1 /******************************************************************************
   2 
   3   Copyright (c) 2001-2012, Intel Corporation 
   4   All rights reserved.
   5   
   6   Redistribution and use in source and binary forms, with or without 
   7   modification, are permitted provided that the following conditions are met:
   8   
   9    1. Redistributions of source code must retain the above copyright notice, 
  10       this list of conditions and the following disclaimer.
  11   
  12    2. Redistributions in binary form must reproduce the above copyright 
  13       notice, this list of conditions and the following disclaimer in the 
  14       documentation and/or other materials provided with the distribution.
  15   
  16    3. Neither the name of the Intel Corporation nor the names of its 
  17       contributors may be used to endorse or promote products derived from 
  18       this software without specific prior written permission.
  19   
  20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  30   POSSIBILITY OF SUCH DAMAGE.
  31 
  32 ******************************************************************************/
  33 /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.14 2012/07/05 20:51:44 jfv Exp $*/
  34 
  35 #include "ixgbe_common.h"
  36 #include "ixgbe_phy.h"
  37 #include "ixgbe_api.h"
  38 
  39 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  40 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  42 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  43 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  45                                         u16 count);
  46 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  49 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  50 
  51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  52 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
  53                                          u16 *san_mac_offset);
  54 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  55                                              u16 words, u16 *data);
  56 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  57                                               u16 words, u16 *data);
  58 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  59                                                  u16 offset);
  60 
  61 /**
  62  *  ixgbe_init_ops_generic - Inits function ptrs
  63  *  @hw: pointer to the hardware structure
  64  *
  65  *  Initialize the function pointers.
  66  **/
  67 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
  68 {
  69         struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
  70         struct ixgbe_mac_info *mac = &hw->mac;
  71         u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
  72 
  73         DEBUGFUNC("ixgbe_init_ops_generic");
  74 
  75         /* EEPROM */
  76         eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
  77         /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
  78         if (eec & IXGBE_EEC_PRES) {
  79                 eeprom->ops.read = &ixgbe_read_eerd_generic;
  80                 eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
  81         } else {
  82                 eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
  83                 eeprom->ops.read_buffer =
  84                                  &ixgbe_read_eeprom_buffer_bit_bang_generic;
  85         }
  86         eeprom->ops.write = &ixgbe_write_eeprom_generic;
  87         eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
  88         eeprom->ops.validate_checksum =
  89                                       &ixgbe_validate_eeprom_checksum_generic;
  90         eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
  91         eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
  92 
  93         /* MAC */
  94         mac->ops.init_hw = &ixgbe_init_hw_generic;
  95         mac->ops.reset_hw = NULL;
  96         mac->ops.start_hw = &ixgbe_start_hw_generic;
  97         mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
  98         mac->ops.get_media_type = NULL;
  99         mac->ops.get_supported_physical_layer = NULL;
 100         mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
 101         mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
 102         mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
 103         mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
 104         mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
 105         mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
 106         mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
 107 
 108         /* LEDs */
 109         mac->ops.led_on = &ixgbe_led_on_generic;
 110         mac->ops.led_off = &ixgbe_led_off_generic;
 111         mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
 112         mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
 113 
 114         /* RAR, Multicast, VLAN */
 115         mac->ops.set_rar = &ixgbe_set_rar_generic;
 116         mac->ops.clear_rar = &ixgbe_clear_rar_generic;
 117         mac->ops.insert_mac_addr = NULL;
 118         mac->ops.set_vmdq = NULL;
 119         mac->ops.clear_vmdq = NULL;
 120         mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
 121         mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
 122         mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
 123         mac->ops.enable_mc = &ixgbe_enable_mc_generic;
 124         mac->ops.disable_mc = &ixgbe_disable_mc_generic;
 125         mac->ops.clear_vfta = NULL;
 126         mac->ops.set_vfta = NULL;
 127         mac->ops.set_vlvf = NULL;
 128         mac->ops.init_uta_tables = NULL;
 129 
 130         /* Flow Control */
 131         mac->ops.fc_enable = &ixgbe_fc_enable_generic;
 132 
 133         /* Link */
 134         mac->ops.get_link_capabilities = NULL;
 135         mac->ops.setup_link = NULL;
 136         mac->ops.check_link = NULL;
 137 
 138         return IXGBE_SUCCESS;
 139 }
 140 
 141 /**
 142  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 143  *  control
 144  *  @hw: pointer to hardware structure
 145  *
 146  *  There are several phys that do not support autoneg flow control. This
 147  *  function check the device id to see if the associated phy supports
 148  *  autoneg flow control.
 149  **/
 150 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
 151 {
 152 
 153         DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
 154 
 155         switch (hw->device_id) {
 156         case IXGBE_DEV_ID_X540T:
 157         case IXGBE_DEV_ID_X540T1:
 158                 return IXGBE_SUCCESS;
 159         case IXGBE_DEV_ID_82599_T3_LOM:
 160                 return IXGBE_SUCCESS;
 161         default:
 162                 return IXGBE_ERR_FC_NOT_SUPPORTED;
 163         }
 164 }
 165 
 166 /**
 167  *  ixgbe_setup_fc - Set up flow control
 168  *  @hw: pointer to hardware structure
 169  *
 170  *  Called at init time to set up flow control.
 171  **/
 172 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
 173 {
 174         s32 ret_val = IXGBE_SUCCESS;
 175         u32 reg = 0, reg_bp = 0;
 176         u16 reg_cu = 0;
 177 
 178         DEBUGFUNC("ixgbe_setup_fc");
 179 
 180         /*
 181          * Validate the requested mode.  Strict IEEE mode does not allow
 182          * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 183          */
 184         if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 185                 DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 186                 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 187                 goto out;
 188         }
 189 
 190         /*
 191          * 10gig parts do not have a word in the EEPROM to determine the
 192          * default flow control setting, so we explicitly set it to full.
 193          */
 194         if (hw->fc.requested_mode == ixgbe_fc_default)
 195                 hw->fc.requested_mode = ixgbe_fc_full;
 196 
 197         /*
 198          * Set up the 1G and 10G flow control advertisement registers so the
 199          * HW will be able to do fc autoneg once the cable is plugged in.  If
 200          * we link at 10G, the 1G advertisement is harmless and vice versa.
 201          */
 202         switch (hw->phy.media_type) {
 203         case ixgbe_media_type_fiber:
 204         case ixgbe_media_type_backplane:
 205                 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 206                 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 207                 break;
 208         case ixgbe_media_type_copper:
 209                 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
 210                                      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
 211                 break;
 212         default:
 213                 break;
 214         }
 215 
 216         /*
 217          * The possible values of fc.requested_mode are:
 218          * 0: Flow control is completely disabled
 219          * 1: Rx flow control is enabled (we can receive pause frames,
 220          *    but not send pause frames).
 221          * 2: Tx flow control is enabled (we can send pause frames but
 222          *    we do not support receiving pause frames).
 223          * 3: Both Rx and Tx flow control (symmetric) are enabled.
 224          * other: Invalid.
 225          */
 226         switch (hw->fc.requested_mode) {
 227         case ixgbe_fc_none:
 228                 /* Flow control completely disabled by software override. */
 229                 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 230                 if (hw->phy.media_type == ixgbe_media_type_backplane)
 231                         reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 232                                     IXGBE_AUTOC_ASM_PAUSE);
 233                 else if (hw->phy.media_type == ixgbe_media_type_copper)
 234                         reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 235                 break;
 236         case ixgbe_fc_tx_pause:
 237                 /*
 238                  * Tx Flow control is enabled, and Rx Flow control is
 239                  * disabled by software override.
 240                  */
 241                 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 242                 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 243                 if (hw->phy.media_type == ixgbe_media_type_backplane) {
 244                         reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 245                         reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 246                 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 247                         reg_cu |= IXGBE_TAF_ASM_PAUSE;
 248                         reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 249                 }
 250                 break;
 251         case ixgbe_fc_rx_pause:
 252                 /*
 253                  * Rx Flow control is enabled and Tx Flow control is
 254                  * disabled by software override. Since there really
 255                  * isn't a way to advertise that we are capable of RX
 256                  * Pause ONLY, we will advertise that we support both
 257                  * symmetric and asymmetric Rx PAUSE, as such we fall
 258                  * through to the fc_full statement.  Later, we will
 259                  * disable the adapter's ability to send PAUSE frames.
 260                  */
 261         case ixgbe_fc_full:
 262                 /* Flow control (both Rx and Tx) is enabled by SW override. */
 263                 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 264                 if (hw->phy.media_type == ixgbe_media_type_backplane)
 265                         reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 266                                   IXGBE_AUTOC_ASM_PAUSE;
 267                 else if (hw->phy.media_type == ixgbe_media_type_copper)
 268                         reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 269                 break;
 270         default:
 271                 DEBUGOUT("Flow control param set incorrectly\n");
 272                 ret_val = IXGBE_ERR_CONFIG;
 273                 goto out;
 274         }
 275 
 276         if (hw->mac.type != ixgbe_mac_X540) {
 277                 /*
 278                  * Enable auto-negotiation between the MAC & PHY;
 279                  * the MAC will advertise clause 37 flow control.
 280                  */
 281                 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 282                 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 283 
 284                 /* Disable AN timeout */
 285                 if (hw->fc.strict_ieee)
 286                         reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 287 
 288                 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 289                 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 290         }
 291 
 292         /*
 293          * AUTOC restart handles negotiation of 1G and 10G on backplane
 294          * and copper. There is no need to set the PCS1GCTL register.
 295          *
 296          */
 297         if (hw->phy.media_type == ixgbe_media_type_backplane) {
 298                 reg_bp |= IXGBE_AUTOC_AN_RESTART;
 299                 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
 300         } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 301                     (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
 302                 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
 303                                       IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
 304         }
 305 
 306         DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 307 out:
 308         return ret_val;
 309 }
 310 
 311 /**
 312  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 313  *  @hw: pointer to hardware structure
 314  *
 315  *  Starts the hardware by filling the bus info structure and media type, clears
 316  *  all on chip counters, initializes receive address registers, multicast
 317  *  table, VLAN filter table, calls routine to set up link and flow control
 318  *  settings, and leaves transmit and receive units disabled and uninitialized
 319  **/
 320 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 321 {
 322         s32 ret_val;
 323         u32 ctrl_ext;
 324 
 325         DEBUGFUNC("ixgbe_start_hw_generic");
 326 
 327         /* Set the media type */
 328         hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 329 
 330         /* PHY ops initialization must be done in reset_hw() */
 331 
 332         /* Clear the VLAN filter table */
 333         hw->mac.ops.clear_vfta(hw);
 334 
 335         /* Clear statistics registers */
 336         hw->mac.ops.clear_hw_cntrs(hw);
 337 
 338         /* Set No Snoop Disable */
 339         ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 340         ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 341         IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 342         IXGBE_WRITE_FLUSH(hw);
 343 
 344         /* Setup flow control */
 345         ret_val = ixgbe_setup_fc(hw);
 346         if (ret_val != IXGBE_SUCCESS)
 347                 goto out;
 348 
 349         /* Clear adapter stopped flag */
 350         hw->adapter_stopped = FALSE;
 351 
 352 out:
 353         return ret_val;
 354 }
 355 
 356 /**
 357  *  ixgbe_start_hw_gen2 - Init sequence for common device family
 358  *  @hw: pointer to hw structure
 359  *
 360  * Performs the init sequence common to the second generation
 361  * of 10 GbE devices.
 362  * Devices in the second generation:
 363  *     82599
 364  *     X540
 365  **/
 366 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 367 {
 368         u32 i;
 369         u32 regval;
 370 
 371         /* Clear the rate limiters */
 372         for (i = 0; i < hw->mac.max_tx_queues; i++) {
 373                 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 374                 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 375         }
 376         IXGBE_WRITE_FLUSH(hw);
 377 
 378         /* Disable relaxed ordering */
 379         for (i = 0; i < hw->mac.max_tx_queues; i++) {
 380                 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 381                 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 382                 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 383         }
 384 
 385         for (i = 0; i < hw->mac.max_rx_queues; i++) {
 386                 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 387                 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 388                             IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 389                 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 390         }
 391 
 392         return IXGBE_SUCCESS;
 393 }
 394 
 395 /**
 396  *  ixgbe_init_hw_generic - Generic hardware initialization
 397  *  @hw: pointer to hardware structure
 398  *
 399  *  Initialize the hardware by resetting the hardware, filling the bus info
 400  *  structure and media type, clears all on chip counters, initializes receive
 401  *  address registers, multicast table, VLAN filter table, calls routine to set
 402  *  up link and flow control settings, and leaves transmit and receive units
 403  *  disabled and uninitialized
 404  **/
 405 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 406 {
 407         s32 status;
 408 
 409         DEBUGFUNC("ixgbe_init_hw_generic");
 410 
 411         /* Reset the hardware */
 412         status = hw->mac.ops.reset_hw(hw);
 413 
 414         if (status == IXGBE_SUCCESS) {
 415                 /* Start the HW */
 416                 status = hw->mac.ops.start_hw(hw);
 417         }
 418 
 419         return status;
 420 }
 421 
 422 /**
 423  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 424  *  @hw: pointer to hardware structure
 425  *
 426  *  Clears all hardware statistics counters by reading them from the hardware
 427  *  Statistics counters are clear on read.
