mutex_exit(hash_lock); 1943 if (bytes >= 0 && bytes_evicted >= bytes) 1944 break; 1945 } else { 1946 missed += 1; 1947 } 1948 } 1949 1950 mutex_exit(&evicted_state->arcs_mtx); 1951 mutex_exit(&state->arcs_mtx); 1952 1953 if (bytes_evicted < bytes) 1954 dprintf("only evicted %lld bytes from %x", 1955 (longlong_t)bytes_evicted, state); 1956 1957 if (skipped) 1958 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1959 1960 if (missed) 1961 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1962 1963 /* 1964 * Note: we have just evicted some data into the ghost state, 1965 * potentially putting the ghost size over the desired size. Rather 1966 * that evicting from the ghost list in this hot code path, leave 1967 * this chore to the arc_reclaim_thread(). 1968 */ 1969 1970 return (stolen); 1971 } 1972 1973 /* 1974 * Remove buffers from list until we've removed the specified number of 1975 * bytes. Destroy the buffers that are removed. 1976 */ 1977 static void 1978 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1979 { 1980 arc_buf_hdr_t *ab, *ab_prev; 1981 arc_buf_hdr_t marker = { 0 }; 1982 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1983 kmutex_t *hash_lock; 1984 uint64_t bytes_deleted = 0; 1985 uint64_t bufs_skipped = 0; 1986 int count = 0; 1987 1988 ASSERT(GHOST_STATE(state)); 1989 top: 1990 mutex_enter(&state->arcs_mtx); 1991 for (ab = list_tail(list); ab; ab = ab_prev) { 1992 ab_prev = list_prev(list, ab); 1993 if (ab->b_type > ARC_BUFC_NUMTYPES) 1994 panic("invalid ab=%p", (void *)ab); 1995 if (spa && ab->b_spa != spa) 1996 continue; 1997 1998 /* ignore markers */ 1999 if (ab->b_spa == 0) 2000 continue; 2001 2002 hash_lock = HDR_LOCK(ab); 2003 /* caller may be trying to modify this buffer, skip it */ 2004 if (MUTEX_HELD(hash_lock)) 2005 continue; 2006 2007 /* 2008 * It may take a long time to evict all the bufs requested. 2009 * To avoid blocking all arc activity, periodically drop 2010 * the arcs_mtx and give other threads a chance to run 2011 * before reacquiring the lock. 2012 */ 2013 if (count++ > arc_evict_iterations) { 2014 list_insert_after(list, ab, &marker); 2015 mutex_exit(&state->arcs_mtx); 2016 kpreempt(KPREEMPT_SYNC); 2017 mutex_enter(&state->arcs_mtx); 2018 ab_prev = list_prev(list, &marker); 2019 list_remove(list, &marker); 2020 count = 0; 2021 continue; 2022 } 2023 if (mutex_tryenter(hash_lock)) { 2024 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 2025 ASSERT(ab->b_buf == NULL); 2026 ARCSTAT_BUMP(arcstat_deleted); 2027 bytes_deleted += ab->b_size; 2028 2029 if (ab->b_l2hdr != NULL) { 2030 /* 2031 * This buffer is cached on the 2nd Level ARC; 2032 * don't destroy the header. 2033 */ 2034 arc_change_state(arc_l2c_only, ab, hash_lock); 2035 mutex_exit(hash_lock); 2036 } else { 2037 arc_change_state(arc_anon, ab, hash_lock); 2038 mutex_exit(hash_lock); 2039 arc_hdr_destroy(ab); 2040 } 2041 2042 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 2043 if (bytes >= 0 && bytes_deleted >= bytes) 2044 break; 2045 } else if (bytes < 0) { 2046 /* 2047 * Insert a list marker and then wait for the 2048 * hash lock to become available. Once its 2049 * available, restart from where we left off. 2050 */ 2051 list_insert_after(list, ab, &marker); 2052 mutex_exit(&state->arcs_mtx); 2053 mutex_enter(hash_lock); 2054 mutex_exit(hash_lock); 2055 mutex_enter(&state->arcs_mtx); 2056 ab_prev = list_prev(list, &marker); 2057 list_remove(list, &marker); 2058 } else { 2059 bufs_skipped += 1; 2060 } 2061 2062 } 2063 mutex_exit(&state->arcs_mtx); 2064 2065 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2066 (bytes < 0 || bytes_deleted < bytes)) { 2067 list = &state->arcs_list[ARC_BUFC_METADATA]; 2068 goto top; 2069 } 2070 2071 if (bufs_skipped) { 2072 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2073 ASSERT(bytes >= 0); 2074 } 2075 2076 if (bytes_deleted < bytes) 2077 dprintf("only deleted %lld bytes from %p", 2078 (longlong_t)bytes_deleted, state); 2079 } 2080 2081 static void 2082 arc_adjust(void) 2083 { 2084 int64_t adjustment, delta; 2085 2086 /* 2087 * Adjust MRU size 2088 */ 2089 2090 adjustment = MIN((int64_t)(arc_size - arc_c), 2091 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2092 arc_p)); 2093 2094 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2095 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2096 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2097 adjustment -= delta; 2098 } 2099 2100 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2101 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2102 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2103 ARC_BUFC_METADATA); 2104 } 2105 2106 /* 2107 * Adjust MFU size 2108 */ 2109 2110 adjustment = arc_size - arc_c; 2111 2112 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2113 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2114 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2115 adjustment -= delta; 2116 } 2117 2118 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2119 int64_t delta = MIN(adjustment, 2120 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2121 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2122 ARC_BUFC_METADATA); 2123 } 2124 2125 /* 2126 * Adjust ghost lists 2127 */ 2128 2129 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2130 2131 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2132 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2133 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2134 } 2135 2136 adjustment = 2137 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2138 2139 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2140 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2141 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2142 } 2143 } 2144 2145 static void 2146 arc_do_user_evicts(void) 2147 { 2148 mutex_enter(&arc_eviction_mtx); 2149 while (arc_eviction_list != NULL) { 2150 arc_buf_t *buf = arc_eviction_list; 2151 arc_eviction_list = buf->b_next; 2152 mutex_enter(&buf->b_evict_lock); 2153 buf->b_hdr = NULL; 2154 mutex_exit(&buf->b_evict_lock); 2155 mutex_exit(&arc_eviction_mtx); 2156 2157 if (buf->b_efunc != NULL) 2158 VERIFY0(buf->b_efunc(buf->b_private)); 2159 2160 buf->b_efunc = NULL; 2161 buf->b_private = NULL; 2162 kmem_cache_free(buf_cache, buf); 2163 mutex_enter(&arc_eviction_mtx); 2164 } 2165 mutex_exit(&arc_eviction_mtx); 2166 } 2167 2168 /* 2169 * Flush all *evictable* data from the cache for the given spa. 2170 * NOTE: this will not touch "active" (i.e. referenced) data. 2171 */ 2172 void 2173 arc_flush(spa_t *spa) 2174 { 2175 uint64_t guid = 0; 2176 2177 if (spa) 2178 guid = spa_load_guid(spa); 2179 2180 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2181 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2182 if (spa) 2183 break; 2184 } 2185 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2186 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2187 if (spa) 2188 break; 2189 } 2190 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2191 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2192 if (spa) 2193 break; 2194 } 2195 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2196 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2197 if (spa) 2198 break; 2199 } 2200 2201 arc_evict_ghost(arc_mru_ghost, guid, -1); 2202 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2203 2204 mutex_enter(&arc_reclaim_thr_lock); 2205 arc_do_user_evicts(); 2206 mutex_exit(&arc_reclaim_thr_lock); 2207 ASSERT(spa || arc_eviction_list == NULL); 2208 } 2209 2210 void 2211 arc_shrink(void) 2212 { 2213 if (arc_c > arc_c_min) { 2214 uint64_t to_free; 2215 2216 #ifdef _KERNEL 2217 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2218 #else 2219 to_free = arc_c >> arc_shrink_shift; 2220 #endif 2221 if (arc_c > arc_c_min + to_free) 2222 atomic_add_64(&arc_c, -to_free); 2223 else 2224 arc_c = arc_c_min; 2225 2226 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2227 if (arc_c > arc_size) 2228 arc_c = MAX(arc_size, arc_c_min); 2229 if (arc_p > arc_c) 2230 arc_p = (arc_c >> 1); 2231 ASSERT(arc_c >= arc_c_min); 2232 ASSERT((int64_t)arc_p >= 0); 2233 } 2234 2235 if (arc_size > arc_c) 2236 arc_adjust(); 2237 } 2238 2239 /* 2240 * Determine if the system is under memory pressure and is asking 2241 * to reclaim memory. A return value of 1 indicates that the system 2242 * is under memory pressure and that the arc should adjust accordingly. 2243 */ 2244 static int 2245 arc_reclaim_needed(void) 2246 { 2247 uint64_t extra; 2248 2249 #ifdef _KERNEL 2250 2251 if (needfree) 2252 return (1); 2253 2254 /* 2255 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2256 */ 2257 extra = desfree; 2258 2259 /* 2260 * check that we're out of range of the pageout scanner. It starts to 2261 * schedule paging if freemem is less than lotsfree and needfree. 2262 * lotsfree is the high-water mark for pageout, and needfree is the 2263 * number of needed free pages. We add extra pages here to make sure 2264 * the scanner doesn't start up while we're freeing memory. 2265 */ 2266 if (freemem < lotsfree + needfree + extra) 2267 return (1); 2268 2269 /* 2270 * check to make sure that swapfs has enough space so that anon 2271 * reservations can still succeed. anon_resvmem() checks that the 2272 * availrmem is greater than swapfs_minfree, and the number of reserved 2273 * swap pages. We also add a bit of extra here just to prevent 2274 * circumstances from getting really dire. 2275 */ 2276 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2277 return (1); 2278 2279 /* 2280 * Check that we have enough availrmem that memory locking (e.g., via 2281 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2282 * stores the number of pages that cannot be locked; when availrmem 2283 * drops below pages_pp_maximum, page locking mechanisms such as 2284 * page_pp_lock() will fail.) 2285 */ 2286 if (availrmem <= pages_pp_maximum) 2287 return (1); 2288 2289 #if defined(__i386) 2290 /* 2291 * If we're on an i386 platform, it's possible that we'll exhaust the 2292 * kernel heap space before we ever run out of available physical 2293 * memory. Most checks of the size of the heap_area compare against 2294 * tune.t_minarmem, which is the minimum available real memory that we 2295 * can have in the system. However, this is generally fixed at 25 pages 2296 * which is so low that it's useless. In this comparison, we seek to 2297 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2298 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2299 * free) 2300 */ 2301 if (vmem_size(heap_arena, VMEM_FREE) < 2302 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2303 return (1); 2304 #endif 2305 2306 /* 2307 * If zio data pages are being allocated out of a separate heap segment, 2308 * then enforce that the size of available vmem for this arena remains 2309 * above about 1/16th free. 2310 * 2311 * Note: The 1/16th arena free requirement was put in place 2312 * to aggressively evict memory from the arc in order to avoid 2313 * memory fragmentation issues. 2314 */ 2315 if (zio_arena != NULL && 2316 vmem_size(zio_arena, VMEM_FREE) < 2317 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2318 return (1); 2319 #else 2320 if (spa_get_random(100) == 0) 2321 return (1); 2322 #endif 2323 return (0); 2324 } 2325 2326 static void 2327 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2328 { 2329 size_t i; 2330 kmem_cache_t *prev_cache = NULL; 2331 kmem_cache_t *prev_data_cache = NULL; 2332 extern kmem_cache_t *zio_buf_cache[]; 2333 extern kmem_cache_t *zio_data_buf_cache[]; 2334 extern kmem_cache_t *range_seg_cache; 2335 2336 #ifdef _KERNEL 2337 if (arc_meta_used >= arc_meta_limit) { 2338 /* 2339 * We are exceeding our meta-data cache limit. 2340 * Purge some DNLC entries to release holds on meta-data. 2341 */ 2342 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2343 } 2344 #if defined(__i386) 2345 /* 2346 * Reclaim unused memory from all kmem caches. 2347 */ 2348 kmem_reap(); 2349 #endif 2350 #endif 2351 2352 /* 2353 * An aggressive reclamation will shrink the cache size as well as 2354 * reap free buffers from the arc kmem caches. 2355 */ 2356 if (strat == ARC_RECLAIM_AGGR) 2357 arc_shrink(); 2358 2359 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2360 if (zio_buf_cache[i] != prev_cache) { 2361 prev_cache = zio_buf_cache[i]; 2362 kmem_cache_reap_now(zio_buf_cache[i]); 2363 } 2364 if (zio_data_buf_cache[i] != prev_data_cache) { 2365 prev_data_cache = zio_data_buf_cache[i]; 2366 kmem_cache_reap_now(zio_data_buf_cache[i]); 2367 } 2368 } 2369 kmem_cache_reap_now(buf_cache); 2370 kmem_cache_reap_now(hdr_cache); 2371 kmem_cache_reap_now(range_seg_cache); 2372 2373 /* 2374 * Ask the vmem areana to reclaim unused memory from its 2375 * quantum caches. 