1 /******************************************************************************
2
3 Copyright (c) 2001-2012, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.14 2012/07/05 20:51:44 jfv Exp $*/
34
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_api.h"
38
39 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
40 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
42 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
45 u16 count);
46 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50
51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
52 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
53 u16 *san_mac_offset);
54 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 u16 words, u16 *data);
58 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
59 u16 offset);
60
61 /**
62 * ixgbe_init_ops_generic - Inits function ptrs
63 * @hw: pointer to the hardware structure
64 *
65 * Initialize the function pointers.
66 **/
67 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
68 {
69 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
70 struct ixgbe_mac_info *mac = &hw->mac;
71 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
72
73 DEBUGFUNC("ixgbe_init_ops_generic");
74
75 /* EEPROM */
76 eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
77 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
78 if (eec & IXGBE_EEC_PRES) {
79 eeprom->ops.read = &ixgbe_read_eerd_generic;
80 eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
81 } else {
82 eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
83 eeprom->ops.read_buffer =
84 &ixgbe_read_eeprom_buffer_bit_bang_generic;
85 }
86 eeprom->ops.write = &ixgbe_write_eeprom_generic;
87 eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
88 eeprom->ops.validate_checksum =
89 &ixgbe_validate_eeprom_checksum_generic;
90 eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
91 eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
92
93 /* MAC */
94 mac->ops.init_hw = &ixgbe_init_hw_generic;
95 mac->ops.reset_hw = NULL;
96 mac->ops.start_hw = &ixgbe_start_hw_generic;
97 mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
98 mac->ops.get_media_type = NULL;
99 mac->ops.get_supported_physical_layer = NULL;
100 mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
101 mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
102 mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
103 mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
104 mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
105 mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
106 mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
107
108 /* LEDs */
109 mac->ops.led_on = &ixgbe_led_on_generic;
110 mac->ops.led_off = &ixgbe_led_off_generic;
111 mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
112 mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
113
114 /* RAR, Multicast, VLAN */
115 mac->ops.set_rar = &ixgbe_set_rar_generic;
116 mac->ops.clear_rar = &ixgbe_clear_rar_generic;
117 mac->ops.insert_mac_addr = NULL;
118 mac->ops.set_vmdq = NULL;
119 mac->ops.clear_vmdq = NULL;
120 mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
121 mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
122 mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
123 mac->ops.enable_mc = &ixgbe_enable_mc_generic;
124 mac->ops.disable_mc = &ixgbe_disable_mc_generic;
125 mac->ops.clear_vfta = NULL;
126 mac->ops.set_vfta = NULL;
127 mac->ops.set_vlvf = NULL;
128 mac->ops.init_uta_tables = NULL;
129
130 /* Flow Control */
131 mac->ops.fc_enable = &ixgbe_fc_enable_generic;
132
133 /* Link */
134 mac->ops.get_link_capabilities = NULL;
135 mac->ops.setup_link = NULL;
136 mac->ops.check_link = NULL;
137
138 return IXGBE_SUCCESS;
139 }
140
141 /**
142 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
143 * control
144 * @hw: pointer to hardware structure
145 *
146 * There are several phys that do not support autoneg flow control. This
147 * function check the device id to see if the associated phy supports
148 * autoneg flow control.
149 **/
150 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
151 {
152
153 DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
154
155 switch (hw->device_id) {
156 case IXGBE_DEV_ID_X540T:
157 case IXGBE_DEV_ID_X540T1:
158 return IXGBE_SUCCESS;
159 case IXGBE_DEV_ID_82599_T3_LOM:
160 return IXGBE_SUCCESS;
161 default:
162 return IXGBE_ERR_FC_NOT_SUPPORTED;
163 }
164 }
165
166 /**
167 * ixgbe_setup_fc - Set up flow control
168 * @hw: pointer to hardware structure
169 *
170 * Called at init time to set up flow control.
171 **/
172 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
173 {
174 s32 ret_val = IXGBE_SUCCESS;
175 u32 reg = 0, reg_bp = 0;
176 u16 reg_cu = 0;
177
178 DEBUGFUNC("ixgbe_setup_fc");
179
180 /*
181 * Validate the requested mode. Strict IEEE mode does not allow
182 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
183 */
184 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
185 DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
186 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
187 goto out;
188 }
189
190 /*
191 * 10gig parts do not have a word in the EEPROM to determine the
192 * default flow control setting, so we explicitly set it to full.
193 */
194 if (hw->fc.requested_mode == ixgbe_fc_default)
195 hw->fc.requested_mode = ixgbe_fc_full;
196
197 /*
198 * Set up the 1G and 10G flow control advertisement registers so the
199 * HW will be able to do fc autoneg once the cable is plugged in. If
200 * we link at 10G, the 1G advertisement is harmless and vice versa.
201 */
202 switch (hw->phy.media_type) {
203 case ixgbe_media_type_fiber:
204 case ixgbe_media_type_backplane:
205 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
206 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
207 break;
208 case ixgbe_media_type_copper:
209 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
210 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
211 break;
212 default:
213 break;
214 }
215
216 /*
217 * The possible values of fc.requested_mode are:
218 * 0: Flow control is completely disabled
219 * 1: Rx flow control is enabled (we can receive pause frames,
220 * but not send pause frames).
221 * 2: Tx flow control is enabled (we can send pause frames but
222 * we do not support receiving pause frames).
223 * 3: Both Rx and Tx flow control (symmetric) are enabled.
224 * other: Invalid.
225 */
226 switch (hw->fc.requested_mode) {
251 case ixgbe_fc_rx_pause:
252 /*
253 * Rx Flow control is enabled and Tx Flow control is
254 * disabled by software override. Since there really
255 * isn't a way to advertise that we are capable of RX
256 * Pause ONLY, we will advertise that we support both
257 * symmetric and asymmetric Rx PAUSE, as such we fall
258 * through to the fc_full statement. Later, we will
259 * disable the adapter's ability to send PAUSE frames.
260 */
261 case ixgbe_fc_full:
262 /* Flow control (both Rx and Tx) is enabled by SW override. */
263 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
264 if (hw->phy.media_type == ixgbe_media_type_backplane)
265 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
266 IXGBE_AUTOC_ASM_PAUSE;
267 else if (hw->phy.media_type == ixgbe_media_type_copper)
268 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
269 break;
270 default:
271 DEBUGOUT("Flow control param set incorrectly\n");
272 ret_val = IXGBE_ERR_CONFIG;
273 goto out;
274 }
275
276 if (hw->mac.type != ixgbe_mac_X540) {
277 /*
278 * Enable auto-negotiation between the MAC & PHY;
279 * the MAC will advertise clause 37 flow control.
280 */
281 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
282 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
283
284 /* Disable AN timeout */
285 if (hw->fc.strict_ieee)
286 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
287
288 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
289 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
290 }
291
292 /*
293 * AUTOC restart handles negotiation of 1G and 10G on backplane
294 * and copper. There is no need to set the PCS1GCTL register.
295 *
296 */
297 if (hw->phy.media_type == ixgbe_media_type_backplane) {
298 reg_bp |= IXGBE_AUTOC_AN_RESTART;
299 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
300 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
301 (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
302 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
303 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
304 }
305
306 DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
307 out:
308 return ret_val;
309 }
310
311 /**
312 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
313 * @hw: pointer to hardware structure
314 *
315 * Starts the hardware by filling the bus info structure and media type, clears
316 * all on chip counters, initializes receive address registers, multicast
317 * table, VLAN filter table, calls routine to set up link and flow control
318 * settings, and leaves transmit and receive units disabled and uninitialized
319 **/
320 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
321 {
322 s32 ret_val;
323 u32 ctrl_ext;
324
325 DEBUGFUNC("ixgbe_start_hw_generic");
326
415 /* Start the HW */
416 status = hw->mac.ops.start_hw(hw);
417 }
418
419 return status;
420 }
421
422 /**
423 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
424 * @hw: pointer to hardware structure
425 *
426 * Clears all hardware statistics counters by reading them from the hardware
427 * Statistics counters are clear on read.
428 **/
429 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
430 {
431 u16 i = 0;
432
433 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
434
435 (void) IXGBE_READ_REG(hw, IXGBE_CRCERRS);
436 (void) IXGBE_READ_REG(hw, IXGBE_ILLERRC);
437 (void) IXGBE_READ_REG(hw, IXGBE_ERRBC);
438 (void) IXGBE_READ_REG(hw, IXGBE_MSPDC);
439 for (i = 0; i < 8; i++)
440 (void) IXGBE_READ_REG(hw, IXGBE_MPC(i));
441
442 (void) IXGBE_READ_REG(hw, IXGBE_MLFC);
443 (void) IXGBE_READ_REG(hw, IXGBE_MRFC);
444 (void) IXGBE_READ_REG(hw, IXGBE_RLEC);
445 (void) IXGBE_READ_REG(hw, IXGBE_LXONTXC);
446 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
447 if (hw->mac.type >= ixgbe_mac_82599EB) {
448 (void) IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
449 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
450 } else {
451 (void) IXGBE_READ_REG(hw, IXGBE_LXONRXC);
452 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
453 }
454
455 for (i = 0; i < 8; i++) {
456 (void) IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
457 (void) IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
458 if (hw->mac.type >= ixgbe_mac_82599EB) {
459 (void) IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
460 (void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
461 } else {
462 (void) IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
463 (void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
464 }
465 }
466 if (hw->mac.type >= ixgbe_mac_82599EB)
467 for (i = 0; i < 8; i++)
468 (void) IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
469 (void) IXGBE_READ_REG(hw, IXGBE_PRC64);
470 (void) IXGBE_READ_REG(hw, IXGBE_PRC127);
471 (void) IXGBE_READ_REG(hw, IXGBE_PRC255);
472 (void) IXGBE_READ_REG(hw, IXGBE_PRC511);
473 (void) IXGBE_READ_REG(hw, IXGBE_PRC1023);
474 (void) IXGBE_READ_REG(hw, IXGBE_PRC1522);
475 (void) IXGBE_READ_REG(hw, IXGBE_GPRC);
476 (void) IXGBE_READ_REG(hw, IXGBE_BPRC);
477 (void) IXGBE_READ_REG(hw, IXGBE_MPRC);
478 (void) IXGBE_READ_REG(hw, IXGBE_GPTC);
479 (void) IXGBE_READ_REG(hw, IXGBE_GORCL);
480 (void) IXGBE_READ_REG(hw, IXGBE_GORCH);
481 (void) IXGBE_READ_REG(hw, IXGBE_GOTCL);
482 (void) IXGBE_READ_REG(hw, IXGBE_GOTCH);
483 if (hw->mac.type == ixgbe_mac_82598EB)
484 for (i = 0; i < 8; i++)
485 (void) IXGBE_READ_REG(hw, IXGBE_RNBC(i));
486 (void) IXGBE_READ_REG(hw, IXGBE_RUC);
487 (void) IXGBE_READ_REG(hw, IXGBE_RFC);
488 (void) IXGBE_READ_REG(hw, IXGBE_ROC);
489 (void) IXGBE_READ_REG(hw, IXGBE_RJC);
490 (void) IXGBE_READ_REG(hw, IXGBE_MNGPRC);
491 (void) IXGBE_READ_REG(hw, IXGBE_MNGPDC);
492 (void) IXGBE_READ_REG(hw, IXGBE_MNGPTC);
493 (void) IXGBE_READ_REG(hw, IXGBE_TORL);
494 (void) IXGBE_READ_REG(hw, IXGBE_TORH);
495 (void) IXGBE_READ_REG(hw, IXGBE_TPR);
496 (void) IXGBE_READ_REG(hw, IXGBE_TPT);
497 (void) IXGBE_READ_REG(hw, IXGBE_PTC64);
498 (void) IXGBE_READ_REG(hw, IXGBE_PTC127);
499 (void) IXGBE_READ_REG(hw, IXGBE_PTC255);
500 (void) IXGBE_READ_REG(hw, IXGBE_PTC511);
501 (void) IXGBE_READ_REG(hw, IXGBE_PTC1023);
502 (void) IXGBE_READ_REG(hw, IXGBE_PTC1522);
503 (void) IXGBE_READ_REG(hw, IXGBE_MPTC);
504 (void) IXGBE_READ_REG(hw, IXGBE_BPTC);
505 for (i = 0; i < 16; i++) {
506 (void) IXGBE_READ_REG(hw, IXGBE_QPRC(i));
507 (void) IXGBE_READ_REG(hw, IXGBE_QPTC(i));
508 if (hw->mac.type >= ixgbe_mac_82599EB) {
509 (void) IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
510 (void) IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
511 (void) IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
512 (void) IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
513 (void) IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
514 } else {
515 (void) IXGBE_READ_REG(hw, IXGBE_QBRC(i));
516 (void) IXGBE_READ_REG(hw, IXGBE_QBTC(i));
517 }
518 }
519
520 if (hw->mac.type == ixgbe_mac_X540) {
521 if (hw->phy.id == 0)
522 (void) ixgbe_identify_phy(hw);
523 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
524 IXGBE_MDIO_PCS_DEV_TYPE, &i);
525 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
526 IXGBE_MDIO_PCS_DEV_TYPE, &i);
527 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
528 IXGBE_MDIO_PCS_DEV_TYPE, &i);
529 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
530 IXGBE_MDIO_PCS_DEV_TYPE, &i);
531 }
532
533 return IXGBE_SUCCESS;
534 }
535
536 /**
537 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
538 * @hw: pointer to hardware structure
539 * @pba_num: stores the part number string from the EEPROM
540 * @pba_num_size: part number string buffer length
541 *
542 * Reads the part number string from the EEPROM.
662 if (ret_val) {
663 DEBUGOUT("NVM Read Error\n");
664 return ret_val;
665 } else if (data == IXGBE_PBANUM_PTR_GUARD) {
666 DEBUGOUT("NVM Not supported\n");
667 return IXGBE_NOT_IMPLEMENTED;
668 }
669 *pba_num = (u32)(data << 16);
670
671 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
672 if (ret_val) {
673 DEBUGOUT("NVM Read Error\n");
674 return ret_val;
675 }
676 *pba_num |= data;
677
678 return IXGBE_SUCCESS;
679 }
680
681 /**
682 * ixgbe_get_mac_addr_generic - Generic get MAC address
683 * @hw: pointer to hardware structure
684 * @mac_addr: Adapter MAC address
685 *
686 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
687 * A reset of the adapter must be performed prior to calling this function
688 * in order for the MAC address to have been loaded from the EEPROM into RAR0
689 **/
690 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
691 {
692 u32 rar_high;
693 u32 rar_low;
694 u16 i;
695
696 DEBUGFUNC("ixgbe_get_mac_addr_generic");
697
698 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
699 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
700
701 for (i = 0; i < 4; i++)
702 mac_addr[i] = (u8)(rar_low >> (i*8));
703
704 for (i = 0; i < 2; i++)
705 mac_addr[i+4] = (u8)(rar_high >> (i*8));
706
707 return IXGBE_SUCCESS;
708 }
709
710 /**
711 * ixgbe_get_bus_info_generic - Generic set PCI bus info
712 * @hw: pointer to hardware structure
713 *
714 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
715 **/
716 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
717 {
718 struct ixgbe_mac_info *mac = &hw->mac;
719 u16 link_status;
720
721 DEBUGFUNC("ixgbe_get_bus_info_generic");
722
723 hw->bus.type = ixgbe_bus_type_pci_express;
724
725 /* Get the negotiated link width and speed from PCI config space */
726 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
727
728 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
729 case IXGBE_PCI_LINK_WIDTH_1:
730 hw->bus.width = ixgbe_bus_width_pcie_x1;
731 break;
732 case IXGBE_PCI_LINK_WIDTH_2:
733 hw->bus.width = ixgbe_bus_width_pcie_x2;
734 break;
735 case IXGBE_PCI_LINK_WIDTH_4:
736 hw->bus.width = ixgbe_bus_width_pcie_x4;
737 break;
738 case IXGBE_PCI_LINK_WIDTH_8:
739 hw->bus.width = ixgbe_bus_width_pcie_x8;
740 break;
741 default:
742 hw->bus.width = ixgbe_bus_width_unknown;
743 break;
744 }
745
746 switch (link_status & IXGBE_PCI_LINK_SPEED) {
747 case IXGBE_PCI_LINK_SPEED_2500:
748 hw->bus.speed = ixgbe_bus_speed_2500;
749 break;
750 case IXGBE_PCI_LINK_SPEED_5000:
751 hw->bus.speed = ixgbe_bus_speed_5000;
752 break;
753 case IXGBE_PCI_LINK_SPEED_8000:
754 hw->bus.speed = ixgbe_bus_speed_8000;
755 break;
756 default:
757 hw->bus.speed = ixgbe_bus_speed_unknown;
758 break;
759 }
760
761 mac->ops.set_lan_id(hw);
762
763 return IXGBE_SUCCESS;
764 }
765
766 /**
767 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
768 * @hw: pointer to the HW structure
769 *
770 * Determines the LAN function id by reading memory-mapped registers
771 * and swaps the port value if requested.
772 **/
773 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
774 {
775 struct ixgbe_bus_info *bus = &hw->bus;
776 u32 reg;
777
778 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
779
780 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
781 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
782 bus->lan_id = bus->func;
783
784 /* check for a port swap */
785 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
786 if (reg & IXGBE_FACTPS_LFS)
787 bus->func ^= 0x1;
788 }
789
790 /**
791 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
792 * @hw: pointer to hardware structure
793 *
794 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
795 * disables transmit and receive units. The adapter_stopped flag is used by
796 * the shared code and drivers to determine if the adapter is in a stopped
797 * state and should not touch the hardware.
798 **/
799 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
800 {
801 u32 reg_val;
802 u16 i;
803
804 DEBUGFUNC("ixgbe_stop_adapter_generic");
805
806 /*
807 * Set the adapter_stopped flag so other driver functions stop touching
808 * the hardware
809 */
810 hw->adapter_stopped = TRUE;
811
812 /* Disable the receive unit */
813 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
814
815 /* Clear interrupt mask to stop interrupts from being generated */
816 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
817
818 /* Clear any pending interrupts, flush previous writes */
819 (void) IXGBE_READ_REG(hw, IXGBE_EICR);
820
821 /* Disable the transmit unit. Each queue must be disabled. */
822 for (i = 0; i < hw->mac.max_tx_queues; i++)
823 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
824
825 /* Disable the receive unit by stopping each queue */
826 for (i = 0; i < hw->mac.max_rx_queues; i++) {
827 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
828 reg_val &= ~IXGBE_RXDCTL_ENABLE;
829 reg_val |= IXGBE_RXDCTL_SWFLSH;
830 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
831 }
832
833 /* flush all queues disables */
834 IXGBE_WRITE_FLUSH(hw);
835 msec_delay(2);
836
837 /*
838 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
839 * access and verify no pending requests
840 */
841 return ixgbe_disable_pcie_master(hw);
842 }
843
844 /**
845 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
846 * @hw: pointer to hardware structure
847 * @index: led number to turn on
848 **/
849 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
850 {
851 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
852
853 DEBUGFUNC("ixgbe_led_on_generic");
854
855 /* To turn on the LED, set mode to ON. */
856 led_reg &= ~IXGBE_LED_MODE_MASK(index);
857 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
858 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
891 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
892 {
893 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
894 u32 eec;
895 u16 eeprom_size;
896
897 DEBUGFUNC("ixgbe_init_eeprom_params_generic");
898
899 if (eeprom->type == ixgbe_eeprom_uninitialized) {
900 eeprom->type = ixgbe_eeprom_none;
901 /* Set default semaphore delay to 10ms which is a well
902 * tested value */
903 eeprom->semaphore_delay = 10;
904 /* Clear EEPROM page size, it will be initialized as needed */
905 eeprom->word_page_size = 0;
906
907 /*
908 * Check for EEPROM present first.
909 * If not present leave as none
910 */
911 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
912 if (eec & IXGBE_EEC_PRES) {
913 eeprom->type = ixgbe_eeprom_spi;
914
915 /*
916 * SPI EEPROM is assumed here. This code would need to
917 * change if a future EEPROM is not SPI.
918 */
919 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
920 IXGBE_EEC_SIZE_SHIFT);
921 eeprom->word_size = 1 << (eeprom_size +
922 IXGBE_EEPROM_WORD_SIZE_SHIFT);
923 }
924
925 if (eec & IXGBE_EEC_ADDR_SIZE)
926 eeprom->address_bits = 16;
927 else
928 eeprom->address_bits = 8;
929 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
930 "%d\n", eeprom->type, eeprom->word_size,
931 eeprom->address_bits);
952 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
953
954 hw->eeprom.ops.init_params(hw);
955
956 if (words == 0) {
957 status = IXGBE_ERR_INVALID_ARGUMENT;
958 goto out;
959 }
960
961 if (offset + words > hw->eeprom.word_size) {
962 status = IXGBE_ERR_EEPROM;
963 goto out;
964 }
965
966 /*
967 * The EEPROM page size cannot be queried from the chip. We do lazy
968 * initialization. It is worth to do that when we write large buffer.
969 */
970 if ((hw->eeprom.word_page_size == 0) &&
971 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
972 status = ixgbe_detect_eeprom_page_size_generic(hw, offset);
973 if (status != IXGBE_SUCCESS)
974 goto out;
975
976 /*
977 * We cannot hold synchronization semaphores for too long
978 * to avoid other entity starvation. However it is more efficient
979 * to read in bursts than synchronizing access for each word.