 428  **/
 429 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 430 {
 431         u16 i = 0;
 432 
 433         DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
 434 
 435         (void) IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 436         (void) IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 437         (void) IXGBE_READ_REG(hw, IXGBE_ERRBC);
 438         (void) IXGBE_READ_REG(hw, IXGBE_MSPDC);
 439         for (i = 0; i < 8; i++)
 440                 (void) IXGBE_READ_REG(hw, IXGBE_MPC(i));
 441 
 442         (void) IXGBE_READ_REG(hw, IXGBE_MLFC);
 443         (void) IXGBE_READ_REG(hw, IXGBE_MRFC);
 444         (void) IXGBE_READ_REG(hw, IXGBE_RLEC);
 445         (void) IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 446         (void) IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 447         if (hw->mac.type >= ixgbe_mac_82599EB) {
 448                 (void) IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 449                 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 450         } else {
 451                 (void) IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 452                 (void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 453         }
 454 
 455         for (i = 0; i < 8; i++) {
 456                 (void) IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 457                 (void) IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 458                 if (hw->mac.type >= ixgbe_mac_82599EB) {
 459                         (void) IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 460                         (void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 461                 } else {
 462                         (void) IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 463                         (void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 464                 }
 465         }
 466         if (hw->mac.type >= ixgbe_mac_82599EB)
 467                 for (i = 0; i < 8; i++)
 468                         (void) IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 469         (void) IXGBE_READ_REG(hw, IXGBE_PRC64);
 470         (void) IXGBE_READ_REG(hw, IXGBE_PRC127);
 471         (void) IXGBE_READ_REG(hw, IXGBE_PRC255);
 472         (void) IXGBE_READ_REG(hw, IXGBE_PRC511);
 473         (void) IXGBE_READ_REG(hw, IXGBE_PRC1023);
 474         (void) IXGBE_READ_REG(hw, IXGBE_PRC1522);
 475         (void) IXGBE_READ_REG(hw, IXGBE_GPRC);
 476         (void) IXGBE_READ_REG(hw, IXGBE_BPRC);
 477         (void) IXGBE_READ_REG(hw, IXGBE_MPRC);
 478         (void) IXGBE_READ_REG(hw, IXGBE_GPTC);
 479         (void) IXGBE_READ_REG(hw, IXGBE_GORCL);
 480         (void) IXGBE_READ_REG(hw, IXGBE_GORCH);
 481         (void) IXGBE_READ_REG(hw, IXGBE_GOTCL);
 482         (void) IXGBE_READ_REG(hw, IXGBE_GOTCH);
 483         if (hw->mac.type == ixgbe_mac_82598EB)
 484                 for (i = 0; i < 8; i++)
 485                         (void) IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 486         (void) IXGBE_READ_REG(hw, IXGBE_RUC);
 487         (void) IXGBE_READ_REG(hw, IXGBE_RFC);
 488         (void) IXGBE_READ_REG(hw, IXGBE_ROC);
 489         (void) IXGBE_READ_REG(hw, IXGBE_RJC);
 490         (void) IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 491         (void) IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 492         (void) IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 493         (void) IXGBE_READ_REG(hw, IXGBE_TORL);
 494         (void) IXGBE_READ_REG(hw, IXGBE_TORH);
 495         (void) IXGBE_READ_REG(hw, IXGBE_TPR);
 496         (void) IXGBE_READ_REG(hw, IXGBE_TPT);
 497         (void) IXGBE_READ_REG(hw, IXGBE_PTC64);
 498         (void) IXGBE_READ_REG(hw, IXGBE_PTC127);
 499         (void) IXGBE_READ_REG(hw, IXGBE_PTC255);
 500         (void) IXGBE_READ_REG(hw, IXGBE_PTC511);
 501         (void) IXGBE_READ_REG(hw, IXGBE_PTC1023);
 502         (void) IXGBE_READ_REG(hw, IXGBE_PTC1522);
 503         (void) IXGBE_READ_REG(hw, IXGBE_MPTC);
 504         (void) IXGBE_READ_REG(hw, IXGBE_BPTC);
 505         for (i = 0; i < 16; i++) {
 506                 (void) IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 507                 (void) IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 508                 if (hw->mac.type >= ixgbe_mac_82599EB) {
 509                         (void) IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 510                         (void) IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 511                         (void) IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 512                         (void) IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 513                         (void) IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 514                 } else {
 515                         (void) IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 516                         (void) IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 517                 }
 518         }
 519 
 520         if (hw->mac.type == ixgbe_mac_X540) {
 521                 if (hw->phy.id == 0)
 522                         (void) ixgbe_identify_phy(hw);
 523                 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
 524                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 525                 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
 526                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 527                 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
 528                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 529                 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
 530                                      IXGBE_MDIO_PCS_DEV_TYPE, &i);
 531         }
 532 
 533         return IXGBE_SUCCESS;
 534 }
 535 
 536 /**
 537  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 538  *  @hw: pointer to hardware structure
 539  *  @pba_num: stores the part number string from the EEPROM
 540  *  @pba_num_size: part number string buffer length
 541  *
 542  *  Reads the part number string from the EEPROM.
 543  **/
 544 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 545                                   u32 pba_num_size)
 546 {
 547         s32 ret_val;
 548         u16 data;
 549         u16 pba_ptr;
 550         u16 offset;
 551         u16 length;
 552 
 553         DEBUGFUNC("ixgbe_read_pba_string_generic");
 554 
 555         if (pba_num == NULL) {
 556                 DEBUGOUT("PBA string buffer was null\n");
 557                 return IXGBE_ERR_INVALID_ARGUMENT;
 558         }
 559 
 560         ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 561         if (ret_val) {
 562                 DEBUGOUT("NVM Read Error\n");
 563                 return ret_val;
 564         }
 565 
 566         ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 567         if (ret_val) {
 568                 DEBUGOUT("NVM Read Error\n");
 569                 return ret_val;
 570         }
 571 
 572         /*
 573          * if data is not ptr guard the PBA must be in legacy format which
 574          * means pba_ptr is actually our second data word for the PBA number
 575          * and we can decode it into an ascii string
 576          */
 577         if (data != IXGBE_PBANUM_PTR_GUARD) {
 578                 DEBUGOUT("NVM PBA number is not stored as string\n");
 579 
 580                 /* we will need 11 characters to store the PBA */
 581                 if (pba_num_size < 11) {
 582                         DEBUGOUT("PBA string buffer too small\n");
 583                         return IXGBE_ERR_NO_SPACE;
 584                 }
 585 
 586                 /* extract hex string from data and pba_ptr */
 587                 pba_num[0] = (data >> 12) & 0xF;
 588                 pba_num[1] = (data >> 8) & 0xF;
 589                 pba_num[2] = (data >> 4) & 0xF;
 590                 pba_num[3] = data & 0xF;
 591                 pba_num[4] = (pba_ptr >> 12) & 0xF;
 592                 pba_num[5] = (pba_ptr >> 8) & 0xF;
 593                 pba_num[6] = '-';
 594                 pba_num[7] = 0;
 595                 pba_num[8] = (pba_ptr >> 4) & 0xF;
 596                 pba_num[9] = pba_ptr & 0xF;
 597 
 598                 /* put a null character on the end of our string */
 599                 pba_num[10] = '\0';
 600 
 601                 /* switch all the data but the '-' to hex char */
 602                 for (offset = 0; offset < 10; offset++) {
 603                         if (pba_num[offset] < 0xA)
 604                                 pba_num[offset] += '0';
 605                         else if (pba_num[offset] < 0x10)
 606                                 pba_num[offset] += 'A' - 0xA;
 607                 }
 608 
 609                 return IXGBE_SUCCESS;
 610         }
 611 
 612         ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 613         if (ret_val) {
 614                 DEBUGOUT("NVM Read Error\n");
 615                 return ret_val;
 616         }
 617 
 618         if (length == 0xFFFF || length == 0) {
 619                 DEBUGOUT("NVM PBA number section invalid length\n");
 620                 return IXGBE_ERR_PBA_SECTION;
 621         }
 622 
 623         /* check if pba_num buffer is big enough */
 624         if (pba_num_size  < (((u32)length * 2) - 1)) {
 625                 DEBUGOUT("PBA string buffer too small\n");
 626                 return IXGBE_ERR_NO_SPACE;
 627         }
 628 
 629         /* trim pba length from start of string */
 630         pba_ptr++;
 631         length--;
 632 
 633         for (offset = 0; offset < length; offset++) {
 634                 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 635                 if (ret_val) {
 636                         DEBUGOUT("NVM Read Error\n");
 637                         return ret_val;
 638                 }
 639                 pba_num[offset * 2] = (u8)(data >> 8);
 640                 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 641         }
 642         pba_num[offset * 2] = '\0';
 643 
 644         return IXGBE_SUCCESS;
 645 }
 646 
 647 /**
 648  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
 649  *  @hw: pointer to hardware structure
 650  *  @pba_num: stores the part number from the EEPROM
 651  *
 652  *  Reads the part number from the EEPROM.
 653  **/
 654 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
 655 {
 656         s32 ret_val;
 657         u16 data;
 658 
 659         DEBUGFUNC("ixgbe_read_pba_num_generic");
 660 
 661         ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 662         if (ret_val) {
 663                 DEBUGOUT("NVM Read Error\n");
 664                 return ret_val;
 665         } else if (data == IXGBE_PBANUM_PTR_GUARD) {
 666                 DEBUGOUT("NVM Not supported\n");
 667                 return IXGBE_NOT_IMPLEMENTED;
 668         }
 669         *pba_num = (u32)(data << 16);
 670 
 671         ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
 672         if (ret_val) {
 673                 DEBUGOUT("NVM Read Error\n");
 674                 return ret_val;
 675         }
 676         *pba_num |= data;
 677 
 678         return IXGBE_SUCCESS;
 679 }
 680 
 681 /**
 682  *  ixgbe_get_mac_addr_generic - Generic get MAC address
 683  *  @hw: pointer to hardware structure
 684  *  @mac_addr: Adapter MAC address
 685  *
 686  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 687  *  A reset of the adapter must be performed prior to calling this function
 688  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 689  **/
 690 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 691 {
 692         u32 rar_high;
 693         u32 rar_low;
 694         u16 i;
 695 
 696         DEBUGFUNC("ixgbe_get_mac_addr_generic");
 697 
 698         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 699         rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 700 
 701         for (i = 0; i < 4; i++)
 702                 mac_addr[i] = (u8)(rar_low >> (i*8));
 703 
 704         for (i = 0; i < 2; i++)
 705                 mac_addr[i+4] = (u8)(rar_high >> (i*8));
 706 
 707         return IXGBE_SUCCESS;
 708 }
 709 
 710 /**
 711  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 712  *  @hw: pointer to hardware structure
 713  *
 714  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 715  **/
 716 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 717 {
 718         struct ixgbe_mac_info *mac = &hw->mac;
 719         u16 link_status;
 720 
 721         DEBUGFUNC("ixgbe_get_bus_info_generic");
 722 
 723         hw->bus.type = ixgbe_bus_type_pci_express;
 724 
 725         /* Get the negotiated link width and speed from PCI config space */
 726         link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
 727 
 728         switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 729         case IXGBE_PCI_LINK_WIDTH_1:
 730                 hw->bus.width = ixgbe_bus_width_pcie_x1;
 731                 break;
 732         case IXGBE_PCI_LINK_WIDTH_2:
 733                 hw->bus.width = ixgbe_bus_width_pcie_x2;
 734                 break;
 735         case IXGBE_PCI_LINK_WIDTH_4:
 736                 hw->bus.width = ixgbe_bus_width_pcie_x4;
 737                 break;
 738         case IXGBE_PCI_LINK_WIDTH_8:
 739                 hw->bus.width = ixgbe_bus_width_pcie_x8;
 740                 break;
 741         default:
 742                 hw->bus.width = ixgbe_bus_width_unknown;
 743                 break;
 744         }
 745 
 746         switch (link_status & IXGBE_PCI_LINK_SPEED) {
 747         case IXGBE_PCI_LINK_SPEED_2500:
 748                 hw->bus.speed = ixgbe_bus_speed_2500;
 749                 break;
 750         case IXGBE_PCI_LINK_SPEED_5000:
 751                 hw->bus.speed = ixgbe_bus_speed_5000;
 752                 break;
 753         case IXGBE_PCI_LINK_SPEED_8000:
 754                 hw->bus.speed = ixgbe_bus_speed_8000;
 755                 break;
 756         default:
 757                 hw->bus.speed = ixgbe_bus_speed_unknown;
 758                 break;
 759         }
 760 
 761         mac->ops.set_lan_id(hw);
 762 
 763         return IXGBE_SUCCESS;
 764 }
 765 
 766 /**
 767  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 768  *  @hw: pointer to the HW structure
 769  *
 770  *  Determines the LAN function id by reading memory-mapped registers
 771  *  and swaps the port value if requested.
 772  **/
 773 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 774 {
 775         struct ixgbe_bus_info *bus = &hw->bus;
 776         u32 reg;
 777 
 778         DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
 779 
 780         reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 781         bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 782         bus->lan_id = bus->func;
 783 
 784         /* check for a port swap */
 785         reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 786         if (reg & IXGBE_FACTPS_LFS)
 787                 bus->func ^= 0x1;
 788 }
 789 
 790 /**
 791  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 792  *  @hw: pointer to hardware structure
 793  *
 794  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 795  *  disables transmit and receive units. The adapter_stopped flag is used by
 796  *  the shared code and drivers to determine if the adapter is in a stopped
 797  *  state and should not touch the hardware.
 798  **/
 799 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 800 {
 801         u32 reg_val;
 802         u16 i;
 803 
 804         DEBUGFUNC("ixgbe_stop_adapter_generic");
 805 
 806         /*
 807          * Set the adapter_stopped flag so other driver functions stop touching
 808          * the hardware
 809          */
 810         hw->adapter_stopped = TRUE;
 811 
 812         /* Disable the receive unit */
 813         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
 814 
 815         /* Clear interrupt mask to stop interrupts from being generated */
 816         IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 817 
 818         /* Clear any pending interrupts, flush previous writes */
 819         (void) IXGBE_READ_REG(hw, IXGBE_EICR);
 820 
 821         /* Disable the transmit unit.  Each queue must be disabled. */
 822         for (i = 0; i < hw->mac.max_tx_queues; i++)
 823                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 824 
 825         /* Disable the receive unit by stopping each queue */
 826         for (i = 0; i < hw->mac.max_rx_queues; i++) {
 827                 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 828                 reg_val &= ~IXGBE_RXDCTL_ENABLE;
 829                 reg_val |= IXGBE_RXDCTL_SWFLSH;
 830                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 831         }
 832 
 833         /* flush all queues disables */
 834         IXGBE_WRITE_FLUSH(hw);
 835         msec_delay(2);
 836 
 837         /*
 838          * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 839          * access and verify no pending requests
 840          */
 841         return ixgbe_disable_pcie_master(hw);
 842 }
 843 
 844 /**
 845  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 846  *  @hw: pointer to hardware structure
 847  *  @index: led number to turn on
 848  **/
 849 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 850 {
 851         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 852 
 853         DEBUGFUNC("ixgbe_led_on_generic");
 854 
 855         /* To turn on the LED, set mode to ON. */
 856         led_reg &= ~IXGBE_LED_MODE_MASK(index);
 857         led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 858         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 859         IXGBE_WRITE_FLUSH(hw);
 860 
 861         return IXGBE_SUCCESS;
 862 }
 863 
 864 /**
 865  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 866  *  @hw: pointer to hardware structure
 867  *  @index: led number to turn off
 868  **/
 869 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 870 {
 871         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 872 
 873         DEBUGFUNC("ixgbe_led_off_generic");
 874 
 875         /* To turn off the LED, set mode to OFF. */
 876         led_reg &= ~IXGBE_LED_MODE_MASK(index);
 877         led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 878         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 879         IXGBE_WRITE_FLUSH(hw);
 880 
 881         return IXGBE_SUCCESS;
 882 }
 883 
 884 /**
 885  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 886  *  @hw: pointer to hardware structure
 887  *
 888  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 889  *  ixgbe_hw struct in order to set up EEPROM access.