2376 */ 2377 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2378 vmem_qcache_reap(zio_arena); 2379 } 2380 2381 static void 2382 arc_reclaim_thread(void) 2383 { 2384 clock_t growtime = 0; 2385 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2386 callb_cpr_t cpr; 2387 2388 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2389 2390 mutex_enter(&arc_reclaim_thr_lock); 2391 while (arc_thread_exit == 0) { 2392 if (arc_reclaim_needed()) { 2393 2394 if (arc_no_grow) { 2395 if (last_reclaim == ARC_RECLAIM_CONS) { 2396 last_reclaim = ARC_RECLAIM_AGGR; 2397 } else { 2398 last_reclaim = ARC_RECLAIM_CONS; 2399 } 2400 } else { 2401 arc_no_grow = TRUE; 2402 last_reclaim = ARC_RECLAIM_AGGR; 2403 membar_producer(); 2404 } 2405 2406 /* reset the growth delay for every reclaim */ 2407 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2408 2409 arc_kmem_reap_now(last_reclaim); 2410 arc_warm = B_TRUE; 2411 2412 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2413 arc_no_grow = FALSE; 2414 } 2415 2416 arc_adjust(); 2417 2418 if (arc_eviction_list != NULL) 2419 arc_do_user_evicts(); 2420 2421 /* block until needed, or one second, whichever is shorter */ 2422 CALLB_CPR_SAFE_BEGIN(&cpr); 2423 (void) cv_timedwait(&arc_reclaim_thr_cv, 2424 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2425 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2426 } 2427 2428 arc_thread_exit = 0; 2429 cv_broadcast(&arc_reclaim_thr_cv); 2430 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2431 thread_exit(); 2432 } 2433 2434 /* 2435 * Adapt arc info given the number of bytes we are trying to add and 2436 * the state that we are comming from. This function is only called 2437 * when we are adding new content to the cache. 2438 */ 2439 static void 2440 arc_adapt(int bytes, arc_state_t *state) 2441 { 2442 int mult; 2443 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2444 2445 if (state == arc_l2c_only) 2446 return; 2447 2448 ASSERT(bytes > 0); 2449 /* 2450 * Adapt the target size of the MRU list: 2451 * - if we just hit in the MRU ghost list, then increase 2452 * the target size of the MRU list. 2453 * - if we just hit in the MFU ghost list, then increase 2454 * the target size of the MFU list by decreasing the 2455 * target size of the MRU list. 2456 */ 2457 if (state == arc_mru_ghost) { 2458 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2459 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2460 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2461 2462 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2463 } else if (state == arc_mfu_ghost) { 2464 uint64_t delta; 2465 2466 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2467 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2468 mult = MIN(mult, 10); 2469 2470 delta = MIN(bytes * mult, arc_p); 2471 arc_p = MAX(arc_p_min, arc_p - delta); 2472 } 2473 ASSERT((int64_t)arc_p >= 0); 2474 2475 if (arc_reclaim_needed()) { 2476 cv_signal(&arc_reclaim_thr_cv); 2477 return; 2478 } 2479 2480 if (arc_no_grow) 2481 return; 2482 2483 if (arc_c >= arc_c_max) 2484 return; 2485 2486 /* 2487 * If we're within (2 * maxblocksize) bytes of the target 2488 * cache size, increment the target cache size 2489 */ 2490 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2491 atomic_add_64(&arc_c, (int64_t)bytes); 2492 if (arc_c > arc_c_max) 2493 arc_c = arc_c_max; 2494 else if (state == arc_anon) 2495 atomic_add_64(&arc_p, (int64_t)bytes); 2496 if (arc_p > arc_c) 2497 arc_p = arc_c; 2498 } 2499 ASSERT((int64_t)arc_p >= 0); 2500 } 2501 2502 /* 2503 * Check if the cache has reached its limits and eviction is required 2504 * prior to insert. 2505 */ 2506 static int 2507 arc_evict_needed(arc_buf_contents_t type) 2508 { 2509 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2510 return (1); 2511 2512 if (arc_reclaim_needed()) 2513 return (1); 2514 2515 return (arc_size > arc_c); 2516 } 2517 2518 /* 2519 * The buffer, supplied as the first argument, needs a data block. 2520 * So, if we are at cache max, determine which cache should be victimized. 2521 * We have the following cases: 2522 * 2523 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2524 * In this situation if we're out of space, but the resident size of the MFU is 2525 * under the limit, victimize the MFU cache to satisfy this insertion request. 2526 * 2527 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2528 * Here, we've used up all of the available space for the MRU, so we need to 2529 * evict from our own cache instead. Evict from the set of resident MRU 2530 * entries. 2531 * 2532 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2533 * c minus p represents the MFU space in the cache, since p is the size of the 2534 * cache that is dedicated to the MRU. In this situation there's still space on 2535 * the MFU side, so the MRU side needs to be victimized. 2536 * 2537 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2538 * MFU's resident set is consuming more space than it has been allotted. In 2539 * this situation, we must victimize our own cache, the MFU, for this insertion. 2540 */ 2541 static void 2542 arc_get_data_buf(arc_buf_t *buf) 2543 { 2544 arc_state_t *state = buf->b_hdr->b_state; 2545 uint64_t size = buf->b_hdr->b_size; 2546 arc_buf_contents_t type = buf->b_hdr->b_type; 2547 2548 arc_adapt(size, state); 2549 2550 /* 2551 * We have not yet reached cache maximum size, 2552 * just allocate a new buffer. 2553 */ 2554 if (!arc_evict_needed(type)) { 2555 if (type == ARC_BUFC_METADATA) { 2556 buf->b_data = zio_buf_alloc(size); 2557 arc_space_consume(size, ARC_SPACE_DATA); 2558 } else { 2559 ASSERT(type == ARC_BUFC_DATA); 2560 buf->b_data = zio_data_buf_alloc(size); 2561 ARCSTAT_INCR(arcstat_data_size, size); 2562 atomic_add_64(&arc_size, size); 2563 } 2564 goto out; 2565 } 2566 2567 /* 2568 * If we are prefetching from the mfu ghost list, this buffer 2569 * will end up on the mru list; so steal space from there. 2570 */ 2571 if (state == arc_mfu_ghost) 2572 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2573 else if (state == arc_mru_ghost) 2574 state = arc_mru; 2575 2576 if (state == arc_mru || state == arc_anon) { 2577 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2578 state = (arc_mfu->arcs_lsize[type] >= size && 2579 arc_p > mru_used) ? arc_mfu : arc_mru; 2580 } else { 2581 /* MFU cases */ 2582 uint64_t mfu_space = arc_c - arc_p; 2583 state = (arc_mru->arcs_lsize[type] >= size && 2584 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2585 } 2586 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2587 if (type == ARC_BUFC_METADATA) { 2588 buf->b_data = zio_buf_alloc(size); 2589 arc_space_consume(size, ARC_SPACE_DATA); 2590 } else { 2591 ASSERT(type == ARC_BUFC_DATA); 2592 buf->b_data = zio_data_buf_alloc(size); 2593 ARCSTAT_INCR(arcstat_data_size, size); 2594 atomic_add_64(&arc_size, size); 2595 } 2596 ARCSTAT_BUMP(arcstat_recycle_miss); 2597 } 2598 ASSERT(buf->b_data != NULL); 2599 out: 2600 /* 2601 * Update the state size. Note that ghost states have a 2602 * "ghost size" and so don't need to be updated. 2603 */ 2604 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2605 arc_buf_hdr_t *hdr = buf->b_hdr; 2606 2607 atomic_add_64(&hdr->b_state->arcs_size, size); 2608 if (list_link_active(&hdr->b_arc_node)) { 2609 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2610 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2611 } 2612 /* 2613 * If we are growing the cache, and we are adding anonymous 2614 * data, and we have outgrown arc_p, update arc_p 2615 */ 2616 if (arc_size < arc_c && hdr->b_state == arc_anon && 2617 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2618 arc_p = MIN(arc_c, arc_p + size); 2619 } 2620 } 2621 2622 /* 2623 * This routine is called whenever a buffer is accessed. 2624 * NOTE: the hash lock is dropped in this function. 2625 */ 2626 static void 2627 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2628 { 2629 clock_t now; 2630 2631 ASSERT(MUTEX_HELD(hash_lock)); 2632 2633 if (buf->b_state == arc_anon) { 2634 /* 2635 * This buffer is not in the cache, and does not 2636 * appear in our "ghost" list. Add the new buffer 2637 * to the MRU state. 2638 */ 2639 2640 ASSERT(buf->b_arc_access == 0); 2641 buf->b_arc_access = ddi_get_lbolt(); 2642 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2643 arc_change_state(arc_mru, buf, hash_lock); 2644 2645 } else if (buf->b_state == arc_mru) { 2646 now = ddi_get_lbolt(); 2647 2648 /* 2649 * If this buffer is here because of a prefetch, then either: 2650 * - clear the flag if this is a "referencing" read 2651 * (any subsequent access will bump this into the MFU state). 2652 * or 2653 * - move the buffer to the head of the list if this is 2654 * another prefetch (to make it less likely to be evicted). 2655 */ 2656 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2657 if (refcount_count(&buf->b_refcnt) == 0) { 2658 ASSERT(list_link_active(&buf->b_arc_node)); 2659 } else { 2660 buf->b_flags &= ~ARC_PREFETCH; 2661 ARCSTAT_BUMP(arcstat_mru_hits); 2662 } 2663 buf->b_arc_access = now; 2664 return; 2665 } 2666 2667 /* 2668 * This buffer has been "accessed" only once so far, 2669 * but it is still in the cache. Move it to the MFU 2670 * state. 2671 */ 2672 if (now > buf->b_arc_access + ARC_MINTIME) { 2673 /* 2674 * More than 125ms have passed since we 2675 * instantiated this buffer. Move it to the 2676 * most frequently used state. 2677 */ 2678 buf->b_arc_access = now; 2679 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2680 arc_change_state(arc_mfu, buf, hash_lock); 2681 } 2682 ARCSTAT_BUMP(arcstat_mru_hits); 2683 } else if (buf->b_state == arc_mru_ghost) { 2684 arc_state_t *new_state; 2685 /* 2686 * This buffer has been "accessed" recently, but 2687 * was evicted from the cache. Move it to the 2688 * MFU state. 2689 */ 2690 2691 if (buf->b_flags & ARC_PREFETCH) { 2692 new_state = arc_mru; 2693 if (refcount_count(&buf->b_refcnt) > 0) 2694 buf->b_flags &= ~ARC_PREFETCH; 2695 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2696 } else { 2697 new_state = arc_mfu; 2698 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2699 } 2700 2701 buf->b_arc_access = ddi_get_lbolt(); 2702 arc_change_state(new_state, buf, hash_lock); 2703 2704 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2705 } else if (buf->b_state == arc_mfu) { 2706 /* 2707 * This buffer has been accessed more than once and is 2708 * still in the cache. Keep it in the MFU state. 2709 * 2710 * NOTE: an add_reference() that occurred when we did 2711 * the arc_read() will have kicked this off the list. 2712 * If it was a prefetch, we will explicitly move it to 2713 * the head of the list now. 2714 */ 2715 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2716 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2717 ASSERT(list_link_active(&buf->b_arc_node)); 2718 } 2719 ARCSTAT_BUMP(arcstat_mfu_hits); 2720 buf->b_arc_access = ddi_get_lbolt(); 2721 } else if (buf->b_state == arc_mfu_ghost) { 2722 arc_state_t *new_state = arc_mfu; 2723 /* 2724 * This buffer has been accessed more than once but has 2725 * been evicted from the cache. Move it back to the 2726 * MFU state. 2727 */ 2728 2729 if (buf->b_flags & ARC_PREFETCH) { 2730 /* 2731 * This is a prefetch access... 2732 * move this block back to the MRU state. 