980 */
981 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
982 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
983 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
984 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
985 count, &data[i]);
986
987 if (status != IXGBE_SUCCESS)
988 break;
989 }
990
991 out:
992 return status;
993 }
994
1243 * @hw: pointer to hardware structure
1244 * @offset: offset of word in the EEPROM to read
1245 * @words: number of word(s)
1246 * @data: 16 bit word(s) from the EEPROM
1247 *
1248 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1249 **/
1250 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1251 u16 words, u16 *data)
1252 {
1253 u32 eerd;
1254 s32 status = IXGBE_SUCCESS;
1255 u32 i;
1256
1257 DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1258
1259 hw->eeprom.ops.init_params(hw);
1260
1261 if (words == 0) {
1262 status = IXGBE_ERR_INVALID_ARGUMENT;
1263 goto out;
1264 }
1265
1266 if (offset >= hw->eeprom.word_size) {
1267 status = IXGBE_ERR_EEPROM;
1268 goto out;
1269 }
1270
1271 for (i = 0; i < words; i++) {
1272 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1273 IXGBE_EEPROM_RW_REG_START;
1274
1275 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1276 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1277
1278 if (status == IXGBE_SUCCESS) {
1279 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1280 IXGBE_EEPROM_RW_REG_DATA);
1281 } else {
1282 DEBUGOUT("Eeprom read timed out\n");
1283 goto out;
1284 }
1285 }
1286 out:
1287 return status;
1288 }
1289
1290 /**
1291 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1292 * @hw: pointer to hardware structure
1349 * @hw: pointer to hardware structure
1350 * @offset: offset of word in the EEPROM to write
1351 * @words: number of word(s)
1352 * @data: word(s) write to the EEPROM
1353 *
1354 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1355 **/
1356 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1357 u16 words, u16 *data)
1358 {
1359 u32 eewr;
1360 s32 status = IXGBE_SUCCESS;
1361 u16 i;
1362
1363 DEBUGFUNC("ixgbe_write_eewr_generic");
1364
1365 hw->eeprom.ops.init_params(hw);
1366
1367 if (words == 0) {
1368 status = IXGBE_ERR_INVALID_ARGUMENT;
1369 goto out;
1370 }
1371
1372 if (offset >= hw->eeprom.word_size) {
1373 status = IXGBE_ERR_EEPROM;
1374 goto out;
1375 }
1376
1377 for (i = 0; i < words; i++) {
1378 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1379 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1380 IXGBE_EEPROM_RW_REG_START;
1381
1382 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1383 if (status != IXGBE_SUCCESS) {
1384 DEBUGOUT("Eeprom write EEWR timed out\n");
1385 goto out;
1386 }
1387
1388 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1389
1390 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1391 if (status != IXGBE_SUCCESS) {
1392 DEBUGOUT("Eeprom write EEWR timed out\n");
1393 goto out;
1422 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1423 {
1424 u32 i;
1425 u32 reg;
1426 s32 status = IXGBE_ERR_EEPROM;
1427
1428 DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1429
1430 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1431 if (ee_reg == IXGBE_NVM_POLL_READ)
1432 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1433 else
1434 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1435
1436 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1437 status = IXGBE_SUCCESS;
1438 break;
1439 }
1440 usec_delay(5);
1441 }
1442 return status;
1443 }
1444
1445 /**
1446 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1447 * @hw: pointer to hardware structure
1448 *
1449 * Prepares EEPROM for access using bit-bang method. This function should
1450 * be called before issuing a command to the EEPROM.
1451 **/
1452 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1453 {
1454 s32 status = IXGBE_SUCCESS;
1455 u32 eec;
1456 u32 i;
1457
1458 DEBUGFUNC("ixgbe_acquire_eeprom");
1459
1460 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1461 != IXGBE_SUCCESS)
1462 status = IXGBE_ERR_SWFW_SYNC;
1463
1464 if (status == IXGBE_SUCCESS) {
1465 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466
1467 /* Request EEPROM Access */
1468 eec |= IXGBE_EEC_REQ;
1469 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1470
1471 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1472 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1473 if (eec & IXGBE_EEC_GNT)
1474 break;
1475 usec_delay(5);
1476 }
1477
1478 /* Release if grant not acquired */
1479 if (!(eec & IXGBE_EEC_GNT)) {
1480 eec &= ~IXGBE_EEC_REQ;
1481 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482 DEBUGOUT("Could not acquire EEPROM grant\n");
1483
1484 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1485 status = IXGBE_ERR_EEPROM;
1486 }
1487
1488 /* Setup EEPROM for Read/Write */
1489 if (status == IXGBE_SUCCESS) {
1490 /* Clear CS and SK */
1491 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1492 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1493 IXGBE_WRITE_FLUSH(hw);
1494 usec_delay(1);
1495 }
1496 }
1497 return status;
1498 }
1499
1500 /**
1501 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1502 * @hw: pointer to hardware structure
1503 *
1504 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1505 **/
1506 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1507 {
1508 s32 status = IXGBE_ERR_EEPROM;
1509 u32 timeout = 2000;
1510 u32 i;
1511 u32 swsm;
1512
1513 DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1514
1515
1516 /* Get SMBI software semaphore between device drivers first */
1517 for (i = 0; i < timeout; i++) {
1518 /*
1519 * If the SMBI bit is 0 when we read it, then the bit will be
1520 * set and we have the semaphore
1521 */
1522 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1523 if (!(swsm & IXGBE_SWSM_SMBI)) {
1524 status = IXGBE_SUCCESS;
1525 break;
1526 }
1527 usec_delay(50);
1528 }
1529
1530 if (i == timeout) {
1531 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1532 "not granted.\n");
1533 /*
1534 * this release is particularly important because our attempts
1535 * above to get the semaphore may have succeeded, and if there
1536 * was a timeout, we should unconditionally clear the semaphore
1537 * bits to free the driver to make progress
1538 */
1539 ixgbe_release_eeprom_semaphore(hw);
1540
1541 usec_delay(50);
1542 /*
1543 * one last try
1544 * If the SMBI bit is 0 when we read it, then the bit will be
1545 * set and we have the semaphore
1546 */
1547 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1548 if (!(swsm & IXGBE_SWSM_SMBI))
1549 status = IXGBE_SUCCESS;
1550 }
1551
1552 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1553 if (status == IXGBE_SUCCESS) {
1554 for (i = 0; i < timeout; i++) {
1555 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1556
1557 /* Set the SW EEPROM semaphore bit to request access */
1558 swsm |= IXGBE_SWSM_SWESMBI;
1559 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1560
1561 /*
1562 * If we set the bit successfully then we got the
1563 * semaphore.
1564 */
1565 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1566 if (swsm & IXGBE_SWSM_SWESMBI)
1567 break;
1568
1569 usec_delay(50);
1570 }
1571
1572 /*
1573 * Release semaphores and return error if SW EEPROM semaphore
1574 * was not granted because we don't have access to the EEPROM
1575 */
1576 if (i >= timeout) {
1577 DEBUGOUT("SWESMBI Software EEPROM semaphore "
1578 "not granted.\n");
1579 ixgbe_release_eeprom_semaphore(hw);
1580 status = IXGBE_ERR_EEPROM;
1581 }
1582 } else {
1583 DEBUGOUT("Software semaphore SMBI between device drivers "
1584 "not granted.\n");
1585 }
1586
1587 return status;
1588 }
1589
1590 /**
1591 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1592 * @hw: pointer to hardware structure
1593 *
1594 * This function clears hardware semaphore bits.
1595 **/
1596 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1597 {
1598 u32 swsm;
1599
1600 DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1601
1602 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1603
1641 * devices (and only 0-5mSec on 5V devices)
1642 */
1643 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1644 DEBUGOUT("SPI EEPROM Status error\n");
1645 status = IXGBE_ERR_EEPROM;
1646 }
1647
1648 return status;
1649 }
1650
1651 /**
1652 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1653 * @hw: pointer to hardware structure
1654 **/
1655 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1656 {
1657 u32 eec;
1658
1659 DEBUGFUNC("ixgbe_standby_eeprom");
1660
1661 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1662
1663 /* Toggle CS to flush commands */
1664 eec |= IXGBE_EEC_CS;
1665 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1666 IXGBE_WRITE_FLUSH(hw);
1667 usec_delay(1);
1668 eec &= ~IXGBE_EEC_CS;
1669 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1670 IXGBE_WRITE_FLUSH(hw);
1671 usec_delay(1);
1672 }
1673
1674 /**
1675 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1676 * @hw: pointer to hardware structure
1677 * @data: data to send to the EEPROM
1678 * @count: number of bits to shift out
1679 **/
1680 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1681 u16 count)
1682 {
1683 u32 eec;
1684 u32 mask;
1685 u32 i;
1686
1687 DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1688
1689 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1690
1691 /*
1692 * Mask is used to shift "count" bits of "data" out to the EEPROM
1693 * one bit at a time. Determine the starting bit based on count
1694 */
1695 mask = 0x01 << (count - 1);
1696
1697 for (i = 0; i < count; i++) {
1698 /*
1699 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1700 * "1", and then raising and then lowering the clock (the SK
1701 * bit controls the clock input to the EEPROM). A "0" is
1702 * shifted out to the EEPROM by setting "DI" to "0" and then
1703 * raising and then lowering the clock.
1704 */
1705 if (data & mask)
1706 eec |= IXGBE_EEC_DI;
1707 else
1708 eec &= ~IXGBE_EEC_DI;
1709
1710 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1711 IXGBE_WRITE_FLUSH(hw);
1712
1713 usec_delay(1);
1714
1715 ixgbe_raise_eeprom_clk(hw, &eec);
1716 ixgbe_lower_eeprom_clk(hw, &eec);
1717
1718 /*
1719 * Shift mask to signify next bit of data to shift in to the
1720 * EEPROM
1721 */
1722 mask = mask >> 1;
1723 };
1724
1725 /* We leave the "DI" bit set to "0" when we leave this routine. */
1726 eec &= ~IXGBE_EEC_DI;
1727 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1728 IXGBE_WRITE_FLUSH(hw);
1729 }
1730
1731 /**
1732 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1733 * @hw: pointer to hardware structure
1734 **/
1735 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1736 {
1737 u32 eec;
1738 u32 i;
1739 u16 data = 0;
1740
1741 DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1742
1743 /*
1744 * In order to read a register from the EEPROM, we need to shift
1745 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1746 * the clock input to the EEPROM (setting the SK bit), and then reading
1747 * the value of the "DO" bit. During this "shifting in" process the
1748 * "DI" bit should always be clear.
1749 */
1750 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1751
1752 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1753
1754 for (i = 0; i < count; i++) {
1755 data = data << 1;
1756 ixgbe_raise_eeprom_clk(hw, &eec);
1757
1758 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1759
1760 eec &= ~(IXGBE_EEC_DI);
1761 if (eec & IXGBE_EEC_DO)
1762 data |= 1;
1763
1764 ixgbe_lower_eeprom_clk(hw, &eec);
1765 }
1766
1767 return data;
1768 }
1769
1770 /**
1771 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1772 * @hw: pointer to hardware structure
1773 * @eec: EEC register's current value
1774 **/
1775 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1776 {
1777 DEBUGFUNC("ixgbe_raise_eeprom_clk");
1778
1779 /*
1780 * Raise the clock input to the EEPROM
1781 * (setting the SK bit), then delay
1782 */
1783 *eec = *eec | IXGBE_EEC_SK;
1784 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1785 IXGBE_WRITE_FLUSH(hw);
1786 usec_delay(1);
1787 }
1788
1789 /**
1790 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1791 * @hw: pointer to hardware structure
1792 * @eecd: EECD's current value
1793 **/
1794 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1795 {
1796 DEBUGFUNC("ixgbe_lower_eeprom_clk");
1797
1798 /*
1799 * Lower the clock input to the EEPROM (clearing the SK bit), then
1800 * delay
1801 */
1802 *eec = *eec & ~IXGBE_EEC_SK;
1803 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1804 IXGBE_WRITE_FLUSH(hw);
1805 usec_delay(1);
1806 }
1807
1808 /**
1809 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1810 * @hw: pointer to hardware structure
1811 **/
1812 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1813 {
1814 u32 eec;
1815
1816 DEBUGFUNC("ixgbe_release_eeprom");
1817
1818 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1819
1820 eec |= IXGBE_EEC_CS; /* Pull CS high */
1821 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1822
1823 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1824 IXGBE_WRITE_FLUSH(hw);
1825
1826 usec_delay(1);
1827
1828 /* Stop requesting EEPROM access */
1829 eec &= ~IXGBE_EEC_REQ;
1830 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1831
1832 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1833
1834 /* Delay before attempt to obtain semaphore again to allow FW access */
1835 msec_delay(hw->eeprom.semaphore_delay);
1836 }
1837
1838 /**
1839 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1840 * @hw: pointer to hardware structure
1841 **/
1842 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1843 {
1844 u16 i;
1845 u16 j;
1846 u16 checksum = 0;
1847 u16 length = 0;
1848 u16 pointer = 0;
1849 u16 word = 0;
1850
1851 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1852
1853 /* Include 0x0-0x3F in the checksum */
1854 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1855 if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1856 DEBUGOUT("EEPROM read failed\n");
1857 break;
1858 }
1859 checksum += word;
1860 }
1861
1862 /* Include all data from pointers except for the fw pointer */
1863 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1864 hw->eeprom.ops.read(hw, i, &pointer);
1865
1866 /* Make sure the pointer seems valid */
1867 if (pointer != 0xFFFF && pointer != 0) {
1868 hw->eeprom.ops.read(hw, pointer, &length);
1869
1870 if (length != 0xFFFF && length != 0) {
1871 for (j = pointer+1; j <= pointer+length; j++) {
1872 hw->eeprom.ops.read(hw, j, &word);
1873 checksum += word;
1874 }
1875 }
1876 }
1877 }
1878
1879 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1880
1881 return checksum;
1882 }
1883
1884 /**
1885 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1886 * @hw: pointer to hardware structure
1887 * @checksum_val: calculated checksum
1888 *
1889 * Performs checksum calculation and validates the EEPROM checksum. If the
1890 * caller does not need checksum_val, the value can be NULL.
1891 **/
1892 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1893 u16 *checksum_val)
1894 {
1895 s32 status;
1896 u16 checksum;
1897 u16 read_checksum = 0;
1898
1899 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1900
1901 /*
1902 * Read the first word from the EEPROM. If this times out or fails, do
1903 * not continue or we could be in for a very long wait while every
1904 * EEPROM read fails
1905 */
1906 status = hw->eeprom.ops.read(hw, 0, &checksum);
1907
1908 if (status == IXGBE_SUCCESS) {
1909 checksum = hw->eeprom.ops.calc_checksum(hw);
1910
1911 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1912
1913 /*
1914 * Verify read checksum from EEPROM is the same as
1915 * calculated checksum
1916 */
1917 if (read_checksum != checksum)
1918 status = IXGBE_ERR_EEPROM_CHECKSUM;
1919
1920 /* If the user cares, return the calculated checksum */
1921 if (checksum_val)
1922 *checksum_val = checksum;
1923 } else {
1924 DEBUGOUT("EEPROM read failed\n");
1925 }
1926
1927 return status;
1928 }
1929
1930 /**
1931 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1932 * @hw: pointer to hardware structure
1933 **/
1934 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1935 {
1936 s32 status;
1937 u16 checksum;
1938
1939 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1940
1941 /*
1942 * Read the first word from the EEPROM. If this times out or fails, do
1943 * not continue or we could be in for a very long wait while every
1944 * EEPROM read fails
1945 */
1946 status = hw->eeprom.ops.read(hw, 0, &checksum);
1947
1948 if (status == IXGBE_SUCCESS) {
1949 checksum = hw->eeprom.ops.calc_checksum(hw);
1950 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1951 checksum);
1952 } else {
1953 DEBUGOUT("EEPROM read failed\n");
1954 }
1955
1956 return status;
1957 }
1958
1959 /**
1960 * ixgbe_validate_mac_addr - Validate MAC address
1961 * @mac_addr: pointer to MAC address.
1962 *
1963 * Tests a MAC address to ensure it is a valid Individual Address
1964 **/
1965 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1966 {
1967 s32 status = IXGBE_SUCCESS;
1968
1969 DEBUGFUNC("ixgbe_validate_mac_addr");
1970
1971 /* Make sure it is not a multicast address */
1972 if (IXGBE_IS_MULTICAST(mac_addr)) {
1973 DEBUGOUT("MAC address is multicast\n");
1974 status = IXGBE_ERR_INVALID_MAC_ADDR;
1975 /* Not a broadcast address */
1976 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
1988 /**
1989 * ixgbe_set_rar_generic - Set Rx address register
1990 * @hw: pointer to hardware structure
1991 * @index: Receive address register to write
1992 * @addr: Address to put into receive address register
1993 * @vmdq: VMDq "set" or "pool" index
1994 * @enable_addr: set flag that address is active
1995 *
1996 * Puts an ethernet address into a receive address register.
1997 **/
1998 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1999 u32 enable_addr)
2000 {
2001 u32 rar_low, rar_high;
2002 u32 rar_entries = hw->mac.num_rar_entries;
2003
2004 DEBUGFUNC("ixgbe_set_rar_generic");
2005
2006 /* Make sure we are using a valid rar index range */
2007 if (index >= rar_entries) {
2008 DEBUGOUT1("RAR index %d is out of range.\n", index);
2009 return IXGBE_ERR_INVALID_ARGUMENT;
2010 }
2011
2012 /* setup VMDq pool selection before this RAR gets enabled */
2013 hw->mac.ops.set_vmdq(hw, index, vmdq);
2014
2015 /*
2016 * HW expects these in little endian so we reverse the byte
2017 * order from network order (big endian) to little endian
2018 */
2019 rar_low = ((u32)addr[0] |
2020 ((u32)addr[1] << 8) |
2021 ((u32)addr[2] << 16) |
2022 ((u32)addr[3] << 24));
2023 /*
2024 * Some parts put the VMDq setting in the extra RAH bits,
2025 * so save everything except the lower 16 bits that hold part
2026 * of the address and the address valid bit.
2027 */
2028 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2037
2038 return IXGBE_SUCCESS;
2039 }
2040
2041 /**
2042 * ixgbe_clear_rar_generic - Remove Rx address register
2043 * @hw: pointer to hardware structure
2044 * @index: Receive address register to write
2045 *
2046 * Clears an ethernet address from a receive address register.
2047 **/
2048 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2049 {
2050 u32 rar_high;
2051 u32 rar_entries = hw->mac.num_rar_entries;
2052
2053 DEBUGFUNC("ixgbe_clear_rar_generic");
2054
2055 /* Make sure we are using a valid rar index range */
2056 if (index >= rar_entries) {
2057 DEBUGOUT1("RAR index %d is out of range.\n", index);
2058 return IXGBE_ERR_INVALID_ARGUMENT;
2059 }
2060
2061 /*
2062 * Some parts put the VMDq setting in the extra RAH bits,
2063 * so save everything except the lower 16 bits that hold part
2064 * of the address and the address valid bit.
2065 */
2066 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2067 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2068
2069 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2070 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2071
2072 /* clear VMDq pool/queue selection for this RAR */
2073 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2074
2075 return IXGBE_SUCCESS;
2076 }
2077
2121 }
2122 hw->addr_ctrl.overflow_promisc = 0;
2123
2124 hw->addr_ctrl.rar_used_count = 1;
2125
2126 /* Zero out the other receive addresses. */
2127 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2128 for (i = 1; i < rar_entries; i++) {
2129 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2130 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2131 }
2132
2133 /* Clear the MTA */
2134 hw->addr_ctrl.mta_in_use = 0;
2135 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2136
2137 DEBUGOUT(" Clearing MTA\n");
2138 for (i = 0; i < hw->mac.mcft_size; i++)
2139 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2140
2141 /* Should always be IXGBE_SUCCESS. */
2142 return ixgbe_init_uta_tables(hw);
2143 }
2144
2145 /**
2146 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2147 * @hw: pointer to hardware structure
2148 * @addr: new address
2149 *
2150 * Adds it to unused receive address register or goes into promiscuous mode.
2151 **/
2152 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2153 {
2154 u32 rar_entries = hw->mac.num_rar_entries;
2155 u32 rar;
2156
2157 DEBUGFUNC("ixgbe_add_uc_addr");
2158
2159 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2160 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2161
2162 /*
2334 **/
2335 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2336 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2337 bool clear)
2338 {
2339 u32 i;
2340 u32 vmdq;
2341
2342 DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2343
2344 /*
2345 * Set the new number of MC addresses that we are being requested to
2346 * use.
2347 */
2348 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2349 hw->addr_ctrl.mta_in_use = 0;
2350
2351 /* Clear mta_shadow */
2352 if (clear) {
2353 DEBUGOUT(" Clearing MTA\n");
2354 (void) memset(&hw->mac.mta_shadow, 0,
2355 sizeof(hw->mac.mta_shadow));
2356 }
2357
2358 /* Update mta_shadow */
2359 for (i = 0; i < mc_addr_count; i++) {
2360 DEBUGOUT(" Adding the multicast addresses:\n");
2361 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2362 }
2363
2364 /* Enable mta */
2365 for (i = 0; i < hw->mac.mcft_size; i++)
2366 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2367 hw->mac.mta_shadow[i]);
2368
2369 if (hw->addr_ctrl.mta_in_use > 0)
2370 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2371 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2372
2373 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2374 return IXGBE_SUCCESS;
2375 }
2480 * isn't a way to advertise that we are capable of RX
2481 * Pause ONLY, we will advertise that we support both
2482 * symmetric and asymmetric Rx PAUSE. Later, we will
2483 * disable the adapter's ability to send PAUSE frames.
2484 */
2485 mflcn_reg |= IXGBE_MFLCN_RFCE;
2486 break;
2487 case ixgbe_fc_tx_pause:
2488 /*
2489 * Tx Flow control is enabled, and Rx Flow control is
2490 * disabled by software override.
2491 */
2492 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2493 break;
2494 case ixgbe_fc_full:
2495 /* Flow control (both Rx and Tx) is enabled by SW override. */
2496 mflcn_reg |= IXGBE_MFLCN_RFCE;
2497 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2498 break;
2499 default:
2500 DEBUGOUT("Flow control param set incorrectly\n");
2501 ret_val = IXGBE_ERR_CONFIG;
2502 goto out;
2503 }
2504
2505 /* Set 802.3x based flow control settings. */
2506 mflcn_reg |= IXGBE_MFLCN_DPF;
2507 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2508 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2509
2510
2511 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2512 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2513 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2514 hw->fc.high_water[i]) {
2515 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2516 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2517 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2518 } else {
2519 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2520 /*
2521 * In order to prevent Tx hangs when the internal Tx
2522 * switch is enabled we must set the high water mark
2523 * to the maximum FCRTH value. This allows the Tx
2524 * switch to function even under heavy Rx workloads.