 890  **/
 891 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 892 {
 893         struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 894         u32 eec;
 895         u16 eeprom_size;
 896 
 897         DEBUGFUNC("ixgbe_init_eeprom_params_generic");
 898 
 899         if (eeprom->type == ixgbe_eeprom_uninitialized) {
 900                 eeprom->type = ixgbe_eeprom_none;
 901                 /* Set default semaphore delay to 10ms which is a well
 902                  * tested value */
 903                 eeprom->semaphore_delay = 10;
 904                 /* Clear EEPROM page size, it will be initialized as needed */
 905                 eeprom->word_page_size = 0;
 906 
 907                 /*
 908                  * Check for EEPROM present first.
 909                  * If not present leave as none
 910                  */
 911                 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 912                 if (eec & IXGBE_EEC_PRES) {
 913                         eeprom->type = ixgbe_eeprom_spi;
 914 
 915                         /*
 916                          * SPI EEPROM is assumed here.  This code would need to
 917                          * change if a future EEPROM is not SPI.
 918                          */
 919                         eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 920                                             IXGBE_EEC_SIZE_SHIFT);
 921                         eeprom->word_size = 1 << (eeprom_size +
 922                                              IXGBE_EEPROM_WORD_SIZE_SHIFT);
 923                 }
 924 
 925                 if (eec & IXGBE_EEC_ADDR_SIZE)
 926                         eeprom->address_bits = 16;
 927                 else
 928                         eeprom->address_bits = 8;
 929                 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
 930                           "%d\n", eeprom->type, eeprom->word_size,
 931                           eeprom->address_bits);
 932         }
 933 
 934         return IXGBE_SUCCESS;
 935 }
 936 
 937 /**
 938  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 939  *  @hw: pointer to hardware structure
 940  *  @offset: offset within the EEPROM to write
 941  *  @words: number of word(s)
 942  *  @data: 16 bit word(s) to write to EEPROM
 943  *
 944  *  Reads 16 bit word(s) from EEPROM through bit-bang method
 945  **/
 946 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 947                                                u16 words, u16 *data)
 948 {
 949         s32 status = IXGBE_SUCCESS;
 950         u16 i, count;
 951 
 952         DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
 953 
 954         hw->eeprom.ops.init_params(hw);
 955 
 956         if (words == 0) {
 957                 status = IXGBE_ERR_INVALID_ARGUMENT;
 958                 goto out;
 959         }
 960 
 961         if (offset + words > hw->eeprom.word_size) {
 962                 status = IXGBE_ERR_EEPROM;
 963                 goto out;
 964         }
 965 
 966         /*
 967          * The EEPROM page size cannot be queried from the chip. We do lazy
 968          * initialization. It is worth to do that when we write large buffer.
 969          */
 970         if ((hw->eeprom.word_page_size == 0) &&
 971             (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 972                 status = ixgbe_detect_eeprom_page_size_generic(hw, offset);
 973         if (status != IXGBE_SUCCESS)
 974                 goto out;
 975 
 976         /*
 977          * We cannot hold synchronization semaphores for too long
 978          * to avoid other entity starvation. However it is more efficient
 979          * to read in bursts than synchronizing access for each word.
 980          */
 981         for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 982                 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 983                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 984                 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 985                                                             count, &data[i]);
 986 
 987                 if (status != IXGBE_SUCCESS)
 988                         break;
 989         }
 990 
 991 out:
 992         return status;
 993 }
 994 
 995 /**
 996  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 997  *  @hw: pointer to hardware structure
 998  *  @offset: offset within the EEPROM to be written to
 999  *  @words: number of word(s)
1000  *  @data: 16 bit word(s) to be written to the EEPROM
1001  *
1002  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1003  *  EEPROM will most likely contain an invalid checksum.
1004  **/
1005 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1006                                               u16 words, u16 *data)
1007 {
1008         s32 status;
1009         u16 word;
1010         u16 page_size;
1011         u16 i;
1012         u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1013 
1014         DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1015 
1016         /* Prepare the EEPROM for writing  */
1017         status = ixgbe_acquire_eeprom(hw);
1018 
1019         if (status == IXGBE_SUCCESS) {
1020                 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1021                         ixgbe_release_eeprom(hw);
1022                         status = IXGBE_ERR_EEPROM;
1023                 }
1024         }
1025 
1026         if (status == IXGBE_SUCCESS) {
1027                 for (i = 0; i < words; i++) {
1028                         ixgbe_standby_eeprom(hw);
1029 
1030                         /*  Send the WRITE ENABLE command (8 bit opcode )  */
1031                         ixgbe_shift_out_eeprom_bits(hw,
1032                                                    IXGBE_EEPROM_WREN_OPCODE_SPI,
1033                                                    IXGBE_EEPROM_OPCODE_BITS);
1034 
1035                         ixgbe_standby_eeprom(hw);
1036 
1037                         /*
1038                          * Some SPI eeproms use the 8th address bit embedded
1039                          * in the opcode
1040                          */
1041                         if ((hw->eeprom.address_bits == 8) &&
1042                             ((offset + i) >= 128))
1043                                 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1044 
1045                         /* Send the Write command (8-bit opcode + addr) */
1046                         ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1047                                                     IXGBE_EEPROM_OPCODE_BITS);
1048                         ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1049                                                     hw->eeprom.address_bits);
1050 
1051                         page_size = hw->eeprom.word_page_size;
1052 
1053                         /* Send the data in burst via SPI*/
1054                         do {
1055                                 word = data[i];
1056                                 word = (word >> 8) | (word << 8);
1057                                 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1058 
1059                                 if (page_size == 0)
1060                                         break;
1061 
1062                                 /* do not wrap around page */
1063                                 if (((offset + i) & (page_size - 1)) ==
1064                                     (page_size - 1))
1065                                         break;
1066                         } while (++i < words);
1067 
1068                         ixgbe_standby_eeprom(hw);
1069                         msec_delay(10);
1070                 }
1071                 /* Done with writing - release the EEPROM */
1072                 ixgbe_release_eeprom(hw);
1073         }
1074 
1075         return status;
1076 }
1077 
1078 /**
1079  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1080  *  @hw: pointer to hardware structure
1081  *  @offset: offset within the EEPROM to be written to
1082  *  @data: 16 bit word to be written to the EEPROM
1083  *
1084  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1085  *  EEPROM will most likely contain an invalid checksum.
1086  **/
1087 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1088 {
1089         s32 status;
1090 
1091         DEBUGFUNC("ixgbe_write_eeprom_generic");
1092 
1093         hw->eeprom.ops.init_params(hw);
1094 
1095         if (offset >= hw->eeprom.word_size) {
1096                 status = IXGBE_ERR_EEPROM;
1097                 goto out;
1098         }
1099 
1100         status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1101 
1102 out:
1103         return status;
1104 }
1105 
1106 /**
1107  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1108  *  @hw: pointer to hardware structure
1109  *  @offset: offset within the EEPROM to be read
1110  *  @data: read 16 bit words(s) from EEPROM
1111  *  @words: number of word(s)
1112  *
1113  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1114  **/
1115 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1116                                               u16 words, u16 *data)
1117 {
1118         s32 status = IXGBE_SUCCESS;
1119         u16 i, count;
1120 
1121         DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1122 
1123         hw->eeprom.ops.init_params(hw);
1124 
1125         if (words == 0) {
1126                 status = IXGBE_ERR_INVALID_ARGUMENT;
1127                 goto out;
1128         }
1129 
1130         if (offset + words > hw->eeprom.word_size) {
1131                 status = IXGBE_ERR_EEPROM;
1132                 goto out;
1133         }
1134 
1135         /*
1136          * We cannot hold synchronization semaphores for too long
1137          * to avoid other entity starvation. However it is more efficient
1138          * to read in bursts than synchronizing access for each word.
1139          */
1140         for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1141                 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1142                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1143 
1144                 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1145                                                            count, &data[i]);
1146 
1147                 if (status != IXGBE_SUCCESS)
1148                         break;
1149         }
1150 
1151 out:
1152         return status;
1153 }
1154 
1155 /**
1156  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1157  *  @hw: pointer to hardware structure
1158  *  @offset: offset within the EEPROM to be read
1159  *  @words: number of word(s)
1160  *  @data: read 16 bit word(s) from EEPROM
1161  *
1162  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1163  **/
1164 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1165                                              u16 words, u16 *data)
1166 {
1167         s32 status;
1168         u16 word_in;
1169         u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1170         u16 i;
1171 
1172         DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1173 
1174         /* Prepare the EEPROM for reading  */
1175         status = ixgbe_acquire_eeprom(hw);
1176 
1177         if (status == IXGBE_SUCCESS) {
1178                 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1179                         ixgbe_release_eeprom(hw);
1180                         status = IXGBE_ERR_EEPROM;
1181                 }
1182         }
1183 
1184         if (status == IXGBE_SUCCESS) {
1185                 for (i = 0; i < words; i++) {
1186                         ixgbe_standby_eeprom(hw);
1187                         /*
1188                          * Some SPI eeproms use the 8th address bit embedded
1189                          * in the opcode
1190                          */
1191                         if ((hw->eeprom.address_bits == 8) &&
1192                             ((offset + i) >= 128))
1193                                 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1194 
1195                         /* Send the READ command (opcode + addr) */
1196                         ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1197                                                     IXGBE_EEPROM_OPCODE_BITS);
1198                         ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1199                                                     hw->eeprom.address_bits);
1200 
1201                         /* Read the data. */
1202                         word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1203                         data[i] = (word_in >> 8) | (word_in << 8);
1204                 }
1205 
1206                 /* End this read operation */
1207                 ixgbe_release_eeprom(hw);
1208         }
1209 
1210         return status;
1211 }
1212 
1213 /**
1214  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1215  *  @hw: pointer to hardware structure
1216  *  @offset: offset within the EEPROM to be read
1217  *  @data: read 16 bit value from EEPROM
1218  *
1219  *  Reads 16 bit value from EEPROM through bit-bang method
1220  **/
1221 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1222                                        u16 *data)
1223 {
1224         s32 status;
1225 
1226         DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1227 
1228         hw->eeprom.ops.init_params(hw);
1229 
1230         if (offset >= hw->eeprom.word_size) {
1231                 status = IXGBE_ERR_EEPROM;
1232                 goto out;
1233         }
1234 
1235         status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1236 
1237 out:
1238         return status;
1239 }
1240 
1241 /**
1242  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1243  *  @hw: pointer to hardware structure
1244  *  @offset: offset of word in the EEPROM to read
1245  *  @words: number of word(s)
1246  *  @data: 16 bit word(s) from the EEPROM
1247  *
1248  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1249  **/
1250 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1251                                    u16 words, u16 *data)
1252 {
1253         u32 eerd;
1254         s32 status = IXGBE_SUCCESS;
1255         u32 i;
1256 
1257         DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1258 
1259         hw->eeprom.ops.init_params(hw);
1260 
1261         if (words == 0) {
1262                 status = IXGBE_ERR_INVALID_ARGUMENT;
1263                 goto out;
1264         }
1265 
1266         if (offset >= hw->eeprom.word_size) {
1267                 status = IXGBE_ERR_EEPROM;
1268                 goto out;
1269         }
1270 
1271         for (i = 0; i < words; i++) {
1272                 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1273                        IXGBE_EEPROM_RW_REG_START;
1274 
1275                 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1276                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1277 
1278                 if (status == IXGBE_SUCCESS) {
1279                         data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1280                                    IXGBE_EEPROM_RW_REG_DATA);
1281                 } else {
1282                         DEBUGOUT("Eeprom read timed out\n");
1283                         goto out;
1284                 }
1285         }
1286 out:
1287         return status;
1288 }
1289 
1290 /**
1291  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1292  *  @hw: pointer to hardware structure
1293  *  @offset: offset within the EEPROM to be used as a scratch pad
1294  *
1295  *  Discover EEPROM page size by writing marching data at given offset.
1296  *  This function is called only when we are writing a new large buffer
1297  *  at given offset so the data would be overwritten anyway.
1298  **/
1299 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1300                                                  u16 offset)
1301 {
1302         u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1303         s32 status = IXGBE_SUCCESS;
1304         u16 i;
1305 
1306         DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1307 
1308         for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1309                 data[i] = i;
1310 
1311         hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1312         status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1313                                              IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1314         hw->eeprom.word_page_size = 0;
1315         if (status != IXGBE_SUCCESS)
1316                 goto out;
1317 
1318         status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1319         if (status != IXGBE_SUCCESS)
1320                 goto out;
1321 
1322         /*
1323          * When writing in burst more than the actual page size
1324          * EEPROM address wraps around current page.
1325          */
1326         hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1327 
1328         DEBUGOUT1("Detected EEPROM page size = %d words.",
1329                   hw->eeprom.word_page_size);
1330 out:
1331         return status;
1332 }
1333 
1334 /**
1335  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1336  *  @hw: pointer to hardware structure
1337  *  @offset: offset of  word in the EEPROM to read
1338  *  @data: word read from the EEPROM
1339  *
1340  *  Reads a 16 bit word from the EEPROM using the EERD register.