2733 */ 2734 ASSERT0(refcount_count(&buf->b_refcnt)); 2735 new_state = arc_mru; 2736 } 2737 2738 buf->b_arc_access = ddi_get_lbolt(); 2739 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2740 arc_change_state(new_state, buf, hash_lock); 2741 2742 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2743 } else if (buf->b_state == arc_l2c_only) { 2744 /* 2745 * This buffer is on the 2nd Level ARC. 2746 */ 2747 2748 buf->b_arc_access = ddi_get_lbolt(); 2749 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2750 arc_change_state(arc_mfu, buf, hash_lock); 2751 } else { 2752 ASSERT(!"invalid arc state"); 2753 } 2754 } 2755 2756 /* a generic arc_done_func_t which you can use */ 2757 /* ARGSUSED */ 2758 void 2759 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2760 { 2761 if (zio == NULL || zio->io_error == 0) 2762 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2763 VERIFY(arc_buf_remove_ref(buf, arg)); 2764 } 2765 2766 /* a generic arc_done_func_t */ 2767 void 2768 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2769 { 2770 arc_buf_t **bufp = arg; 2771 if (zio && zio->io_error) { 2772 VERIFY(arc_buf_remove_ref(buf, arg)); 2773 *bufp = NULL; 2774 } else { 2775 *bufp = buf; 2776 ASSERT(buf->b_data); 2777 } 2778 } 2779 2780 static void 2781 arc_read_done(zio_t *zio) 2782 { 2783 arc_buf_hdr_t *hdr; 2784 arc_buf_t *buf; 2785 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2786 kmutex_t *hash_lock = NULL; 2787 arc_callback_t *callback_list, *acb; 2788 int freeable = FALSE; 2789 2790 buf = zio->io_private; 2791 hdr = buf->b_hdr; 2792 2793 /* 2794 * The hdr was inserted into hash-table and removed from lists 2795 * prior to starting I/O. We should find this header, since 2796 * it's in the hash table, and it should be legit since it's 2797 * not possible to evict it during the I/O. The only possible 2798 * reason for it not to be found is if we were freed during the 2799 * read. 2800 */ 2801 if (HDR_IN_HASH_TABLE(hdr)) { 2802 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2803 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2804 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2805 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2806 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2807 2808 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2809 &hash_lock); 2810 2811 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2812 hash_lock == NULL) || 2813 (found == hdr && 2814 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2815 (found == hdr && HDR_L2_READING(hdr))); 2816 } 2817 2818 hdr->b_flags &= ~ARC_L2_EVICTED; 2819 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2820 hdr->b_flags &= ~ARC_L2CACHE; 2821 2822 /* byteswap if necessary */ 2823 callback_list = hdr->b_acb; 2824 ASSERT(callback_list != NULL); 2825 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2826 dmu_object_byteswap_t bswap = 2827 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2828 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2829 byteswap_uint64_array : 2830 dmu_ot_byteswap[bswap].ob_func; 2831 func(buf->b_data, hdr->b_size); 2832 } 2833 2834 arc_cksum_compute(buf, B_FALSE); 2835 arc_buf_watch(buf); 2836 2837 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2838 /* 2839 * Only call arc_access on anonymous buffers. This is because 2840 * if we've issued an I/O for an evicted buffer, we've already 2841 * called arc_access (to prevent any simultaneous readers from 2842 * getting confused). 2843 */ 2844 arc_access(hdr, hash_lock); 2845 } 2846 2847 /* create copies of the data buffer for the callers */ 2848 abuf = buf; 2849 for (acb = callback_list; acb; acb = acb->acb_next) { 2850 if (acb->acb_done) { 2851 if (abuf == NULL) { 2852 ARCSTAT_BUMP(arcstat_duplicate_reads); 2853 abuf = arc_buf_clone(buf); 2854 } 2855 acb->acb_buf = abuf; 2856 abuf = NULL; 2857 } 2858 } 2859 hdr->b_acb = NULL; 2860 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2861 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2862 if (abuf == buf) { 2863 ASSERT(buf->b_efunc == NULL); 2864 ASSERT(hdr->b_datacnt == 1); 2865 hdr->b_flags |= ARC_BUF_AVAILABLE; 2866 } 2867 2868 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2869 2870 if (zio->io_error != 0) { 2871 hdr->b_flags |= ARC_IO_ERROR; 2872 if (hdr->b_state != arc_anon) 2873 arc_change_state(arc_anon, hdr, hash_lock); 2874 if (HDR_IN_HASH_TABLE(hdr)) 2875 buf_hash_remove(hdr); 2876 freeable = refcount_is_zero(&hdr->b_refcnt); 2877 } 2878 2879 /* 2880 * Broadcast before we drop the hash_lock to avoid the possibility 2881 * that the hdr (and hence the cv) might be freed before we get to 2882 * the cv_broadcast(). 2883 */ 2884 cv_broadcast(&hdr->b_cv); 2885 2886 if (hash_lock) { 2887 mutex_exit(hash_lock); 2888 } else { 2889 /* 2890 * This block was freed while we waited for the read to 2891 * complete. It has been removed from the hash table and 2892 * moved to the anonymous state (so that it won't show up 2893 * in the cache). 2894 */ 2895 ASSERT3P(hdr->b_state, ==, arc_anon); 2896 freeable = refcount_is_zero(&hdr->b_refcnt); 2897 } 2898 2899 /* execute each callback and free its structure */ 2900 while ((acb = callback_list) != NULL) { 2901 if (acb->acb_done) 2902 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2903 2904 if (acb->acb_zio_dummy != NULL) { 2905 acb->acb_zio_dummy->io_error = zio->io_error; 2906 zio_nowait(acb->acb_zio_dummy); 2907 } 2908 2909 callback_list = acb->acb_next; 2910 kmem_free(acb, sizeof (arc_callback_t)); 2911 } 2912 2913 if (freeable) 2914 arc_hdr_destroy(hdr); 2915 } 2916 2917 /* 2918 * "Read" the block at the specified DVA (in bp) via the 2919 * cache. If the block is found in the cache, invoke the provided 2920 * callback immediately and return. Note that the `zio' parameter 2921 * in the callback will be NULL in this case, since no IO was 2922 * required. If the block is not in the cache pass the read request 2923 * on to the spa with a substitute callback function, so that the 2924 * requested block will be added to the cache. 2925 * 2926 * If a read request arrives for a block that has a read in-progress, 2927 * either wait for the in-progress read to complete (and return the 2928 * results); or, if this is a read with a "done" func, add a record 2929 * to the read to invoke the "done" func when the read completes, 2930 * and return; or just return. 2931 * 2932 * arc_read_done() will invoke all the requested "done" functions 2933 * for readers of this block. 2934 */ 2935 int 2936 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2937 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, 2938 const zbookmark_phys_t *zb) 2939 { 2940 arc_buf_hdr_t *hdr = NULL; 2941 arc_buf_t *buf = NULL; 2942 kmutex_t *hash_lock = NULL; 2943 zio_t *rzio; 2944 uint64_t guid = spa_load_guid(spa); 2945 2946 ASSERT(!BP_IS_EMBEDDED(bp) || 2947 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2948 2949 top: 2950 if (!BP_IS_EMBEDDED(bp)) { 2951 /* 2952 * Embedded BP's have no DVA and require no I/O to "read". 2953 * Create an anonymous arc buf to back it. 2954 */ 2955 hdr = buf_hash_find(guid, bp, &hash_lock); 2956 } 2957 2958 if (hdr != NULL && hdr->b_datacnt > 0) { 2959 2960 *arc_flags |= ARC_CACHED; 2961 2962 if (HDR_IO_IN_PROGRESS(hdr)) { 2963 2964 if (*arc_flags & ARC_WAIT) { 2965 cv_wait(&hdr->b_cv, hash_lock); 2966 mutex_exit(hash_lock); 2967 goto top; 2968 } 2969 ASSERT(*arc_flags & ARC_NOWAIT); 2970 2971 if (done) { 2972 arc_callback_t *acb = NULL; 2973 2974 acb = kmem_zalloc(sizeof (arc_callback_t), 2975 KM_SLEEP); 2976 acb->acb_done = done; 2977 acb->acb_private = private; 2978 if (pio != NULL) 2979 acb->acb_zio_dummy = zio_null(pio, 2980 spa, NULL, NULL, NULL, zio_flags); 2981 2982 ASSERT(acb->acb_done != NULL); 2983 acb->acb_next = hdr->b_acb; 2984 hdr->b_acb = acb; 2985 add_reference(hdr, hash_lock, private); 2986 mutex_exit(hash_lock); 2987 return (0); 2988 } 2989 mutex_exit(hash_lock); 2990 return (0); 2991 } 2992 2993 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2994 2995 if (done) { 2996 add_reference(hdr, hash_lock, private); 2997 /* 2998 * If this block is already in use, create a new 2999 * copy of the data so that we will be guaranteed 3000 * that arc_release() will always succeed. 3001 */ 3002 buf = hdr->b_buf; 3003 ASSERT(buf); 3004 ASSERT(buf->b_data); 3005 if (HDR_BUF_AVAILABLE(hdr)) { 3006 ASSERT(buf->b_efunc == NULL); 3007 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3008 } else { 3009 buf = arc_buf_clone(buf); 3010 } 3011 3012 } else if (*arc_flags & ARC_PREFETCH && 3013 refcount_count(&hdr->b_refcnt) == 0) { 3014 hdr->b_flags |= ARC_PREFETCH; 3015 } 3016 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 3017 arc_access(hdr, hash_lock); 3018 if (*arc_flags & ARC_L2CACHE) 3019 hdr->b_flags |= ARC_L2CACHE; 3020 if (*arc_flags & ARC_L2COMPRESS) 3021 hdr->b_flags |= ARC_L2COMPRESS; 3022 mutex_exit(hash_lock); 3023 ARCSTAT_BUMP(arcstat_hits); 3024 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3025 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3026 data, metadata, hits); 3027 3028 if (done) 3029 done(NULL, buf, private); 3030 } else { 3031 uint64_t size = BP_GET_LSIZE(bp); 3032 arc_callback_t *acb; 3033 vdev_t *vd = NULL; 3034 uint64_t addr = 0; 3035 boolean_t devw = B_FALSE; 3036 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 3037 uint64_t b_asize = 0; 3038 3039 if (hdr == NULL) { 3040 /* this block is not in the cache */ 3041 arc_buf_hdr_t *exists = NULL; 3042 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3043 buf = arc_buf_alloc(spa, size, private, type); 3044 hdr = buf->b_hdr; 3045 if (!BP_IS_EMBEDDED(bp)) { 3046 hdr->b_dva = *BP_IDENTITY(bp); 3047 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3048 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3049 exists = buf_hash_insert(hdr, &hash_lock); 3050 } 3051 if (exists != NULL) { 3052 /* somebody beat us to the hash insert */ 3053 mutex_exit(hash_lock); 3054 buf_discard_identity(hdr); 3055 (void) arc_buf_remove_ref(buf, private); 3056 goto top; /* restart the IO request */ 3057 } 3058 /* if this is a prefetch, we don't have a reference */ 3059 if (*arc_flags & ARC_PREFETCH) { 3060 (void) remove_reference(hdr, hash_lock, 3061 private); 3062 hdr->b_flags |= ARC_PREFETCH; 3063 } 3064 if (*arc_flags & ARC_L2CACHE) 3065 hdr->b_flags |= ARC_L2CACHE; 3066 if (*arc_flags & ARC_L2COMPRESS) 3067 hdr->b_flags |= ARC_L2COMPRESS; 3068 if (BP_GET_LEVEL(bp) > 0) 3069 hdr->b_flags |= ARC_INDIRECT; 3070 } else { 3071 /* this block is in the ghost cache */ 3072 ASSERT(GHOST_STATE(hdr->b_state)); 3073 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3074 ASSERT0(refcount_count(&hdr->b_refcnt)); 3075 ASSERT(hdr->b_buf == NULL); 3076 3077 /* if this is a prefetch, we don't have a reference */ 3078 if (*arc_flags & ARC_PREFETCH) 3079 hdr->b_flags |= ARC_PREFETCH; 3080 else 3081 add_reference(hdr, hash_lock, private); 3082 if (*arc_flags & ARC_L2CACHE) 3083 hdr->b_flags |= ARC_L2CACHE; 3084 if (*arc_flags & ARC_L2COMPRESS) 3085 hdr->b_flags |= ARC_L2COMPRESS; 3086 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3087 buf->b_hdr = hdr; 3088 buf->b_data = NULL; 3089 buf->b_efunc = NULL; 3090 buf->b_private = NULL; 3091 buf->b_next = NULL; 3092 hdr->b_buf = buf; 3093 ASSERT(hdr->b_datacnt == 0); 3094 hdr->b_datacnt = 1; 3095 arc_get_data_buf(buf); 3096 arc_access(hdr, hash_lock); 3097 } 3098 3099 ASSERT(!GHOST_STATE(hdr->b_state)); 3100 3101 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3102 acb->acb_done = done; 3103 acb->acb_private = private; 3104 3105 ASSERT(hdr->b_acb == NULL); 3106 hdr->b_acb = acb; 3107 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3108 3109 if (hdr->b_l2hdr != NULL && 3110 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3111 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3112 addr = hdr->b_l2hdr->b_daddr; 3113 b_compress = hdr->b_l2hdr->b_compress; 3114 b_asize = hdr->b_l2hdr->b_asize; 3115 /* 3116 * Lock out device removal. 3117 */ 3118 if (vdev_is_dead(vd) || 3119 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3120 vd = NULL; 3121 } 3122 3123 if (hash_lock != NULL) 3124 mutex_exit(hash_lock); 3125 3126 /* 3127 * At this point, we have a level 1 cache miss. Try again in 3128 * L2ARC if possible. 3129 */ 3130 ASSERT3U(hdr->b_size, ==, size); 3131 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3132 uint64_t, size, zbookmark_phys_t *, zb); 3133 ARCSTAT_BUMP(arcstat_misses); 3134 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3135 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3136 data, metadata, misses); 3137 3138 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3139 /* 3140 * Read from the L2ARC if the following are true: 3141 * 1. The L2ARC vdev was previously cached. 3142 * 2. This buffer still has L2ARC metadata. 3143 * 3. This buffer isn't currently writing to the L2ARC. 3144 * 4. The L2ARC entry wasn't evicted, which may 3145 * also have invalidated the vdev. 3146 * 5. This isn't prefetch and l2arc_noprefetch is set. 3147 */ 3148 if (hdr->b_l2hdr != NULL && 3149 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3150 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3151 l2arc_read_callback_t *cb; 3152 3153 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3154 ARCSTAT_BUMP(arcstat_l2_hits); 3155 3156 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3157 KM_SLEEP); 3158 cb->l2rcb_buf = buf; 3159 cb->l2rcb_spa = spa; 3160 cb->l2rcb_bp = *bp; 3161 cb->l2rcb_zb = *zb; 3162 cb->l2rcb_flags = zio_flags; 3163 cb->l2rcb_compress = b_compress; 3164 3165 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3166 addr + size < vd->vdev_psize - 3167 VDEV_LABEL_END_SIZE); 3168 3169 /* 3170 * l2arc read. The SCL_L2ARC lock will be 3171 * released by l2arc_read_done(). 3172 * Issue a null zio if the underlying buffer 3173 * was squashed to zero size by compression. 