2525 */
2526 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2527 }
2528
2529 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2530 }
2531
2532 /* Configure pause time (2 TCs per register) */
2533 reg = hw->fc.pause_time * 0x00010001;
2534 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2535 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2536
2537 /* Configure flow control refresh threshold value */
2538 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2539
2540 out:
2541 return ret_val;
2542 }
2543
2544 /**
2545 * ixgbe_negotiate_fc - Negotiate flow control
2546 * @hw: pointer to hardware structure
2547 * @adv_reg: flow control advertised settings
2548 * @lp_reg: link partner's flow control settings
2549 * @adv_sym: symmetric pause bit in advertisement
2550 * @adv_asm: asymmetric pause bit in advertisement
2551 * @lp_sym: symmetric pause bit in link partner advertisement
2552 * @lp_asm: asymmetric pause bit in link partner advertisement
2553 *
2554 * Find the intersection between advertised settings and link partner's
2555 * advertised settings
2556 **/
2557 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2558 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2559 {
2560 if ((!(adv_reg)) || (!(lp_reg)))
2561 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2562
2563 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2564 /*
2565 * Now we need to check if the user selected Rx ONLY
2566 * of pause frames. In this case, we had to advertise
2567 * FULL flow control because we could not advertise RX
2568 * ONLY. Hence, we must now check to see if we need to
2569 * turn OFF the TRANSMISSION of PAUSE frames.
2570 */
2571 if (hw->fc.requested_mode == ixgbe_fc_full) {
2572 hw->fc.current_mode = ixgbe_fc_full;
2573 DEBUGOUT("Flow Control = FULL.\n");
2574 } else {
2575 hw->fc.current_mode = ixgbe_fc_rx_pause;
2576 DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2577 }
2578 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2579 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2580 hw->fc.current_mode = ixgbe_fc_tx_pause;
2581 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2592
2593 /**
2594 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2595 * @hw: pointer to hardware structure
2596 *
2597 * Enable flow control according on 1 gig fiber.
2598 **/
2599 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2600 {
2601 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2602 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2603
2604 /*
2605 * On multispeed fiber at 1g, bail out if
2606 * - link is up but AN did not complete, or if
2607 * - link is up and AN completed but timed out
2608 */
2609
2610 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2611 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2612 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2613 goto out;
2614
2615 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2616 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2617
2618 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2619 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2620 IXGBE_PCS1GANA_ASM_PAUSE,
2621 IXGBE_PCS1GANA_SYM_PAUSE,
2622 IXGBE_PCS1GANA_ASM_PAUSE);
2623
2624 out:
2625 return ret_val;
2626 }
2627
2628 /**
2629 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2630 * @hw: pointer to hardware structure
2631 *
2632 * Enable flow control according to IEEE clause 37.
2633 **/
2634 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2635 {
2636 u32 links2, anlp1_reg, autoc_reg, links;
2637 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2638
2639 /*
2640 * On backplane, bail out if
2641 * - backplane autoneg was not completed, or if
2642 * - we are 82599 and link partner is not AN enabled
2643 */
2644 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2645 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2646 goto out;
2647
2648 if (hw->mac.type == ixgbe_mac_82599EB) {
2649 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2650 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2651 goto out;
2652 }
2653 /*
2654 * Read the 10g AN autoc and LP ability registers and resolve
2655 * local flow control settings accordingly
2656 */
2657 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2658 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2659
2660 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2661 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2662 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2663
2664 out:
2665 return ret_val;
2666 }
2667
2668 /**
2669 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2670 * @hw: pointer to hardware structure
2671 *
2672 * Enable flow control according to IEEE clause 37.
2693 * ixgbe_fc_autoneg - Configure flow control
2694 * @hw: pointer to hardware structure
2695 *
2696 * Compares our advertised flow control capabilities to those advertised by
2697 * our link partner, and determines the proper flow control mode to use.
2698 **/
2699 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2700 {
2701 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2702 ixgbe_link_speed speed;
2703 bool link_up;
2704
2705 DEBUGFUNC("ixgbe_fc_autoneg");
2706
2707 /*
2708 * AN should have completed when the cable was plugged in.
2709 * Look for reasons to bail out. Bail out if:
2710 * - FC autoneg is disabled, or if
2711 * - link is not up.
2712 */
2713 if (hw->fc.disable_fc_autoneg)
2714 goto out;
2715
2716 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2717 if (!link_up)
2718 goto out;
2719
2720 switch (hw->phy.media_type) {
2721 /* Autoneg flow control on fiber adapters */
2722 case ixgbe_media_type_fiber:
2723 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2724 ret_val = ixgbe_fc_autoneg_fiber(hw);
2725 break;
2726
2727 /* Autoneg flow control on backplane adapters */
2728 case ixgbe_media_type_backplane:
2729 ret_val = ixgbe_fc_autoneg_backplane(hw);
2730 break;
2731
2732 /* Autoneg flow control on copper adapters */
2733 case ixgbe_media_type_copper:
2734 if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2735 ret_val = ixgbe_fc_autoneg_copper(hw);
2736 break;
2737
2738 default:
2739 break;
2740 }
2741
2742 out:
2743 if (ret_val == IXGBE_SUCCESS) {
2744 hw->fc.fc_was_autonegged = TRUE;
2745 } else {
2746 hw->fc.fc_was_autonegged = FALSE;
2747 hw->fc.current_mode = hw->fc.requested_mode;
2748 }
2749 }
2750
2751 /**
2752 * ixgbe_disable_pcie_master - Disable PCI-express master access
2753 * @hw: pointer to hardware structure
2754 *
2755 * Disables PCI-Express master access and verifies there are no pending
2756 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2757 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2758 * is returned signifying master requests disabled.
2759 **/
2760 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2761 {
2762 s32 status = IXGBE_SUCCESS;
2763 u32 i;
2764
2765 DEBUGFUNC("ixgbe_disable_pcie_master");
2766
2767 /* Always set this bit to ensure any future transactions are blocked */
2768 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2769
2770 /* Exit if master requets are blocked */
2771 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2772 goto out;
2773
2774 /* Poll for master request bit to clear */
2775 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2776 usec_delay(100);
2777 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2778 goto out;
2779 }
2780
2781 /*
2782 * Two consecutive resets are required via CTRL.RST per datasheet
2783 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2784 * of this need. The first reset prevents new master requests from
2785 * being issued by our device. We then must wait 1usec or more for any
2786 * remaining completions from the PCIe bus to trickle in, and then reset
2787 * again to clear out any effects they may have had on our device.
2788 */
2789 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2790 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2791
2792 /*
2793 * Before proceeding, make sure that the PCIe block does not have
2794 * transactions pending.
2795 */
2796 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2797 usec_delay(100);
2798 if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2799 IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2800 goto out;
2801 }
2802
2803 DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2804 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2805
2806 out:
2807 return status;
2808 }
2809
2810 /**
2811 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2812 * @hw: pointer to hardware structure
2813 * @mask: Mask to specify which semaphore to acquire
2814 *
2815 * Acquires the SWFW semaphore through the GSSR register for the specified
2816 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2817 **/
2818 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2819 {
2820 u32 gssr;
2821 u32 swmask = mask;
2822 u32 fwmask = mask << 5;
2823 s32 timeout = 200;
2824
2825 DEBUGFUNC("ixgbe_acquire_swfw_sync");
2826
2827 while (timeout) {
2828 /*
2829 * SW EEPROM semaphore bit is used for access to all
2830 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2831 */
2832 if (ixgbe_get_eeprom_semaphore(hw))
2833 return IXGBE_ERR_SWFW_SYNC;
2834
2835 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2836 if (!(gssr & (fwmask | swmask)))
2837 break;
2838
2839 /*
2840 * Firmware currently using resource (fwmask) or other software
2841 * thread currently using resource (swmask)
2842 */
2843 ixgbe_release_eeprom_semaphore(hw);
2844 msec_delay(5);
2845 timeout--;
2846 }
2847
2848 if (!timeout) {
2849 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2850 return IXGBE_ERR_SWFW_SYNC;
2851 }
2852
2853 gssr |= swmask;
2854 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2855
2856 ixgbe_release_eeprom_semaphore(hw);
2857 return IXGBE_SUCCESS;
2858 }
2859
2860 /**
2861 * ixgbe_release_swfw_sync - Release SWFW semaphore
2862 * @hw: pointer to hardware structure
2863 * @mask: Mask to specify which semaphore to release
2864 *
2865 * Releases the SWFW semaphore through the GSSR register for the specified
2866 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2867 **/
2868 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2869 {
2870 u32 gssr;
2871 u32 swmask = mask;
2872
2873 DEBUGFUNC("ixgbe_release_swfw_sync");
2874
2875 (void) ixgbe_get_eeprom_semaphore(hw);
2876
2877 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2878 gssr &= ~swmask;
2879 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2880
2881 ixgbe_release_eeprom_semaphore(hw);
2882 }
2883
2884 /**
2885 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2886 * @hw: pointer to hardware structure
2887 *
2888 * Stops the receive data path and waits for the HW to internally empty
2889 * the Rx security block
2890 **/
2891 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2892 {
2893 #define IXGBE_MAX_SECRX_POLL 40
2894
2895 int i;
2902 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2903 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2904 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2905 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2906 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2907 break;
2908 else
2909 /* Use interrupt-safe sleep just in case */
2910 usec_delay(1000);
2911 }
2912
2913 /* For informational purposes only */
2914 if (i >= IXGBE_MAX_SECRX_POLL)
2915 DEBUGOUT("Rx unit being enabled before security "
2916 "path fully disabled. Continuing with init.\n");
2917
2918 return IXGBE_SUCCESS;
2919 }
2920
2921 /**
2922 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2923 * @hw: pointer to hardware structure
2924 *
2925 * Enables the receive data path.
2926 **/
2927 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2928 {
2929 int secrxreg;
2930
2931 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
2932
2933 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2934 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2935 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2936 IXGBE_WRITE_FLUSH(hw);
2937
2938 return IXGBE_SUCCESS;
2939 }
2940
2941 /**
2942 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2943 * @hw: pointer to hardware structure
2944 * @regval: register value to write to RXCTRL
2945 *
2946 * Enables the Rx DMA unit
2947 **/
2948 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2949 {
2950 DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2951
2952 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2953
2954 return IXGBE_SUCCESS;
2955 }
2956
2957 /**
2958 * ixgbe_blink_led_start_generic - Blink LED based on index.
2959 * @hw: pointer to hardware structure
2960 * @index: led number to blink
2961 **/
2962 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2963 {
2964 ixgbe_link_speed speed = 0;
2965 bool link_up = 0;
2966 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2967 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2968
2969 DEBUGFUNC("ixgbe_blink_led_start_generic");
2970
2971 /*
2972 * Link must be up to auto-blink the LEDs;
2973 * Force it if link is down.
2974 */
2975 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2976
2977 if (!link_up) {
2978 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2979 autoc_reg |= IXGBE_AUTOC_FLU;
2980 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2981 IXGBE_WRITE_FLUSH(hw);
2982 msec_delay(10);
2983 }
2984
2985 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2986 led_reg |= IXGBE_LED_BLINK(index);
2987 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2988 IXGBE_WRITE_FLUSH(hw);
2989
2990 return IXGBE_SUCCESS;
2991 }
2992
2993 /**
2994 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2995 * @hw: pointer to hardware structure
2996 * @index: led number to stop blinking
2997 **/
2998 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2999 {
3000 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3001 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3002
3003 DEBUGFUNC("ixgbe_blink_led_stop_generic");
3004
3005
3006 autoc_reg &= ~IXGBE_AUTOC_FLU;
3007 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3008 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3009
3010 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3011 led_reg &= ~IXGBE_LED_BLINK(index);
3012 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3013 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3014 IXGBE_WRITE_FLUSH(hw);
3015
3016 return IXGBE_SUCCESS;
3017 }
3018
3019 /**
3020 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3021 * @hw: pointer to hardware structure
3022 * @san_mac_offset: SAN MAC address offset
3023 *
3024 * This function will read the EEPROM location for the SAN MAC address
3025 * pointer, and returns the value at that location. This is used in both
3026 * get and set mac_addr routines.
3027 **/
3028 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3029 u16 *san_mac_offset)
3030 {
3031 DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3032
3033 /*
3034 * First read the EEPROM pointer to see if the MAC addresses are
3035 * available.
3036 */
3037 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
3038
3039 return IXGBE_SUCCESS;
3040 }
3041
3042 /**
3043 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3044 * @hw: pointer to hardware structure
3045 * @san_mac_addr: SAN MAC address
3046 *
3047 * Reads the SAN MAC address from the EEPROM, if it's available. This is
3048 * per-port, so set_lan_id() must be called before reading the addresses.
3049 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3050 * upon for non-SFP connections, so we must call it here.
3051 **/
3052 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3053 {
3054 u16 san_mac_data, san_mac_offset;
3055 u8 i;
3056
3057 DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3058
3059 /*
3060 * First read the EEPROM pointer to see if the MAC addresses are
3061 * available. If they're not, no point in calling set_lan_id() here.
3062 */
3063 (void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3064
3065 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3066 /*
3067 * No addresses available in this EEPROM. It's not an
3068 * error though, so just wipe the local address and return.
3069 */
3070 for (i = 0; i < 6; i++)
3071 san_mac_addr[i] = 0xFF;
3072
3073 goto san_mac_addr_out;
3074 }
3075
3076 /* make sure we know which port we need to program */
3077 hw->mac.ops.set_lan_id(hw);
3078 /* apply the port offset to the address offset */
3079 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3080 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3081 for (i = 0; i < 3; i++) {
3082 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
3083 san_mac_addr[i * 2] = (u8)(san_mac_data);
3084 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3085 san_mac_offset++;
3086 }
3087
3088 san_mac_addr_out:
3089 return IXGBE_SUCCESS;
3090 }
3091
3092 /**
3093 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3094 * @hw: pointer to hardware structure
3095 * @san_mac_addr: SAN MAC address
3096 *
3097 * Write a SAN MAC address to the EEPROM.
3098 **/
3099 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3100 {
3101 s32 status = IXGBE_SUCCESS;
3102 u16 san_mac_data, san_mac_offset;
3103 u8 i;
3104
3105 DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3106
3107 /* Look for SAN mac address pointer. If not defined, return */
3108 (void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3109
3110 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3111 status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3112 goto san_mac_addr_out;
3113 }
3114
3115 /* Make sure we know which port we need to write */
3116 hw->mac.ops.set_lan_id(hw);
3117 /* Apply the port offset to the address offset */
3118 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3119 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3120
3121 for (i = 0; i < 3; i++) {
3122 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3123 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3124 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3125 san_mac_offset++;
3126 }
3127
3128 san_mac_addr_out:
3129 return status;
3130 }
3131
3132 /**
3133 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3134 * @hw: pointer to hardware structure
3135 *
3136 * Read PCIe configuration space, and get the MSI-X vector count from
3137 * the capabilities table.
3138 **/
3139 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3140 {
3141 u16 msix_count = 1;
3142 u16 max_msix_count;
3143 u16 pcie_offset;
3144
3145 switch (hw->mac.type) {
3146 case ixgbe_mac_82598EB:
3147 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3148 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3149 break;
3150 case ixgbe_mac_82599EB:
3151 case ixgbe_mac_X540:
3152 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3153 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3154 break;
3155 default:
3156 return msix_count;
3157 }
3158
3159 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3160 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3161 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3162
3163 /* MSI-X count is zero-based in HW */
3164 msix_count++;
3165
3166 if (msix_count > max_msix_count)
3167 msix_count = max_msix_count;
3168
3169 return msix_count;
3170 }
3171
3172 /**
3173 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3174 * @hw: pointer to hardware structure
3175 * @addr: Address to put into receive address register
3176 * @vmdq: VMDq pool to assign
3177 *
3178 * Puts an ethernet address into a receive address register, or
3179 * finds the rar that it is aleady in; adds to the pool list
3180 **/
3198 * Either find the mac_id in rar or find the first empty space.
3199 * rar_highwater points to just after the highest currently used
3200 * rar in order to shorten the search. It grows when we add a new
3201 * rar to the top.
3202 */
3203 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3204 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3205
3206 if (((IXGBE_RAH_AV & rar_high) == 0)
3207 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3208 first_empty_rar = rar;
3209 } else if ((rar_high & 0xFFFF) == addr_high) {
3210 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3211 if (rar_low == addr_low)
3212 break; /* found it already in the rars */
3213 }
3214 }
3215
3216 if (rar < hw->mac.rar_highwater) {
3217 /* already there so just add to the pool bits */
3218 (void) ixgbe_set_vmdq(hw, rar, vmdq);
3219 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3220 /* stick it into first empty RAR slot we found */
3221 rar = first_empty_rar;
3222 (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3223 } else if (rar == hw->mac.rar_highwater) {
3224 /* add it to the top of the list and inc the highwater mark */
3225 (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3226 hw->mac.rar_highwater++;
3227 } else if (rar >= hw->mac.num_rar_entries) {
3228 return IXGBE_ERR_INVALID_MAC_ADDR;
3229 }
3230
3231 /*
3232 * If we found rar[0], make sure the default pool bit (we use pool 0)
3233 * remains cleared to be sure default pool packets will get delivered
3234 */
3235 if (rar == 0)
3236 (void) ixgbe_clear_vmdq(hw, rar, 0);
3237
3238 return rar;
3239 }
3240
3241 /**
3242 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3243 * @hw: pointer to hardware struct
3244 * @rar: receive address register index to disassociate
3245 * @vmdq: VMDq pool index to remove from the rar
3246 **/
3247 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3248 {
3249 u32 mpsar_lo, mpsar_hi;
3250 u32 rar_entries = hw->mac.num_rar_entries;
3251
3252 DEBUGFUNC("ixgbe_clear_vmdq_generic");
3253
3254 /* Make sure we are using a valid rar index range */
3255 if (rar >= rar_entries) {
3256 DEBUGOUT1("RAR index %d is out of range.\n", rar);
3257 return IXGBE_ERR_INVALID_ARGUMENT;
3258 }
3259
3260 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3261 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3262
3263 if (!mpsar_lo && !mpsar_hi)
3264 goto done;
3265
3266 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3267 if (mpsar_lo) {
3268 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3269 mpsar_lo = 0;
3270 }
3271 if (mpsar_hi) {
3272 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3273 mpsar_hi = 0;
3274 }
3275 } else if (vmdq < 32) {
3276 mpsar_lo &= ~(1 << vmdq);
3277 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3278 } else {
3279 mpsar_hi &= ~(1 << (vmdq - 32));
3280 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3281 }
3282
3285 hw->mac.ops.clear_rar(hw, rar);
3286 done:
3287 return IXGBE_SUCCESS;
3288 }
3289
3290 /**
3291 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3292 * @hw: pointer to hardware struct
3293 * @rar: receive address register index to associate with a VMDq index
3294 * @vmdq: VMDq pool index
3295 **/
3296 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3297 {
3298 u32 mpsar;
3299 u32 rar_entries = hw->mac.num_rar_entries;
3300
3301 DEBUGFUNC("ixgbe_set_vmdq_generic");
3302
3303 /* Make sure we are using a valid rar index range */
3304 if (rar >= rar_entries) {
3305 DEBUGOUT1("RAR index %d is out of range.\n", rar);
3306 return IXGBE_ERR_INVALID_ARGUMENT;
3307 }
3308
3309 if (vmdq < 32) {
3310 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3311 mpsar |= 1 << vmdq;
3312 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3313 } else {
3314 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3315 mpsar |= 1 << (vmdq - 32);
3316 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3317 }
3318 return IXGBE_SUCCESS;
3319 }
3320
3321 /**
3322 * This function should only be involved in the IOV mode.
3323 * In IOV mode, Default pool is next pool after the number of
3324 * VFs advertized and not 0.
3325 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3384 * Search for the vlan id in the VLVF entries. Save off the first empty
3385 * slot found along the way
3386 */
3387 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3388 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3389 if (!bits && !(first_empty_slot))
3390 first_empty_slot = regindex;
3391 else if ((bits & 0x0FFF) == vlan)
3392 break;
3393 }
3394
3395 /*
3396 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3397 * in the VLVF. Else use the first empty VLVF register for this
3398 * vlan id.
3399 */
3400 if (regindex >= IXGBE_VLVF_ENTRIES) {
3401 if (first_empty_slot)
3402 regindex = first_empty_slot;
3403 else {
3404 DEBUGOUT("No space in VLVF.\n");
3405 regindex = IXGBE_ERR_NO_SPACE;
3406 }
3407 }
3408
3409 return regindex;
3410 }
3411
3412 /**
3413 * ixgbe_set_vfta_generic - Set VLAN filter table
3414 * @hw: pointer to hardware structure
3415 * @vlan: VLAN id to write to VLAN filter
3416 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3417 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3418 *
3419 * Turn on/off specified VLAN in the VLAN filter table.