1341  **/
1342 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1343 {
1344         return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1345 }
1346 
1347 /**
1348  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1349  *  @hw: pointer to hardware structure
1350  *  @offset: offset of  word in the EEPROM to write
1351  *  @words: number of word(s)
1352  *  @data: word(s) write to the EEPROM
1353  *
1354  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1355  **/
1356 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1357                                     u16 words, u16 *data)
1358 {
1359         u32 eewr;
1360         s32 status = IXGBE_SUCCESS;
1361         u16 i;
1362 
1363         DEBUGFUNC("ixgbe_write_eewr_generic");
1364 
1365         hw->eeprom.ops.init_params(hw);
1366 
1367         if (words == 0) {
1368                 status = IXGBE_ERR_INVALID_ARGUMENT;
1369                 goto out;
1370         }
1371 
1372         if (offset >= hw->eeprom.word_size) {
1373                 status = IXGBE_ERR_EEPROM;
1374                 goto out;
1375         }
1376 
1377         for (i = 0; i < words; i++) {
1378                 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1379                         (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1380                         IXGBE_EEPROM_RW_REG_START;
1381 
1382                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1383                 if (status != IXGBE_SUCCESS) {
1384                         DEBUGOUT("Eeprom write EEWR timed out\n");
1385                         goto out;
1386                 }
1387 
1388                 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1389 
1390                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1391                 if (status != IXGBE_SUCCESS) {
1392                         DEBUGOUT("Eeprom write EEWR timed out\n");
1393                         goto out;
1394                 }
1395         }
1396 
1397 out:
1398         return status;
1399 }
1400 
1401 /**
1402  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1403  *  @hw: pointer to hardware structure
1404  *  @offset: offset of  word in the EEPROM to write
1405  *  @data: word write to the EEPROM
1406  *
1407  *  Write a 16 bit word to the EEPROM using the EEWR register.
1408  **/
1409 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1410 {
1411         return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1412 }
1413 
1414 /**
1415  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1416  *  @hw: pointer to hardware structure
1417  *  @ee_reg: EEPROM flag for polling
1418  *
1419  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1420  *  read or write is done respectively.
1421  **/
1422 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1423 {
1424         u32 i;
1425         u32 reg;
1426         s32 status = IXGBE_ERR_EEPROM;
1427 
1428         DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1429 
1430         for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1431                 if (ee_reg == IXGBE_NVM_POLL_READ)
1432                         reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1433                 else
1434                         reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1435 
1436                 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1437                         status = IXGBE_SUCCESS;
1438                         break;
1439                 }
1440                 usec_delay(5);
1441         }
1442         return status;
1443 }
1444 
1445 /**
1446  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1447  *  @hw: pointer to hardware structure
1448  *
1449  *  Prepares EEPROM for access using bit-bang method. This function should
1450  *  be called before issuing a command to the EEPROM.
1451  **/
1452 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1453 {
1454         s32 status = IXGBE_SUCCESS;
1455         u32 eec;
1456         u32 i;
1457 
1458         DEBUGFUNC("ixgbe_acquire_eeprom");
1459 
1460         if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1461             != IXGBE_SUCCESS)
1462                 status = IXGBE_ERR_SWFW_SYNC;
1463 
1464         if (status == IXGBE_SUCCESS) {
1465                 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466 
1467                 /* Request EEPROM Access */
1468                 eec |= IXGBE_EEC_REQ;
1469                 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1470 
1471                 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1472                         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1473                         if (eec & IXGBE_EEC_GNT)
1474                                 break;
1475                         usec_delay(5);
1476                 }
1477 
1478                 /* Release if grant not acquired */
1479                 if (!(eec & IXGBE_EEC_GNT)) {
1480                         eec &= ~IXGBE_EEC_REQ;
1481                         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482                         DEBUGOUT("Could not acquire EEPROM grant\n");
1483 
1484                         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1485                         status = IXGBE_ERR_EEPROM;
1486                 }
1487 
1488                 /* Setup EEPROM for Read/Write */
1489                 if (status == IXGBE_SUCCESS) {
1490                         /* Clear CS and SK */
1491                         eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1492                         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1493                         IXGBE_WRITE_FLUSH(hw);
1494                         usec_delay(1);
1495                 }
1496         }
1497         return status;
1498 }
1499 
1500 /**
1501  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1502  *  @hw: pointer to hardware structure
1503  *
1504  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1505  **/
1506 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1507 {
1508         s32 status = IXGBE_ERR_EEPROM;
1509         u32 timeout = 2000;
1510         u32 i;
1511         u32 swsm;
1512 
1513         DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1514 
1515 
1516         /* Get SMBI software semaphore between device drivers first */
1517         for (i = 0; i < timeout; i++) {
1518                 /*
1519                  * If the SMBI bit is 0 when we read it, then the bit will be
1520                  * set and we have the semaphore
1521                  */
1522                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1523                 if (!(swsm & IXGBE_SWSM_SMBI)) {
1524                         status = IXGBE_SUCCESS;
1525                         break;
1526                 }
1527                 usec_delay(50);
1528         }
1529 
1530         if (i == timeout) {
1531                 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1532                          "not granted.\n");
1533                 /*
1534                  * this release is particularly important because our attempts
1535                  * above to get the semaphore may have succeeded, and if there
1536                  * was a timeout, we should unconditionally clear the semaphore
1537                  * bits to free the driver to make progress
1538                  */
1539                 ixgbe_release_eeprom_semaphore(hw);
1540 
1541                 usec_delay(50);
1542                 /*
1543                  * one last try
1544                  * If the SMBI bit is 0 when we read it, then the bit will be
1545                  * set and we have the semaphore
1546                  */
1547                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1548                 if (!(swsm & IXGBE_SWSM_SMBI))
1549                         status = IXGBE_SUCCESS;
1550         }
1551 
1552         /* Now get the semaphore between SW/FW through the SWESMBI bit */
1553         if (status == IXGBE_SUCCESS) {
1554                 for (i = 0; i < timeout; i++) {
1555                         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1556 
1557                         /* Set the SW EEPROM semaphore bit to request access */
1558                         swsm |= IXGBE_SWSM_SWESMBI;
1559                         IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1560 
1561                         /*
1562                          * If we set the bit successfully then we got the
1563                          * semaphore.
1564                          */
1565                         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1566                         if (swsm & IXGBE_SWSM_SWESMBI)
1567                                 break;
1568 
1569                         usec_delay(50);
1570                 }
1571 
1572                 /*
1573                  * Release semaphores and return error if SW EEPROM semaphore
1574                  * was not granted because we don't have access to the EEPROM
1575                  */
1576                 if (i >= timeout) {
1577                         DEBUGOUT("SWESMBI Software EEPROM semaphore "
1578                                  "not granted.\n");
1579                         ixgbe_release_eeprom_semaphore(hw);
1580                         status = IXGBE_ERR_EEPROM;
1581                 }
1582         } else {
1583                 DEBUGOUT("Software semaphore SMBI between device drivers "
1584                          "not granted.\n");
1585         }
1586 
1587         return status;
1588 }
1589 
1590 /**
1591  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1592  *  @hw: pointer to hardware structure
1593  *
1594  *  This function clears hardware semaphore bits.
1595  **/
1596 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1597 {
1598         u32 swsm;
1599 
1600         DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1601 
1602         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1603 
1604         /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1605         swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1606         IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1607         IXGBE_WRITE_FLUSH(hw);
1608 }
1609 
1610 /**
1611  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1612  *  @hw: pointer to hardware structure
1613  **/
1614 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1615 {
1616         s32 status = IXGBE_SUCCESS;
1617         u16 i;
1618         u8 spi_stat_reg;
1619 
1620         DEBUGFUNC("ixgbe_ready_eeprom");
1621 
1622         /*
1623          * Read "Status Register" repeatedly until the LSB is cleared.  The
1624          * EEPROM will signal that the command has been completed by clearing
1625          * bit 0 of the internal status register.  If it's not cleared within
1626          * 5 milliseconds, then error out.
1627          */
1628         for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1629                 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1630                                             IXGBE_EEPROM_OPCODE_BITS);
1631                 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1632                 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1633                         break;
1634 
1635                 usec_delay(5);
1636                 ixgbe_standby_eeprom(hw);
1637         };
1638 
1639         /*
1640          * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1641          * devices (and only 0-5mSec on 5V devices)
1642          */
1643         if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1644                 DEBUGOUT("SPI EEPROM Status error\n");
1645                 status = IXGBE_ERR_EEPROM;
1646         }
1647 
1648         return status;
1649 }
1650 
1651 /**
1652  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1653  *  @hw: pointer to hardware structure
1654  **/
1655 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1656 {
1657         u32 eec;
1658 
1659         DEBUGFUNC("ixgbe_standby_eeprom");
1660 
1661         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1662 
1663         /* Toggle CS to flush commands */
1664         eec |= IXGBE_EEC_CS;
1665         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1666         IXGBE_WRITE_FLUSH(hw);
1667         usec_delay(1);
1668         eec &= ~IXGBE_EEC_CS;
1669         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1670         IXGBE_WRITE_FLUSH(hw);
1671         usec_delay(1);
1672 }
1673 
1674 /**
1675  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1676  *  @hw: pointer to hardware structure
1677  *  @data: data to send to the EEPROM
1678  *  @count: number of bits to shift out
1679  **/
1680 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1681                                         u16 count)
1682 {
1683         u32 eec;
1684         u32 mask;
1685         u32 i;
1686 
1687         DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1688 
1689         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1690 
1691         /*
1692          * Mask is used to shift "count" bits of "data" out to the EEPROM
1693          * one bit at a time.  Determine the starting bit based on count
1694          */
1695         mask = 0x01 << (count - 1);
1696 
1697         for (i = 0; i < count; i++) {
1698                 /*
1699                  * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1700                  * "1", and then raising and then lowering the clock (the SK
1701                  * bit controls the clock input to the EEPROM).  A "0" is
1702                  * shifted out to the EEPROM by setting "DI" to "0" and then
1703                  * raising and then lowering the clock.
1704                  */
1705                 if (data & mask)
1706                         eec |= IXGBE_EEC_DI;
1707                 else
1708                         eec &= ~IXGBE_EEC_DI;
1709 
1710                 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1711                 IXGBE_WRITE_FLUSH(hw);
1712 
1713                 usec_delay(1);
1714 
1715                 ixgbe_raise_eeprom_clk(hw, &eec);
1716                 ixgbe_lower_eeprom_clk(hw, &eec);
1717 
1718                 /*
1719                  * Shift mask to signify next bit of data to shift in to the
1720                  * EEPROM
1721                  */
1722                 mask = mask >> 1;
1723         };
1724 
1725         /* We leave the "DI" bit set to "0" when we leave this routine. */
1726         eec &= ~IXGBE_EEC_DI;
1727         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1728         IXGBE_WRITE_FLUSH(hw);
1729 }
1730 
1731 /**
1732  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1733  *  @hw: pointer to hardware structure
1734  **/
1735 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1736 {
1737         u32 eec;
1738         u32 i;
1739         u16 data = 0;
1740 
1741         DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1742 
1743         /*
1744          * In order to read a register from the EEPROM, we need to shift
1745          * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1746          * the clock input to the EEPROM (setting the SK bit), and then reading
1747          * the value of the "DO" bit.  During this "shifting in" process the
1748          * "DI" bit should always be clear.
1749          */
1750         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1751 
1752         eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1753 
1754         for (i = 0; i < count; i++) {
1755                 data = data << 1;
1756                 ixgbe_raise_eeprom_clk(hw, &eec);
1757 
1758                 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1759 
1760                 eec &= ~(IXGBE_EEC_DI);
1761                 if (eec & IXGBE_EEC_DO)
1762                         data |= 1;
1763 
1764                 ixgbe_lower_eeprom_clk(hw, &eec);
1765         }
1766 
1767         return data;
1768 }
1769 
1770 /**
1771  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1772  *  @hw: pointer to hardware structure
1773  *  @eec: EEC register's current value
1774  **/
1775 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1776 {
1777         DEBUGFUNC("ixgbe_raise_eeprom_clk");
1778 
1779         /*
1780          * Raise the clock input to the EEPROM
1781          * (setting the SK bit), then delay
1782          */
1783         *eec = *eec | IXGBE_EEC_SK;
1784         IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1785         IXGBE_WRITE_FLUSH(hw);
1786         usec_delay(1);
1787 }
1788 
1789 /**
1790  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1791  *  @hw: pointer to hardware structure
1792  *  @eecd: EECD's current value
1793  **/
1794 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1795 {
1796         DEBUGFUNC("ixgbe_lower_eeprom_clk");
1797 
1798         /*
1799          * Lower the clock input to the EEPROM (clearing the SK bit), then
1800          * delay
1801          */
1802         *eec = *eec & ~IXGBE_EEC_SK;
1803         IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1804         IXGBE_WRITE_FLUSH(hw);
1805         usec_delay(1);
1806 }
1807 
1808 /**
1809  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1810  *  @hw: pointer to hardware structure
1811  **/
1812 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1813 {
1814         u32 eec;
1815 
1816         DEBUGFUNC("ixgbe_release_eeprom");
1817 
1818         eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1819 
1820         eec |= IXGBE_EEC_CS;  /* Pull CS high */
1821         eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1822 
1823         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1824         IXGBE_WRITE_FLUSH(hw);
1825 
1826         usec_delay(1);
1827 
1828         /* Stop requesting EEPROM access */
1829         eec &= ~IXGBE_EEC_REQ;
1830         IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1831 
1832         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1833 
1834         /* Delay before attempt to obtain semaphore again to allow FW access */
1835         msec_delay(hw->eeprom.semaphore_delay);
1836 }
1837 
1838 /**
1839  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1840  *  @hw: pointer to hardware structure
1841  **/
1842 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1843 {
1844         u16 i;
1845         u16 j;
1846         u16 checksum = 0;
1847         u16 length = 0;
1848         u16 pointer = 0;
1849         u16 word = 0;
1850 
1851         DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1852 
1853         /* Include 0x0-0x3F in the checksum */
1854         for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1855                 if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1856                         DEBUGOUT("EEPROM read failed\n");
1857                         break;
1858                 }
1859                 checksum += word;
1860         }
1861 
1862         /* Include all data from pointers except for the fw pointer */
1863         for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1864                 hw->eeprom.ops.read(hw, i, &pointer);
1865 
1866                 /* Make sure the pointer seems valid */
1867                 if (pointer != 0xFFFF && pointer != 0) {
1868                         hw->eeprom.ops.read(hw, pointer, &length);
1869 
1870                         if (length != 0xFFFF && length != 0) {
1871                                 for (j = pointer+1; j <= pointer+length; j++) {
1872                                         hw->eeprom.ops.read(hw, j, &word);
1873                                         checksum += word;
1874                                 }
1875                         }
1876                 }
1877         }
1878 
1879         checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1880 
1881         return checksum;
1882 }
1883 
1884 /**
1885  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1886  *  @hw: pointer to hardware structure
1887  *  @checksum_val: calculated checksum
1888  *
1889  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1890  *  caller does not need checksum_val, the value can be NULL.