3174 */ 3175 if (b_compress == ZIO_COMPRESS_EMPTY) { 3176 rzio = zio_null(pio, spa, vd, 3177 l2arc_read_done, cb, 3178 zio_flags | ZIO_FLAG_DONT_CACHE | 3179 ZIO_FLAG_CANFAIL | 3180 ZIO_FLAG_DONT_PROPAGATE | 3181 ZIO_FLAG_DONT_RETRY); 3182 } else { 3183 rzio = zio_read_phys(pio, vd, addr, 3184 b_asize, buf->b_data, 3185 ZIO_CHECKSUM_OFF, 3186 l2arc_read_done, cb, priority, 3187 zio_flags | ZIO_FLAG_DONT_CACHE | 3188 ZIO_FLAG_CANFAIL | 3189 ZIO_FLAG_DONT_PROPAGATE | 3190 ZIO_FLAG_DONT_RETRY, B_FALSE); 3191 } 3192 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3193 zio_t *, rzio); 3194 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3195 3196 if (*arc_flags & ARC_NOWAIT) { 3197 zio_nowait(rzio); 3198 return (0); 3199 } 3200 3201 ASSERT(*arc_flags & ARC_WAIT); 3202 if (zio_wait(rzio) == 0) 3203 return (0); 3204 3205 /* l2arc read error; goto zio_read() */ 3206 } else { 3207 DTRACE_PROBE1(l2arc__miss, 3208 arc_buf_hdr_t *, hdr); 3209 ARCSTAT_BUMP(arcstat_l2_misses); 3210 if (HDR_L2_WRITING(hdr)) 3211 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3212 spa_config_exit(spa, SCL_L2ARC, vd); 3213 } 3214 } else { 3215 if (vd != NULL) 3216 spa_config_exit(spa, SCL_L2ARC, vd); 3217 if (l2arc_ndev != 0) { 3218 DTRACE_PROBE1(l2arc__miss, 3219 arc_buf_hdr_t *, hdr); 3220 ARCSTAT_BUMP(arcstat_l2_misses); 3221 } 3222 } 3223 3224 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3225 arc_read_done, buf, priority, zio_flags, zb); 3226 3227 if (*arc_flags & ARC_WAIT) 3228 return (zio_wait(rzio)); 3229 3230 ASSERT(*arc_flags & ARC_NOWAIT); 3231 zio_nowait(rzio); 3232 } 3233 return (0); 3234 } 3235 3236 void 3237 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3238 { 3239 ASSERT(buf->b_hdr != NULL); 3240 ASSERT(buf->b_hdr->b_state != arc_anon); 3241 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3242 ASSERT(buf->b_efunc == NULL); 3243 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3244 3245 buf->b_efunc = func; 3246 buf->b_private = private; 3247 } 3248 3249 /* 3250 * Notify the arc that a block was freed, and thus will never be used again. 3251 */ 3252 void 3253 arc_freed(spa_t *spa, const blkptr_t *bp) 3254 { 3255 arc_buf_hdr_t *hdr; 3256 kmutex_t *hash_lock; 3257 uint64_t guid = spa_load_guid(spa); 3258 3259 ASSERT(!BP_IS_EMBEDDED(bp)); 3260 3261 hdr = buf_hash_find(guid, bp, &hash_lock); 3262 if (hdr == NULL) 3263 return; 3264 if (HDR_BUF_AVAILABLE(hdr)) { 3265 arc_buf_t *buf = hdr->b_buf; 3266 add_reference(hdr, hash_lock, FTAG); 3267 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3268 mutex_exit(hash_lock); 3269 3270 arc_release(buf, FTAG); 3271 (void) arc_buf_remove_ref(buf, FTAG); 3272 } else { 3273 mutex_exit(hash_lock); 3274 } 3275 3276 } 3277 3278 /* 3279 * Clear the user eviction callback set by arc_set_callback(), first calling 3280 * it if it exists. Because the presence of a callback keeps an arc_buf cached 3281 * clearing the callback may result in the arc_buf being destroyed. However, 3282 * it will not result in the *last* arc_buf being destroyed, hence the data 3283 * will remain cached in the ARC. We make a copy of the arc buffer here so 3284 * that we can process the callback without holding any locks. 3285 * 3286 * It's possible that the callback is already in the process of being cleared 3287 * by another thread. In this case we can not clear the callback. 3288 * 3289 * Returns B_TRUE if the callback was successfully called and cleared. 3290 */ 3291 boolean_t 3292 arc_clear_callback(arc_buf_t *buf) 3293 { 3294 arc_buf_hdr_t *hdr; 3295 kmutex_t *hash_lock; 3296 arc_evict_func_t *efunc = buf->b_efunc; 3297 void *private = buf->b_private; 3298 3299 mutex_enter(&buf->b_evict_lock); 3300 hdr = buf->b_hdr; 3301 if (hdr == NULL) { 3302 /* 3303 * We are in arc_do_user_evicts(). 3304 */ 3305 ASSERT(buf->b_data == NULL); 3306 mutex_exit(&buf->b_evict_lock); 3307 return (B_FALSE); 3308 } else if (buf->b_data == NULL) { 3309 /* 3310 * We are on the eviction list; process this buffer now 3311 * but let arc_do_user_evicts() do the reaping. 3312 */ 3313 buf->b_efunc = NULL; 3314 mutex_exit(&buf->b_evict_lock); 3315 VERIFY0(efunc(private)); 3316 return (B_TRUE); 3317 } 3318 hash_lock = HDR_LOCK(hdr); 3319 mutex_enter(hash_lock); 3320 hdr = buf->b_hdr; 3321 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3322 3323 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3324 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3325 3326 buf->b_efunc = NULL; 3327 buf->b_private = NULL; 3328 3329 if (hdr->b_datacnt > 1) { 3330 mutex_exit(&buf->b_evict_lock); 3331 arc_buf_destroy(buf, FALSE, TRUE); 3332 } else { 3333 ASSERT(buf == hdr->b_buf); 3334 hdr->b_flags |= ARC_BUF_AVAILABLE; 3335 mutex_exit(&buf->b_evict_lock); 3336 } 3337 3338 mutex_exit(hash_lock); 3339 VERIFY0(efunc(private)); 3340 return (B_TRUE); 3341 } 3342 3343 /* 3344 * Release this buffer from the cache, making it an anonymous buffer. This 3345 * must be done after a read and prior to modifying the buffer contents. 3346 * If the buffer has more than one reference, we must make 3347 * a new hdr for the buffer. 3348 */ 3349 void 3350 arc_release(arc_buf_t *buf, void *tag) 3351 { 3352 arc_buf_hdr_t *hdr; 3353 kmutex_t *hash_lock = NULL; 3354 l2arc_buf_hdr_t *l2hdr; 3355 uint64_t buf_size; 3356 3357 /* 3358 * It would be nice to assert that if it's DMU metadata (level > 3359 * 0 || it's the dnode file), then it must be syncing context. 3360 * But we don't know that information at this level. 3361 */ 3362 3363 mutex_enter(&buf->b_evict_lock); 3364 hdr = buf->b_hdr; 3365 3366 /* this buffer is not on any list */ 3367 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3368 3369 if (hdr->b_state == arc_anon) { 3370 /* this buffer is already released */ 3371 ASSERT(buf->b_efunc == NULL); 3372 } else { 3373 hash_lock = HDR_LOCK(hdr); 3374 mutex_enter(hash_lock); 3375 hdr = buf->b_hdr; 3376 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3377 } 3378 3379 l2hdr = hdr->b_l2hdr; 3380 if (l2hdr) { 3381 mutex_enter(&l2arc_buflist_mtx); 3382 arc_buf_l2_cdata_free(hdr); 3383 hdr->b_l2hdr = NULL; 3384 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3385 } 3386 buf_size = hdr->b_size; 3387 3388 /* 3389 * Do we have more than one buf? 3390 */ 3391 if (hdr->b_datacnt > 1) { 3392 arc_buf_hdr_t *nhdr; 3393 arc_buf_t **bufp; 3394 uint64_t blksz = hdr->b_size; 3395 uint64_t spa = hdr->b_spa; 3396 arc_buf_contents_t type = hdr->b_type; 3397 uint32_t flags = hdr->b_flags; 3398 3399 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3400 /* 3401 * Pull the data off of this hdr and attach it to 3402 * a new anonymous hdr. 3403 */ 3404 (void) remove_reference(hdr, hash_lock, tag); 3405 bufp = &hdr->b_buf; 3406 while (*bufp != buf) 3407 bufp = &(*bufp)->b_next; 3408 *bufp = buf->b_next; 3409 buf->b_next = NULL; 3410 3411 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3412 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3413 if (refcount_is_zero(&hdr->b_refcnt)) { 3414 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3415 ASSERT3U(*size, >=, hdr->b_size); 3416 atomic_add_64(size, -hdr->b_size); 3417 } 3418 3419 /* 3420 * We're releasing a duplicate user data buffer, update 3421 * our statistics accordingly. 3422 */ 3423 if (hdr->b_type == ARC_BUFC_DATA) { 3424 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3425 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3426 -hdr->b_size); 3427 } 3428 hdr->b_datacnt -= 1; 3429 arc_cksum_verify(buf); 3430 arc_buf_unwatch(buf); 3431 3432 mutex_exit(hash_lock); 3433 3434 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3435 nhdr->b_size = blksz; 3436 nhdr->b_spa = spa; 3437 nhdr->b_type = type; 3438 nhdr->b_buf = buf; 3439 nhdr->b_state = arc_anon; 3440 nhdr->b_arc_access = 0; 3441 nhdr->b_flags = flags & ARC_L2_WRITING; 3442 nhdr->b_l2hdr = NULL; 3443 nhdr->b_datacnt = 1; 3444 nhdr->b_freeze_cksum = NULL; 3445 (void) refcount_add(&nhdr->b_refcnt, tag); 3446 buf->b_hdr = nhdr; 3447 mutex_exit(&buf->b_evict_lock); 3448 atomic_add_64(&arc_anon->arcs_size, blksz); 3449 } else { 3450 mutex_exit(&buf->b_evict_lock); 3451 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3452 ASSERT(!list_link_active(&hdr->b_arc_node)); 3453 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3454 if (hdr->b_state != arc_anon) 3455 arc_change_state(arc_anon, hdr, hash_lock); 3456 hdr->b_arc_access = 0; 3457 if (hash_lock) 3458 mutex_exit(hash_lock); 3459 3460 buf_discard_identity(hdr); 3461 arc_buf_thaw(buf); 3462 } 3463 buf->b_efunc = NULL; 3464 buf->b_private = NULL; 3465 3466 if (l2hdr) { 3467 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3468 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3469 -l2hdr->b_asize, 0, 0); 3470 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3471 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3472 mutex_exit(&l2arc_buflist_mtx); 3473 } 3474 } 3475 3476 int 3477 arc_released(arc_buf_t *buf) 3478 { 3479 int released; 3480 3481 mutex_enter(&buf->b_evict_lock); 3482 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3483 mutex_exit(&buf->b_evict_lock); 3484 return (released); 3485 } 3486 3487 #ifdef ZFS_DEBUG 3488 int 3489 arc_referenced(arc_buf_t *buf) 3490 { 3491 int referenced; 3492 3493 mutex_enter(&buf->b_evict_lock); 3494 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3495 mutex_exit(&buf->b_evict_lock); 3496 return (referenced); 3497 } 3498 #endif 3499 3500 static void 3501 arc_write_ready(zio_t *zio) 3502 { 3503 arc_write_callback_t *callback = zio->io_private; 3504 arc_buf_t *buf = callback->awcb_buf; 3505 arc_buf_hdr_t *hdr = buf->b_hdr; 3506 3507 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3508 callback->awcb_ready(zio, buf, callback->awcb_private); 3509 3510 /* 3511 * If the IO is already in progress, then this is a re-write 3512 * attempt, so we need to thaw and re-compute the cksum. 3513 * It is the responsibility of the callback to handle the 3514 * accounting for any re-write attempt. 3515 */ 3516 if (HDR_IO_IN_PROGRESS(hdr)) { 3517 mutex_enter(&hdr->b_freeze_lock); 3518 if (hdr->b_freeze_cksum != NULL) { 3519 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3520 hdr->b_freeze_cksum = NULL; 3521 } 3522 mutex_exit(&hdr->b_freeze_lock); 3523 } 3524 arc_cksum_compute(buf, B_FALSE); 3525 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3526 } 3527 3528 /* 3529 * The SPA calls this callback for each physical write that happens on behalf 3530 * of a logical write. See the comment in dbuf_write_physdone() for details. 3531 */ 3532 static void 3533 arc_write_physdone(zio_t *zio) 3534 { 3535 arc_write_callback_t *cb = zio->io_private; 3536 if (cb->awcb_physdone != NULL) 3537 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3538 } 3539 3540 static void 3541 arc_write_done(zio_t *zio) 3542 { 3543 arc_write_callback_t *callback = zio->io_private; 3544 arc_buf_t *buf = callback->awcb_buf; 3545 arc_buf_hdr_t *hdr = buf->b_hdr; 3546 3547 ASSERT(hdr->b_acb == NULL); 3548 3549 if (zio->io_error == 0) { 3550 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3551 buf_discard_identity(hdr); 3552 } else { 3553 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3554 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3555 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3556 } 3557 } else { 3558 ASSERT(BUF_EMPTY(hdr)); 3559 } 3560 3561 /* 3562 * If the block to be written was all-zero or compressed enough to be 3563 * embedded in the BP, no write was performed so there will be no 3564 * dva/birth/checksum. The buffer must therefore remain anonymous 3565 * (and uncached). 3566 */ 3567 if (!BUF_EMPTY(hdr)) { 3568 arc_buf_hdr_t *exists; 3569 kmutex_t *hash_lock; 3570 3571 ASSERT(zio->io_error == 0); 3572 3573 arc_cksum_verify(buf); 3574 3575 exists = buf_hash_insert(hdr, &hash_lock); 3576 if (exists) { 3577 /* 3578 * This can only happen if we overwrite for 3579 * sync-to-convergence, because we remove 3580 * buffers from the hash table when we arc_free(). 