3420 **/
3421 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3422 bool vlan_on)
3423 {
3424 s32 regindex;
3619 **/
3620 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3621 bool *link_up, bool link_up_wait_to_complete)
3622 {
3623 u32 links_reg, links_orig;
3624 u32 i;
3625
3626 DEBUGFUNC("ixgbe_check_mac_link_generic");
3627
3628 /* clear the old state */
3629 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3630
3631 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3632
3633 if (links_orig != links_reg) {
3634 DEBUGOUT2("LINKS changed from %08X to %08X\n",
3635 links_orig, links_reg);
3636 }
3637
3638 if (link_up_wait_to_complete) {
3639 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3640 if (links_reg & IXGBE_LINKS_UP) {
3641 *link_up = TRUE;
3642 break;
3643 } else {
3644 *link_up = FALSE;
3645 }
3646 msec_delay(100);
3647 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3648 }
3649 } else {
3650 if (links_reg & IXGBE_LINKS_UP)
3651 *link_up = TRUE;
3652 else
3653 *link_up = FALSE;
3654 }
3655
3656 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3657 IXGBE_LINKS_SPEED_10G_82599)
3658 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3659 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3660 IXGBE_LINKS_SPEED_1G_82599)
3661 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3662 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3663 IXGBE_LINKS_SPEED_100_82599)
3664 *speed = IXGBE_LINK_SPEED_100_FULL;
3665 else
3666 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3667
3668 return IXGBE_SUCCESS;
3669 }
3670
3671 /**
3672 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3673 * the EEPROM
3674 * @hw: pointer to hardware structure
3675 * @wwnn_prefix: the alternative WWNN prefix
3676 * @wwpn_prefix: the alternative WWPN prefix
3677 *
3678 * This function will read the EEPROM from the alternative SAN MAC address
3679 * block to check the support for the alternative WWNN/WWPN prefix support.
3680 **/
3681 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3682 u16 *wwpn_prefix)
3683 {
3684 u16 offset, caps;
3685 u16 alt_san_mac_blk_offset;
3686
3687 DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3688
3689 /* clear output first */
3690 *wwnn_prefix = 0xFFFF;
3691 *wwpn_prefix = 0xFFFF;
3692
3693 /* check if alternative SAN MAC is supported */
3694 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3695 &alt_san_mac_blk_offset);
3696
3697 if ((alt_san_mac_blk_offset == 0) ||
3698 (alt_san_mac_blk_offset == 0xFFFF))
3699 goto wwn_prefix_out;
3700
3701 /* check capability in alternative san mac address block */
3702 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3703 hw->eeprom.ops.read(hw, offset, &caps);
3704 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3705 goto wwn_prefix_out;
3706
3707 /* get the corresponding prefix for WWNN/WWPN */
3708 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3709 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3710
3711 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3712 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3713
3714 wwn_prefix_out:
3715 return IXGBE_SUCCESS;
3716 }
3717
3718 /**
3719 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3720 * @hw: pointer to hardware structure
3721 * @bs: the fcoe boot status
3722 *
3723 * This function will read the FCOE boot status from the iSCSI FCOE block
3724 **/
3725 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3726 {
3727 u16 offset, caps, flags;
3728 s32 status;
3729
3730 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3731
3732 /* clear output first */
3733 *bs = ixgbe_fcoe_bootstatus_unavailable;
3734
3735 /* check if FCOE IBA block is present */
3793
3794 /*
3795 * The PF should be allowed to spoof so that it can support
3796 * emulation mode NICs. Do not set the bits assigned to the PF
3797 */
3798 pfvfspoof &= (1 << pf_target_shift) - 1;
3799 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3800
3801 /*
3802 * Remaining pools belong to the PF so they do not need to have
3803 * anti-spoofing enabled.
3804 */
3805 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3806 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3807 }
3808
3809 /**
3810 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3811 * @hw: pointer to hardware structure
3812 * @enable: enable or disable switch for VLAN anti-spoofing
3813 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3814 *
3815 **/
3816 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3817 {
3818 int vf_target_reg = vf >> 3;
3819 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3820 u32 pfvfspoof;
3821
3822 if (hw->mac.type == ixgbe_mac_82598EB)
3823 return;
3824
3825 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3826 if (enable)
3827 pfvfspoof |= (1 << vf_target_shift);
3828 else
3829 pfvfspoof &= ~(1 << vf_target_shift);
3830 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3831 }
3832
3833 /**
3865 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3866 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3867 }
3868
3869 for (i = 0; i < hw->mac.max_rx_queues; i++) {
3870 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3871 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
3872 IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
3873 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3874 }
3875
3876 }
3877
3878 /**
3879 * ixgbe_calculate_checksum - Calculate checksum for buffer
3880 * @buffer: pointer to EEPROM
3881 * @length: size of EEPROM to calculate a checksum for
3882 * Calculates the checksum for some buffer on a specified length. The
3883 * checksum calculated is returned.
3884 **/
3885 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3886 {
3887 u32 i;
3888 u8 sum = 0;
3889
3890 DEBUGFUNC("ixgbe_calculate_checksum");
3891
3892 if (!buffer)
3893 return 0;
3894
3895 for (i = 0; i < length; i++)
3896 sum += buffer[i];
3897
3898 return (u8) (0 - sum);
3899 }
3900
3901 /**
3902 * ixgbe_host_interface_command - Issue command to manageability block
3903 * @hw: pointer to the HW structure
3904 * @buffer: contains the command to write and where the return status will
3905 * be placed
3906 * @length: length of buffer, must be multiple of 4 bytes
3907 *
3908 * Communicates with the manageability block. On success return IXGBE_SUCCESS
3909 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3910 **/
3911 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3912 u32 length)
3913 {
3914 u32 hicr, i, bi;
3915 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3916 u8 buf_len, dword_len;
3917
3918 s32 ret_val = IXGBE_SUCCESS;
3919
3920 DEBUGFUNC("ixgbe_host_interface_command");
3921
3922 if (length == 0 || length & 0x3 ||
3923 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3924 DEBUGOUT("Buffer length failure.\n");
3925 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3926 goto out;
3927 }
3928
3929 /* Check that the host interface is enabled. */
3930 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3931 if ((hicr & IXGBE_HICR_EN) == 0) {
3932 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
3933 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3934 goto out;
3935 }
3936
3937 /* Calculate length in DWORDs */
3938 dword_len = length >> 2;
3939
3940 /*
3941 * The device driver writes the relevant command block
3942 * into the ram area.
3943 */
3944 for (i = 0; i < dword_len; i++)
3945 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3946 i, IXGBE_CPU_TO_LE32(buffer[i]));
3947
3948 /* Setting this bit tells the ARC that a new command is pending. */
3949 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3950
3951 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3952 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3953 if (!(hicr & IXGBE_HICR_C))
3954 break;
3955 msec_delay(1);
3956 }
3957
3958 /* Check command successful completion. */
3959 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3960 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3961 DEBUGOUT("Command has failed with no status valid.\n");
3962 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3963 goto out;
3964 }
3965
3966 /* Calculate length in DWORDs */
3967 dword_len = hdr_size >> 2;
3968
3969 /* first pull in the header so we know the buffer length */
3970 for (bi = 0; bi < dword_len; bi++) {
3971 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3972 buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3973 }
3974
3975 /* If there is any thing in data position pull it in */
3976 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3977 if (buf_len == 0)
3978 goto out;
3979
3980 if (length < (buf_len + hdr_size)) {
3981 DEBUGOUT("Buffer not large enough for reply message.\n");
3982 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3983 goto out;
3984 }
3985
3986 /* Calculate length in DWORDs, add 3 for odd lengths */
3987 dword_len = (buf_len + 3) >> 2;
3988
3989 /* Pull in the rest of the buffer (bi is where we left off)*/
3990 for (; bi <= dword_len; bi++) {
3991 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3992 buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3993 }
3994
3995 out:
3996 return ret_val;
3997 }
3998
3999 /**
4000 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4001 * @hw: pointer to the HW structure
4002 * @maj: driver version major number
4003 * @min: driver version minor number
4004 * @build: driver version build number
4005 * @sub: driver version sub build number
4006 *
4007 * Sends driver version number to firmware through the manageability
4008 * block. On success return IXGBE_SUCCESS
4009 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4010 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4011 **/
4012 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4013 u8 build, u8 sub)
4014 {
4015 struct ixgbe_hic_drv_info fw_cmd;
4016 int i;
4022 != IXGBE_SUCCESS) {
4023 ret_val = IXGBE_ERR_SWFW_SYNC;
4024 goto out;
4025 }
4026
4027 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4028 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4029 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4030 fw_cmd.port_num = (u8)hw->bus.func;
4031 fw_cmd.ver_maj = maj;
4032 fw_cmd.ver_min = min;
4033 fw_cmd.ver_build = build;
4034 fw_cmd.ver_sub = sub;
4035 fw_cmd.hdr.checksum = 0;
4036 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4037 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4038 fw_cmd.pad = 0;
4039 fw_cmd.pad2 = 0;
4040
4041 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4042 /* LINTED */
4043 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4044 sizeof(fw_cmd));
4045 if (ret_val != IXGBE_SUCCESS)
4046 continue;
4047
4048 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4049 FW_CEM_RESP_STATUS_SUCCESS)
4050 ret_val = IXGBE_SUCCESS;
4051 else
4052 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4053
4054 break;
4055 }
4056
4057 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4058 out:
4059 return ret_val;
4060 }
4061
4062 /**
4063 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4064 * @hw: pointer to hardware structure
4076 /* Reserve headroom */
4077 pbsize -= headroom;
4078
4079 if (!num_pb)
4080 num_pb = 1;
4081
4082 /* Divide remaining packet buffer space amongst the number of packet
4083 * buffers requested using supplied strategy.
4084 */
4085 switch (strategy) {
4086 case PBA_STRATEGY_WEIGHTED:
4087 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4088 * buffer with 5/8 of the packet buffer space.
4089 */
4090 rxpktsize = (pbsize * 5) / (num_pb * 4);
4091 pbsize -= rxpktsize * (num_pb / 2);
4092 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4093 for (; i < (num_pb / 2); i++)
4094 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4095 /* Fall through to configure remaining packet buffers */
4096 /* FALLTHRU */
4097 case PBA_STRATEGY_EQUAL:
4098 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4099 for (; i < num_pb; i++)
4100 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4101 break;
4102 default:
4103 break;
4104 }
4105
4106 /* Only support an equally distributed Tx packet buffer strategy. */
4107 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4108 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4109 for (i = 0; i < num_pb; i++) {
4110 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4111 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4112 }
4113
4114 /* Clear unused TCs, if any, to zero buffer size*/
4115 for (; i < IXGBE_MAX_PB; i++) {
4116 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4117 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4118 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4119 }
4120 }
4121
4122 /**
4123 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4124 * @hw: pointer to the hardware structure
4125 *
4126 * The 82599 and x540 MACs can experience issues if TX work is still pending
4127 * when a reset occurs. This function prevents this by flushing the PCIe
4128 * buffers on the system.
4129 **/
4130 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4131 {
4132 u32 gcr_ext, hlreg0;
4133
4134 /*
4135 * If double reset is not requested then all transactions should
4136 * already be clear and as such there is no work to do
4137 */
4138 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4139 return;
4140
4141 /*
4142 * Set loopback enable to prevent any transmits from being sent
4143 * should the link come up. This assumes that the RXCTRL.RXEN bit
4144 * has already been cleared.
4145 */
4146 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4147 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4148
4149 /* initiate cleaning flow for buffers in the PCIe transaction layer */
4150 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4151 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4152 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4153
4154 /* Flush all writes and allow 20usec for all transactions to clear */
4155 IXGBE_WRITE_FLUSH(hw);
4156 usec_delay(20);
4157
4158 /* restore previous register values */
4159 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4160 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4161 }
4162
|
1 /******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_dcb.h"
38 #include "ixgbe_dcb_82599.h"
39 #include "ixgbe_api.h"
40
41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 u16 count);
48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 u16 *san_mac_offset);
56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 u16 words, u16 *data);
58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 u16 words, u16 *data);
60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 u16 offset);
62
63 /**
64 * ixgbe_init_ops_generic - Inits function ptrs
65 * @hw: pointer to the hardware structure
66 *
67 * Initialize the function pointers.
68 **/
69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70 {
71 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 struct ixgbe_mac_info *mac = &hw->mac;
73 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74
75 DEBUGFUNC("ixgbe_init_ops_generic");
76
77 /* EEPROM */
78 eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 if (eec & IXGBE_EEC_PRES) {
81 eeprom->ops.read = ixgbe_read_eerd_generic;
82 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 } else {
84 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 eeprom->ops.read_buffer =
86 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 }
88 eeprom->ops.write = ixgbe_write_eeprom_generic;
89 eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 eeprom->ops.validate_checksum =
91 ixgbe_validate_eeprom_checksum_generic;
92 eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94
95 /* MAC */
96 mac->ops.init_hw = ixgbe_init_hw_generic;
97 mac->ops.reset_hw = NULL;
98 mac->ops.start_hw = ixgbe_start_hw_generic;
99 mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 mac->ops.get_media_type = NULL;
101 mac->ops.get_supported_physical_layer = NULL;
102 mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 mac->ops.prot_autoc_write = prot_autoc_write_generic;
111
112 /* LEDs */
113 mac->ops.led_on = ixgbe_led_on_generic;
114 mac->ops.led_off = ixgbe_led_off_generic;
115 mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117
118 /* RAR, Multicast, VLAN */
119 mac->ops.set_rar = ixgbe_set_rar_generic;
120 mac->ops.clear_rar = ixgbe_clear_rar_generic;
121 mac->ops.insert_mac_addr = NULL;
122 mac->ops.set_vmdq = NULL;
123 mac->ops.clear_vmdq = NULL;
124 mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
125 mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
126 mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
127 mac->ops.enable_mc = ixgbe_enable_mc_generic;
128 mac->ops.disable_mc = ixgbe_disable_mc_generic;
129 mac->ops.clear_vfta = NULL;
130 mac->ops.set_vfta = NULL;
131 mac->ops.set_vlvf = NULL;
132 mac->ops.init_uta_tables = NULL;
133 mac->ops.enable_rx = ixgbe_enable_rx_generic;
134 mac->ops.disable_rx = ixgbe_disable_rx_generic;
135
136 /* Flow Control */
137 mac->ops.fc_enable = ixgbe_fc_enable_generic;
138 mac->ops.setup_fc = ixgbe_setup_fc_generic;
139
140 /* Link */
141 mac->ops.get_link_capabilities = NULL;
142 mac->ops.setup_link = NULL;
143 mac->ops.check_link = NULL;
144 mac->ops.dmac_config = NULL;
145 mac->ops.dmac_update_tcs = NULL;
146 mac->ops.dmac_config_tcs = NULL;
147
148 return IXGBE_SUCCESS;
149 }
150
151 /**
152 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
153 * of flow control
154 * @hw: pointer to hardware structure
155 *
156 * This function returns TRUE if the device supports flow control
157 * autonegotiation, and FALSE if it does not.
158 *
159 **/
160 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
161 {
162 bool supported = FALSE;
163 ixgbe_link_speed speed;
164 bool link_up;
165
166 DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
167
168 switch (hw->phy.media_type) {
169 case ixgbe_media_type_fiber_fixed:
170 case ixgbe_media_type_fiber_qsfp:
171 case ixgbe_media_type_fiber:
172 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
173 /* if link is down, assume supported */
174 if (link_up)
175 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
176 TRUE : FALSE;
177 else
178 supported = TRUE;
179 break;
180 case ixgbe_media_type_backplane:
181 supported = TRUE;
182 break;
183 case ixgbe_media_type_copper:
184 /* only some copper devices support flow control autoneg */
185 switch (hw->device_id) {
186 case IXGBE_DEV_ID_82599_T3_LOM:
187 case IXGBE_DEV_ID_X540T:
188 case IXGBE_DEV_ID_X540T1:
189 case IXGBE_DEV_ID_X540_BYPASS:
190 case IXGBE_DEV_ID_X550T:
191 case IXGBE_DEV_ID_X550T1:
192 case IXGBE_DEV_ID_X550EM_X_10G_T:
193 supported = TRUE;
194 break;
195 default:
196 supported = FALSE;
197 }
198 default:
199 break;
200 }
201
202 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
203 "Device %x does not support flow control autoneg",
204 hw->device_id);
205 return supported;
206 }
207
208 /**
209 * ixgbe_setup_fc_generic - Set up flow control
210 * @hw: pointer to hardware structure
211 *
212 * Called at init time to set up flow control.
213 **/
214 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
215 {
216 s32 ret_val = IXGBE_SUCCESS;
217 u32 reg = 0, reg_bp = 0;
218 u16 reg_cu = 0;
219 bool locked = FALSE;
220
221 DEBUGFUNC("ixgbe_setup_fc_generic");
222
223 /* Validate the requested mode */
224 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
225 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
226 "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
227 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
228 goto out;
229 }
230
231 /*
232 * 10gig parts do not have a word in the EEPROM to determine the
233 * default flow control setting, so we explicitly set it to full.
234 */
235 if (hw->fc.requested_mode == ixgbe_fc_default)
236 hw->fc.requested_mode = ixgbe_fc_full;
237
238 /*
239 * Set up the 1G and 10G flow control advertisement registers so the
240 * HW will be able to do fc autoneg once the cable is plugged in. If
241 * we link at 10G, the 1G advertisement is harmless and vice versa.
242 */
243 switch (hw->phy.media_type) {
244 case ixgbe_media_type_backplane:
245 /* some MAC's need RMW protection on AUTOC */
246 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
247 if (ret_val != IXGBE_SUCCESS)
248 goto out;
249
250 /* only backplane uses autoc so fall though */
251 case ixgbe_media_type_fiber_fixed:
252 case ixgbe_media_type_fiber_qsfp:
253 case ixgbe_media_type_fiber:
254 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
255
256 break;
257 case ixgbe_media_type_copper:
258 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
259 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
260 break;
261 default:
262 break;
263 }
264
265 /*
266 * The possible values of fc.requested_mode are:
267 * 0: Flow control is completely disabled
268 * 1: Rx flow control is enabled (we can receive pause frames,
269 * but not send pause frames).
270 * 2: Tx flow control is enabled (we can send pause frames but
271 * we do not support receiving pause frames).
272 * 3: Both Rx and Tx flow control (symmetric) are enabled.
273 * other: Invalid.
274 */
275 switch (hw->fc.requested_mode) {
300 case ixgbe_fc_rx_pause:
301 /*
302 * Rx Flow control is enabled and Tx Flow control is
303 * disabled by software override. Since there really
304 * isn't a way to advertise that we are capable of RX
305 * Pause ONLY, we will advertise that we support both
306 * symmetric and asymmetric Rx PAUSE, as such we fall
307 * through to the fc_full statement. Later, we will
308 * disable the adapter's ability to send PAUSE frames.
309 */
310 case ixgbe_fc_full:
311 /* Flow control (both Rx and Tx) is enabled by SW override. */
312 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
313 if (hw->phy.media_type == ixgbe_media_type_backplane)
314 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
315 IXGBE_AUTOC_ASM_PAUSE;
316 else if (hw->phy.media_type == ixgbe_media_type_copper)
317 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
318 break;
319 default:
320 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
321 "Flow control param set incorrectly\n");
322 ret_val = IXGBE_ERR_CONFIG;
323 goto out;
324 break;
325 }
326
327 if (hw->mac.type < ixgbe_mac_X540) {
328 /*
329 * Enable auto-negotiation between the MAC & PHY;
330 * the MAC will advertise clause 37 flow control.
331 */
332 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
333 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
334
335 /* Disable AN timeout */
336 if (hw->fc.strict_ieee)
337 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
338
339 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
340 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
341 }
342
343 /*
344 * AUTOC restart handles negotiation of 1G and 10G on backplane
345 * and copper. There is no need to set the PCS1GCTL register.
346 *
347 */
348 if (hw->phy.media_type == ixgbe_media_type_backplane) {
349 reg_bp |= IXGBE_AUTOC_AN_RESTART;
350 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
351 if (ret_val)
352 goto out;
353 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
354 (ixgbe_device_supports_autoneg_fc(hw))) {
355 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
356 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
357 }
358
359 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
360 out:
361 return ret_val;
362 }
363
364 /**
365 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
366 * @hw: pointer to hardware structure
367 *
368 * Starts the hardware by filling the bus info structure and media type, clears
369 * all on chip counters, initializes receive address registers, multicast
370 * table, VLAN filter table, calls routine to set up link and flow control
371 * settings, and leaves transmit and receive units disabled and uninitialized
372 **/
373 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
374 {
375 s32 ret_val;
376 u32 ctrl_ext;
377
378 DEBUGFUNC("ixgbe_start_hw_generic");
379
468 /* Start the HW */
469 status = hw->mac.ops.start_hw(hw);
470 }
471
472 return status;
473 }
474
475 /**
476 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
477 * @hw: pointer to hardware structure
478 *
479 * Clears all hardware statistics counters by reading them from the hardware
480 * Statistics counters are clear on read.