1891  **/
1892 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1893                                            u16 *checksum_val)
1894 {
1895         s32 status;
1896         u16 checksum;
1897         u16 read_checksum = 0;
1898 
1899         DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1900 
1901         /*
1902          * Read the first word from the EEPROM. If this times out or fails, do
1903          * not continue or we could be in for a very long wait while every
1904          * EEPROM read fails
1905          */
1906         status = hw->eeprom.ops.read(hw, 0, &checksum);
1907 
1908         if (status == IXGBE_SUCCESS) {
1909                 checksum = hw->eeprom.ops.calc_checksum(hw);
1910 
1911                 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1912 
1913                 /*
1914                  * Verify read checksum from EEPROM is the same as
1915                  * calculated checksum
1916                  */
1917                 if (read_checksum != checksum)
1918                         status = IXGBE_ERR_EEPROM_CHECKSUM;
1919 
1920                 /* If the user cares, return the calculated checksum */
1921                 if (checksum_val)
1922                         *checksum_val = checksum;
1923         } else {
1924                 DEBUGOUT("EEPROM read failed\n");
1925         }
1926 
1927         return status;
1928 }
1929 
1930 /**
1931  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1932  *  @hw: pointer to hardware structure
1933  **/
1934 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1935 {
1936         s32 status;
1937         u16 checksum;
1938 
1939         DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1940 
1941         /*
1942          * Read the first word from the EEPROM. If this times out or fails, do
1943          * not continue or we could be in for a very long wait while every
1944          * EEPROM read fails
1945          */
1946         status = hw->eeprom.ops.read(hw, 0, &checksum);
1947 
1948         if (status == IXGBE_SUCCESS) {
1949                 checksum = hw->eeprom.ops.calc_checksum(hw);
1950                 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1951                                               checksum);
1952         } else {
1953                 DEBUGOUT("EEPROM read failed\n");
1954         }
1955 
1956         return status;
1957 }
1958 
1959 /**
1960  *  ixgbe_validate_mac_addr - Validate MAC address
1961  *  @mac_addr: pointer to MAC address.
1962  *
1963  *  Tests a MAC address to ensure it is a valid Individual Address
1964  **/
1965 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1966 {
1967         s32 status = IXGBE_SUCCESS;
1968 
1969         DEBUGFUNC("ixgbe_validate_mac_addr");
1970 
1971         /* Make sure it is not a multicast address */
1972         if (IXGBE_IS_MULTICAST(mac_addr)) {
1973                 DEBUGOUT("MAC address is multicast\n");
1974                 status = IXGBE_ERR_INVALID_MAC_ADDR;
1975         /* Not a broadcast address */
1976         } else if (IXGBE_IS_BROADCAST(mac_addr)) {
1977                 DEBUGOUT("MAC address is broadcast\n");
1978                 status = IXGBE_ERR_INVALID_MAC_ADDR;
1979         /* Reject the zero address */
1980         } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1981                    mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1982                 DEBUGOUT("MAC address is all zeros\n");
1983                 status = IXGBE_ERR_INVALID_MAC_ADDR;
1984         }
1985         return status;
1986 }
1987 
1988 /**
1989  *  ixgbe_set_rar_generic - Set Rx address register
1990  *  @hw: pointer to hardware structure
1991  *  @index: Receive address register to write
1992  *  @addr: Address to put into receive address register
1993  *  @vmdq: VMDq "set" or "pool" index
1994  *  @enable_addr: set flag that address is active
1995  *
1996  *  Puts an ethernet address into a receive address register.
1997  **/
1998 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1999                           u32 enable_addr)
2000 {
2001         u32 rar_low, rar_high;
2002         u32 rar_entries = hw->mac.num_rar_entries;
2003 
2004         DEBUGFUNC("ixgbe_set_rar_generic");
2005 
2006         /* Make sure we are using a valid rar index range */
2007         if (index >= rar_entries) {
2008                 DEBUGOUT1("RAR index %d is out of range.\n", index);
2009                 return IXGBE_ERR_INVALID_ARGUMENT;
2010         }
2011 
2012         /* setup VMDq pool selection before this RAR gets enabled */
2013         hw->mac.ops.set_vmdq(hw, index, vmdq);
2014 
2015         /*
2016          * HW expects these in little endian so we reverse the byte
2017          * order from network order (big endian) to little endian
2018          */
2019         rar_low = ((u32)addr[0] |
2020                    ((u32)addr[1] << 8) |
2021                    ((u32)addr[2] << 16) |
2022                    ((u32)addr[3] << 24));
2023         /*
2024          * Some parts put the VMDq setting in the extra RAH bits,
2025          * so save everything except the lower 16 bits that hold part
2026          * of the address and the address valid bit.
2027          */
2028         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2029         rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2030         rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2031 
2032         if (enable_addr != 0)
2033                 rar_high |= IXGBE_RAH_AV;
2034 
2035         IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2036         IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2037 
2038         return IXGBE_SUCCESS;
2039 }
2040 
2041 /**
2042  *  ixgbe_clear_rar_generic - Remove Rx address register
2043  *  @hw: pointer to hardware structure
2044  *  @index: Receive address register to write
2045  *
2046  *  Clears an ethernet address from a receive address register.
2047  **/
2048 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2049 {
2050         u32 rar_high;
2051         u32 rar_entries = hw->mac.num_rar_entries;
2052 
2053         DEBUGFUNC("ixgbe_clear_rar_generic");
2054 
2055         /* Make sure we are using a valid rar index range */
2056         if (index >= rar_entries) {
2057                 DEBUGOUT1("RAR index %d is out of range.\n", index);
2058                 return IXGBE_ERR_INVALID_ARGUMENT;
2059         }
2060 
2061         /*
2062          * Some parts put the VMDq setting in the extra RAH bits,
2063          * so save everything except the lower 16 bits that hold part
2064          * of the address and the address valid bit.
2065          */
2066         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2067         rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2068 
2069         IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2070         IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2071 
2072         /* clear VMDq pool/queue selection for this RAR */
2073         hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2074 
2075         return IXGBE_SUCCESS;
2076 }
2077 
2078 /**
2079  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2080  *  @hw: pointer to hardware structure
2081  *
2082  *  Places the MAC address in receive address register 0 and clears the rest
2083  *  of the receive address registers. Clears the multicast table. Assumes
2084  *  the receiver is in reset when the routine is called.
2085  **/
2086 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2087 {
2088         u32 i;
2089         u32 rar_entries = hw->mac.num_rar_entries;
2090 
2091         DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2092 
2093         /*
2094          * If the current mac address is valid, assume it is a software override
2095          * to the permanent address.
2096          * Otherwise, use the permanent address from the eeprom.
2097          */
2098         if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2099             IXGBE_ERR_INVALID_MAC_ADDR) {
2100                 /* Get the MAC address from the RAR0 for later reference */
2101                 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2102 
2103                 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2104                           hw->mac.addr[0], hw->mac.addr[1],
2105                           hw->mac.addr[2]);
2106                 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2107                           hw->mac.addr[4], hw->mac.addr[5]);
2108         } else {
2109                 /* Setup the receive address. */
2110                 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2111                 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2112                           hw->mac.addr[0], hw->mac.addr[1],
2113                           hw->mac.addr[2]);
2114                 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2115                           hw->mac.addr[4], hw->mac.addr[5]);
2116 
2117                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2118 
2119                 /* clear VMDq pool/queue selection for RAR 0 */
2120                 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2121         }
2122         hw->addr_ctrl.overflow_promisc = 0;
2123 
2124         hw->addr_ctrl.rar_used_count = 1;
2125 
2126         /* Zero out the other receive addresses. */
2127         DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2128         for (i = 1; i < rar_entries; i++) {
2129                 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2130                 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2131         }
2132 
2133         /* Clear the MTA */
2134         hw->addr_ctrl.mta_in_use = 0;
2135         IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2136 
2137         DEBUGOUT(" Clearing MTA\n");
2138         for (i = 0; i < hw->mac.mcft_size; i++)
2139                 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2140 
2141         /* Should always be IXGBE_SUCCESS. */
2142         return ixgbe_init_uta_tables(hw);
2143 }
2144 
2145 /**
2146  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2147  *  @hw: pointer to hardware structure
2148  *  @addr: new address
2149  *
2150  *  Adds it to unused receive address register or goes into promiscuous mode.
2151  **/
2152 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2153 {
2154         u32 rar_entries = hw->mac.num_rar_entries;
2155         u32 rar;
2156 
2157         DEBUGFUNC("ixgbe_add_uc_addr");
2158 
2159         DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2160                   addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2161 
2162         /*
2163          * Place this address in the RAR if there is room,
2164          * else put the controller into promiscuous mode
2165          */
2166         if (hw->addr_ctrl.rar_used_count < rar_entries) {
2167                 rar = hw->addr_ctrl.rar_used_count;
2168                 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2169                 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2170                 hw->addr_ctrl.rar_used_count++;
2171         } else {
2172                 hw->addr_ctrl.overflow_promisc++;
2173         }
2174 
2175         DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2176 }
2177 
2178 /**
2179  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2180  *  @hw: pointer to hardware structure
2181  *  @addr_list: the list of new addresses
2182  *  @addr_count: number of addresses
2183  *  @next: iterator function to walk the address list
2184  *
2185  *  The given list replaces any existing list.  Clears the secondary addrs from
2186  *  receive address registers.  Uses unused receive address registers for the
2187  *  first secondary addresses, and falls back to promiscuous mode as needed.
2188  *
2189  *  Drivers using secondary unicast addresses must set user_set_promisc when
2190  *  manually putting the device into promiscuous mode.
2191  **/
2192 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2193                                       u32 addr_count, ixgbe_mc_addr_itr next)
2194 {
2195         u8 *addr;
2196         u32 i;
2197         u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2198         u32 uc_addr_in_use;
2199         u32 fctrl;
2200         u32 vmdq;
2201 
2202         DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2203 
2204         /*
2205          * Clear accounting of old secondary address list,
2206          * don't count RAR[0]
2207          */
2208         uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2209         hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2210         hw->addr_ctrl.overflow_promisc = 0;
2211 
2212         /* Zero out the other receive addresses */
2213         DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2214         for (i = 0; i < uc_addr_in_use; i++) {
2215                 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2216                 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2217         }
2218 
2219         /* Add the new addresses */
2220         for (i = 0; i < addr_count; i++) {
2221                 DEBUGOUT(" Adding the secondary addresses:\n");
2222                 addr = next(hw, &addr_list, &vmdq);
2223                 ixgbe_add_uc_addr(hw, addr, vmdq);
2224         }
2225 
2226         if (hw->addr_ctrl.overflow_promisc) {
2227                 /* enable promisc if not already in overflow or set by user */
2228                 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2229                         DEBUGOUT(" Entering address overflow promisc mode\n");
2230                         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2231                         fctrl |= IXGBE_FCTRL_UPE;
2232                         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2233                 }
2234         } else {
2235                 /* only disable if set by overflow, not by user */
2236                 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2237                         DEBUGOUT(" Leaving address overflow promisc mode\n");
2238                         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2239                         fctrl &= ~IXGBE_FCTRL_UPE;
2240                         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2241                 }
2242         }
2243 
2244         DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2245         return IXGBE_SUCCESS;
2246 }
2247 
2248 /**
2249  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2250  *  @hw: pointer to hardware structure
2251  *  @mc_addr: the multicast address
2252  *
2253  *  Extracts the 12 bits, from a multicast address, to determine which
2254  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2255  *  incoming rx multicast addresses, to determine the bit-vector to check in
2256  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2257  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2258  *  to mc_filter_type.
2259  **/
2260 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2261 {
2262         u32 vector = 0;
2263 
2264         DEBUGFUNC("ixgbe_mta_vector");
2265 
2266         switch (hw->mac.mc_filter_type) {
2267         case 0:   /* use bits [47:36] of the address */
2268                 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2269                 break;
2270         case 1:   /* use bits [46:35] of the address */
2271                 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2272                 break;
2273         case 2:   /* use bits [45:34] of the address */
2274                 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2275                 break;
2276         case 3:   /* use bits [43:32] of the address */
2277                 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2278                 break;
2279         default:  /* Invalid mc_filter_type */
2280                 DEBUGOUT("MC filter type param set incorrectly\n");
2281                 ASSERT(0);
2282                 break;
2283         }
2284 
2285         /* vector can only be 12-bits or boundary will be exceeded */
2286         vector &= 0xFFF;
2287         return vector;
2288 }
2289 
2290 /**
2291  *  ixgbe_set_mta - Set bit-vector in multicast table
2292  *  @hw: pointer to hardware structure
2293  *  @hash_value: Multicast address hash value
2294  *
2295  *  Sets the bit-vector in the multicast table.