3581 */ 3582 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3583 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3584 panic("bad overwrite, hdr=%p exists=%p", 3585 (void *)hdr, (void *)exists); 3586 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3587 arc_change_state(arc_anon, exists, hash_lock); 3588 mutex_exit(hash_lock); 3589 arc_hdr_destroy(exists); 3590 exists = buf_hash_insert(hdr, &hash_lock); 3591 ASSERT3P(exists, ==, NULL); 3592 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3593 /* nopwrite */ 3594 ASSERT(zio->io_prop.zp_nopwrite); 3595 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3596 panic("bad nopwrite, hdr=%p exists=%p", 3597 (void *)hdr, (void *)exists); 3598 } else { 3599 /* Dedup */ 3600 ASSERT(hdr->b_datacnt == 1); 3601 ASSERT(hdr->b_state == arc_anon); 3602 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3603 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3604 } 3605 } 3606 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3607 /* if it's not anon, we are doing a scrub */ 3608 if (!exists && hdr->b_state == arc_anon) 3609 arc_access(hdr, hash_lock); 3610 mutex_exit(hash_lock); 3611 } else { 3612 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3613 } 3614 3615 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3616 callback->awcb_done(zio, buf, callback->awcb_private); 3617 3618 kmem_free(callback, sizeof (arc_write_callback_t)); 3619 } 3620 3621 zio_t * 3622 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3623 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3624 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3625 arc_done_func_t *done, void *private, zio_priority_t priority, 3626 int zio_flags, const zbookmark_phys_t *zb) 3627 { 3628 arc_buf_hdr_t *hdr = buf->b_hdr; 3629 arc_write_callback_t *callback; 3630 zio_t *zio; 3631 3632 ASSERT(ready != NULL); 3633 ASSERT(done != NULL); 3634 ASSERT(!HDR_IO_ERROR(hdr)); 3635 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3636 ASSERT(hdr->b_acb == NULL); 3637 if (l2arc) 3638 hdr->b_flags |= ARC_L2CACHE; 3639 if (l2arc_compress) 3640 hdr->b_flags |= ARC_L2COMPRESS; 3641 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3642 callback->awcb_ready = ready; 3643 callback->awcb_physdone = physdone; 3644 callback->awcb_done = done; 3645 callback->awcb_private = private; 3646 callback->awcb_buf = buf; 3647 3648 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3649 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3650 priority, zio_flags, zb); 3651 3652 return (zio); 3653 } 3654 3655 static int 3656 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3657 { 3658 #ifdef _KERNEL 3659 uint64_t available_memory = ptob(freemem); 3660 static uint64_t page_load = 0; 3661 static uint64_t last_txg = 0; 3662 3663 #if defined(__i386) 3664 available_memory = 3665 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3666 #endif 3667 3668 if (freemem > physmem * arc_lotsfree_percent / 100) 3669 return (0); 3670 3671 if (txg > last_txg) { 3672 last_txg = txg; 3673 page_load = 0; 3674 } 3675 /* 3676 * If we are in pageout, we know that memory is already tight, 3677 * the arc is already going to be evicting, so we just want to 3678 * continue to let page writes occur as quickly as possible. 3679 */ 3680 if (curproc == proc_pageout) { 3681 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3682 return (SET_ERROR(ERESTART)); 3683 /* Note: reserve is inflated, so we deflate */ 3684 page_load += reserve / 8; 3685 return (0); 3686 } else if (page_load > 0 && arc_reclaim_needed()) { 3687 /* memory is low, delay before restarting */ 3688 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3689 return (SET_ERROR(EAGAIN)); 3690 } 3691 page_load = 0; 3692 #endif 3693 return (0); 3694 } 3695 3696 void 3697 arc_tempreserve_clear(uint64_t reserve) 3698 { 3699 atomic_add_64(&arc_tempreserve, -reserve); 3700 ASSERT((int64_t)arc_tempreserve >= 0); 3701 } 3702 3703 int 3704 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3705 { 3706 int error; 3707 uint64_t anon_size; 3708 3709 if (reserve > arc_c/4 && !arc_no_grow) 3710 arc_c = MIN(arc_c_max, reserve * 4); 3711 if (reserve > arc_c) 3712 return (SET_ERROR(ENOMEM)); 3713 3714 /* 3715 * Don't count loaned bufs as in flight dirty data to prevent long 3716 * network delays from blocking transactions that are ready to be 3717 * assigned to a txg. 3718 */ 3719 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3720 3721 /* 3722 * Writes will, almost always, require additional memory allocations 3723 * in order to compress/encrypt/etc the data. We therefore need to 3724 * make sure that there is sufficient available memory for this. 3725 */ 3726 error = arc_memory_throttle(reserve, txg); 3727 if (error != 0) 3728 return (error); 3729 3730 /* 3731 * Throttle writes when the amount of dirty data in the cache 3732 * gets too large. We try to keep the cache less than half full 3733 * of dirty blocks so that our sync times don't grow too large. 3734 * Note: if two requests come in concurrently, we might let them 3735 * both succeed, when one of them should fail. Not a huge deal. 3736 */ 3737 3738 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3739 anon_size > arc_c / 4) { 3740 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3741 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3742 arc_tempreserve>>10, 3743 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3744 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3745 reserve>>10, arc_c>>10); 3746 return (SET_ERROR(ERESTART)); 3747 } 3748 atomic_add_64(&arc_tempreserve, reserve); 3749 return (0); 3750 } 3751 3752 void 3753 arc_init(void) 3754 { 3755 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3756 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3757 3758 /* Convert seconds to clock ticks */ 3759 arc_min_prefetch_lifespan = 1 * hz; 3760 3761 /* Start out with 1/8 of all memory */ 3762 arc_c = physmem * PAGESIZE / 8; 3763 3764 #ifdef _KERNEL 3765 /* 3766 * On architectures where the physical memory can be larger 3767 * than the addressable space (intel in 32-bit mode), we may 3768 * need to limit the cache to 1/8 of VM size. 3769 */ 3770 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3771 #endif 3772 3773 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3774 arc_c_min = MAX(arc_c / 4, 64<<20); 3775 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3776 if (arc_c * 8 >= 1<<30) 3777 arc_c_max = (arc_c * 8) - (1<<30); 3778 else 3779 arc_c_max = arc_c_min; 3780 arc_c_max = MAX(arc_c * 6, arc_c_max); 3781 3782 /* 3783 * Allow the tunables to override our calculations if they are 3784 * reasonable (ie. over 64MB) 3785 */ 3786 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3787 arc_c_max = zfs_arc_max; 3788 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3789 arc_c_min = zfs_arc_min; 3790 3791 arc_c = arc_c_max; 3792 arc_p = (arc_c >> 1); 3793 3794 /* limit meta-data to 1/4 of the arc capacity */ 3795 arc_meta_limit = arc_c_max / 4; 3796 3797 /* Allow the tunable to override if it is reasonable */ 3798 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3799 arc_meta_limit = zfs_arc_meta_limit; 3800 3801 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3802 arc_c_min = arc_meta_limit / 2; 3803 3804 if (zfs_arc_grow_retry > 0) 3805 arc_grow_retry = zfs_arc_grow_retry; 3806 3807 if (zfs_arc_shrink_shift > 0) 3808 arc_shrink_shift = zfs_arc_shrink_shift; 3809 3810 if (zfs_arc_p_min_shift > 0) 3811 arc_p_min_shift = zfs_arc_p_min_shift; 3812 3813 /* if kmem_flags are set, lets try to use less memory */ 3814 if (kmem_debugging()) 3815 arc_c = arc_c / 2; 3816 if (arc_c < arc_c_min) 3817 arc_c = arc_c_min; 3818 3819 arc_anon = &ARC_anon; 3820 arc_mru = &ARC_mru; 3821 arc_mru_ghost = &ARC_mru_ghost; 3822 arc_mfu = &ARC_mfu; 3823 arc_mfu_ghost = &ARC_mfu_ghost; 3824 arc_l2c_only = &ARC_l2c_only; 3825 arc_size = 0; 3826 3827 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3828 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3829 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3830 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3831 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3832 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3833 3834 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3835 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3836 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3837 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3838 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3839 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3840 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3841 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3842 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3843 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3844 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3845 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3846 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3847 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3848 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3849 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3850 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3851 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3852 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3853 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3854 3855 buf_init(); 3856 3857 arc_thread_exit = 0; 3858 arc_eviction_list = NULL; 3859 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3860 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3861 3862 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3863 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3864 3865 if (arc_ksp != NULL) { 3866 arc_ksp->ks_data = &arc_stats; 3867 kstat_install(arc_ksp); 3868 } 3869 3870 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3871 TS_RUN, minclsyspri); 3872 3873 arc_dead = FALSE; 3874 arc_warm = B_FALSE; 3875 3876 /* 3877 * Calculate maximum amount of dirty data per pool. 3878 * 3879 * If it has been set by /etc/system, take that. 3880 * Otherwise, use a percentage of physical memory defined by 3881 * zfs_dirty_data_max_percent (default 10%) with a cap at 3882 * zfs_dirty_data_max_max (default 4GB). 3883 */ 3884 if (zfs_dirty_data_max == 0) { 3885 zfs_dirty_data_max = physmem * PAGESIZE * 3886 zfs_dirty_data_max_percent / 100; 3887 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3888 zfs_dirty_data_max_max); 3889 } 3890 } 3891 3892 void 3893 arc_fini(void) 3894 { 3895 mutex_enter(&arc_reclaim_thr_lock); 3896 arc_thread_exit = 1; 3897 while (arc_thread_exit != 0) 3898 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3899 mutex_exit(&arc_reclaim_thr_lock); 3900 3901 arc_flush(NULL); 3902 3903 arc_dead = TRUE; 3904 3905 if (arc_ksp != NULL) { 3906 kstat_delete(arc_ksp); 3907 arc_ksp = NULL; 3908 } 3909 3910 mutex_destroy(&arc_eviction_mtx); 3911 mutex_destroy(&arc_reclaim_thr_lock); 3912 cv_destroy(&arc_reclaim_thr_cv); 3913 3914 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3915 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3916 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3917 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3918 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3919 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3920 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3921 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3922 3923 mutex_destroy(&arc_anon->arcs_mtx); 3924 mutex_destroy(&arc_mru->arcs_mtx); 3925 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3926 mutex_destroy(&arc_mfu->arcs_mtx); 3927 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3928 mutex_destroy(&arc_l2c_only->arcs_mtx); 3929 3930 buf_fini(); 3931 3932 ASSERT(arc_loaned_bytes == 0); 3933 } 3934 3935 /* 3936 * Level 2 ARC 3937 * 3938 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3939 * It uses dedicated storage devices to hold cached data, which are populated 3940 * using large infrequent writes. The main role of this cache is to boost 3941 * the performance of random read workloads. The intended L2ARC devices 3942 * include short-stroked disks, solid state disks, and other media with 3943 * substantially faster read latency than disk. 3944 * 3945 * +-----------------------+ 3946 * | ARC | 3947 * +-----------------------+ 3948 * | ^ ^ 3949 * | | | 3950 * l2arc_feed_thread() arc_read() 3951 * | | | 3952 * | l2arc read | 3953 * V | | 3954 * +---------------+ | 3955 * | L2ARC | | 3956 * +---------------+ | 3957 * | ^ | 3958 * l2arc_write() | | 3959 * | | | 3960 * V | | 3961 * +-------+ +-------+ 3962 * | vdev | | vdev | 3963 * | cache | | cache | 3964 * +-------+ +-------+ 3965 * +=========+ .-----. 3966 * : L2ARC : |-_____-| 3967 * : devices : | Disks | 3968 * +=========+ `-_____-' 3969 * 3970 * Read requests are satisfied from the following sources, in order: 3971 * 3972 * 1) ARC 3973 * 2) vdev cache of L2ARC devices 3974 * 3) L2ARC devices 3975 * 4) vdev cache of disks 3976 * 5) disks 3977 * 3978 * Some L2ARC device types exhibit extremely slow write performance. 3979 * To accommodate for this there are some significant differences between 3980 * the L2ARC and traditional cache design: 3981 * 3982 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3983 * the ARC behave as usual, freeing buffers and placing headers on ghost 3984 * lists. The ARC does not send buffers to the L2ARC during eviction as 3985 * this would add inflated write latencies for all ARC memory pressure. 