481 **/
482 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
483 {
484 u16 i = 0;
485
486 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
487
488 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
489 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
490 IXGBE_READ_REG(hw, IXGBE_ERRBC);
491 IXGBE_READ_REG(hw, IXGBE_MSPDC);
492 for (i = 0; i < 8; i++)
493 IXGBE_READ_REG(hw, IXGBE_MPC(i));
494
495 IXGBE_READ_REG(hw, IXGBE_MLFC);
496 IXGBE_READ_REG(hw, IXGBE_MRFC);
497 IXGBE_READ_REG(hw, IXGBE_RLEC);
498 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
499 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
500 if (hw->mac.type >= ixgbe_mac_82599EB) {
501 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
502 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
503 } else {
504 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
505 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
506 }
507
508 for (i = 0; i < 8; i++) {
509 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
510 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
511 if (hw->mac.type >= ixgbe_mac_82599EB) {
512 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
513 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
514 } else {
515 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
516 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
517 }
518 }
519 if (hw->mac.type >= ixgbe_mac_82599EB)
520 for (i = 0; i < 8; i++)
521 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
522 IXGBE_READ_REG(hw, IXGBE_PRC64);
523 IXGBE_READ_REG(hw, IXGBE_PRC127);
524 IXGBE_READ_REG(hw, IXGBE_PRC255);
525 IXGBE_READ_REG(hw, IXGBE_PRC511);
526 IXGBE_READ_REG(hw, IXGBE_PRC1023);
527 IXGBE_READ_REG(hw, IXGBE_PRC1522);
528 IXGBE_READ_REG(hw, IXGBE_GPRC);
529 IXGBE_READ_REG(hw, IXGBE_BPRC);
530 IXGBE_READ_REG(hw, IXGBE_MPRC);
531 IXGBE_READ_REG(hw, IXGBE_GPTC);
532 IXGBE_READ_REG(hw, IXGBE_GORCL);
533 IXGBE_READ_REG(hw, IXGBE_GORCH);
534 IXGBE_READ_REG(hw, IXGBE_GOTCL);
535 IXGBE_READ_REG(hw, IXGBE_GOTCH);
536 if (hw->mac.type == ixgbe_mac_82598EB)
537 for (i = 0; i < 8; i++)
538 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
539 IXGBE_READ_REG(hw, IXGBE_RUC);
540 IXGBE_READ_REG(hw, IXGBE_RFC);
541 IXGBE_READ_REG(hw, IXGBE_ROC);
542 IXGBE_READ_REG(hw, IXGBE_RJC);
543 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
544 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
545 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
546 IXGBE_READ_REG(hw, IXGBE_TORL);
547 IXGBE_READ_REG(hw, IXGBE_TORH);
548 IXGBE_READ_REG(hw, IXGBE_TPR);
549 IXGBE_READ_REG(hw, IXGBE_TPT);
550 IXGBE_READ_REG(hw, IXGBE_PTC64);
551 IXGBE_READ_REG(hw, IXGBE_PTC127);
552 IXGBE_READ_REG(hw, IXGBE_PTC255);
553 IXGBE_READ_REG(hw, IXGBE_PTC511);
554 IXGBE_READ_REG(hw, IXGBE_PTC1023);
555 IXGBE_READ_REG(hw, IXGBE_PTC1522);
556 IXGBE_READ_REG(hw, IXGBE_MPTC);
557 IXGBE_READ_REG(hw, IXGBE_BPTC);
558 for (i = 0; i < 16; i++) {
559 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
560 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
561 if (hw->mac.type >= ixgbe_mac_82599EB) {
562 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
563 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
564 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
565 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
566 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
567 } else {
568 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
569 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
570 }
571 }
572
573 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
574 if (hw->phy.id == 0)
575 ixgbe_identify_phy(hw);
576 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
577 IXGBE_MDIO_PCS_DEV_TYPE, &i);
578 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
579 IXGBE_MDIO_PCS_DEV_TYPE, &i);
580 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
581 IXGBE_MDIO_PCS_DEV_TYPE, &i);
582 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
583 IXGBE_MDIO_PCS_DEV_TYPE, &i);
584 }
585
586 return IXGBE_SUCCESS;
587 }
588
589 /**
590 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
591 * @hw: pointer to hardware structure
592 * @pba_num: stores the part number string from the EEPROM
593 * @pba_num_size: part number string buffer length
594 *
595 * Reads the part number string from the EEPROM.
715 if (ret_val) {
716 DEBUGOUT("NVM Read Error\n");
717 return ret_val;
718 } else if (data == IXGBE_PBANUM_PTR_GUARD) {
719 DEBUGOUT("NVM Not supported\n");
720 return IXGBE_NOT_IMPLEMENTED;
721 }
722 *pba_num = (u32)(data << 16);
723
724 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
725 if (ret_val) {
726 DEBUGOUT("NVM Read Error\n");
727 return ret_val;
728 }
729 *pba_num |= data;
730
731 return IXGBE_SUCCESS;
732 }
733
734 /**
735 * ixgbe_read_pba_raw
736 * @hw: pointer to the HW structure
737 * @eeprom_buf: optional pointer to EEPROM image
738 * @eeprom_buf_size: size of EEPROM image in words
739 * @max_pba_block_size: PBA block size limit
740 * @pba: pointer to output PBA structure
741 *
742 * Reads PBA from EEPROM image when eeprom_buf is not NULL.
743 * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
744 *
745 **/
746 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
747 u32 eeprom_buf_size, u16 max_pba_block_size,
748 struct ixgbe_pba *pba)
749 {
750 s32 ret_val;
751 u16 pba_block_size;
752
753 if (pba == NULL)
754 return IXGBE_ERR_PARAM;
755
756 if (eeprom_buf == NULL) {
757 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
758 &pba->word[0]);
759 if (ret_val)
760 return ret_val;
761 } else {
762 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
763 pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
764 pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
765 } else {
766 return IXGBE_ERR_PARAM;
767 }
768 }
769
770 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
771 if (pba->pba_block == NULL)
772 return IXGBE_ERR_PARAM;
773
774 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
775 eeprom_buf_size,
776 &pba_block_size);
777 if (ret_val)
778 return ret_val;
779
780 if (pba_block_size > max_pba_block_size)
781 return IXGBE_ERR_PARAM;
782
783 if (eeprom_buf == NULL) {
784 ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
785 pba_block_size,
786 pba->pba_block);
787 if (ret_val)
788 return ret_val;
789 } else {
790 if (eeprom_buf_size > (u32)(pba->word[1] +
791 pba_block_size)) {
792 memcpy(pba->pba_block,
793 &eeprom_buf[pba->word[1]],
794 pba_block_size * sizeof(u16));
795 } else {
796 return IXGBE_ERR_PARAM;
797 }
798 }
799 }
800
801 return IXGBE_SUCCESS;
802 }
803
804 /**
805 * ixgbe_write_pba_raw
806 * @hw: pointer to the HW structure
807 * @eeprom_buf: optional pointer to EEPROM image
808 * @eeprom_buf_size: size of EEPROM image in words
809 * @pba: pointer to PBA structure
810 *
811 * Writes PBA to EEPROM image when eeprom_buf is not NULL.
812 * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
813 *
814 **/
815 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
816 u32 eeprom_buf_size, struct ixgbe_pba *pba)
817 {
818 s32 ret_val;
819
820 if (pba == NULL)
821 return IXGBE_ERR_PARAM;
822
823 if (eeprom_buf == NULL) {
824 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
825 &pba->word[0]);
826 if (ret_val)
827 return ret_val;
828 } else {
829 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
830 eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
831 eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
832 } else {
833 return IXGBE_ERR_PARAM;
834 }
835 }
836
837 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
838 if (pba->pba_block == NULL)
839 return IXGBE_ERR_PARAM;
840
841 if (eeprom_buf == NULL) {
842 ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
843 pba->pba_block[0],
844 pba->pba_block);
845 if (ret_val)
846 return ret_val;
847 } else {
848 if (eeprom_buf_size > (u32)(pba->word[1] +
849 pba->pba_block[0])) {
850 memcpy(&eeprom_buf[pba->word[1]],
851 pba->pba_block,
852 pba->pba_block[0] * sizeof(u16));
853 } else {
854 return IXGBE_ERR_PARAM;
855 }
856 }
857 }
858
859 return IXGBE_SUCCESS;
860 }
861
862 /**
863 * ixgbe_get_pba_block_size
864 * @hw: pointer to the HW structure
865 * @eeprom_buf: optional pointer to EEPROM image
866 * @eeprom_buf_size: size of EEPROM image in words
867 * @pba_data_size: pointer to output variable
868 *
869 * Returns the size of the PBA block in words. Function operates on EEPROM
870 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
871 * EEPROM device.
872 *
873 **/
874 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
875 u32 eeprom_buf_size, u16 *pba_block_size)
876 {
877 s32 ret_val;
878 u16 pba_word[2];
879 u16 length;
880
881 DEBUGFUNC("ixgbe_get_pba_block_size");
882
883 if (eeprom_buf == NULL) {
884 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
885 &pba_word[0]);
886 if (ret_val)
887 return ret_val;
888 } else {
889 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
890 pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
891 pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
892 } else {
893 return IXGBE_ERR_PARAM;
894 }
895 }
896
897 if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
898 if (eeprom_buf == NULL) {
899 ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
900 &length);
901 if (ret_val)
902 return ret_val;
903 } else {
904 if (eeprom_buf_size > pba_word[1])
905 length = eeprom_buf[pba_word[1] + 0];
906 else
907 return IXGBE_ERR_PARAM;
908 }
909
910 if (length == 0xFFFF || length == 0)
911 return IXGBE_ERR_PBA_SECTION;
912 } else {
913 /* PBA number in legacy format, there is no PBA Block. */
914 length = 0;
915 }
916
917 if (pba_block_size != NULL)
918 *pba_block_size = length;
919
920 return IXGBE_SUCCESS;
921 }
922
923 /**
924 * ixgbe_get_mac_addr_generic - Generic get MAC address
925 * @hw: pointer to hardware structure
926 * @mac_addr: Adapter MAC address
927 *
928 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
929 * A reset of the adapter must be performed prior to calling this function
930 * in order for the MAC address to have been loaded from the EEPROM into RAR0
931 **/
932 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
933 {
934 u32 rar_high;
935 u32 rar_low;
936 u16 i;
937
938 DEBUGFUNC("ixgbe_get_mac_addr_generic");
939
940 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
941 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
942
943 for (i = 0; i < 4; i++)
944 mac_addr[i] = (u8)(rar_low >> (i*8));
945
946 for (i = 0; i < 2; i++)
947 mac_addr[i+4] = (u8)(rar_high >> (i*8));
948
949 return IXGBE_SUCCESS;
950 }
951
952 /**
953 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
954 * @hw: pointer to hardware structure
955 * @link_status: the link status returned by the PCI config space
956 *
957 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
958 **/
959 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
960 {
961 struct ixgbe_mac_info *mac = &hw->mac;
962
963 if (hw->bus.type == ixgbe_bus_type_unknown)
964 hw->bus.type = ixgbe_bus_type_pci_express;
965
966 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
967 case IXGBE_PCI_LINK_WIDTH_1:
968 hw->bus.width = ixgbe_bus_width_pcie_x1;
969 break;
970 case IXGBE_PCI_LINK_WIDTH_2:
971 hw->bus.width = ixgbe_bus_width_pcie_x2;
972 break;
973 case IXGBE_PCI_LINK_WIDTH_4:
974 hw->bus.width = ixgbe_bus_width_pcie_x4;
975 break;
976 case IXGBE_PCI_LINK_WIDTH_8:
977 hw->bus.width = ixgbe_bus_width_pcie_x8;
978 break;
979 default:
980 hw->bus.width = ixgbe_bus_width_unknown;
981 break;
982 }
983
984 switch (link_status & IXGBE_PCI_LINK_SPEED) {
985 case IXGBE_PCI_LINK_SPEED_2500:
986 hw->bus.speed = ixgbe_bus_speed_2500;
987 break;
988 case IXGBE_PCI_LINK_SPEED_5000:
989 hw->bus.speed = ixgbe_bus_speed_5000;
990 break;
991 case IXGBE_PCI_LINK_SPEED_8000:
992 hw->bus.speed = ixgbe_bus_speed_8000;
993 break;
994 default:
995 hw->bus.speed = ixgbe_bus_speed_unknown;
996 break;
997 }
998
999 mac->ops.set_lan_id(hw);
1000 }
1001
1002 /**
1003 * ixgbe_get_bus_info_generic - Generic set PCI bus info
1004 * @hw: pointer to hardware structure
1005 *
1006 * Gets the PCI bus info (speed, width, type) then calls helper function to
1007 * store this data within the ixgbe_hw structure.
1008 **/
1009 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1010 {
1011 u16 link_status;
1012
1013 DEBUGFUNC("ixgbe_get_bus_info_generic");
1014
1015 /* Get the negotiated link width and speed from PCI config space */
1016 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1017
1018 ixgbe_set_pci_config_data_generic(hw, link_status);
1019
1020 return IXGBE_SUCCESS;
1021 }
1022
1023 /**
1024 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1025 * @hw: pointer to the HW structure
1026 *
1027 * Determines the LAN function id by reading memory-mapped registers
1028 * and swaps the port value if requested.
1029 **/
1030 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1031 {
1032 struct ixgbe_bus_info *bus = &hw->bus;
1033 u32 reg;
1034
1035 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1036
1037 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1038 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1039 bus->lan_id = bus->func;
1040
1041 /* check for a port swap */
1042 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1043 if (reg & IXGBE_FACTPS_LFS)
1044 bus->func ^= 0x1;
1045 }
1046
1047 /**
1048 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1049 * @hw: pointer to hardware structure
1050 *
1051 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1052 * disables transmit and receive units. The adapter_stopped flag is used by
1053 * the shared code and drivers to determine if the adapter is in a stopped
1054 * state and should not touch the hardware.
1055 **/
1056 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1057 {
1058 u32 reg_val;
1059 u16 i;
1060
1061 DEBUGFUNC("ixgbe_stop_adapter_generic");
1062
1063 /*
1064 * Set the adapter_stopped flag so other driver functions stop touching
1065 * the hardware
1066 */
1067 hw->adapter_stopped = TRUE;
1068
1069 /* Disable the receive unit */
1070 ixgbe_disable_rx(hw);
1071
1072 /* Clear interrupt mask to stop interrupts from being generated */
1073 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1074
1075 /* Clear any pending interrupts, flush previous writes */
1076 IXGBE_READ_REG(hw, IXGBE_EICR);
1077
1078 /* Disable the transmit unit. Each queue must be disabled. */
1079 for (i = 0; i < hw->mac.max_tx_queues; i++)
1080 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1081
1082 /* Disable the receive unit by stopping each queue */
1083 for (i = 0; i < hw->mac.max_rx_queues; i++) {
1084 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1085 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1086 reg_val |= IXGBE_RXDCTL_SWFLSH;
1087 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1088 }
1089
1090 /* flush all queues disables */
1091 IXGBE_WRITE_FLUSH(hw);
1092 msec_delay(2);
1093
1094 /*
1095 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1096 * access and verify no pending requests
1097 */
1098 return ixgbe_disable_pcie_master(hw);
1099 }
1100
1101 /**
1102 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1103 * @hw: pointer to hardware structure
1104 * @index: led number to turn on
1105 **/
1106 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1107 {
1108 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1109
1110 DEBUGFUNC("ixgbe_led_on_generic");
1111
1112 /* To turn on the LED, set mode to ON. */
1113 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1114 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1115 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1148 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1149 {
1150 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1151 u32 eec;
1152 u16 eeprom_size;
1153
1154 DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1155
1156 if (eeprom->type == ixgbe_eeprom_uninitialized) {
1157 eeprom->type = ixgbe_eeprom_none;
1158 /* Set default semaphore delay to 10ms which is a well
1159 * tested value */
1160 eeprom->semaphore_delay = 10;
1161 /* Clear EEPROM page size, it will be initialized as needed */
1162 eeprom->word_page_size = 0;
1163
1164 /*
1165 * Check for EEPROM present first.
1166 * If not present leave as none
1167 */
1168 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1169 if (eec & IXGBE_EEC_PRES) {
1170 eeprom->type = ixgbe_eeprom_spi;
1171
1172 /*
1173 * SPI EEPROM is assumed here. This code would need to
1174 * change if a future EEPROM is not SPI.
1175 */
1176 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1177 IXGBE_EEC_SIZE_SHIFT);
1178 eeprom->word_size = 1 << (eeprom_size +
1179 IXGBE_EEPROM_WORD_SIZE_SHIFT);
1180 }
1181
1182 if (eec & IXGBE_EEC_ADDR_SIZE)
1183 eeprom->address_bits = 16;
1184 else
1185 eeprom->address_bits = 8;
1186 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1187 "%d\n", eeprom->type, eeprom->word_size,
1188 eeprom->address_bits);
1209 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1210
1211 hw->eeprom.ops.init_params(hw);
1212
1213 if (words == 0) {
1214 status = IXGBE_ERR_INVALID_ARGUMENT;
1215 goto out;
1216 }
1217
1218 if (offset + words > hw->eeprom.word_size) {
1219 status = IXGBE_ERR_EEPROM;
1220 goto out;
1221 }
1222
1223 /*
1224 * The EEPROM page size cannot be queried from the chip. We do lazy
1225 * initialization. It is worth to do that when we write large buffer.
1226 */
1227 if ((hw->eeprom.word_page_size == 0) &&
1228 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1229 ixgbe_detect_eeprom_page_size_generic(hw, offset);
1230
1231 /*
1232 * We cannot hold synchronization semaphores for too long
1233 * to avoid other entity starvation. However it is more efficient
1234 * to read in bursts than synchronizing access for each word.
1235 */
1236 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1237 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1238 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1239 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1240 count, &data[i]);
1241
1242 if (status != IXGBE_SUCCESS)
1243 break;
1244 }
1245
1246 out:
1247 return status;
1248 }
1249
1498 * @hw: pointer to hardware structure
1499 * @offset: offset of word in the EEPROM to read
1500 * @words: number of word(s)
1501 * @data: 16 bit word(s) from the EEPROM
1502 *
1503 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1504 **/
1505 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1506 u16 words, u16 *data)
1507 {
1508 u32 eerd;
1509 s32 status = IXGBE_SUCCESS;
1510 u32 i;
1511
1512 DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1513
1514 hw->eeprom.ops.init_params(hw);
1515
1516 if (words == 0) {
1517 status = IXGBE_ERR_INVALID_ARGUMENT;
1518 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1519 goto out;
1520 }
1521
1522 if (offset >= hw->eeprom.word_size) {
1523 status = IXGBE_ERR_EEPROM;
1524 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1525 goto out;
1526 }
1527
1528 for (i = 0; i < words; i++) {
1529 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1530 IXGBE_EEPROM_RW_REG_START;
1531
1532 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1533 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1534
1535 if (status == IXGBE_SUCCESS) {
1536 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1537 IXGBE_EEPROM_RW_REG_DATA);
1538 } else {
1539 DEBUGOUT("Eeprom read timed out\n");
1540 goto out;
1541 }
1542 }
1543 out:
1544 return status;
1545 }
1546
1547 /**
1548 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1549 * @hw: pointer to hardware structure
1606 * @hw: pointer to hardware structure
1607 * @offset: offset of word in the EEPROM to write
1608 * @words: number of word(s)
1609 * @data: word(s) write to the EEPROM
1610 *
1611 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1612 **/
1613 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1614 u16 words, u16 *data)
1615 {
1616 u32 eewr;
1617 s32 status = IXGBE_SUCCESS;
1618 u16 i;
1619
1620 DEBUGFUNC("ixgbe_write_eewr_generic");
1621
1622 hw->eeprom.ops.init_params(hw);
1623
1624 if (words == 0) {
1625 status = IXGBE_ERR_INVALID_ARGUMENT;
1626 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1627 goto out;
1628 }
1629
1630 if (offset >= hw->eeprom.word_size) {
1631 status = IXGBE_ERR_EEPROM;
1632 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1633 goto out;
1634 }
1635
1636 for (i = 0; i < words; i++) {
1637 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1638 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1639 IXGBE_EEPROM_RW_REG_START;
1640
1641 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1642 if (status != IXGBE_SUCCESS) {
1643 DEBUGOUT("Eeprom write EEWR timed out\n");
1644 goto out;
1645 }
1646
1647 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1648
1649 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1650 if (status != IXGBE_SUCCESS) {
1651 DEBUGOUT("Eeprom write EEWR timed out\n");
1652 goto out;
1681 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1682 {
1683 u32 i;
1684 u32 reg;
1685 s32 status = IXGBE_ERR_EEPROM;
1686
1687 DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1688
1689 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1690 if (ee_reg == IXGBE_NVM_POLL_READ)
1691 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1692 else
1693 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1694
1695 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1696 status = IXGBE_SUCCESS;
1697 break;
1698 }
1699 usec_delay(5);
1700 }
1701
1702 if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1703 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1704 "EEPROM read/write done polling timed out");
1705
1706 return status;
1707 }
1708
1709 /**
1710 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1711 * @hw: pointer to hardware structure
1712 *
1713 * Prepares EEPROM for access using bit-bang method. This function should
1714 * be called before issuing a command to the EEPROM.
1715 **/
1716 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1717 {
1718 s32 status = IXGBE_SUCCESS;
1719 u32 eec;
1720 u32 i;
1721
1722 DEBUGFUNC("ixgbe_acquire_eeprom");
1723
1724 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1725 != IXGBE_SUCCESS)
1726 status = IXGBE_ERR_SWFW_SYNC;
1727
1728 if (status == IXGBE_SUCCESS) {
1729 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1730
1731 /* Request EEPROM Access */
1732 eec |= IXGBE_EEC_REQ;
1733 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1734
1735 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1736 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1737 if (eec & IXGBE_EEC_GNT)
1738 break;
1739 usec_delay(5);
1740 }
1741
1742 /* Release if grant not acquired */
1743 if (!(eec & IXGBE_EEC_GNT)) {
1744 eec &= ~IXGBE_EEC_REQ;
1745 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1746 DEBUGOUT("Could not acquire EEPROM grant\n");
1747
1748 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1749 status = IXGBE_ERR_EEPROM;
1750 }
1751
1752 /* Setup EEPROM for Read/Write */
1753 if (status == IXGBE_SUCCESS) {
1754 /* Clear CS and SK */
1755 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1756 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1757 IXGBE_WRITE_FLUSH(hw);
1758 usec_delay(1);
1759 }
1760 }
1761 return status;
1762 }
1763
1764 /**
1765 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1766 * @hw: pointer to hardware structure
1767 *
1768 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1769 **/
1770 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1771 {
1772 s32 status = IXGBE_ERR_EEPROM;
1773 u32 timeout = 2000;
1774 u32 i;
1775 u32 swsm;
1776
1777 DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1778
1779
1780 /* Get SMBI software semaphore between device drivers first */
1781 for (i = 0; i < timeout; i++) {
1782 /*
1783 * If the SMBI bit is 0 when we read it, then the bit will be
1784 * set and we have the semaphore
1785 */
1786 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1787 if (!(swsm & IXGBE_SWSM_SMBI)) {
1788 status = IXGBE_SUCCESS;
1789 break;
1790 }
1791 usec_delay(50);
1792 }
1793
1794 if (i == timeout) {
1795 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1796 "not granted.\n");
1797 /*
1798 * this release is particularly important because our attempts
1799 * above to get the semaphore may have succeeded, and if there
1800 * was a timeout, we should unconditionally clear the semaphore
1801 * bits to free the driver to make progress
1802 */
1803 ixgbe_release_eeprom_semaphore(hw);
1804
1805 usec_delay(50);
1806 /*
1807 * one last try
1808 * If the SMBI bit is 0 when we read it, then the bit will be
1809 * set and we have the semaphore
1810 */
1811 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1812 if (!(swsm & IXGBE_SWSM_SMBI))
1813 status = IXGBE_SUCCESS;
1814 }
1815
1816 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1817 if (status == IXGBE_SUCCESS) {
1818 for (i = 0; i < timeout; i++) {
1819 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1820
1821 /* Set the SW EEPROM semaphore bit to request access */
1822 swsm |= IXGBE_SWSM_SWESMBI;
1823 IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1824
1825 /*
1826 * If we set the bit successfully then we got the
1827 * semaphore.