2296  **/
2297 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2298 {
2299         u32 vector;
2300         u32 vector_bit;
2301         u32 vector_reg;
2302 
2303         DEBUGFUNC("ixgbe_set_mta");
2304 
2305         hw->addr_ctrl.mta_in_use++;
2306 
2307         vector = ixgbe_mta_vector(hw, mc_addr);
2308         DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2309 
2310         /*
2311          * The MTA is a register array of 128 32-bit registers. It is treated
2312          * like an array of 4096 bits.  We want to set bit
2313          * BitArray[vector_value]. So we figure out what register the bit is
2314          * in, read it, OR in the new bit, then write back the new value.  The
2315          * register is determined by the upper 7 bits of the vector value and
2316          * the bit within that register are determined by the lower 5 bits of
2317          * the value.
2318          */
2319         vector_reg = (vector >> 5) & 0x7F;
2320         vector_bit = vector & 0x1F;
2321         hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2322 }
2323 
2324 /**
2325  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2326  *  @hw: pointer to hardware structure
2327  *  @mc_addr_list: the list of new multicast addresses
2328  *  @mc_addr_count: number of addresses
2329  *  @next: iterator function to walk the multicast address list
2330  *  @clear: flag, when set clears the table beforehand
2331  *
2332  *  When the clear flag is set, the given list replaces any existing list.
2333  *  Hashes the given addresses into the multicast table.
2334  **/
2335 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2336                                       u32 mc_addr_count, ixgbe_mc_addr_itr next,
2337                                       bool clear)
2338 {
2339         u32 i;
2340         u32 vmdq;
2341 
2342         DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2343 
2344         /*
2345          * Set the new number of MC addresses that we are being requested to
2346          * use.
2347          */
2348         hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2349         hw->addr_ctrl.mta_in_use = 0;
2350 
2351         /* Clear mta_shadow */
2352         if (clear) {
2353                 DEBUGOUT(" Clearing MTA\n");
2354                 (void) memset(&hw->mac.mta_shadow, 0,
2355                     sizeof(hw->mac.mta_shadow));
2356         }
2357 
2358         /* Update mta_shadow */
2359         for (i = 0; i < mc_addr_count; i++) {
2360                 DEBUGOUT(" Adding the multicast addresses:\n");
2361                 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2362         }
2363 
2364         /* Enable mta */
2365         for (i = 0; i < hw->mac.mcft_size; i++)
2366                 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2367                                       hw->mac.mta_shadow[i]);
2368 
2369         if (hw->addr_ctrl.mta_in_use > 0)
2370                 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2371                                 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2372 
2373         DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2374         return IXGBE_SUCCESS;
2375 }
2376 
2377 /**
2378  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2379  *  @hw: pointer to hardware structure
2380  *
2381  *  Enables multicast address in RAR and the use of the multicast hash table.
2382  **/
2383 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2384 {
2385         struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2386 
2387         DEBUGFUNC("ixgbe_enable_mc_generic");
2388 
2389         if (a->mta_in_use > 0)
2390                 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2391                                 hw->mac.mc_filter_type);
2392 
2393         return IXGBE_SUCCESS;
2394 }
2395 
2396 /**
2397  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2398  *  @hw: pointer to hardware structure
2399  *
2400  *  Disables multicast address in RAR and the use of the multicast hash table.
2401  **/
2402 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2403 {
2404         struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2405 
2406         DEBUGFUNC("ixgbe_disable_mc_generic");
2407 
2408         if (a->mta_in_use > 0)
2409                 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2410 
2411         return IXGBE_SUCCESS;
2412 }
2413 
2414 /**
2415  *  ixgbe_fc_enable_generic - Enable flow control
2416  *  @hw: pointer to hardware structure
2417  *
2418  *  Enable flow control according to the current settings.
2419  **/
2420 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2421 {
2422         s32 ret_val = IXGBE_SUCCESS;
2423         u32 mflcn_reg, fccfg_reg;
2424         u32 reg;
2425         u32 fcrtl, fcrth;
2426         int i;
2427 
2428         DEBUGFUNC("ixgbe_fc_enable_generic");
2429 
2430         /* Validate the water mark configuration */
2431         if (!hw->fc.pause_time) {
2432                 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2433                 goto out;
2434         }
2435 
2436         /* Low water mark of zero causes XOFF floods */
2437         for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2438                 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2439                     hw->fc.high_water[i]) {
2440                         if (!hw->fc.low_water[i] ||
2441                             hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2442                                 DEBUGOUT("Invalid water mark configuration\n");
2443                                 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2444                                 goto out;
2445                         }
2446                 }
2447         }
2448 
2449         /* Negotiate the fc mode to use */
2450         ixgbe_fc_autoneg(hw);
2451 
2452         /* Disable any previous flow control settings */
2453         mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2454         mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2455 
2456         fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2457         fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2458 
2459         /*
2460          * The possible values of fc.current_mode are:
2461          * 0: Flow control is completely disabled
2462          * 1: Rx flow control is enabled (we can receive pause frames,
2463          *    but not send pause frames).
2464          * 2: Tx flow control is enabled (we can send pause frames but
2465          *    we do not support receiving pause frames).
2466          * 3: Both Rx and Tx flow control (symmetric) are enabled.
2467          * other: Invalid.
2468          */
2469         switch (hw->fc.current_mode) {
2470         case ixgbe_fc_none:
2471                 /*
2472                  * Flow control is disabled by software override or autoneg.
2473                  * The code below will actually disable it in the HW.
2474                  */
2475                 break;
2476         case ixgbe_fc_rx_pause:
2477                 /*
2478                  * Rx Flow control is enabled and Tx Flow control is
2479                  * disabled by software override. Since there really
2480                  * isn't a way to advertise that we are capable of RX
2481                  * Pause ONLY, we will advertise that we support both
2482                  * symmetric and asymmetric Rx PAUSE.  Later, we will
2483                  * disable the adapter's ability to send PAUSE frames.
2484                  */
2485                 mflcn_reg |= IXGBE_MFLCN_RFCE;
2486                 break;
2487         case ixgbe_fc_tx_pause:
2488                 /*
2489                  * Tx Flow control is enabled, and Rx Flow control is
2490                  * disabled by software override.
2491                  */
2492                 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2493                 break;
2494         case ixgbe_fc_full:
2495                 /* Flow control (both Rx and Tx) is enabled by SW override. */
2496                 mflcn_reg |= IXGBE_MFLCN_RFCE;
2497                 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2498                 break;
2499         default:
2500                 DEBUGOUT("Flow control param set incorrectly\n");
2501                 ret_val = IXGBE_ERR_CONFIG;
2502                 goto out;
2503         }
2504 
2505         /* Set 802.3x based flow control settings. */
2506         mflcn_reg |= IXGBE_MFLCN_DPF;
2507         IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2508         IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2509 
2510 
2511         /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2512         for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2513                 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2514                     hw->fc.high_water[i]) {
2515                         fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2516                         IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2517                         fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2518                 } else {
2519                         IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2520                         /*
2521                          * In order to prevent Tx hangs when the internal Tx
2522                          * switch is enabled we must set the high water mark
2523                          * to the maximum FCRTH value.  This allows the Tx
2524                          * switch to function even under heavy Rx workloads.
2525                          */
2526                         fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2527                 }
2528 
2529                 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2530         }
2531 
2532         /* Configure pause time (2 TCs per register) */
2533         reg = hw->fc.pause_time * 0x00010001;
2534         for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2535                 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2536 
2537         /* Configure flow control refresh threshold value */
2538         IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2539 
2540 out:
2541         return ret_val;
2542 }
2543 
2544 /**
2545  *  ixgbe_negotiate_fc - Negotiate flow control
2546  *  @hw: pointer to hardware structure
2547  *  @adv_reg: flow control advertised settings
2548  *  @lp_reg: link partner's flow control settings
2549  *  @adv_sym: symmetric pause bit in advertisement
2550  *  @adv_asm: asymmetric pause bit in advertisement
2551  *  @lp_sym: symmetric pause bit in link partner advertisement
2552  *  @lp_asm: asymmetric pause bit in link partner advertisement
2553  *
2554  *  Find the intersection between advertised settings and link partner's
2555  *  advertised settings
2556  **/
2557 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2558                               u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2559 {
2560         if ((!(adv_reg)) ||  (!(lp_reg)))
2561                 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2562 
2563         if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2564                 /*
2565                  * Now we need to check if the user selected Rx ONLY
2566                  * of pause frames.  In this case, we had to advertise
2567                  * FULL flow control because we could not advertise RX
2568                  * ONLY. Hence, we must now check to see if we need to
2569                  * turn OFF the TRANSMISSION of PAUSE frames.
2570                  */
2571                 if (hw->fc.requested_mode == ixgbe_fc_full) {
2572                         hw->fc.current_mode = ixgbe_fc_full;
2573                         DEBUGOUT("Flow Control = FULL.\n");
2574                 } else {
2575                         hw->fc.current_mode = ixgbe_fc_rx_pause;
2576                         DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2577                 }
2578         } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2579                    (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2580                 hw->fc.current_mode = ixgbe_fc_tx_pause;
2581                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2582         } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2583                    !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2584                 hw->fc.current_mode = ixgbe_fc_rx_pause;
2585                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2586         } else {
2587                 hw->fc.current_mode = ixgbe_fc_none;
2588                 DEBUGOUT("Flow Control = NONE.\n");
2589         }
2590         return IXGBE_SUCCESS;
2591 }
2592 
2593 /**
2594  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2595  *  @hw: pointer to hardware structure
2596  *
2597  *  Enable flow control according on 1 gig fiber.
2598  **/
2599 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2600 {
2601         u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2602         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2603 
2604         /*
2605          * On multispeed fiber at 1g, bail out if
2606          * - link is up but AN did not complete, or if
2607          * - link is up and AN completed but timed out
2608          */
2609 
2610         linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2611         if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2612             (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2613                 goto out;
2614 
2615         pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2616         pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2617 
2618         ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2619                                       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2620                                       IXGBE_PCS1GANA_ASM_PAUSE,
2621                                       IXGBE_PCS1GANA_SYM_PAUSE,
2622                                       IXGBE_PCS1GANA_ASM_PAUSE);
2623 
2624 out:
2625         return ret_val;
2626 }
2627 
2628 /**
2629  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2630  *  @hw: pointer to hardware structure
2631  *
2632  *  Enable flow control according to IEEE clause 37.
2633  **/
2634 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2635 {
2636         u32 links2, anlp1_reg, autoc_reg, links;
2637         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2638 
2639         /*
2640          * On backplane, bail out if
2641          * - backplane autoneg was not completed, or if
2642          * - we are 82599 and link partner is not AN enabled
2643          */
2644         links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2645         if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2646                 goto out;
2647 
2648         if (hw->mac.type == ixgbe_mac_82599EB) {
2649                 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2650                 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2651                         goto out;
2652         }
2653         /*
2654          * Read the 10g AN autoc and LP ability registers and resolve
2655          * local flow control settings accordingly
2656          */
2657         autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2658         anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2659 
2660         ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2661                 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2662                 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2663 
2664 out:
2665         return ret_val;
2666 }
2667 
2668 /**
2669  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2670  *  @hw: pointer to hardware structure
2671  *
2672  *  Enable flow control according to IEEE clause 37.
2673  **/
2674 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2675 {
2676         u16 technology_ability_reg = 0;
2677         u16 lp_technology_ability_reg = 0;
2678 
2679         hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2680                              IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2681                              &technology_ability_reg);
2682         hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2683                              IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2684                              &lp_technology_ability_reg);
2685 
2686         return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2687                                   (u32)lp_technology_ability_reg,
2688                                   IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2689                                   IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2690 }
2691 
2692 /**
2693  *  ixgbe_fc_autoneg - Configure flow control
2694  *  @hw: pointer to hardware structure
2695  *
2696  *  Compares our advertised flow control capabilities to those advertised by
2697  *  our link partner, and determines the proper flow control mode to use.
2698  **/
2699 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2700 {
2701         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2702         ixgbe_link_speed speed;
2703         bool link_up;
2704 
2705         DEBUGFUNC("ixgbe_fc_autoneg");
2706 
2707         /*
2708          * AN should have completed when the cable was plugged in.
2709          * Look for reasons to bail out.  Bail out if:
2710          * - FC autoneg is disabled, or if
2711          * - link is not up.
2712          */
2713         if (hw->fc.disable_fc_autoneg)
2714                 goto out;
2715 
2716         hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2717         if (!link_up)
2718                 goto out;
2719 
2720         switch (hw->phy.media_type) {
2721         /* Autoneg flow control on fiber adapters */
2722         case ixgbe_media_type_fiber:
2723                 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2724                         ret_val = ixgbe_fc_autoneg_fiber(hw);
2725                 break;
2726 
2727         /* Autoneg flow control on backplane adapters */
2728         case ixgbe_media_type_backplane:
2729                 ret_val = ixgbe_fc_autoneg_backplane(hw);
2730                 break;
2731 
2732         /* Autoneg flow control on copper adapters */
2733         case ixgbe_media_type_copper:
2734                 if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2735                         ret_val = ixgbe_fc_autoneg_copper(hw);
2736                 break;
2737 
2738         default:
2739                 break;
2740         }
2741 
2742 out:
2743         if (ret_val == IXGBE_SUCCESS) {
2744                 hw->fc.fc_was_autonegged = TRUE;
2745         } else {
2746                 hw->fc.fc_was_autonegged = FALSE;
2747                 hw->fc.current_mode = hw->fc.requested_mode;
2748         }
2749 }
2750 
2751 /**
2752  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2753  *  @hw: pointer to hardware structure
2754  *
2755  *  Disables PCI-Express master access and verifies there are no pending
2756  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2757  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2758  *  is returned signifying master requests disabled.
2759  **/
2760 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2761 {
2762         s32 status = IXGBE_SUCCESS;
2763         u32 i;
2764 
2765         DEBUGFUNC("ixgbe_disable_pcie_master");
2766 
2767         /* Always set this bit to ensure any future transactions are blocked */
2768         IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2769 
2770         /* Exit if master requets are blocked */
2771         if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2772                 goto out;
2773 
2774         /* Poll for master request bit to clear */
2775         for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2776                 usec_delay(100);
2777                 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2778                         goto out;
2779         }
2780 
2781         /*
2782          * Two consecutive resets are required via CTRL.RST per datasheet
2783          * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2784          * of this need.  The first reset prevents new master requests from
2785          * being issued by our device.  We then must wait 1usec or more for any
2786          * remaining completions from the PCIe bus to trickle in, and then reset
2787          * again to clear out any effects they may have had on our device.