3986 * 3987 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3988 * It does this by periodically scanning buffers from the eviction-end of 3989 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3990 * not already there. It scans until a headroom of buffers is satisfied, 3991 * which itself is a buffer for ARC eviction. If a compressible buffer is 3992 * found during scanning and selected for writing to an L2ARC device, we 3993 * temporarily boost scanning headroom during the next scan cycle to make 3994 * sure we adapt to compression effects (which might significantly reduce 3995 * the data volume we write to L2ARC). The thread that does this is 3996 * l2arc_feed_thread(), illustrated below; example sizes are included to 3997 * provide a better sense of ratio than this diagram: 3998 * 3999 * head --> tail 4000 * +---------------------+----------+ 4001 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 4002 * +---------------------+----------+ | o L2ARC eligible 4003 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 4004 * +---------------------+----------+ | 4005 * 15.9 Gbytes ^ 32 Mbytes | 4006 * headroom | 4007 * l2arc_feed_thread() 4008 * | 4009 * l2arc write hand <--[oooo]--' 4010 * | 8 Mbyte 4011 * | write max 4012 * V 4013 * +==============================+ 4014 * L2ARC dev |####|#|###|###| |####| ... | 4015 * +==============================+ 4016 * 32 Gbytes 4017 * 4018 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 4019 * evicted, then the L2ARC has cached a buffer much sooner than it probably 4020 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 4021 * safe to say that this is an uncommon case, since buffers at the end of 4022 * the ARC lists have moved there due to inactivity. 4023 * 4024 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 4025 * then the L2ARC simply misses copying some buffers. This serves as a 4026 * pressure valve to prevent heavy read workloads from both stalling the ARC 4027 * with waits and clogging the L2ARC with writes. This also helps prevent 4028 * the potential for the L2ARC to churn if it attempts to cache content too 4029 * quickly, such as during backups of the entire pool. 4030 * 4031 * 5. After system boot and before the ARC has filled main memory, there are 4032 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4033 * lists can remain mostly static. Instead of searching from tail of these 4034 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4035 * for eligible buffers, greatly increasing its chance of finding them. 4036 * 4037 * The L2ARC device write speed is also boosted during this time so that 4038 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4039 * there are no L2ARC reads, and no fear of degrading read performance 4040 * through increased writes. 4041 * 4042 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4043 * the vdev queue can aggregate them into larger and fewer writes. Each 4044 * device is written to in a rotor fashion, sweeping writes through 4045 * available space then repeating. 4046 * 4047 * 7. The L2ARC does not store dirty content. It never needs to flush 4048 * write buffers back to disk based storage. 4049 * 4050 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4051 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4052 * 4053 * The performance of the L2ARC can be tweaked by a number of tunables, which 4054 * may be necessary for different workloads: 4055 * 4056 * l2arc_write_max max write bytes per interval 4057 * l2arc_write_boost extra write bytes during device warmup 4058 * l2arc_noprefetch skip caching prefetched buffers 4059 * l2arc_headroom number of max device writes to precache 4060 * l2arc_headroom_boost when we find compressed buffers during ARC 4061 * scanning, we multiply headroom by this 4062 * percentage factor for the next scan cycle, 4063 * since more compressed buffers are likely to 4064 * be present 4065 * l2arc_feed_secs seconds between L2ARC writing 4066 * 4067 * Tunables may be removed or added as future performance improvements are 4068 * integrated, and also may become zpool properties. 4069 * 4070 * There are three key functions that control how the L2ARC warms up: 4071 * 4072 * l2arc_write_eligible() check if a buffer is eligible to cache 4073 * l2arc_write_size() calculate how much to write 4074 * l2arc_write_interval() calculate sleep delay between writes 4075 * 4076 * These three functions determine what to write, how much, and how quickly 4077 * to send writes. 4078 */ 4079 4080 static boolean_t 4081 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 4082 { 4083 /* 4084 * A buffer is *not* eligible for the L2ARC if it: 4085 * 1. belongs to a different spa. 4086 * 2. is already cached on the L2ARC. 4087 * 3. has an I/O in progress (it may be an incomplete read). 4088 * 4. is flagged not eligible (zfs property). 4089 */ 4090 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 4091 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 4092 return (B_FALSE); 4093 4094 return (B_TRUE); 4095 } 4096 4097 static uint64_t 4098 l2arc_write_size(void) 4099 { 4100 uint64_t size; 4101 4102 /* 4103 * Make sure our globals have meaningful values in case the user 4104 * altered them. 4105 */ 4106 size = l2arc_write_max; 4107 if (size == 0) { 4108 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4109 "be greater than zero, resetting it to the default (%d)", 4110 L2ARC_WRITE_SIZE); 4111 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4112 } 4113 4114 if (arc_warm == B_FALSE) 4115 size += l2arc_write_boost; 4116 4117 return (size); 4118 4119 } 4120 4121 static clock_t 4122 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4123 { 4124 clock_t interval, next, now; 4125 4126 /* 4127 * If the ARC lists are busy, increase our write rate; if the 4128 * lists are stale, idle back. This is achieved by checking 4129 * how much we previously wrote - if it was more than half of 4130 * what we wanted, schedule the next write much sooner. 4131 */ 4132 if (l2arc_feed_again && wrote > (wanted / 2)) 4133 interval = (hz * l2arc_feed_min_ms) / 1000; 4134 else 4135 interval = hz * l2arc_feed_secs; 4136 4137 now = ddi_get_lbolt(); 4138 next = MAX(now, MIN(now + interval, began + interval)); 4139 4140 return (next); 4141 } 4142 4143 static void 4144 l2arc_hdr_stat_add(void) 4145 { 4146 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4147 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4148 } 4149 4150 static void 4151 l2arc_hdr_stat_remove(void) 4152 { 4153 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4154 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4155 } 4156 4157 /* 4158 * Cycle through L2ARC devices. This is how L2ARC load balances. 4159 * If a device is returned, this also returns holding the spa config lock. 4160 */ 4161 static l2arc_dev_t * 4162 l2arc_dev_get_next(void) 4163 { 4164 l2arc_dev_t *first, *next = NULL; 4165 4166 /* 4167 * Lock out the removal of spas (spa_namespace_lock), then removal 4168 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4169 * both locks will be dropped and a spa config lock held instead. 4170 */ 4171 mutex_enter(&spa_namespace_lock); 4172 mutex_enter(&l2arc_dev_mtx); 4173 4174 /* if there are no vdevs, there is nothing to do */ 4175 if (l2arc_ndev == 0) 4176 goto out; 4177 4178 first = NULL; 4179 next = l2arc_dev_last; 4180 do { 4181 /* loop around the list looking for a non-faulted vdev */ 4182 if (next == NULL) { 4183 next = list_head(l2arc_dev_list); 4184 } else { 4185 next = list_next(l2arc_dev_list, next); 4186 if (next == NULL) 4187 next = list_head(l2arc_dev_list); 4188 } 4189 4190 /* if we have come back to the start, bail out */ 4191 if (first == NULL) 4192 first = next; 4193 else if (next == first) 4194 break; 4195 4196 } while (vdev_is_dead(next->l2ad_vdev)); 4197 4198 /* if we were unable to find any usable vdevs, return NULL */ 4199 if (vdev_is_dead(next->l2ad_vdev)) 4200 next = NULL; 4201 4202 l2arc_dev_last = next; 4203 4204 out: 4205 mutex_exit(&l2arc_dev_mtx); 4206 4207 /* 4208 * Grab the config lock to prevent the 'next' device from being 4209 * removed while we are writing to it. 4210 */ 4211 if (next != NULL) 4212 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4213 mutex_exit(&spa_namespace_lock); 4214 4215 return (next); 4216 } 4217 4218 /* 4219 * Free buffers that were tagged for destruction. 4220 */ 4221 static void 4222 l2arc_do_free_on_write() 4223 { 4224 list_t *buflist; 4225 l2arc_data_free_t *df, *df_prev; 4226 4227 mutex_enter(&l2arc_free_on_write_mtx); 4228 buflist = l2arc_free_on_write; 4229 4230 for (df = list_tail(buflist); df; df = df_prev) { 4231 df_prev = list_prev(buflist, df); 4232 ASSERT(df->l2df_data != NULL); 4233 ASSERT(df->l2df_func != NULL); 4234 df->l2df_func(df->l2df_data, df->l2df_size); 4235 list_remove(buflist, df); 4236 kmem_free(df, sizeof (l2arc_data_free_t)); 4237 } 4238 4239 mutex_exit(&l2arc_free_on_write_mtx); 4240 } 4241 4242 /* 4243 * A write to a cache device has completed. Update all headers to allow 4244 * reads from these buffers to begin. 4245 */ 4246 static void 4247 l2arc_write_done(zio_t *zio) 4248 { 4249 l2arc_write_callback_t *cb; 4250 l2arc_dev_t *dev; 4251 list_t *buflist; 4252 arc_buf_hdr_t *head, *ab, *ab_prev; 4253 l2arc_buf_hdr_t *abl2; 4254 kmutex_t *hash_lock; 4255 int64_t bytes_dropped = 0; 4256 4257 cb = zio->io_private; 4258 ASSERT(cb != NULL); 4259 dev = cb->l2wcb_dev; 4260 ASSERT(dev != NULL); 4261 head = cb->l2wcb_head; 4262 ASSERT(head != NULL); 4263 buflist = dev->l2ad_buflist; 4264 ASSERT(buflist != NULL); 4265 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4266 l2arc_write_callback_t *, cb); 4267 4268 if (zio->io_error != 0) 4269 ARCSTAT_BUMP(arcstat_l2_writes_error); 4270 4271 mutex_enter(&l2arc_buflist_mtx); 4272 4273 /* 4274 * All writes completed, or an error was hit. 4275 */ 4276 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4277 ab_prev = list_prev(buflist, ab); 4278 abl2 = ab->b_l2hdr; 4279 4280 /* 4281 * Release the temporary compressed buffer as soon as possible. 4282 */ 4283 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4284 l2arc_release_cdata_buf(ab); 4285 4286 hash_lock = HDR_LOCK(ab); 4287 if (!mutex_tryenter(hash_lock)) { 4288 /* 4289 * This buffer misses out. It may be in a stage 4290 * of eviction. Its ARC_L2_WRITING flag will be 4291 * left set, denying reads to this buffer. 4292 */ 4293 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4294 continue; 4295 } 4296 4297 if (zio->io_error != 0) { 4298 /* 4299 * Error - drop L2ARC entry. 4300 */ 4301 list_remove(buflist, ab); 4302 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4303 bytes_dropped += abl2->b_asize; 4304 ab->b_l2hdr = NULL; 4305 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4306 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4307 } 4308 4309 /* 4310 * Allow ARC to begin reads to this L2ARC entry. 4311 */ 4312 ab->b_flags &= ~ARC_L2_WRITING; 4313 4314 mutex_exit(hash_lock); 4315 } 4316 4317 atomic_inc_64(&l2arc_writes_done); 4318 list_remove(buflist, head); 4319 kmem_cache_free(hdr_cache, head); 4320 mutex_exit(&l2arc_buflist_mtx); 4321 4322 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4323 4324 l2arc_do_free_on_write(); 4325 4326 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4327 } 4328 4329 /* 4330 * A read to a cache device completed. Validate buffer contents before 4331 * handing over to the regular ARC routines. 4332 */ 4333 static void 4334 l2arc_read_done(zio_t *zio) 4335 { 4336 l2arc_read_callback_t *cb; 4337 arc_buf_hdr_t *hdr; 4338 arc_buf_t *buf; 4339 kmutex_t *hash_lock; 4340 int equal; 4341 4342 ASSERT(zio->io_vd != NULL); 4343 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4344 4345 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4346 4347 cb = zio->io_private; 4348 ASSERT(cb != NULL); 4349 buf = cb->l2rcb_buf; 4350 ASSERT(buf != NULL); 4351 4352 hash_lock = HDR_LOCK(buf->b_hdr); 4353 mutex_enter(hash_lock); 4354 hdr = buf->b_hdr; 4355 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4356 4357 /* 4358 * If the buffer was compressed, decompress it first. 4359 */ 4360 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4361 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4362 ASSERT(zio->io_data != NULL); 4363 4364 /* 4365 * Check this survived the L2ARC journey. 4366 */ 4367 equal = arc_cksum_equal(buf); 4368 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4369 mutex_exit(hash_lock); 4370 zio->io_private = buf; 4371 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4372 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4373 arc_read_done(zio); 4374 } else { 4375 mutex_exit(hash_lock); 4376 /* 4377 * Buffer didn't survive caching. Increment stats and 4378 * reissue to the original storage device. 4379 */ 4380 if (zio->io_error != 0) { 4381 ARCSTAT_BUMP(arcstat_l2_io_error); 4382 } else { 4383 zio->io_error = SET_ERROR(EIO); 4384 } 4385 if (!equal) 4386 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4387 4388 /* 4389 * If there's no waiter, issue an async i/o to the primary 4390 * storage now. If there *is* a waiter, the caller must 4391 * issue the i/o in a context where it's OK to block. 