1828 */
1829 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1830 if (swsm & IXGBE_SWSM_SWESMBI)
1831 break;
1832
1833 usec_delay(50);
1834 }
1835
1836 /*
1837 * Release semaphores and return error if SW EEPROM semaphore
1838 * was not granted because we don't have access to the EEPROM
1839 */
1840 if (i >= timeout) {
1841 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1842 "SWESMBI Software EEPROM semaphore not granted.\n");
1843 ixgbe_release_eeprom_semaphore(hw);
1844 status = IXGBE_ERR_EEPROM;
1845 }
1846 } else {
1847 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1848 "Software semaphore SMBI between device drivers "
1849 "not granted.\n");
1850 }
1851
1852 return status;
1853 }
1854
1855 /**
1856 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1857 * @hw: pointer to hardware structure
1858 *
1859 * This function clears hardware semaphore bits.
1860 **/
1861 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1862 {
1863 u32 swsm;
1864
1865 DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1866
1867 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1868
1906 * devices (and only 0-5mSec on 5V devices)
1907 */
1908 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1909 DEBUGOUT("SPI EEPROM Status error\n");
1910 status = IXGBE_ERR_EEPROM;
1911 }
1912
1913 return status;
1914 }
1915
1916 /**
1917 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1918 * @hw: pointer to hardware structure
1919 **/
1920 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1921 {
1922 u32 eec;
1923
1924 DEBUGFUNC("ixgbe_standby_eeprom");
1925
1926 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1927
1928 /* Toggle CS to flush commands */
1929 eec |= IXGBE_EEC_CS;
1930 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1931 IXGBE_WRITE_FLUSH(hw);
1932 usec_delay(1);
1933 eec &= ~IXGBE_EEC_CS;
1934 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1935 IXGBE_WRITE_FLUSH(hw);
1936 usec_delay(1);
1937 }
1938
1939 /**
1940 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1941 * @hw: pointer to hardware structure
1942 * @data: data to send to the EEPROM
1943 * @count: number of bits to shift out
1944 **/
1945 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1946 u16 count)
1947 {
1948 u32 eec;
1949 u32 mask;
1950 u32 i;
1951
1952 DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1953
1954 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1955
1956 /*
1957 * Mask is used to shift "count" bits of "data" out to the EEPROM
1958 * one bit at a time. Determine the starting bit based on count
1959 */
1960 mask = 0x01 << (count - 1);
1961
1962 for (i = 0; i < count; i++) {
1963 /*
1964 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1965 * "1", and then raising and then lowering the clock (the SK
1966 * bit controls the clock input to the EEPROM). A "0" is
1967 * shifted out to the EEPROM by setting "DI" to "0" and then
1968 * raising and then lowering the clock.
1969 */
1970 if (data & mask)
1971 eec |= IXGBE_EEC_DI;
1972 else
1973 eec &= ~IXGBE_EEC_DI;
1974
1975 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1976 IXGBE_WRITE_FLUSH(hw);
1977
1978 usec_delay(1);
1979
1980 ixgbe_raise_eeprom_clk(hw, &eec);
1981 ixgbe_lower_eeprom_clk(hw, &eec);
1982
1983 /*
1984 * Shift mask to signify next bit of data to shift in to the
1985 * EEPROM
1986 */
1987 mask = mask >> 1;
1988 };
1989
1990 /* We leave the "DI" bit set to "0" when we leave this routine. */
1991 eec &= ~IXGBE_EEC_DI;
1992 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1993 IXGBE_WRITE_FLUSH(hw);
1994 }
1995
1996 /**
1997 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1998 * @hw: pointer to hardware structure
1999 **/
2000 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2001 {
2002 u32 eec;
2003 u32 i;
2004 u16 data = 0;
2005
2006 DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2007
2008 /*
2009 * In order to read a register from the EEPROM, we need to shift
2010 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2011 * the clock input to the EEPROM (setting the SK bit), and then reading
2012 * the value of the "DO" bit. During this "shifting in" process the
2013 * "DI" bit should always be clear.
2014 */
2015 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2016
2017 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2018
2019 for (i = 0; i < count; i++) {
2020 data = data << 1;
2021 ixgbe_raise_eeprom_clk(hw, &eec);
2022
2023 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2024
2025 eec &= ~(IXGBE_EEC_DI);
2026 if (eec & IXGBE_EEC_DO)
2027 data |= 1;
2028
2029 ixgbe_lower_eeprom_clk(hw, &eec);
2030 }
2031
2032 return data;
2033 }
2034
2035 /**
2036 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2037 * @hw: pointer to hardware structure
2038 * @eec: EEC register's current value
2039 **/
2040 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2041 {
2042 DEBUGFUNC("ixgbe_raise_eeprom_clk");
2043
2044 /*
2045 * Raise the clock input to the EEPROM
2046 * (setting the SK bit), then delay
2047 */
2048 *eec = *eec | IXGBE_EEC_SK;
2049 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2050 IXGBE_WRITE_FLUSH(hw);
2051 usec_delay(1);
2052 }
2053
2054 /**
2055 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2056 * @hw: pointer to hardware structure
2057 * @eecd: EECD's current value
2058 **/
2059 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2060 {
2061 DEBUGFUNC("ixgbe_lower_eeprom_clk");
2062
2063 /*
2064 * Lower the clock input to the EEPROM (clearing the SK bit), then
2065 * delay
2066 */
2067 *eec = *eec & ~IXGBE_EEC_SK;
2068 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2069 IXGBE_WRITE_FLUSH(hw);
2070 usec_delay(1);
2071 }
2072
2073 /**
2074 * ixgbe_release_eeprom - Release EEPROM, release semaphores
2075 * @hw: pointer to hardware structure
2076 **/
2077 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2078 {
2079 u32 eec;
2080
2081 DEBUGFUNC("ixgbe_release_eeprom");
2082
2083 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2084
2085 eec |= IXGBE_EEC_CS; /* Pull CS high */
2086 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2087
2088 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2089 IXGBE_WRITE_FLUSH(hw);
2090
2091 usec_delay(1);
2092
2093 /* Stop requesting EEPROM access */
2094 eec &= ~IXGBE_EEC_REQ;
2095 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2096
2097 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2098
2099 /* Delay before attempt to obtain semaphore again to allow FW access */
2100 msec_delay(hw->eeprom.semaphore_delay);
2101 }
2102
2103 /**
2104 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2105 * @hw: pointer to hardware structure
2106 *
2107 * Returns a negative error code on error, or the 16-bit checksum
2108 **/
2109 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2110 {
2111 u16 i;
2112 u16 j;
2113 u16 checksum = 0;
2114 u16 length = 0;
2115 u16 pointer = 0;
2116 u16 word = 0;
2117
2118 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2119
2120 /* Include 0x0-0x3F in the checksum */
2121 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2122 if (hw->eeprom.ops.read(hw, i, &word)) {
2123 DEBUGOUT("EEPROM read failed\n");
2124 return IXGBE_ERR_EEPROM;
2125 }
2126 checksum += word;
2127 }
2128
2129 /* Include all data from pointers except for the fw pointer */
2130 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2131 if (hw->eeprom.ops.read(hw, i, &pointer)) {
2132 DEBUGOUT("EEPROM read failed\n");
2133 return IXGBE_ERR_EEPROM;
2134 }
2135
2136 /* If the pointer seems invalid */
2137 if (pointer == 0xFFFF || pointer == 0)
2138 continue;
2139
2140 if (hw->eeprom.ops.read(hw, pointer, &length)) {
2141 DEBUGOUT("EEPROM read failed\n");
2142 return IXGBE_ERR_EEPROM;
2143 }
2144
2145 if (length == 0xFFFF || length == 0)
2146 continue;
2147
2148 for (j = pointer + 1; j <= pointer + length; j++) {
2149 if (hw->eeprom.ops.read(hw, j, &word)) {
2150 DEBUGOUT("EEPROM read failed\n");
2151 return IXGBE_ERR_EEPROM;
2152 }
2153 checksum += word;
2154 }
2155 }
2156
2157 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2158
2159 return (s32)checksum;
2160 }
2161
2162 /**
2163 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2164 * @hw: pointer to hardware structure
2165 * @checksum_val: calculated checksum
2166 *
2167 * Performs checksum calculation and validates the EEPROM checksum. If the
2168 * caller does not need checksum_val, the value can be NULL.
2169 **/
2170 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2171 u16 *checksum_val)
2172 {
2173 s32 status;
2174 u16 checksum;
2175 u16 read_checksum = 0;
2176
2177 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2178
2179 /* Read the first word from the EEPROM. If this times out or fails, do
2180 * not continue or we could be in for a very long wait while every
2181 * EEPROM read fails
2182 */
2183 status = hw->eeprom.ops.read(hw, 0, &checksum);
2184 if (status) {
2185 DEBUGOUT("EEPROM read failed\n");
2186 return status;
2187 }
2188
2189 status = hw->eeprom.ops.calc_checksum(hw);
2190 if (status < 0)
2191 return status;
2192
2193 checksum = (u16)(status & 0xffff);
2194
2195 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2196 if (status) {
2197 DEBUGOUT("EEPROM read failed\n");
2198 return status;
2199 }
2200
2201 /* Verify read checksum from EEPROM is the same as
2202 * calculated checksum
2203 */
2204 if (read_checksum != checksum)
2205 status = IXGBE_ERR_EEPROM_CHECKSUM;
2206
2207 /* If the user cares, return the calculated checksum */
2208 if (checksum_val)
2209 *checksum_val = checksum;
2210
2211 return status;
2212 }
2213
2214 /**
2215 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2216 * @hw: pointer to hardware structure
2217 **/
2218 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2219 {
2220 s32 status;
2221 u16 checksum;
2222
2223 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2224
2225 /* Read the first word from the EEPROM. If this times out or fails, do
2226 * not continue or we could be in for a very long wait while every
2227 * EEPROM read fails
2228 */
2229 status = hw->eeprom.ops.read(hw, 0, &checksum);
2230 if (status) {
2231 DEBUGOUT("EEPROM read failed\n");
2232 return status;
2233 }
2234
2235 status = hw->eeprom.ops.calc_checksum(hw);
2236 if (status < 0)
2237 return status;
2238
2239 checksum = (u16)(status & 0xffff);
2240
2241 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2242
2243 return status;
2244 }
2245
2246 /**
2247 * ixgbe_validate_mac_addr - Validate MAC address
2248 * @mac_addr: pointer to MAC address.
2249 *
2250 * Tests a MAC address to ensure it is a valid Individual Address
2251 **/
2252 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2253 {
2254 s32 status = IXGBE_SUCCESS;
2255
2256 DEBUGFUNC("ixgbe_validate_mac_addr");
2257
2258 /* Make sure it is not a multicast address */
2259 if (IXGBE_IS_MULTICAST(mac_addr)) {
2260 DEBUGOUT("MAC address is multicast\n");
2261 status = IXGBE_ERR_INVALID_MAC_ADDR;
2262 /* Not a broadcast address */
2263 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2275 /**
2276 * ixgbe_set_rar_generic - Set Rx address register
2277 * @hw: pointer to hardware structure
2278 * @index: Receive address register to write
2279 * @addr: Address to put into receive address register
2280 * @vmdq: VMDq "set" or "pool" index
2281 * @enable_addr: set flag that address is active
2282 *
2283 * Puts an ethernet address into a receive address register.
2284 **/
2285 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2286 u32 enable_addr)
2287 {
2288 u32 rar_low, rar_high;
2289 u32 rar_entries = hw->mac.num_rar_entries;
2290
2291 DEBUGFUNC("ixgbe_set_rar_generic");
2292
2293 /* Make sure we are using a valid rar index range */
2294 if (index >= rar_entries) {
2295 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2296 "RAR index %d is out of range.\n", index);
2297 return IXGBE_ERR_INVALID_ARGUMENT;
2298 }
2299
2300 /* setup VMDq pool selection before this RAR gets enabled */
2301 hw->mac.ops.set_vmdq(hw, index, vmdq);
2302
2303 /*
2304 * HW expects these in little endian so we reverse the byte
2305 * order from network order (big endian) to little endian
2306 */
2307 rar_low = ((u32)addr[0] |
2308 ((u32)addr[1] << 8) |
2309 ((u32)addr[2] << 16) |
2310 ((u32)addr[3] << 24));
2311 /*
2312 * Some parts put the VMDq setting in the extra RAH bits,
2313 * so save everything except the lower 16 bits that hold part
2314 * of the address and the address valid bit.
2315 */
2316 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2325
2326 return IXGBE_SUCCESS;
2327 }
2328
2329 /**
2330 * ixgbe_clear_rar_generic - Remove Rx address register
2331 * @hw: pointer to hardware structure
2332 * @index: Receive address register to write
2333 *
2334 * Clears an ethernet address from a receive address register.
2335 **/
2336 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2337 {
2338 u32 rar_high;
2339 u32 rar_entries = hw->mac.num_rar_entries;
2340
2341 DEBUGFUNC("ixgbe_clear_rar_generic");
2342
2343 /* Make sure we are using a valid rar index range */
2344 if (index >= rar_entries) {
2345 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2346 "RAR index %d is out of range.\n", index);
2347 return IXGBE_ERR_INVALID_ARGUMENT;
2348 }
2349
2350 /*
2351 * Some parts put the VMDq setting in the extra RAH bits,
2352 * so save everything except the lower 16 bits that hold part
2353 * of the address and the address valid bit.
2354 */
2355 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2356 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2357
2358 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2359 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2360
2361 /* clear VMDq pool/queue selection for this RAR */
2362 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2363
2364 return IXGBE_SUCCESS;
2365 }
2366
2410 }
2411 hw->addr_ctrl.overflow_promisc = 0;
2412
2413 hw->addr_ctrl.rar_used_count = 1;
2414
2415 /* Zero out the other receive addresses. */
2416 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2417 for (i = 1; i < rar_entries; i++) {
2418 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2419 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2420 }
2421
2422 /* Clear the MTA */
2423 hw->addr_ctrl.mta_in_use = 0;
2424 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2425
2426 DEBUGOUT(" Clearing MTA\n");
2427 for (i = 0; i < hw->mac.mcft_size; i++)
2428 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2429
2430 ixgbe_init_uta_tables(hw);
2431
2432 return IXGBE_SUCCESS;
2433 }
2434
2435 /**
2436 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2437 * @hw: pointer to hardware structure
2438 * @addr: new address
2439 *
2440 * Adds it to unused receive address register or goes into promiscuous mode.
2441 **/
2442 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2443 {
2444 u32 rar_entries = hw->mac.num_rar_entries;
2445 u32 rar;
2446
2447 DEBUGFUNC("ixgbe_add_uc_addr");
2448
2449 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2450 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2451
2452 /*
2624 **/
2625 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2626 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2627 bool clear)
2628 {
2629 u32 i;
2630 u32 vmdq;
2631
2632 DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2633
2634 /*
2635 * Set the new number of MC addresses that we are being requested to
2636 * use.
2637 */
2638 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2639 hw->addr_ctrl.mta_in_use = 0;
2640
2641 /* Clear mta_shadow */
2642 if (clear) {
2643 DEBUGOUT(" Clearing MTA\n");
2644 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2645 }
2646
2647 /* Update mta_shadow */
2648 for (i = 0; i < mc_addr_count; i++) {
2649 DEBUGOUT(" Adding the multicast addresses:\n");
2650 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2651 }
2652
2653 /* Enable mta */
2654 for (i = 0; i < hw->mac.mcft_size; i++)
2655 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2656 hw->mac.mta_shadow[i]);
2657
2658 if (hw->addr_ctrl.mta_in_use > 0)
2659 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2660 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2661
2662 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2663 return IXGBE_SUCCESS;
2664 }
2769 * isn't a way to advertise that we are capable of RX
2770 * Pause ONLY, we will advertise that we support both
2771 * symmetric and asymmetric Rx PAUSE. Later, we will
2772 * disable the adapter's ability to send PAUSE frames.
2773 */
2774 mflcn_reg |= IXGBE_MFLCN_RFCE;
2775 break;
2776 case ixgbe_fc_tx_pause:
2777 /*
2778 * Tx Flow control is enabled, and Rx Flow control is
2779 * disabled by software override.
2780 */
2781 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2782 break;
2783 case ixgbe_fc_full:
2784 /* Flow control (both Rx and Tx) is enabled by SW override. */
2785 mflcn_reg |= IXGBE_MFLCN_RFCE;
2786 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2787 break;
2788 default:
2789 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2790 "Flow control param set incorrectly\n");
2791 ret_val = IXGBE_ERR_CONFIG;
2792 goto out;
2793 break;
2794 }
2795
2796 /* Set 802.3x based flow control settings. */
2797 mflcn_reg |= IXGBE_MFLCN_DPF;
2798 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2799 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2800
2801
2802 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2803 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2804 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2805 hw->fc.high_water[i]) {
2806 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2807 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2808 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2809 } else {
2810 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2811 /*
2812 * In order to prevent Tx hangs when the internal Tx
2813 * switch is enabled we must set the high water mark
2814 * to the Rx packet buffer size - 24KB. This allows
2815 * the Tx switch to function even under heavy Rx
2816 * workloads.
2817 */
2818 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2819 }
2820
2821 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2822 }
2823
2824 /* Configure pause time (2 TCs per register) */
2825 reg = hw->fc.pause_time * 0x00010001;
2826 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2827 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2828
2829 /* Configure flow control refresh threshold value */
2830 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2831
2832 out:
2833 return ret_val;
2834 }
2835
2836 /**
2837 * ixgbe_negotiate_fc - Negotiate flow control
2838 * @hw: pointer to hardware structure
2839 * @adv_reg: flow control advertised settings
2840 * @lp_reg: link partner's flow control settings
2841 * @adv_sym: symmetric pause bit in advertisement
2842 * @adv_asm: asymmetric pause bit in advertisement
2843 * @lp_sym: symmetric pause bit in link partner advertisement
2844 * @lp_asm: asymmetric pause bit in link partner advertisement
2845 *
2846 * Find the intersection between advertised settings and link partner's
2847 * advertised settings
2848 **/
2849 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2850 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2851 {
2852 if ((!(adv_reg)) || (!(lp_reg))) {
2853 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2854 "Local or link partner's advertised flow control "
2855 "settings are NULL. Local: %x, link partner: %x\n",
2856 adv_reg, lp_reg);
2857 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2858 }
2859
2860 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2861 /*
2862 * Now we need to check if the user selected Rx ONLY
2863 * of pause frames. In this case, we had to advertise
2864 * FULL flow control because we could not advertise RX
2865 * ONLY. Hence, we must now check to see if we need to
2866 * turn OFF the TRANSMISSION of PAUSE frames.
2867 */
2868 if (hw->fc.requested_mode == ixgbe_fc_full) {
2869 hw->fc.current_mode = ixgbe_fc_full;
2870 DEBUGOUT("Flow Control = FULL.\n");
2871 } else {
2872 hw->fc.current_mode = ixgbe_fc_rx_pause;
2873 DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2874 }
2875 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2876 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2877 hw->fc.current_mode = ixgbe_fc_tx_pause;
2878 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2889
2890 /**
2891 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2892 * @hw: pointer to hardware structure
2893 *
2894 * Enable flow control according on 1 gig fiber.
2895 **/
2896 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2897 {
2898 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2899 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2900
2901 /*
2902 * On multispeed fiber at 1g, bail out if
2903 * - link is up but AN did not complete, or if
2904 * - link is up and AN completed but timed out
2905 */
2906
2907 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2908 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2909 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2910 DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2911 goto out;
2912 }
2913
2914 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2915 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2916
2917 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2918 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2919 IXGBE_PCS1GANA_ASM_PAUSE,
2920 IXGBE_PCS1GANA_SYM_PAUSE,
2921 IXGBE_PCS1GANA_ASM_PAUSE);
2922
2923 out:
2924 return ret_val;
2925 }
2926
2927 /**
2928 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2929 * @hw: pointer to hardware structure
2930 *
2931 * Enable flow control according to IEEE clause 37.
2932 **/
2933 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2934 {
2935 u32 links2, anlp1_reg, autoc_reg, links;
2936 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2937
2938 /*
2939 * On backplane, bail out if
2940 * - backplane autoneg was not completed, or if
2941 * - we are 82599 and link partner is not AN enabled
2942 */
2943 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2944 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2945 DEBUGOUT("Auto-Negotiation did not complete\n");
2946 goto out;
2947 }
2948
2949 if (hw->mac.type == ixgbe_mac_82599EB) {
2950 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2951 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2952 DEBUGOUT("Link partner is not AN enabled\n");
2953 goto out;
2954 }
2955 }
2956 /*
2957 * Read the 10g AN autoc and LP ability registers and resolve
2958 * local flow control settings accordingly
2959 */
2960 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2961 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2962
2963 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2964 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2965 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2966
2967 out:
2968 return ret_val;
2969 }
2970
2971 /**
2972 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2973 * @hw: pointer to hardware structure
2974 *
2975 * Enable flow control according to IEEE clause 37.
2996 * ixgbe_fc_autoneg - Configure flow control
2997 * @hw: pointer to hardware structure
2998 *
2999 * Compares our advertised flow control capabilities to those advertised by
3000 * our link partner, and determines the proper flow control mode to use.