2788          */
2789         DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2790         hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2791 
2792         /*
2793          * Before proceeding, make sure that the PCIe block does not have
2794          * transactions pending.
2795          */
2796         for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2797                 usec_delay(100);
2798                 if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2799                     IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2800                         goto out;
2801         }
2802 
2803         DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2804         status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2805 
2806 out:
2807         return status;
2808 }
2809 
2810 /**
2811  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2812  *  @hw: pointer to hardware structure
2813  *  @mask: Mask to specify which semaphore to acquire
2814  *
2815  *  Acquires the SWFW semaphore through the GSSR register for the specified
2816  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2817  **/
2818 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2819 {
2820         u32 gssr;
2821         u32 swmask = mask;
2822         u32 fwmask = mask << 5;
2823         s32 timeout = 200;
2824 
2825         DEBUGFUNC("ixgbe_acquire_swfw_sync");
2826 
2827         while (timeout) {
2828                 /*
2829                  * SW EEPROM semaphore bit is used for access to all
2830                  * SW_FW_SYNC/GSSR bits (not just EEPROM)
2831                  */
2832                 if (ixgbe_get_eeprom_semaphore(hw))
2833                         return IXGBE_ERR_SWFW_SYNC;
2834 
2835                 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2836                 if (!(gssr & (fwmask | swmask)))
2837                         break;
2838 
2839                 /*
2840                  * Firmware currently using resource (fwmask) or other software
2841                  * thread currently using resource (swmask)
2842                  */
2843                 ixgbe_release_eeprom_semaphore(hw);
2844                 msec_delay(5);
2845                 timeout--;
2846         }
2847 
2848         if (!timeout) {
2849                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2850                 return IXGBE_ERR_SWFW_SYNC;
2851         }
2852 
2853         gssr |= swmask;
2854         IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2855 
2856         ixgbe_release_eeprom_semaphore(hw);
2857         return IXGBE_SUCCESS;
2858 }
2859 
2860 /**
2861  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2862  *  @hw: pointer to hardware structure
2863  *  @mask: Mask to specify which semaphore to release
2864  *
2865  *  Releases the SWFW semaphore through the GSSR register for the specified
2866  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2867  **/
2868 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2869 {
2870         u32 gssr;
2871         u32 swmask = mask;
2872 
2873         DEBUGFUNC("ixgbe_release_swfw_sync");
2874 
2875         (void) ixgbe_get_eeprom_semaphore(hw);
2876 
2877         gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2878         gssr &= ~swmask;
2879         IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2880 
2881         ixgbe_release_eeprom_semaphore(hw);
2882 }
2883 
2884 /**
2885  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2886  *  @hw: pointer to hardware structure
2887  *
2888  *  Stops the receive data path and waits for the HW to internally empty
2889  *  the Rx security block
2890  **/
2891 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2892 {
2893 #define IXGBE_MAX_SECRX_POLL 40
2894 
2895         int i;
2896         int secrxreg;
2897 
2898         DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
2899 
2900 
2901         secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2902         secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2903         IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2904         for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2905                 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2906                 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2907                         break;
2908                 else
2909                         /* Use interrupt-safe sleep just in case */
2910                         usec_delay(1000);
2911         }
2912 
2913         /* For informational purposes only */
2914         if (i >= IXGBE_MAX_SECRX_POLL)
2915                 DEBUGOUT("Rx unit being enabled before security "
2916                          "path fully disabled.  Continuing with init.\n");
2917 
2918         return IXGBE_SUCCESS;
2919 }
2920 
2921 /**
2922  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2923  *  @hw: pointer to hardware structure
2924  *
2925  *  Enables the receive data path.
2926  **/
2927 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2928 {
2929         int secrxreg;
2930 
2931         DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
2932 
2933         secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2934         secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2935         IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2936         IXGBE_WRITE_FLUSH(hw);
2937 
2938         return IXGBE_SUCCESS;
2939 }
2940 
2941 /**
2942  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2943  *  @hw: pointer to hardware structure
2944  *  @regval: register value to write to RXCTRL
2945  *
2946  *  Enables the Rx DMA unit
2947  **/
2948 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2949 {
2950         DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2951 
2952         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2953 
2954         return IXGBE_SUCCESS;
2955 }
2956 
2957 /**
2958  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2959  *  @hw: pointer to hardware structure
2960  *  @index: led number to blink
2961  **/
2962 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2963 {
2964         ixgbe_link_speed speed = 0;
2965         bool link_up = 0;
2966         u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2967         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2968 
2969         DEBUGFUNC("ixgbe_blink_led_start_generic");
2970 
2971         /*
2972          * Link must be up to auto-blink the LEDs;
2973          * Force it if link is down.
2974          */
2975         hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2976 
2977         if (!link_up) {
2978                 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2979                 autoc_reg |= IXGBE_AUTOC_FLU;
2980                 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2981                 IXGBE_WRITE_FLUSH(hw);
2982                 msec_delay(10);
2983         }
2984 
2985         led_reg &= ~IXGBE_LED_MODE_MASK(index);
2986         led_reg |= IXGBE_LED_BLINK(index);
2987         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2988         IXGBE_WRITE_FLUSH(hw);
2989 
2990         return IXGBE_SUCCESS;
2991 }
2992 
2993 /**
2994  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2995  *  @hw: pointer to hardware structure
2996  *  @index: led number to stop blinking
2997  **/
2998 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2999 {
3000         u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3001         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3002 
3003         DEBUGFUNC("ixgbe_blink_led_stop_generic");
3004 
3005 
3006         autoc_reg &= ~IXGBE_AUTOC_FLU;
3007         autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3008         IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3009 
3010         led_reg &= ~IXGBE_LED_MODE_MASK(index);
3011         led_reg &= ~IXGBE_LED_BLINK(index);
3012         led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3013         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3014         IXGBE_WRITE_FLUSH(hw);
3015 
3016         return IXGBE_SUCCESS;
3017 }
3018 
3019 /**
3020  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3021  *  @hw: pointer to hardware structure
3022  *  @san_mac_offset: SAN MAC address offset
3023  *
3024  *  This function will read the EEPROM location for the SAN MAC address
3025  *  pointer, and returns the value at that location.  This is used in both
3026  *  get and set mac_addr routines.
3027  **/
3028 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3029                                          u16 *san_mac_offset)
3030 {
3031         DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3032 
3033         /*
3034          * First read the EEPROM pointer to see if the MAC addresses are
3035          * available.
3036          */
3037         hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
3038 
3039         return IXGBE_SUCCESS;
3040 }
3041 
3042 /**
3043  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3044  *  @hw: pointer to hardware structure
3045  *  @san_mac_addr: SAN MAC address
3046  *
3047  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3048  *  per-port, so set_lan_id() must be called before reading the addresses.
3049  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3050  *  upon for non-SFP connections, so we must call it here.
3051  **/
3052 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3053 {
3054         u16 san_mac_data, san_mac_offset;
3055         u8 i;
3056 
3057         DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3058 
3059         /*
3060          * First read the EEPROM pointer to see if the MAC addresses are
3061          * available.  If they're not, no point in calling set_lan_id() here.
3062          */
3063         (void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3064 
3065         if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3066                 /*
3067                  * No addresses available in this EEPROM.  It's not an
3068                  * error though, so just wipe the local address and return.
3069                  */
3070                 for (i = 0; i < 6; i++)
3071                         san_mac_addr[i] = 0xFF;
3072 
3073                 goto san_mac_addr_out;
3074         }
3075 
3076         /* make sure we know which port we need to program */
3077         hw->mac.ops.set_lan_id(hw);
3078         /* apply the port offset to the address offset */
3079         (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3080                          (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3081         for (i = 0; i < 3; i++) {
3082                 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
3083                 san_mac_addr[i * 2] = (u8)(san_mac_data);
3084                 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3085                 san_mac_offset++;
3086         }
3087 
3088 san_mac_addr_out:
3089         return IXGBE_SUCCESS;
3090 }
3091 
3092 /**
3093  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3094  *  @hw: pointer to hardware structure
3095  *  @san_mac_addr: SAN MAC address
3096  *
3097  *  Write a SAN MAC address to the EEPROM.
3098  **/
3099 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3100 {
3101         s32 status = IXGBE_SUCCESS;
3102         u16 san_mac_data, san_mac_offset;
3103         u8 i;
3104 
3105         DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3106 
3107         /* Look for SAN mac address pointer.  If not defined, return */
3108         (void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3109 
3110         if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3111                 status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3112                 goto san_mac_addr_out;
3113         }
3114 
3115         /* Make sure we know which port we need to write */
3116         hw->mac.ops.set_lan_id(hw);
3117         /* Apply the port offset to the address offset */
3118         (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3119                          (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3120 
3121         for (i = 0; i < 3; i++) {
3122                 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3123                 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3124                 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3125                 san_mac_offset++;
3126         }
3127 
3128 san_mac_addr_out:
3129         return status;
3130 }
3131 
3132 /**
3133  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3134  *  @hw: pointer to hardware structure
3135  *
3136  *  Read PCIe configuration space, and get the MSI-X vector count from
3137  *  the capabilities table.
3138  **/
3139 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3140 {
3141         u16 msix_count = 1;
3142         u16 max_msix_count;
3143         u16 pcie_offset;
3144 
3145         switch (hw->mac.type) {
3146         case ixgbe_mac_82598EB:
3147                 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3148                 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3149                 break;
3150         case ixgbe_mac_82599EB:
3151         case ixgbe_mac_X540:
3152                 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3153                 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3154                 break;
3155         default:
3156                 return msix_count;
3157         }
3158 
3159         DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3160         msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3161         msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3162 
3163         /* MSI-X count is zero-based in HW */
3164         msix_count++;
3165 
3166         if (msix_count > max_msix_count)
3167                 msix_count = max_msix_count;
3168 
3169         return msix_count;
3170 }
3171 
3172 /**
3173  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3174  *  @hw: pointer to hardware structure
3175  *  @addr: Address to put into receive address register
3176  *  @vmdq: VMDq pool to assign
3177  *
3178  *  Puts an ethernet address into a receive address register, or
3179  *  finds the rar that it is aleady in; adds to the pool list
3180  **/
3181 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3182 {
3183         static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3184         u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3185         u32 rar;
3186         u32 rar_low, rar_high;
3187         u32 addr_low, addr_high;
3188 
3189         DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3190 
3191         /* swap bytes for HW little endian */
3192         addr_low  = addr[0] | (addr[1] << 8)
3193                             | (addr[2] << 16)
3194                             | (addr[3] << 24);
3195         addr_high = addr[4] | (addr[5] << 8);
3196 
3197         /*
3198          * Either find the mac_id in rar or find the first empty space.
3199          * rar_highwater points to just after the highest currently used
3200          * rar in order to shorten the search.  It grows when we add a new
3201          * rar to the top.
3202          */
3203         for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3204                 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3205 
3206                 if (((IXGBE_RAH_AV & rar_high) == 0)
3207                     && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3208                         first_empty_rar = rar;
3209                 } else if ((rar_high & 0xFFFF) == addr_high) {
3210                         rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3211                         if (rar_low == addr_low)
3212                                 break;    /* found it already in the rars */
3213                 }
3214         }
3215 
3216         if (rar < hw->mac.rar_highwater) {
3217                 /* already there so just add to the pool bits */
3218                 (void) ixgbe_set_vmdq(hw, rar, vmdq);
3219         } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3220                 /* stick it into first empty RAR slot we found */
3221                 rar = first_empty_rar;
3222                 (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3223         } else if (rar == hw->mac.rar_highwater) {
3224                 /* add it to the top of the list and inc the highwater mark */
3225                 (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3226                 hw->mac.rar_highwater++;
3227         } else if (rar >= hw->mac.num_rar_entries) {
3228                 return IXGBE_ERR_INVALID_MAC_ADDR;
3229         }
3230 
3231         /*
3232          * If we found rar[0], make sure the default pool bit (we use pool 0)
3233          * remains cleared to be sure default pool packets will get delivered
3234          */
3235         if (rar == 0)
3236                 (void) ixgbe_clear_vmdq(hw, rar, 0);
3237 
3238         return rar;
3239 }
3240 
3241 /**
3242  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3243  *  @hw: pointer to hardware struct
3244  *  @rar: receive address register index to disassociate
3245  *  @vmdq: VMDq pool index to remove from the rar
3246  **/
3247 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3248 {
3249         u32 mpsar_lo, mpsar_hi;
3250         u32 rar_entries = hw->mac.num_rar_entries;
3251 
3252         DEBUGFUNC("ixgbe_clear_vmdq_generic");
3253 
3254         /* Make sure we are using a valid rar index range */
3255         if (rar >= rar_entries) {
3256                 DEBUGOUT1("RAR index %d is out of range.\n", rar);
3257                 return IXGBE_ERR_INVALID_ARGUMENT;
3258         }
3259 
3260         mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3261         mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3262 
3263         if (!mpsar_lo && !mpsar_hi)
3264                 goto done;
3265 
3266         if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3267                 if (mpsar_lo) {
3268                         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3269                         mpsar_lo = 0;
3270                 }
3271                 if (mpsar_hi) {
3272                         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3273                         mpsar_hi = 0;
3274                 }
3275         } else if (vmdq < 32) {
3276                 mpsar_lo &= ~(1 << vmdq);
3277                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3278         } else {
3279                 mpsar_hi &= ~(1 << (vmdq - 32));
3280                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3281         }
3282 
3283         /* was that the last pool using this rar? */
3284         if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3285                 hw->mac.ops.clear_rar(hw, rar);
3286 done:
3287         return IXGBE_SUCCESS;
3288 }
3289 
3290 /**
3291  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3292  *  @hw: pointer to hardware struct
3293  *  @rar: receive address register index to associate with a VMDq index
3294  *  @vmdq: VMDq pool index
3295  **/
3296 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3297 {
3298         u32 mpsar;
3299         u32 rar_entries = hw->mac.num_rar_entries;
3300 
3301         DEBUGFUNC("ixgbe_set_vmdq_generic");
3302 
3303         /* Make sure we are using a valid rar index range */
3304         if (rar >= rar_entries) {
3305                 DEBUGOUT1("RAR index %d is out of range.\n", rar);
3306                 return IXGBE_ERR_INVALID_ARGUMENT;
3307         }
3308 
3309         if (vmdq < 32) {
3310                 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3311                 mpsar |= 1 << vmdq;
3312                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3313         } else {
3314                 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3315                 mpsar |= 1 << (vmdq - 32);
3316                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3317         }
3318         return IXGBE_SUCCESS;
3319 }
3320 
3321 /**
3322  *  This function should only be involved in the IOV mode.