4392 */ 4393 if (zio->io_waiter == NULL) { 4394 zio_t *pio = zio_unique_parent(zio); 4395 4396 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4397 4398 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4399 buf->b_data, zio->io_size, arc_read_done, buf, 4400 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4401 } 4402 } 4403 4404 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4405 } 4406 4407 /* 4408 * This is the list priority from which the L2ARC will search for pages to 4409 * cache. This is used within loops (0..3) to cycle through lists in the 4410 * desired order. This order can have a significant effect on cache 4411 * performance. 4412 * 4413 * Currently the metadata lists are hit first, MFU then MRU, followed by 4414 * the data lists. This function returns a locked list, and also returns 4415 * the lock pointer. 4416 */ 4417 static list_t * 4418 l2arc_list_locked(int list_num, kmutex_t **lock) 4419 { 4420 list_t *list = NULL; 4421 4422 ASSERT(list_num >= 0 && list_num <= 3); 4423 4424 switch (list_num) { 4425 case 0: 4426 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4427 *lock = &arc_mfu->arcs_mtx; 4428 break; 4429 case 1: 4430 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4431 *lock = &arc_mru->arcs_mtx; 4432 break; 4433 case 2: 4434 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4435 *lock = &arc_mfu->arcs_mtx; 4436 break; 4437 case 3: 4438 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4439 *lock = &arc_mru->arcs_mtx; 4440 break; 4441 } 4442 4443 ASSERT(!(MUTEX_HELD(*lock))); 4444 mutex_enter(*lock); 4445 return (list); 4446 } 4447 4448 /* 4449 * Evict buffers from the device write hand to the distance specified in 4450 * bytes. This distance may span populated buffers, it may span nothing. 4451 * This is clearing a region on the L2ARC device ready for writing. 4452 * If the 'all' boolean is set, every buffer is evicted. 4453 */ 4454 static void 4455 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4456 { 4457 list_t *buflist; 4458 l2arc_buf_hdr_t *abl2; 4459 arc_buf_hdr_t *ab, *ab_prev; 4460 kmutex_t *hash_lock; 4461 uint64_t taddr; 4462 int64_t bytes_evicted = 0; 4463 4464 buflist = dev->l2ad_buflist; 4465 4466 if (buflist == NULL) 4467 return; 4468 4469 if (!all && dev->l2ad_first) { 4470 /* 4471 * This is the first sweep through the device. There is 4472 * nothing to evict. 4473 */ 4474 return; 4475 } 4476 4477 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4478 /* 4479 * When nearing the end of the device, evict to the end 4480 * before the device write hand jumps to the start. 4481 */ 4482 taddr = dev->l2ad_end; 4483 } else { 4484 taddr = dev->l2ad_hand + distance; 4485 } 4486 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4487 uint64_t, taddr, boolean_t, all); 4488 4489 top: 4490 mutex_enter(&l2arc_buflist_mtx); 4491 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4492 ab_prev = list_prev(buflist, ab); 4493 4494 hash_lock = HDR_LOCK(ab); 4495 if (!mutex_tryenter(hash_lock)) { 4496 /* 4497 * Missed the hash lock. Retry. 4498 */ 4499 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4500 mutex_exit(&l2arc_buflist_mtx); 4501 mutex_enter(hash_lock); 4502 mutex_exit(hash_lock); 4503 goto top; 4504 } 4505 4506 if (HDR_L2_WRITE_HEAD(ab)) { 4507 /* 4508 * We hit a write head node. Leave it for 4509 * l2arc_write_done(). 4510 */ 4511 list_remove(buflist, ab); 4512 mutex_exit(hash_lock); 4513 continue; 4514 } 4515 4516 if (!all && ab->b_l2hdr != NULL && 4517 (ab->b_l2hdr->b_daddr > taddr || 4518 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4519 /* 4520 * We've evicted to the target address, 4521 * or the end of the device. 4522 */ 4523 mutex_exit(hash_lock); 4524 break; 4525 } 4526 4527 if (HDR_FREE_IN_PROGRESS(ab)) { 4528 /* 4529 * Already on the path to destruction. 4530 */ 4531 mutex_exit(hash_lock); 4532 continue; 4533 } 4534 4535 if (ab->b_state == arc_l2c_only) { 4536 ASSERT(!HDR_L2_READING(ab)); 4537 /* 4538 * This doesn't exist in the ARC. Destroy. 4539 * arc_hdr_destroy() will call list_remove() 4540 * and decrement arcstat_l2_size. 4541 */ 4542 arc_change_state(arc_anon, ab, hash_lock); 4543 arc_hdr_destroy(ab); 4544 } else { 4545 /* 4546 * Invalidate issued or about to be issued 4547 * reads, since we may be about to write 4548 * over this location. 4549 */ 4550 if (HDR_L2_READING(ab)) { 4551 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4552 ab->b_flags |= ARC_L2_EVICTED; 4553 } 4554 4555 /* 4556 * Tell ARC this no longer exists in L2ARC. 4557 */ 4558 if (ab->b_l2hdr != NULL) { 4559 abl2 = ab->b_l2hdr; 4560 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4561 bytes_evicted += abl2->b_asize; 4562 ab->b_l2hdr = NULL; 4563 /* 4564 * We are destroying l2hdr, so ensure that 4565 * its compressed buffer, if any, is not leaked. 4566 */ 4567 ASSERT(abl2->b_tmp_cdata == NULL); 4568 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4569 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4570 } 4571 list_remove(buflist, ab); 4572 4573 /* 4574 * This may have been leftover after a 4575 * failed write. 4576 */ 4577 ab->b_flags &= ~ARC_L2_WRITING; 4578 } 4579 mutex_exit(hash_lock); 4580 } 4581 mutex_exit(&l2arc_buflist_mtx); 4582 4583 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4584 dev->l2ad_evict = taddr; 4585 } 4586 4587 /* 4588 * Find and write ARC buffers to the L2ARC device. 4589 * 4590 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4591 * for reading until they have completed writing. 4592 * The headroom_boost is an in-out parameter used to maintain headroom boost 4593 * state between calls to this function. 4594 * 4595 * Returns the number of bytes actually written (which may be smaller than 4596 * the delta by which the device hand has changed due to alignment). 4597 */ 4598 static uint64_t 4599 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4600 boolean_t *headroom_boost) 4601 { 4602 arc_buf_hdr_t *ab, *ab_prev, *head; 4603 list_t *list; 4604 uint64_t write_asize, write_psize, write_sz, headroom, 4605 buf_compress_minsz; 4606 void *buf_data; 4607 kmutex_t *list_lock; 4608 boolean_t full; 4609 l2arc_write_callback_t *cb; 4610 zio_t *pio, *wzio; 4611 uint64_t guid = spa_load_guid(spa); 4612 const boolean_t do_headroom_boost = *headroom_boost; 4613 4614 ASSERT(dev->l2ad_vdev != NULL); 4615 4616 /* Lower the flag now, we might want to raise it again later. */ 4617 *headroom_boost = B_FALSE; 4618 4619 pio = NULL; 4620 write_sz = write_asize = write_psize = 0; 4621 full = B_FALSE; 4622 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4623 head->b_flags |= ARC_L2_WRITE_HEAD; 4624 4625 /* 4626 * We will want to try to compress buffers that are at least 2x the 4627 * device sector size. 4628 */ 4629 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4630 4631 /* 4632 * Copy buffers for L2ARC writing. 4633 */ 4634 mutex_enter(&l2arc_buflist_mtx); 4635 for (int try = 0; try <= 3; try++) { 4636 uint64_t passed_sz = 0; 4637 4638 list = l2arc_list_locked(try, &list_lock); 4639 4640 /* 4641 * L2ARC fast warmup. 4642 * 4643 * Until the ARC is warm and starts to evict, read from the 4644 * head of the ARC lists rather than the tail. 4645 */ 4646 if (arc_warm == B_FALSE) 4647 ab = list_head(list); 4648 else 4649 ab = list_tail(list); 4650 4651 headroom = target_sz * l2arc_headroom; 4652 if (do_headroom_boost) 4653 headroom = (headroom * l2arc_headroom_boost) / 100; 4654 4655 for (; ab; ab = ab_prev) { 4656 l2arc_buf_hdr_t *l2hdr; 4657 kmutex_t *hash_lock; 4658 uint64_t buf_sz; 4659 4660 if (arc_warm == B_FALSE) 4661 ab_prev = list_next(list, ab); 4662 else 4663 ab_prev = list_prev(list, ab); 4664 4665 hash_lock = HDR_LOCK(ab); 4666 if (!mutex_tryenter(hash_lock)) { 4667 /* 4668 * Skip this buffer rather than waiting. 4669 */ 4670 continue; 4671 } 4672 4673 passed_sz += ab->b_size; 4674 if (passed_sz > headroom) { 4675 /* 4676 * Searched too far. 4677 */ 4678 mutex_exit(hash_lock); 4679 break; 4680 } 4681 4682 if (!l2arc_write_eligible(guid, ab)) { 4683 mutex_exit(hash_lock); 4684 continue; 4685 } 4686 4687 if ((write_sz + ab->b_size) > target_sz) { 4688 full = B_TRUE; 4689 mutex_exit(hash_lock); 4690 break; 4691 } 4692 4693 if (pio == NULL) { 4694 /* 4695 * Insert a dummy header on the buflist so 4696 * l2arc_write_done() can find where the 4697 * write buffers begin without searching. 4698 */ 4699 list_insert_head(dev->l2ad_buflist, head); 4700 4701 cb = kmem_alloc( 4702 sizeof (l2arc_write_callback_t), KM_SLEEP); 4703 cb->l2wcb_dev = dev; 4704 cb->l2wcb_head = head; 4705 pio = zio_root(spa, l2arc_write_done, cb, 4706 ZIO_FLAG_CANFAIL); 4707 } 4708 4709 /* 4710 * Create and add a new L2ARC header. 4711 */ 4712 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4713 l2hdr->b_dev = dev; 4714 ab->b_flags |= ARC_L2_WRITING; 4715 4716 /* 4717 * Temporarily stash the data buffer in b_tmp_cdata. 4718 * The subsequent write step will pick it up from 4719 * there. This is because can't access ab->b_buf 4720 * without holding the hash_lock, which we in turn 4721 * can't access without holding the ARC list locks 4722 * (which we want to avoid during compression/writing). 4723 */ 4724 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4725 l2hdr->b_asize = ab->b_size; 4726 l2hdr->b_tmp_cdata = ab->b_buf->b_data; 4727 4728 buf_sz = ab->b_size; 4729 ab->b_l2hdr = l2hdr; 4730 4731 list_insert_head(dev->l2ad_buflist, ab); 4732 4733 /* 4734 * Compute and store the buffer cksum before 4735 * writing. On debug the cksum is verified first. 4736 */ 4737 arc_cksum_verify(ab->b_buf); 4738 arc_cksum_compute(ab->b_buf, B_TRUE); 4739 4740 mutex_exit(hash_lock); 4741 4742 write_sz += buf_sz; 4743 } 4744 4745 mutex_exit(list_lock); 4746 4747 if (full == B_TRUE) 4748 break; 4749 } 4750 4751 /* No buffers selected for writing? */ 4752 if (pio == NULL) { 4753 ASSERT0(write_sz); 4754 mutex_exit(&l2arc_buflist_mtx); 4755 kmem_cache_free(hdr_cache, head); 4756 return (0); 4757 } 4758 4759 /* 4760 * Now start writing the buffers. We're starting at the write head 4761 * and work backwards, retracing the course of the buffer selector 4762 * loop above. 4763 */ 4764 for (ab = list_prev(dev->l2ad_buflist, head); ab; 4765 ab = list_prev(dev->l2ad_buflist, ab)) { 4766 l2arc_buf_hdr_t *l2hdr; 4767 uint64_t buf_sz; 4768 4769 /* 4770 * We shouldn't need to lock the buffer here, since we flagged 4771 * it as ARC_L2_WRITING in the previous step, but we must take 4772 * care to only access its L2 cache parameters. In particular, 4773 * ab->b_buf may be invalid by now due to ARC eviction. 4774 */ 4775 l2hdr = ab->b_l2hdr; 4776 l2hdr->b_daddr = dev->l2ad_hand; 4777 4778 if ((ab->b_flags & ARC_L2COMPRESS) && 4779 l2hdr->b_asize >= buf_compress_minsz) { 4780 if (l2arc_compress_buf(l2hdr)) { 4781 /* 4782 * If compression succeeded, enable headroom 4783 * boost on the next scan cycle. 4784 */ 4785 *headroom_boost = B_TRUE; 4786 } 4787 } 4788 4789 /* 4790 * Pick up the buffer data we had previously stashed away 4791 * (and now potentially also compressed). 4792 */ 4793 buf_data = l2hdr->b_tmp_cdata; 4794 buf_sz = l2hdr->b_asize; 4795 4796 /* 4797 * If the data has not been compressed, then clear b_tmp_cdata 4798 * to make sure that it points only to a temporary compression 4799 * buffer. 4800 */ 4801 if (!L2ARC_IS_VALID_COMPRESS(l2hdr->b_compress)) 4802 l2hdr->b_tmp_cdata = NULL; 4803 4804 /* Compression may have squashed the buffer to zero length. */ 4805 if (buf_sz != 0) { 4806 uint64_t buf_p_sz; 4807 4808 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4809 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4810 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4811 ZIO_FLAG_CANFAIL, B_FALSE); 4812 4813 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4814 zio_t *, wzio); 4815 (void) zio_nowait(wzio); 4816 4817 write_asize += buf_sz; 4818 /* 4819 * Keep the clock hand suitably device-aligned. 4820 */ 4821 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4822 write_psize += buf_p_sz; 4823 dev->l2ad_hand += buf_p_sz; 4824 } 4825 } 4826 4827 mutex_exit(&l2arc_buflist_mtx); 4828 4829 ASSERT3U(write_asize, <=, target_sz); 4830 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4831 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4832 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4833 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4834 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4835 4836 /* 4837 * Bump device hand to the device start if it is approaching the end. 4838 * l2arc_evict() will already have evicted ahead for this case. 4839 */ 4840 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4841 dev->l2ad_hand = dev->l2ad_start; 4842 dev->l2ad_evict = dev->l2ad_start; 4843 dev->l2ad_first = B_FALSE; 4844 } 4845 4846 dev->l2ad_writing = B_TRUE; 4847 (void) zio_wait(pio); 4848 dev->l2ad_writing = B_FALSE; 4849 4850 return (write_asize); 4851 } 4852 4853 /* 4854 * Compresses an L2ARC buffer. 