3001 **/
3002 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3003 {
3004 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3005 ixgbe_link_speed speed;
3006 bool link_up;
3007
3008 DEBUGFUNC("ixgbe_fc_autoneg");
3009
3010 /*
3011 * AN should have completed when the cable was plugged in.
3012 * Look for reasons to bail out. Bail out if:
3013 * - FC autoneg is disabled, or if
3014 * - link is not up.
3015 */
3016 if (hw->fc.disable_fc_autoneg) {
3017 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3018 "Flow control autoneg is disabled");
3019 goto out;
3020 }
3021
3022 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3023 if (!link_up) {
3024 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3025 goto out;
3026 }
3027
3028 switch (hw->phy.media_type) {
3029 /* Autoneg flow control on fiber adapters */
3030 case ixgbe_media_type_fiber_fixed:
3031 case ixgbe_media_type_fiber_qsfp:
3032 case ixgbe_media_type_fiber:
3033 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3034 ret_val = ixgbe_fc_autoneg_fiber(hw);
3035 break;
3036
3037 /* Autoneg flow control on backplane adapters */
3038 case ixgbe_media_type_backplane:
3039 ret_val = ixgbe_fc_autoneg_backplane(hw);
3040 break;
3041
3042 /* Autoneg flow control on copper adapters */
3043 case ixgbe_media_type_copper:
3044 if (ixgbe_device_supports_autoneg_fc(hw))
3045 ret_val = ixgbe_fc_autoneg_copper(hw);
3046 break;
3047
3048 default:
3049 break;
3050 }
3051
3052 out:
3053 if (ret_val == IXGBE_SUCCESS) {
3054 hw->fc.fc_was_autonegged = TRUE;
3055 } else {
3056 hw->fc.fc_was_autonegged = FALSE;
3057 hw->fc.current_mode = hw->fc.requested_mode;
3058 }
3059 }
3060
3061 /*
3062 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3063 * @hw: pointer to hardware structure
3064 *
3065 * System-wide timeout range is encoded in PCIe Device Control2 register.
3066 *
3067 * Add 10% to specified maximum and return the number of times to poll for
3068 * completion timeout, in units of 100 microsec. Never return less than
3069 * 800 = 80 millisec.
3070 */
3071 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3072 {
3073 s16 devctl2;
3074 u32 pollcnt;
3075
3076 devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3077 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3078
3079 switch (devctl2) {
3080 case IXGBE_PCIDEVCTRL2_65_130ms:
3081 pollcnt = 1300; /* 130 millisec */
3082 break;
3083 case IXGBE_PCIDEVCTRL2_260_520ms:
3084 pollcnt = 5200; /* 520 millisec */
3085 break;
3086 case IXGBE_PCIDEVCTRL2_1_2s:
3087 pollcnt = 20000; /* 2 sec */
3088 break;
3089 case IXGBE_PCIDEVCTRL2_4_8s:
3090 pollcnt = 80000; /* 8 sec */
3091 break;
3092 case IXGBE_PCIDEVCTRL2_17_34s:
3093 pollcnt = 34000; /* 34 sec */
3094 break;
3095 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3096 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3097 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3098 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3099 default:
3100 pollcnt = 800; /* 80 millisec minimum */
3101 break;
3102 }
3103
3104 /* add 10% to spec maximum */
3105 return (pollcnt * 11) / 10;
3106 }
3107
3108 /**
3109 * ixgbe_disable_pcie_master - Disable PCI-express master access
3110 * @hw: pointer to hardware structure
3111 *
3112 * Disables PCI-Express master access and verifies there are no pending
3113 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3114 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3115 * is returned signifying master requests disabled.
3116 **/
3117 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3118 {
3119 s32 status = IXGBE_SUCCESS;
3120 u32 i, poll;
3121 u16 value;
3122
3123 DEBUGFUNC("ixgbe_disable_pcie_master");
3124
3125 /* Always set this bit to ensure any future transactions are blocked */
3126 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3127
3128 /* Exit if master requests are blocked */
3129 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3130 IXGBE_REMOVED(hw->hw_addr))
3131 goto out;
3132
3133 /* Poll for master request bit to clear */
3134 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3135 usec_delay(100);
3136 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3137 goto out;
3138 }
3139
3140 /*
3141 * Two consecutive resets are required via CTRL.RST per datasheet
3142 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3143 * of this need. The first reset prevents new master requests from
3144 * being issued by our device. We then must wait 1usec or more for any
3145 * remaining completions from the PCIe bus to trickle in, and then reset
3146 * again to clear out any effects they may have had on our device.
3147 */
3148 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3149 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3150
3151 if (hw->mac.type >= ixgbe_mac_X550)
3152 goto out;
3153
3154 /*
3155 * Before proceeding, make sure that the PCIe block does not have
3156 * transactions pending.
3157 */
3158 poll = ixgbe_pcie_timeout_poll(hw);
3159 for (i = 0; i < poll; i++) {
3160 usec_delay(100);
3161 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3162 if (IXGBE_REMOVED(hw->hw_addr))
3163 goto out;
3164 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3165 goto out;
3166 }
3167
3168 ERROR_REPORT1(IXGBE_ERROR_POLLING,
3169 "PCIe transaction pending bit also did not clear.\n");
3170 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3171
3172 out:
3173 return status;
3174 }
3175
3176 /**
3177 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3178 * @hw: pointer to hardware structure
3179 * @mask: Mask to specify which semaphore to acquire
3180 *
3181 * Acquires the SWFW semaphore through the GSSR register for the specified
3182 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3183 **/
3184 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3185 {
3186 u32 gssr = 0;
3187 u32 swmask = mask;
3188 u32 fwmask = mask << 5;
3189 u32 timeout = 200;
3190 u32 i;
3191
3192 DEBUGFUNC("ixgbe_acquire_swfw_sync");
3193
3194 for (i = 0; i < timeout; i++) {
3195 /*
3196 * SW NVM semaphore bit is used for access to all
3197 * SW_FW_SYNC bits (not just NVM)
3198 */
3199 if (ixgbe_get_eeprom_semaphore(hw))
3200 return IXGBE_ERR_SWFW_SYNC;
3201
3202 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3203 if (!(gssr & (fwmask | swmask))) {
3204 gssr |= swmask;
3205 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3206 ixgbe_release_eeprom_semaphore(hw);
3207 return IXGBE_SUCCESS;
3208 } else {
3209 /* Resource is currently in use by FW or SW */
3210 ixgbe_release_eeprom_semaphore(hw);
3211 msec_delay(5);
3212 }
3213 }
3214
3215 /* If time expired clear the bits holding the lock and retry */
3216 if (gssr & (fwmask | swmask))
3217 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3218
3219 msec_delay(5);
3220 return IXGBE_ERR_SWFW_SYNC;
3221 }
3222
3223 /**
3224 * ixgbe_release_swfw_sync - Release SWFW semaphore
3225 * @hw: pointer to hardware structure
3226 * @mask: Mask to specify which semaphore to release
3227 *
3228 * Releases the SWFW semaphore through the GSSR register for the specified
3229 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3230 **/
3231 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3232 {
3233 u32 gssr;
3234 u32 swmask = mask;
3235
3236 DEBUGFUNC("ixgbe_release_swfw_sync");
3237
3238 ixgbe_get_eeprom_semaphore(hw);
3239
3240 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3241 gssr &= ~swmask;
3242 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3243
3244 ixgbe_release_eeprom_semaphore(hw);
3245 }
3246
3247 /**
3248 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3249 * @hw: pointer to hardware structure
3250 *
3251 * Stops the receive data path and waits for the HW to internally empty
3252 * the Rx security block
3253 **/
3254 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3255 {
3256 #define IXGBE_MAX_SECRX_POLL 40
3257
3258 int i;
3265 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3266 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3267 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3268 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3269 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3270 break;
3271 else
3272 /* Use interrupt-safe sleep just in case */
3273 usec_delay(1000);
3274 }
3275
3276 /* For informational purposes only */
3277 if (i >= IXGBE_MAX_SECRX_POLL)
3278 DEBUGOUT("Rx unit being enabled before security "
3279 "path fully disabled. Continuing with init.\n");
3280
3281 return IXGBE_SUCCESS;
3282 }
3283
3284 /**
3285 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3286 * @hw: pointer to hardware structure
3287 * @reg_val: Value we read from AUTOC
3288 *
3289 * The default case requires no protection so just to the register read.
3290 */
3291 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3292 {
3293 *locked = FALSE;
3294 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3295 return IXGBE_SUCCESS;
3296 }
3297
3298 /**
3299 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3300 * @hw: pointer to hardware structure
3301 * @reg_val: value to write to AUTOC
3302 * @locked: bool to indicate whether the SW/FW lock was already taken by
3303 * previous read.
3304 *
3305 * The default case requires no protection so just to the register write.
3306 */
3307 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3308 {
3309 UNREFERENCED_1PARAMETER(locked);
3310
3311 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3312 return IXGBE_SUCCESS;
3313 }
3314
3315 /**
3316 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3317 * @hw: pointer to hardware structure
3318 *
3319 * Enables the receive data path.
3320 **/
3321 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3322 {
3323 int secrxreg;
3324
3325 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3326
3327 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3328 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3329 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3330 IXGBE_WRITE_FLUSH(hw);
3331
3332 return IXGBE_SUCCESS;
3333 }
3334
3335 /**
3336 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3337 * @hw: pointer to hardware structure
3338 * @regval: register value to write to RXCTRL
3339 *
3340 * Enables the Rx DMA unit
3341 **/
3342 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3343 {
3344 DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3345
3346 if (regval & IXGBE_RXCTRL_RXEN)
3347 ixgbe_enable_rx(hw);
3348 else
3349 ixgbe_disable_rx(hw);
3350
3351 return IXGBE_SUCCESS;
3352 }
3353
3354 /**
3355 * ixgbe_blink_led_start_generic - Blink LED based on index.
3356 * @hw: pointer to hardware structure
3357 * @index: led number to blink
3358 **/
3359 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3360 {
3361 ixgbe_link_speed speed = 0;
3362 bool link_up = 0;
3363 u32 autoc_reg = 0;
3364 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3365 s32 ret_val = IXGBE_SUCCESS;
3366 bool locked = FALSE;
3367
3368 DEBUGFUNC("ixgbe_blink_led_start_generic");
3369
3370 /*
3371 * Link must be up to auto-blink the LEDs;
3372 * Force it if link is down.
3373 */
3374 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3375
3376 if (!link_up) {
3377 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3378 if (ret_val != IXGBE_SUCCESS)
3379 goto out;
3380
3381 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3382 autoc_reg |= IXGBE_AUTOC_FLU;
3383
3384 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3385 if (ret_val != IXGBE_SUCCESS)
3386 goto out;
3387
3388 IXGBE_WRITE_FLUSH(hw);
3389 msec_delay(10);
3390 }
3391
3392 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3393 led_reg |= IXGBE_LED_BLINK(index);
3394 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3395 IXGBE_WRITE_FLUSH(hw);
3396
3397 out:
3398 return ret_val;
3399 }
3400
3401 /**
3402 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3403 * @hw: pointer to hardware structure
3404 * @index: led number to stop blinking
3405 **/
3406 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3407 {
3408 u32 autoc_reg = 0;
3409 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3410 s32 ret_val = IXGBE_SUCCESS;
3411 bool locked = FALSE;
3412
3413 DEBUGFUNC("ixgbe_blink_led_stop_generic");
3414
3415 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3416 if (ret_val != IXGBE_SUCCESS)
3417 goto out;
3418
3419 autoc_reg &= ~IXGBE_AUTOC_FLU;
3420 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3421
3422 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3423 if (ret_val != IXGBE_SUCCESS)
3424 goto out;
3425
3426 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3427 led_reg &= ~IXGBE_LED_BLINK(index);
3428 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3429 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3430 IXGBE_WRITE_FLUSH(hw);
3431
3432 out:
3433 return ret_val;
3434 }
3435
3436 /**
3437 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3438 * @hw: pointer to hardware structure
3439 * @san_mac_offset: SAN MAC address offset
3440 *
3441 * This function will read the EEPROM location for the SAN MAC address
3442 * pointer, and returns the value at that location. This is used in both
3443 * get and set mac_addr routines.
3444 **/
3445 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3446 u16 *san_mac_offset)
3447 {
3448 s32 ret_val;
3449
3450 DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3451
3452 /*
3453 * First read the EEPROM pointer to see if the MAC addresses are
3454 * available.
3455 */
3456 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3457 san_mac_offset);
3458 if (ret_val) {
3459 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3460 "eeprom at offset %d failed",
3461 IXGBE_SAN_MAC_ADDR_PTR);
3462 }
3463
3464 return ret_val;
3465 }
3466
3467 /**
3468 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3469 * @hw: pointer to hardware structure
3470 * @san_mac_addr: SAN MAC address
3471 *
3472 * Reads the SAN MAC address from the EEPROM, if it's available. This is
3473 * per-port, so set_lan_id() must be called before reading the addresses.
3474 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3475 * upon for non-SFP connections, so we must call it here.
3476 **/
3477 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3478 {
3479 u16 san_mac_data, san_mac_offset;
3480 u8 i;
3481 s32 ret_val;
3482
3483 DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3484
3485 /*
3486 * First read the EEPROM pointer to see if the MAC addresses are
3487 * available. If they're not, no point in calling set_lan_id() here.
3488 */
3489 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3490 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3491 goto san_mac_addr_out;
3492
3493 /* make sure we know which port we need to program */
3494 hw->mac.ops.set_lan_id(hw);
3495 /* apply the port offset to the address offset */
3496 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3497 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3498 for (i = 0; i < 3; i++) {
3499 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3500 &san_mac_data);
3501 if (ret_val) {
3502 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3503 "eeprom read at offset %d failed",
3504 san_mac_offset);
3505 goto san_mac_addr_out;
3506 }
3507 san_mac_addr[i * 2] = (u8)(san_mac_data);
3508 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3509 san_mac_offset++;
3510 }
3511 return IXGBE_SUCCESS;
3512
3513 san_mac_addr_out:
3514 /*
3515 * No addresses available in this EEPROM. It's not an
3516 * error though, so just wipe the local address and return.
3517 */
3518 for (i = 0; i < 6; i++)
3519 san_mac_addr[i] = 0xFF;
3520 return IXGBE_SUCCESS;
3521 }
3522
3523 /**
3524 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3525 * @hw: pointer to hardware structure
3526 * @san_mac_addr: SAN MAC address
3527 *
3528 * Write a SAN MAC address to the EEPROM.
3529 **/
3530 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3531 {
3532 s32 ret_val;
3533 u16 san_mac_data, san_mac_offset;
3534 u8 i;
3535
3536 DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3537
3538 /* Look for SAN mac address pointer. If not defined, return */
3539 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3540 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3541 return IXGBE_ERR_NO_SAN_ADDR_PTR;
3542
3543 /* Make sure we know which port we need to write */
3544 hw->mac.ops.set_lan_id(hw);
3545 /* Apply the port offset to the address offset */
3546 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3547 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3548
3549 for (i = 0; i < 3; i++) {
3550 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3551 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3552 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3553 san_mac_offset++;
3554 }
3555
3556 return IXGBE_SUCCESS;
3557 }
3558
3559 /**
3560 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3561 * @hw: pointer to hardware structure
3562 *
3563 * Read PCIe configuration space, and get the MSI-X vector count from
3564 * the capabilities table.
3565 **/
3566 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3567 {
3568 u16 msix_count = 1;
3569 u16 max_msix_count;
3570 u16 pcie_offset;
3571
3572 switch (hw->mac.type) {
3573 case ixgbe_mac_82598EB:
3574 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3575 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3576 break;
3577 case ixgbe_mac_82599EB:
3578 case ixgbe_mac_X540:
3579 case ixgbe_mac_X550:
3580 case ixgbe_mac_X550EM_x:
3581 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3582 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3583 break;
3584 default:
3585 return msix_count;
3586 }
3587
3588 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3589 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3590 if (IXGBE_REMOVED(hw->hw_addr))
3591 msix_count = 0;
3592 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3593
3594 /* MSI-X count is zero-based in HW */
3595 msix_count++;
3596
3597 if (msix_count > max_msix_count)
3598 msix_count = max_msix_count;
3599
3600 return msix_count;
3601 }
3602
3603 /**
3604 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3605 * @hw: pointer to hardware structure
3606 * @addr: Address to put into receive address register
3607 * @vmdq: VMDq pool to assign
3608 *
3609 * Puts an ethernet address into a receive address register, or
3610 * finds the rar that it is aleady in; adds to the pool list
3611 **/
3629 * Either find the mac_id in rar or find the first empty space.
3630 * rar_highwater points to just after the highest currently used
3631 * rar in order to shorten the search. It grows when we add a new
3632 * rar to the top.
3633 */
3634 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3635 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3636
3637 if (((IXGBE_RAH_AV & rar_high) == 0)
3638 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3639 first_empty_rar = rar;
3640 } else if ((rar_high & 0xFFFF) == addr_high) {
3641 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3642 if (rar_low == addr_low)
3643 break; /* found it already in the rars */
3644 }
3645 }
3646
3647 if (rar < hw->mac.rar_highwater) {
3648 /* already there so just add to the pool bits */
3649 ixgbe_set_vmdq(hw, rar, vmdq);
3650 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3651 /* stick it into first empty RAR slot we found */
3652 rar = first_empty_rar;
3653 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3654 } else if (rar == hw->mac.rar_highwater) {
3655 /* add it to the top of the list and inc the highwater mark */
3656 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3657 hw->mac.rar_highwater++;
3658 } else if (rar >= hw->mac.num_rar_entries) {
3659 return IXGBE_ERR_INVALID_MAC_ADDR;
3660 }
3661
3662 /*
3663 * If we found rar[0], make sure the default pool bit (we use pool 0)
3664 * remains cleared to be sure default pool packets will get delivered
3665 */
3666 if (rar == 0)
3667 ixgbe_clear_vmdq(hw, rar, 0);
3668
3669 return rar;
3670 }
3671
3672 /**
3673 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3674 * @hw: pointer to hardware struct
3675 * @rar: receive address register index to disassociate
3676 * @vmdq: VMDq pool index to remove from the rar
3677 **/
3678 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3679 {
3680 u32 mpsar_lo, mpsar_hi;
3681 u32 rar_entries = hw->mac.num_rar_entries;
3682
3683 DEBUGFUNC("ixgbe_clear_vmdq_generic");
3684
3685 /* Make sure we are using a valid rar index range */
3686 if (rar >= rar_entries) {
3687 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3688 "RAR index %d is out of range.\n", rar);
3689 return IXGBE_ERR_INVALID_ARGUMENT;
3690 }
3691
3692 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3693 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3694
3695 if (IXGBE_REMOVED(hw->hw_addr))
3696 goto done;
3697
3698 if (!mpsar_lo && !mpsar_hi)
3699 goto done;
3700
3701 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3702 if (mpsar_lo) {
3703 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3704 mpsar_lo = 0;
3705 }
3706 if (mpsar_hi) {
3707 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3708 mpsar_hi = 0;
3709 }
3710 } else if (vmdq < 32) {
3711 mpsar_lo &= ~(1 << vmdq);
3712 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3713 } else {
3714 mpsar_hi &= ~(1 << (vmdq - 32));
3715 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3716 }
3717
3720 hw->mac.ops.clear_rar(hw, rar);
3721 done:
3722 return IXGBE_SUCCESS;
3723 }
3724
3725 /**
3726 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3727 * @hw: pointer to hardware struct
3728 * @rar: receive address register index to associate with a VMDq index
3729 * @vmdq: VMDq pool index
3730 **/
3731 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3732 {
3733 u32 mpsar;
3734 u32 rar_entries = hw->mac.num_rar_entries;
3735
3736 DEBUGFUNC("ixgbe_set_vmdq_generic");
3737
3738 /* Make sure we are using a valid rar index range */
3739 if (rar >= rar_entries) {
3740 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3741 "RAR index %d is out of range.\n", rar);
3742 return IXGBE_ERR_INVALID_ARGUMENT;
3743 }
3744
3745 if (vmdq < 32) {
3746 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3747 mpsar |= 1 << vmdq;
3748 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3749 } else {
3750 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3751 mpsar |= 1 << (vmdq - 32);
3752 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3753 }
3754 return IXGBE_SUCCESS;
3755 }
3756
3757 /**
3758 * This function should only be involved in the IOV mode.
3759 * In IOV mode, Default pool is next pool after the number of
3760 * VFs advertized and not 0.
3761 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3820 * Search for the vlan id in the VLVF entries. Save off the first empty
3821 * slot found along the way
3822 */
3823 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3824 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3825 if (!bits && !(first_empty_slot))
3826 first_empty_slot = regindex;
3827 else if ((bits & 0x0FFF) == vlan)
3828 break;
3829 }
3830
3831 /*
3832 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3833 * in the VLVF. Else use the first empty VLVF register for this
3834 * vlan id.
3835 */
3836 if (regindex >= IXGBE_VLVF_ENTRIES) {
3837 if (first_empty_slot)
3838 regindex = first_empty_slot;
3839 else {
3840 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3841 "No space in VLVF.\n");
3842 regindex = IXGBE_ERR_NO_SPACE;
3843 }
3844 }
3845
3846 return regindex;
3847 }
3848
3849 /**
3850 * ixgbe_set_vfta_generic - Set VLAN filter table
3851 * @hw: pointer to hardware structure
3852 * @vlan: VLAN id to write to VLAN filter
3853 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3854 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3855 *
3856 * Turn on/off specified VLAN in the VLAN filter table.
3857 **/
3858 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3859 bool vlan_on)
3860 {
3861 s32 regindex;
4056 **/
4057 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4058 bool *link_up, bool link_up_wait_to_complete)
4059 {
4060 u32 links_reg, links_orig;
4061 u32 i;
4062
4063 DEBUGFUNC("ixgbe_check_mac_link_generic");
4064
4065 /* clear the old state */
4066 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4067
4068 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4069
4070 if (links_orig != links_reg) {
4071 DEBUGOUT2("LINKS changed from %08X to %08X\n",
4072 links_orig, links_reg);
4073 }
4074
4075 if (link_up_wait_to_complete) {
4076 for (i = 0; i < hw->mac.max_link_up_time; i++) {
4077 if (links_reg & IXGBE_LINKS_UP) {
4078 *link_up = TRUE;
4079 break;
4080 } else {
4081 *link_up = FALSE;
4082 }
4083 msec_delay(100);
4084 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4085 }
4086 } else {
4087 if (links_reg & IXGBE_LINKS_UP)
4088 *link_up = TRUE;
4089 else
4090 *link_up = FALSE;
4091 }
4092
4093 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4094 case IXGBE_LINKS_SPEED_10G_82599:
4095 *speed = IXGBE_LINK_SPEED_10GB_FULL;
4096 if (hw->mac.type >= ixgbe_mac_X550) {
4097 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4098 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4099 }
4100 break;
4101 case IXGBE_LINKS_SPEED_1G_82599:
4102 *speed = IXGBE_LINK_SPEED_1GB_FULL;
4103 break;
4104 case IXGBE_LINKS_SPEED_100_82599:
4105 *speed = IXGBE_LINK_SPEED_100_FULL;
4106 if (hw->mac.type >= ixgbe_mac_X550) {
4107 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4108 *speed = IXGBE_LINK_SPEED_5GB_FULL;
4109 }
4110 break;
4111 default:
4112 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4113 }
4114
4115 return IXGBE_SUCCESS;
4116 }
4117
4118 /**
4119 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4120 * the EEPROM
4121 * @hw: pointer to hardware structure
4122 * @wwnn_prefix: the alternative WWNN prefix
4123 * @wwpn_prefix: the alternative WWPN prefix
4124 *
4125 * This function will read the EEPROM from the alternative SAN MAC address
4126 * block to check the support for the alternative WWNN/WWPN prefix support.
4127 **/
4128 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4129 u16 *wwpn_prefix)
4130 {
4131 u16 offset, caps;
4132 u16 alt_san_mac_blk_offset;
4133
4134 DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4135
4136 /* clear output first */
4137 *wwnn_prefix = 0xFFFF;
4138 *wwpn_prefix = 0xFFFF;
4139
4140 /* check if alternative SAN MAC is supported */
4141 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4142 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4143 goto wwn_prefix_err;
4144
4145 if ((alt_san_mac_blk_offset == 0) ||
4146 (alt_san_mac_blk_offset == 0xFFFF))
4147 goto wwn_prefix_out;
4148
4149 /* check capability in alternative san mac address block */
4150 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4151 if (hw->eeprom.ops.read(hw, offset, &caps))
4152 goto wwn_prefix_err;
4153 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4154 goto wwn_prefix_out;
4155
4156 /* get the corresponding prefix for WWNN/WWPN */
4157 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4158 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4159 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4160 "eeprom read at offset %d failed", offset);
4161 }
4162
4163 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4164 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4165 goto wwn_prefix_err;
4166
4167 wwn_prefix_out:
4168 return IXGBE_SUCCESS;
4169
4170 wwn_prefix_err:
4171 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4172 "eeprom read at offset %d failed", offset);
4173 return IXGBE_SUCCESS;
4174 }
4175
4176 /**
4177 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4178 * @hw: pointer to hardware structure
4179 * @bs: the fcoe boot status
4180 *
4181 * This function will read the FCOE boot status from the iSCSI FCOE block
4182 **/
4183 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4184 {
4185 u16 offset, caps, flags;
4186 s32 status;
4187
4188 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4189
4190 /* clear output first */
4191 *bs = ixgbe_fcoe_bootstatus_unavailable;
4192
4193 /* check if FCOE IBA block is present */
4251
4252 /*
4253 * The PF should be allowed to spoof so that it can support
4254 * emulation mode NICs. Do not set the bits assigned to the PF
4255 */
4256 pfvfspoof &= (1 << pf_target_shift) - 1;
4257 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4258
4259 /*
4260 * Remaining pools belong to the PF so they do not need to have
4261 * anti-spoofing enabled.
4262 */
4263 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4264 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4265 }
4266
4267 /**
4268 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4269 * @hw: pointer to hardware structure
4270 * @enable: enable or disable switch for VLAN anti-spoofing
4271 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4272 *
4273 **/
4274 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4275 {
4276 int vf_target_reg = vf >> 3;
4277 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4278 u32 pfvfspoof;
4279
4280 if (hw->mac.type == ixgbe_mac_82598EB)
4281 return;
4282
4283 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4284 if (enable)
4285 pfvfspoof |= (1 << vf_target_shift);
4286 else
4287 pfvfspoof &= ~(1 << vf_target_shift);
4288 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4289 }
4290
4291 /**
4323 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4324 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4325 }
4326
4327 for (i = 0; i < hw->mac.max_rx_queues; i++) {
4328 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4329 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4330 IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4331 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4332 }
4333
4334 }
4335
4336 /**
4337 * ixgbe_calculate_checksum - Calculate checksum for buffer
4338 * @buffer: pointer to EEPROM
4339 * @length: size of EEPROM to calculate a checksum for
4340 * Calculates the checksum for some buffer on a specified length. The
4341 * checksum calculated is returned.
4342 **/
4343 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4344 {
4345 u32 i;
4346 u8 sum = 0;
4347
4348 DEBUGFUNC("ixgbe_calculate_checksum");
4349
4350 if (!buffer)
4351 return 0;
4352
4353 for (i = 0; i < length; i++)
4354 sum += buffer[i];
4355
4356 return (u8) (0 - sum);
4357 }
4358
4359 /**
4360 * ixgbe_host_interface_command - Issue command to manageability block
4361 * @hw: pointer to the HW structure
4362 * @buffer: contains the command to write and where the return status will
4363 * be placed
4364 * @length: length of buffer, must be multiple of 4 bytes
4365 * @timeout: time in ms to wait for command completion
4366 * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4367 * Needed because FW structures are big endian and decoding of
4368 * these fields can be 8 bit or 16 bit based on command. Decoding
4369 * is not easily understood without making a table of commands.
4370 * So we will leave this up to the caller to read back the data
4371 * in these cases.
4372 *
4373 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4374 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4375 **/
4376 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4377 u32 length, u32 timeout, bool return_data)
4378 {
4379 u32 hicr, i, bi, fwsts;
4380 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4381 u16 buf_len;
4382 u16 dword_len;
4383
4384 DEBUGFUNC("ixgbe_host_interface_command");
4385
4386 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4387 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4388 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4389 }
4390 /* Set bit 9 of FWSTS clearing FW reset indication */
4391 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4392 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4393
4394 /* Check that the host interface is enabled. */
4395 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4396 if ((hicr & IXGBE_HICR_EN) == 0) {
4397 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4398 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4399 }
4400
4401 /* Calculate length in DWORDs. We must be DWORD aligned */
4402 if ((length % (sizeof(u32))) != 0) {
4403 DEBUGOUT("Buffer length failure, not aligned to dword");
4404 return IXGBE_ERR_INVALID_ARGUMENT;
4405 }
4406
4407 dword_len = length >> 2;
4408
4409 /* The device driver writes the relevant command block
4410 * into the ram area.
4411 */
4412 for (i = 0; i < dword_len; i++)
4413 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4414 i, IXGBE_CPU_TO_LE32(buffer[i]));
4415
4416 /* Setting this bit tells the ARC that a new command is pending. */
4417 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4418
4419 for (i = 0; i < timeout; i++) {
4420 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4421 if (!(hicr & IXGBE_HICR_C))
4422 break;
4423 msec_delay(1);
4424 }
4425
4426 /* Check command completion */
4427 if ((timeout != 0 && i == timeout) ||
4428 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4429 ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4430 "Command has failed with no status valid.\n");
4431 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4432 }
4433
4434 if (!return_data)
4435 return 0;
4436
4437 /* Calculate length in DWORDs */
4438 dword_len = hdr_size >> 2;
4439
4440 /* first pull in the header so we know the buffer length */
4441 for (bi = 0; bi < dword_len; bi++) {
4442 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4443 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4444 }
4445
4446 /* If there is any thing in data position pull it in */
4447 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4448 if (buf_len == 0)
4449 return 0;
4450
4451 if (length < buf_len + hdr_size) {
4452 DEBUGOUT("Buffer not large enough for reply message.\n");
4453 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4454 }
4455
4456 /* Calculate length in DWORDs, add 3 for odd lengths */
4457 dword_len = (buf_len + 3) >> 2;
4458
4459 /* Pull in the rest of the buffer (bi is where we left off) */
4460 for (; bi <= dword_len; bi++) {
4461 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4462 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4463 }
4464
4465 return 0;
4466 }
4467
4468 /**
4469 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4470 * @hw: pointer to the HW structure
4471 * @maj: driver version major number
4472 * @min: driver version minor number
4473 * @build: driver version build number
4474 * @sub: driver version sub build number
4475 *
4476 * Sends driver version number to firmware through the manageability
4477 * block. On success return IXGBE_SUCCESS
4478 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4479 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4480 **/
4481 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4482 u8 build, u8 sub)
4483 {
4484 struct ixgbe_hic_drv_info fw_cmd;
4485 int i;
4491 != IXGBE_SUCCESS) {
4492 ret_val = IXGBE_ERR_SWFW_SYNC;
4493 goto out;
4494 }
4495
4496 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4497 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4498 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4499 fw_cmd.port_num = (u8)hw->bus.func;
4500 fw_cmd.ver_maj = maj;
4501 fw_cmd.ver_min = min;
4502 fw_cmd.ver_build = build;
4503 fw_cmd.ver_sub = sub;
4504 fw_cmd.hdr.checksum = 0;
4505 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4506 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4507 fw_cmd.pad = 0;
4508 fw_cmd.pad2 = 0;
4509
4510 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4511 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4512 sizeof(fw_cmd),
4513 IXGBE_HI_COMMAND_TIMEOUT,
4514 TRUE);
4515 if (ret_val != IXGBE_SUCCESS)
4516 continue;
4517
4518 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4519 FW_CEM_RESP_STATUS_SUCCESS)
4520 ret_val = IXGBE_SUCCESS;
4521 else
4522 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4523
4524 break;
4525 }
4526
4527 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4528 out:
4529 return ret_val;
4530 }
4531
4532 /**
4533 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4534 * @hw: pointer to hardware structure
4546 /* Reserve headroom */
4547 pbsize -= headroom;
4548
4549 if (!num_pb)
4550 num_pb = 1;
4551
4552 /* Divide remaining packet buffer space amongst the number of packet
4553 * buffers requested using supplied strategy.
4554 */
4555 switch (strategy) {
4556 case PBA_STRATEGY_WEIGHTED:
4557 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4558 * buffer with 5/8 of the packet buffer space.
4559 */
4560 rxpktsize = (pbsize * 5) / (num_pb * 4);
4561 pbsize -= rxpktsize * (num_pb / 2);
4562 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4563 for (; i < (num_pb / 2); i++)
4564 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4565 /* Fall through to configure remaining packet buffers */
4566 case PBA_STRATEGY_EQUAL:
4567 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4568 for (; i < num_pb; i++)
4569 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4570 break;
4571 default:
4572 break;
4573 }
4574
4575 /* Only support an equally distributed Tx packet buffer strategy. */
4576 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4577 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4578 for (i = 0; i < num_pb; i++) {
4579 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4580 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4581 }
4582
4583 /* Clear unused TCs, if any, to zero buffer size*/
4584 for (; i < IXGBE_MAX_PB; i++) {
4585 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4586 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4587 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4588 }
4589 }
4590
4591 /**
4592 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4593 * @hw: pointer to the hardware structure
4594 *
4595 * The 82599 and x540 MACs can experience issues if TX work is still pending
4596 * when a reset occurs. This function prevents this by flushing the PCIe
4597 * buffers on the system.
4598 **/
4599 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4600 {
4601 u32 gcr_ext, hlreg0, i, poll;
4602 u16 value;
4603
4604 /*
4605 * If double reset is not requested then all transactions should
4606 * already be clear and as such there is no work to do
4607 */
4608 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4609 return;
4610
4611 /*
4612 * Set loopback enable to prevent any transmits from being sent
4613 * should the link come up. This assumes that the RXCTRL.RXEN bit
4614 * has already been cleared.
4615 */
4616 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4617 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4618
4619 /* Wait for a last completion before clearing buffers */
4620 IXGBE_WRITE_FLUSH(hw);
4621 msec_delay(3);
4622
4623 /*
4624 * Before proceeding, make sure that the PCIe block does not have
4625 * transactions pending.
4626 */
4627 poll = ixgbe_pcie_timeout_poll(hw);
4628 for (i = 0; i < poll; i++) {
4629 usec_delay(100);
4630 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4631 if (IXGBE_REMOVED(hw->hw_addr))
4632 goto out;
4633 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4634 goto out;
4635 }
4636
4637 out:
4638 /* initiate cleaning flow for buffers in the PCIe transaction layer */
4639 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4640 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4641 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4642
4643 /* Flush all writes and allow 20usec for all transactions to clear */
4644 IXGBE_WRITE_FLUSH(hw);
4645 usec_delay(20);
4646
4647 /* restore previous register values */
4648 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4649 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4650 }
4651
4652
4653 /**
4654 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4655 * @hw: pointer to hardware structure
4656 * @map: pointer to u8 arr for returning map
4657 *
4658 * Read the rtrup2tc HW register and resolve its content into map
4659 **/
4660 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4661 {
4662 u32 reg, i;
4663
4664 reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4665 for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4666 map[i] = IXGBE_RTRUP2TC_UP_MASK &
4667 (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4668 return;
4669 }
4670
4671 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4672 {
4673 u32 pfdtxgswc;
4674 u32 rxctrl;
4675
4676 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4677 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4678 if (hw->mac.type != ixgbe_mac_82598EB) {
4679 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4680 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4681 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4682 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4683 hw->mac.set_lben = TRUE;
4684 } else {
4685 hw->mac.set_lben = FALSE;
4686 }
4687 }
4688 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4689 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4690 }
4691 }
4692
4693 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4694 {
4695 u32 pfdtxgswc;
4696 u32 rxctrl;
4697
4698 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4699 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4700
4701 if (hw->mac.type != ixgbe_mac_82598EB) {
4702 if (hw->mac.set_lben) {
4703 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4704 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4705 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4706 hw->mac.set_lben = FALSE;
4707 }
4708 }
4709 }
4710
4711 /**
4712 * ixgbe_mng_present - returns TRUE when management capability is present
4713 * @hw: pointer to hardware structure
4714 */
4715 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4716 {
4717 u32 fwsm;
4718
4719 if (hw->mac.type < ixgbe_mac_82599EB)
4720 return FALSE;
4721
4722 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4723 fwsm &= IXGBE_FWSM_MODE_MASK;
4724 return fwsm == IXGBE_FWSM_FW_MODE_PT;
4725 }
4726
4727 /**
4728 * ixgbe_mng_enabled - Is the manageability engine enabled?
4729 * @hw: pointer to hardware structure
4730 *
4731 * Returns TRUE if the manageability engine is enabled.
4732 **/
4733 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4734 {
4735 u32 fwsm, manc, factps;
4736
4737 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4738 if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4739 return FALSE;
4740
4741 manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4742 if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4743 return FALSE;
4744
4745 if (hw->mac.type <= ixgbe_mac_X540) {
4746 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4747 if (factps & IXGBE_FACTPS_MNGCG)
4748 return FALSE;
4749 }
4750
4751 return TRUE;
4752 }
4753
4754 /**
4755 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4756 * @hw: pointer to hardware structure
4757 * @speed: new link speed
4758 * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4759 *
4760 * Set the link speed in the MAC and/or PHY register and restarts link.
4761 **/
4762 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4763 ixgbe_link_speed speed,
4764 bool autoneg_wait_to_complete)
4765 {
4766 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4767 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4768 s32 status = IXGBE_SUCCESS;
4769 u32 speedcnt = 0;
4770 u32 i = 0;
4771 bool autoneg, link_up = FALSE;
4772
4773 DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4774
4775 /* Mask off requested but non-supported speeds */
4776 status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4777 if (status != IXGBE_SUCCESS)
4778 return status;
4779
4780 speed &= link_speed;
4781
4782 /* Try each speed one by one, highest priority first. We do this in
4783 * software because 10Gb fiber doesn't support speed autonegotiation.
4784 */
4785 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4786 speedcnt++;
4787 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4788
4789 /* If we already have link at this speed, just jump out */
4790 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4791 if (status != IXGBE_SUCCESS)
4792 return status;
4793
4794 if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4795 goto out;
4796
4797 /* Set the module link speed */
4798 switch (hw->phy.media_type) {
4799 case ixgbe_media_type_fiber_fixed:
4800 case ixgbe_media_type_fiber:
4801 ixgbe_set_rate_select_speed(hw,
4802 IXGBE_LINK_SPEED_10GB_FULL);
4803 break;
4804 case ixgbe_media_type_fiber_qsfp:
4805 /* QSFP module automatically detects MAC link speed */
4806 break;
4807 default:
4808 DEBUGOUT("Unexpected media type.\n");
4809 break;
4810 }
4811
4812 /* Allow module to change analog characteristics (1G->10G) */
4813 msec_delay(40);
4814
4815 status = ixgbe_setup_mac_link(hw,
4816 IXGBE_LINK_SPEED_10GB_FULL,
4817 autoneg_wait_to_complete);
4818 if (status != IXGBE_SUCCESS)
4819 return status;
4820
4821 /* Flap the Tx laser if it has not already been done */
4822 ixgbe_flap_tx_laser(hw);
4823
4824 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4825 * Section 73.10.2, we may have to wait up to 500ms if KR is
4826 * attempted. 82599 uses the same timing for 10g SFI.
4827 */
4828 for (i = 0; i < 5; i++) {
4829 /* Wait for the link partner to also set speed */
4830 msec_delay(100);
4831
4832 /* If we have link, just jump out */
4833 status = ixgbe_check_link(hw, &link_speed,
4834 &link_up, FALSE);
4835 if (status != IXGBE_SUCCESS)
4836 return status;
4837
4838 if (link_up)
4839 goto out;
4840 }
4841 }
4842
4843 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4844 speedcnt++;
4845 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4846 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4847
4848 /* If we already have link at this speed, just jump out */
4849 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4850 if (status != IXGBE_SUCCESS)
4851 return status;
4852
4853 if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4854 goto out;
4855
4856 /* Set the module link speed */
4857 switch (hw->phy.media_type) {
4858 case ixgbe_media_type_fiber_fixed:
4859 case ixgbe_media_type_fiber:
4860 ixgbe_set_rate_select_speed(hw,
4861 IXGBE_LINK_SPEED_1GB_FULL);
4862 break;
4863 case ixgbe_media_type_fiber_qsfp:
4864 /* QSFP module automatically detects link speed */
4865 break;
4866 default:
4867 DEBUGOUT("Unexpected media type.\n");
4868 break;
4869 }
4870
4871 /* Allow module to change analog characteristics (10G->1G) */
4872 msec_delay(40);
4873
4874 status = ixgbe_setup_mac_link(hw,
4875 IXGBE_LINK_SPEED_1GB_FULL,
4876 autoneg_wait_to_complete);
4877 if (status != IXGBE_SUCCESS)
4878 return status;
4879
4880 /* Flap the Tx laser if it has not already been done */
4881 ixgbe_flap_tx_laser(hw);
4882
4883 /* Wait for the link partner to also set speed */
4884 msec_delay(100);
4885
4886 /* If we have link, just jump out */
4887 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4888 if (status != IXGBE_SUCCESS)
4889 return status;
4890
4891 if (link_up)
4892 goto out;
4893 }
4894
4895 /* We didn't get link. Configure back to the highest speed we tried,
4896 * (if there was more than one). We call ourselves back with just the
4897 * single highest speed that the user requested.
4898 */
4899 if (speedcnt > 1)
4900 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4901 highest_link_speed,
4902 autoneg_wait_to_complete);
4903
4904 out:
4905 /* Set autoneg_advertised value based on input link speed */
4906 hw->phy.autoneg_advertised = 0;
4907
4908 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4909 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4910
4911 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4912 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4913
4914 return status;
4915 }
4916
4917 /**
4918 * ixgbe_set_soft_rate_select_speed - Set module link speed
4919 * @hw: pointer to hardware structure
4920 * @speed: link speed to set
4921 *
4922 * Set module link speed via the soft rate select.
4923 */
4924 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4925 ixgbe_link_speed speed)
4926 {
4927 s32 status;
4928 u8 rs, eeprom_data;
4929
4930 switch (speed) {
4931 case IXGBE_LINK_SPEED_10GB_FULL:
4932 /* one bit mask same as setting on */
4933 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4934 break;
4935 case IXGBE_LINK_SPEED_1GB_FULL:
4936 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4937 break;
4938 default:
4939 DEBUGOUT("Invalid fixed module speed\n");
4940 return;
4941 }
4942
4943 /* Set RS0 */
4944 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4945 IXGBE_I2C_EEPROM_DEV_ADDR2,
4946 &eeprom_data);
4947 if (status) {
4948 DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4949 goto out;
4950 }
4951
4952 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4953
4954 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4955 IXGBE_I2C_EEPROM_DEV_ADDR2,
4956 eeprom_data);
4957 if (status) {
4958 DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4959 goto out;
4960 }
4961
4962 /* Set RS1 */
4963 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4964 IXGBE_I2C_EEPROM_DEV_ADDR2,
4965 &eeprom_data);
4966 if (status) {
4967 DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4968 goto out;
4969 }
4970
4971 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4972
4973 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4974 IXGBE_I2C_EEPROM_DEV_ADDR2,
4975 eeprom_data);
4976 if (status) {
4977 DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4978 goto out;
4979 }
4980 out:
4981 return;
4982 }
|