4855 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4856 * size in l2hdr->b_asize. This routine tries to compress the data and 4857 * depending on the compression result there are three possible outcomes: 4858 * *) The buffer was incompressible. The original l2hdr contents were left 4859 * untouched and are ready for writing to an L2 device. 4860 * *) The buffer was all-zeros, so there is no need to write it to an L2 4861 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4862 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4863 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4864 * data buffer which holds the compressed data to be written, and b_asize 4865 * tells us how much data there is. b_compress is set to the appropriate 4866 * compression algorithm. Once writing is done, invoke 4867 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4868 * 4869 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4870 * buffer was incompressible). 4871 */ 4872 static boolean_t 4873 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4874 { 4875 void *cdata; 4876 size_t csize, len, rounded; 4877 4878 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4879 ASSERT(l2hdr->b_tmp_cdata != NULL); 4880 4881 len = l2hdr->b_asize; 4882 cdata = zio_data_buf_alloc(len); 4883 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4884 cdata, l2hdr->b_asize); 4885 4886 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4887 if (rounded > csize) { 4888 bzero((char *)cdata + csize, rounded - csize); 4889 csize = rounded; 4890 } 4891 4892 if (csize == 0) { 4893 /* zero block, indicate that there's nothing to write */ 4894 zio_data_buf_free(cdata, len); 4895 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4896 l2hdr->b_asize = 0; 4897 l2hdr->b_tmp_cdata = NULL; 4898 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4899 return (B_TRUE); 4900 } else if (csize > 0 && csize < len) { 4901 /* 4902 * Compression succeeded, we'll keep the cdata around for 4903 * writing and release it afterwards. 4904 */ 4905 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4906 l2hdr->b_asize = csize; 4907 l2hdr->b_tmp_cdata = cdata; 4908 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4909 return (B_TRUE); 4910 } else { 4911 /* 4912 * Compression failed, release the compressed buffer. 4913 * l2hdr will be left unmodified. 4914 */ 4915 zio_data_buf_free(cdata, len); 4916 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4917 return (B_FALSE); 4918 } 4919 } 4920 4921 /* 4922 * Decompresses a zio read back from an l2arc device. On success, the 4923 * underlying zio's io_data buffer is overwritten by the uncompressed 4924 * version. On decompression error (corrupt compressed stream), the 4925 * zio->io_error value is set to signal an I/O error. 4926 * 4927 * Please note that the compressed data stream is not checksummed, so 4928 * if the underlying device is experiencing data corruption, we may feed 4929 * corrupt data to the decompressor, so the decompressor needs to be 4930 * able to handle this situation (LZ4 does). 4931 */ 4932 static void 4933 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4934 { 4935 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4936 4937 if (zio->io_error != 0) { 4938 /* 4939 * An io error has occured, just restore the original io 4940 * size in preparation for a main pool read. 4941 */ 4942 zio->io_orig_size = zio->io_size = hdr->b_size; 4943 return; 4944 } 4945 4946 if (c == ZIO_COMPRESS_EMPTY) { 4947 /* 4948 * An empty buffer results in a null zio, which means we 4949 * need to fill its io_data after we're done restoring the 4950 * buffer's contents. 4951 */ 4952 ASSERT(hdr->b_buf != NULL); 4953 bzero(hdr->b_buf->b_data, hdr->b_size); 4954 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4955 } else { 4956 ASSERT(zio->io_data != NULL); 4957 /* 4958 * We copy the compressed data from the start of the arc buffer 4959 * (the zio_read will have pulled in only what we need, the 4960 * rest is garbage which we will overwrite at decompression) 4961 * and then decompress back to the ARC data buffer. This way we 4962 * can minimize copying by simply decompressing back over the 4963 * original compressed data (rather than decompressing to an 4964 * aux buffer and then copying back the uncompressed buffer, 4965 * which is likely to be much larger). 4966 */ 4967 uint64_t csize; 4968 void *cdata; 4969 4970 csize = zio->io_size; 4971 cdata = zio_data_buf_alloc(csize); 4972 bcopy(zio->io_data, cdata, csize); 4973 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4974 hdr->b_size) != 0) 4975 zio->io_error = EIO; 4976 zio_data_buf_free(cdata, csize); 4977 } 4978 4979 /* Restore the expected uncompressed IO size. */ 4980 zio->io_orig_size = zio->io_size = hdr->b_size; 4981 } 4982 4983 /* 4984 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 4985 * This buffer serves as a temporary holder of compressed data while 4986 * the buffer entry is being written to an l2arc device. Once that is 4987 * done, we can dispose of it. 4988 */ 4989 static void 4990 l2arc_release_cdata_buf(arc_buf_hdr_t *ab) 4991 { 4992 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 4993 4994 ASSERT(L2ARC_IS_VALID_COMPRESS(l2hdr->b_compress)); 4995 if (l2hdr->b_compress != ZIO_COMPRESS_EMPTY) { 4996 /* 4997 * If the data was compressed, then we've allocated a 4998 * temporary buffer for it, so now we need to release it. 4999 */ 5000 ASSERT(l2hdr->b_tmp_cdata != NULL); 5001 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); 5002 l2hdr->b_tmp_cdata = NULL; 5003 } else { 5004 ASSERT(l2hdr->b_tmp_cdata == NULL); 5005 } 5006 } 5007 5008 /* 5009 * This thread feeds the L2ARC at regular intervals. This is the beating 5010 * heart of the L2ARC. 5011 */ 5012 static void 5013 l2arc_feed_thread(void) 5014 { 5015 callb_cpr_t cpr; 5016 l2arc_dev_t *dev; 5017 spa_t *spa; 5018 uint64_t size, wrote; 5019 clock_t begin, next = ddi_get_lbolt(); 5020 boolean_t headroom_boost = B_FALSE; 5021 5022 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 5023 5024 mutex_enter(&l2arc_feed_thr_lock); 5025 5026 while (l2arc_thread_exit == 0) { 5027 CALLB_CPR_SAFE_BEGIN(&cpr); 5028 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 5029 next); 5030 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 5031 next = ddi_get_lbolt() + hz; 5032 5033 /* 5034 * Quick check for L2ARC devices. 5035 */ 5036 mutex_enter(&l2arc_dev_mtx); 5037 if (l2arc_ndev == 0) { 5038 mutex_exit(&l2arc_dev_mtx); 5039 continue; 5040 } 5041 mutex_exit(&l2arc_dev_mtx); 5042 begin = ddi_get_lbolt(); 5043 5044 /* 5045 * This selects the next l2arc device to write to, and in 5046 * doing so the next spa to feed from: dev->l2ad_spa. This 5047 * will return NULL if there are now no l2arc devices or if 5048 * they are all faulted. 5049 * 5050 * If a device is returned, its spa's config lock is also 5051 * held to prevent device removal. l2arc_dev_get_next() 5052 * will grab and release l2arc_dev_mtx. 5053 */ 5054 if ((dev = l2arc_dev_get_next()) == NULL) 5055 continue; 5056 5057 spa = dev->l2ad_spa; 5058 ASSERT(spa != NULL); 5059 5060 /* 5061 * If the pool is read-only then force the feed thread to 5062 * sleep a little longer. 5063 */ 5064 if (!spa_writeable(spa)) { 5065 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5066 spa_config_exit(spa, SCL_L2ARC, dev); 5067 continue; 5068 } 5069 5070 /* 5071 * Avoid contributing to memory pressure. 5072 */ 5073 if (arc_reclaim_needed()) { 5074 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5075 spa_config_exit(spa, SCL_L2ARC, dev); 5076 continue; 5077 } 5078 5079 ARCSTAT_BUMP(arcstat_l2_feeds); 5080 5081 size = l2arc_write_size(); 5082 5083 /* 5084 * Evict L2ARC buffers that will be overwritten. 5085 */ 5086 l2arc_evict(dev, size, B_FALSE); 5087 5088 /* 5089 * Write ARC buffers. 5090 */ 5091 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5092 5093 /* 5094 * Calculate interval between writes. 5095 */ 5096 next = l2arc_write_interval(begin, size, wrote); 5097 spa_config_exit(spa, SCL_L2ARC, dev); 5098 } 5099 5100 l2arc_thread_exit = 0; 5101 cv_broadcast(&l2arc_feed_thr_cv); 5102 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5103 thread_exit(); 5104 } 5105 5106 boolean_t 5107 l2arc_vdev_present(vdev_t *vd) 5108 { 5109 l2arc_dev_t *dev; 5110 5111 mutex_enter(&l2arc_dev_mtx); 5112 for (dev = list_head(l2arc_dev_list); dev != NULL; 5113 dev = list_next(l2arc_dev_list, dev)) { 5114 if (dev->l2ad_vdev == vd) 5115 break; 5116 } 5117 mutex_exit(&l2arc_dev_mtx); 5118 5119 return (dev != NULL); 5120 } 5121 5122 /* 5123 * Add a vdev for use by the L2ARC. By this point the spa has already 5124 * validated the vdev and opened it. 5125 */ 5126 void 5127 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5128 { 5129 l2arc_dev_t *adddev; 5130 5131 ASSERT(!l2arc_vdev_present(vd)); 5132 5133 /* 5134 * Create a new l2arc device entry. 5135 */ 5136 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5137 adddev->l2ad_spa = spa; 5138 adddev->l2ad_vdev = vd; 5139 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5140 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5141 adddev->l2ad_hand = adddev->l2ad_start; 5142 adddev->l2ad_evict = adddev->l2ad_start; 5143 adddev->l2ad_first = B_TRUE; 5144 adddev->l2ad_writing = B_FALSE; 5145 5146 /* 5147 * This is a list of all ARC buffers that are still valid on the 5148 * device. 5149 */ 5150 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5151 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5152 offsetof(arc_buf_hdr_t, b_l2node)); 5153 5154 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5155 5156 /* 5157 * Add device to global list 5158 */ 5159 mutex_enter(&l2arc_dev_mtx); 5160 list_insert_head(l2arc_dev_list, adddev); 5161 atomic_inc_64(&l2arc_ndev); 5162 mutex_exit(&l2arc_dev_mtx); 5163 } 5164 5165 /* 5166 * Remove a vdev from the L2ARC. 5167 */ 5168 void 5169 l2arc_remove_vdev(vdev_t *vd) 5170 { 5171 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5172 5173 /* 5174 * Find the device by vdev 5175 */ 5176 mutex_enter(&l2arc_dev_mtx); 5177 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5178 nextdev = list_next(l2arc_dev_list, dev); 5179 if (vd == dev->l2ad_vdev) { 5180 remdev = dev; 5181 break; 5182 } 5183 } 5184 ASSERT(remdev != NULL); 5185 5186 /* 5187 * Remove device from global list 5188 */ 5189 list_remove(l2arc_dev_list, remdev); 5190 l2arc_dev_last = NULL; /* may have been invalidated */ 5191 atomic_dec_64(&l2arc_ndev); 5192 mutex_exit(&l2arc_dev_mtx); 5193 5194 /* 5195 * Clear all buflists and ARC references. L2ARC device flush. 5196 */ 5197 l2arc_evict(remdev, 0, B_TRUE); 5198 list_destroy(remdev->l2ad_buflist); 5199 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5200 kmem_free(remdev, sizeof (l2arc_dev_t)); 5201 } 5202 5203 void 5204 l2arc_init(void) 5205 { 5206 l2arc_thread_exit = 0; 5207 l2arc_ndev = 0; 5208 l2arc_writes_sent = 0; 5209 l2arc_writes_done = 0; 5210 5211 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5212 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5213 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5214 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5215 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5216 5217 l2arc_dev_list = &L2ARC_dev_list; 5218 l2arc_free_on_write = &L2ARC_free_on_write; 5219 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5220 offsetof(l2arc_dev_t, l2ad_node)); 5221 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5222 offsetof(l2arc_data_free_t, l2df_list_node)); 5223 } 5224 5225 void 5226 l2arc_fini(void) 5227 { 5228 /* 5229 * This is called from dmu_fini(), which is called from spa_fini(); 5230 * Because of this, we can assume that all l2arc devices have 5231 * already been removed when the pools themselves were removed. 5232 */ 5233 5234 l2arc_do_free_on_write(); 5235 5236 mutex_destroy(&l2arc_feed_thr_lock); 5237 cv_destroy(&l2arc_feed_thr_cv); 5238 mutex_destroy(&l2arc_dev_mtx); 5239 mutex_destroy(&l2arc_buflist_mtx); 5240 mutex_destroy(&l2arc_free_on_write_mtx); 5241 5242 list_destroy(l2arc_dev_list); 5243 list_destroy(l2arc_free_on_write); 5244 } 5245 5246 void 5247 l2arc_start(void) 5248 { 5249 if (!(spa_mode_global & FWRITE)) 5250 return; 5251 5252 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5253 TS_RUN, minclsyspri); 5254 } 5255 5256 void 5257 l2arc_stop(void) 5258 { 5259 if (!(spa_mode_global & FWRITE)) 5260 return; 5261 5262 mutex_enter(&l2arc_feed_thr_lock); 5263 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5264 l2arc_thread_exit = 1; 5265 while (l2arc_thread_exit != 0) 5266 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5267 mutex_exit(&l2arc_feed_thr_lock); 5268 }