3323  *  In IOV mode, Default pool is next pool after the number of
3324  *  VFs advertized and not 0.
3325  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3326  *
3327  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3328  *  @hw: pointer to hardware struct
3329  *  @vmdq: VMDq pool index
3330  **/
3331 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3332 {
3333         u32 rar = hw->mac.san_mac_rar_index;
3334 
3335         DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3336 
3337         if (vmdq < 32) {
3338                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3339                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3340         } else {
3341                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3342                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3343         }
3344 
3345         return IXGBE_SUCCESS;
3346 }
3347 
3348 /**
3349  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3350  *  @hw: pointer to hardware structure
3351  **/
3352 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3353 {
3354         int i;
3355 
3356         DEBUGFUNC("ixgbe_init_uta_tables_generic");
3357         DEBUGOUT(" Clearing UTA\n");
3358 
3359         for (i = 0; i < 128; i++)
3360                 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3361 
3362         return IXGBE_SUCCESS;
3363 }
3364 
3365 /**
3366  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3367  *  @hw: pointer to hardware structure
3368  *  @vlan: VLAN id to write to VLAN filter
3369  *
3370  *  return the VLVF index where this VLAN id should be placed
3371  *
3372  **/
3373 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3374 {
3375         u32 bits = 0;
3376         u32 first_empty_slot = 0;
3377         s32 regindex;
3378 
3379         /* short cut the special case */
3380         if (vlan == 0)
3381                 return 0;
3382 
3383         /*
3384           * Search for the vlan id in the VLVF entries. Save off the first empty
3385           * slot found along the way
3386           */
3387         for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3388                 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3389                 if (!bits && !(first_empty_slot))
3390                         first_empty_slot = regindex;
3391                 else if ((bits & 0x0FFF) == vlan)
3392                         break;
3393         }
3394 
3395         /*
3396           * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3397           * in the VLVF. Else use the first empty VLVF register for this
3398           * vlan id.
3399           */
3400         if (regindex >= IXGBE_VLVF_ENTRIES) {
3401                 if (first_empty_slot)
3402                         regindex = first_empty_slot;
3403                 else {
3404                         DEBUGOUT("No space in VLVF.\n");
3405                         regindex = IXGBE_ERR_NO_SPACE;
3406                 }
3407         }
3408 
3409         return regindex;
3410 }
3411 
3412 /**
3413  *  ixgbe_set_vfta_generic - Set VLAN filter table
3414  *  @hw: pointer to hardware structure
3415  *  @vlan: VLAN id to write to VLAN filter
3416  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3417  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3418  *
3419  *  Turn on/off specified VLAN in the VLAN filter table.
3420  **/
3421 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3422                            bool vlan_on)
3423 {
3424         s32 regindex;
3425         u32 bitindex;
3426         u32 vfta;
3427         u32 targetbit;
3428         s32 ret_val = IXGBE_SUCCESS;
3429         bool vfta_changed = FALSE;
3430 
3431         DEBUGFUNC("ixgbe_set_vfta_generic");
3432 
3433         if (vlan > 4095)
3434                 return IXGBE_ERR_PARAM;
3435 
3436         /*
3437          * this is a 2 part operation - first the VFTA, then the
3438          * VLVF and VLVFB if VT Mode is set
3439          * We don't write the VFTA until we know the VLVF part succeeded.
3440          */
3441 
3442         /* Part 1
3443          * The VFTA is a bitstring made up of 128 32-bit registers
3444          * that enable the particular VLAN id, much like the MTA:
3445          *    bits[11-5]: which register
3446          *    bits[4-0]:  which bit in the register
3447          */
3448         regindex = (vlan >> 5) & 0x7F;
3449         bitindex = vlan & 0x1F;
3450         targetbit = (1 << bitindex);
3451         vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3452 
3453         if (vlan_on) {
3454                 if (!(vfta & targetbit)) {
3455                         vfta |= targetbit;
3456                         vfta_changed = TRUE;
3457                 }
3458         } else {
3459                 if ((vfta & targetbit)) {
3460                         vfta &= ~targetbit;
3461                         vfta_changed = TRUE;
3462                 }
3463         }
3464 
3465         /* Part 2
3466          * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3467          */
3468         ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3469                                          &vfta_changed);
3470         if (ret_val != IXGBE_SUCCESS)
3471                 return ret_val;
3472 
3473         if (vfta_changed)
3474                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3475 
3476         return IXGBE_SUCCESS;
3477 }
3478 
3479 /**
3480  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3481  *  @hw: pointer to hardware structure
3482  *  @vlan: VLAN id to write to VLAN filter
3483  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3484  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3485  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3486  *                 should be changed
3487  *
3488  *  Turn on/off specified bit in VLVF table.
3489  **/
3490 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3491                             bool vlan_on, bool *vfta_changed)
3492 {
3493         u32 vt;
3494 
3495         DEBUGFUNC("ixgbe_set_vlvf_generic");
3496 
3497         if (vlan > 4095)
3498                 return IXGBE_ERR_PARAM;
3499 
3500         /* If VT Mode is set
3501          *   Either vlan_on
3502          *     make sure the vlan is in VLVF
3503          *     set the vind bit in the matching VLVFB
3504          *   Or !vlan_on
3505          *     clear the pool bit and possibly the vind
3506          */
3507         vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3508         if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3509                 s32 vlvf_index;
3510                 u32 bits;
3511 
3512                 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3513                 if (vlvf_index < 0)
3514                         return vlvf_index;
3515 
3516                 if (vlan_on) {
3517                         /* set the pool bit */
3518                         if (vind < 32) {
3519                                 bits = IXGBE_READ_REG(hw,
3520                                                 IXGBE_VLVFB(vlvf_index * 2));
3521                                 bits |= (1 << vind);
3522                                 IXGBE_WRITE_REG(hw,
3523                                                 IXGBE_VLVFB(vlvf_index * 2),
3524                                                 bits);
3525                         } else {
3526                                 bits = IXGBE_READ_REG(hw,
3527                                         IXGBE_VLVFB((vlvf_index * 2) + 1));
3528                                 bits |= (1 << (vind - 32));
3529                                 IXGBE_WRITE_REG(hw,
3530                                         IXGBE_VLVFB((vlvf_index * 2) + 1),
3531                                         bits);
3532                         }
3533                 } else {
3534                         /* clear the pool bit */
3535                         if (vind < 32) {
3536                                 bits = IXGBE_READ_REG(hw,
3537                                                 IXGBE_VLVFB(vlvf_index * 2));
3538                                 bits &= ~(1 << vind);
3539                                 IXGBE_WRITE_REG(hw,
3540                                                 IXGBE_VLVFB(vlvf_index * 2),
3541                                                 bits);
3542                                 bits |= IXGBE_READ_REG(hw,
3543                                         IXGBE_VLVFB((vlvf_index * 2) + 1));
3544                         } else {
3545                                 bits = IXGBE_READ_REG(hw,
3546                                         IXGBE_VLVFB((vlvf_index * 2) + 1));
3547                                 bits &= ~(1 << (vind - 32));
3548                                 IXGBE_WRITE_REG(hw,
3549                                         IXGBE_VLVFB((vlvf_index * 2) + 1),
3550                                         bits);
3551                                 bits |= IXGBE_READ_REG(hw,
3552                                                 IXGBE_VLVFB(vlvf_index * 2));
3553                         }
3554                 }
3555 
3556                 /*
3557                  * If there are still bits set in the VLVFB registers
3558                  * for the VLAN ID indicated we need to see if the
3559                  * caller is requesting that we clear the VFTA entry bit.
3560                  * If the caller has requested that we clear the VFTA
3561                  * entry bit but there are still pools/VFs using this VLAN
3562                  * ID entry then ignore the request.  We're not worried
3563                  * about the case where we're turning the VFTA VLAN ID
3564                  * entry bit on, only when requested to turn it off as
3565                  * there may be multiple pools and/or VFs using the
3566                  * VLAN ID entry.  In that case we cannot clear the
3567                  * VFTA bit until all pools/VFs using that VLAN ID have also
3568                  * been cleared.  This will be indicated by "bits" being
3569                  * zero.
3570                  */
3571                 if (bits) {
3572                         IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3573                                         (IXGBE_VLVF_VIEN | vlan));
3574                         if ((!vlan_on) && (vfta_changed != NULL)) {
3575                                 /* someone wants to clear the vfta entry
3576                                  * but some pools/VFs are still using it.
3577                                  * Ignore it. */
3578                                 *vfta_changed = FALSE;
3579                         }
3580                 } else
3581                         IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3582         }
3583 
3584         return IXGBE_SUCCESS;
3585 }
3586 
3587 /**
3588  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3589  *  @hw: pointer to hardware structure
3590  *
3591  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3592  **/
3593 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3594 {
3595         u32 offset;
3596 
3597         DEBUGFUNC("ixgbe_clear_vfta_generic");
3598 
3599         for (offset = 0; offset < hw->mac.vft_size; offset++)
3600                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3601 
3602         for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3603                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3604                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3605                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
3606         }
3607 
3608         return IXGBE_SUCCESS;
3609 }
3610 
3611 /**
3612  *  ixgbe_check_mac_link_generic - Determine link and speed status
3613  *  @hw: pointer to hardware structure
3614  *  @speed: pointer to link speed
3615  *  @link_up: TRUE when link is up
3616  *  @link_up_wait_to_complete: bool used to wait for link up or not
3617  *
3618  *  Reads the links register to determine if link is up and the current speed
3619  **/
3620 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3621                                  bool *link_up, bool link_up_wait_to_complete)
3622 {
3623         u32 links_reg, links_orig;
3624         u32 i;
3625 
3626         DEBUGFUNC("ixgbe_check_mac_link_generic");
3627 
3628         /* clear the old state */
3629         links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3630 
3631         links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3632 
3633         if (links_orig != links_reg) {
3634                 DEBUGOUT2("LINKS changed from %08X to %08X\n",
3635                           links_orig, links_reg);
3636         }
3637 
3638         if (link_up_wait_to_complete) {
3639                 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3640                         if (links_reg & IXGBE_LINKS_UP) {
3641                                 *link_up = TRUE;
3642                                 break;
3643                         } else {
3644                                 *link_up = FALSE;
3645                         }
3646                         msec_delay(100);
3647                         links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3648                 }
3649         } else {
3650                 if (links_reg & IXGBE_LINKS_UP)
3651                         *link_up = TRUE;
3652                 else
3653                         *link_up = FALSE;
3654         }
3655 
3656         if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3657             IXGBE_LINKS_SPEED_10G_82599)
3658                 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3659         else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3660                  IXGBE_LINKS_SPEED_1G_82599)
3661                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3662         else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3663                  IXGBE_LINKS_SPEED_100_82599)
3664                 *speed = IXGBE_LINK_SPEED_100_FULL;
3665         else
3666                 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3667 
3668         return IXGBE_SUCCESS;
3669 }
3670 
3671 /**
3672  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3673  *  the EEPROM
3674  *  @hw: pointer to hardware structure
3675  *  @wwnn_prefix: the alternative WWNN prefix
3676  *  @wwpn_prefix: the alternative WWPN prefix
3677  *
3678  *  This function will read the EEPROM from the alternative SAN MAC address
3679  *  block to check the support for the alternative WWNN/WWPN prefix support.
3680  **/
3681 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3682                                  u16 *wwpn_prefix)
3683 {
3684         u16 offset, caps;
3685         u16 alt_san_mac_blk_offset;
3686 
3687         DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3688 
3689         /* clear output first */
3690         *wwnn_prefix = 0xFFFF;
3691         *wwpn_prefix = 0xFFFF;
3692 
3693         /* check if alternative SAN MAC is supported */
3694         hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3695                             &alt_san_mac_blk_offset);
3696 
3697         if ((alt_san_mac_blk_offset == 0) ||
3698             (alt_san_mac_blk_offset == 0xFFFF))
3699                 goto wwn_prefix_out;
3700 
3701         /* check capability in alternative san mac address block */
3702         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3703         hw->eeprom.ops.read(hw, offset, &caps);
3704         if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3705                 goto wwn_prefix_out;
3706 
3707         /* get the corresponding prefix for WWNN/WWPN */
3708         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3709         hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3710 
3711         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3712         hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3713 
3714 wwn_prefix_out:
3715         return IXGBE_SUCCESS;
3716 }
3717 
3718 /**
3719  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3720  *  @hw: pointer to hardware structure
3721  *  @bs: the fcoe boot status
3722  *
3723  *  This function will read the FCOE boot status from the iSCSI FCOE block
3724  **/
3725 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3726 {
3727         u16 offset, caps, flags;
3728         s32 status;
3729 
3730         DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3731 
3732         /* clear output first */
3733         *bs = ixgbe_fcoe_bootstatus_unavailable;
3734 
3735         /* check if FCOE IBA block is present */
3736         offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3737         status = hw->eeprom.ops.read(hw, offset, &caps);
3738         if (status != IXGBE_SUCCESS)
3739                 goto out;
3740 
3741         if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3742                 goto out;
3743 
3744         /* check if iSCSI FCOE block is populated */
3745         status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3746         if (status != IXGBE_SUCCESS)
3747                 goto out;
3748 
3749         if ((offset == 0) || (offset == 0xFFFF))
3750                 goto out;
3751 
3752         /* read fcoe flags in iSCSI FCOE block */
3753         offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3754         status = hw->eeprom.ops.read(hw, offset, &flags);
3755         if (status != IXGBE_SUCCESS)
3756                 goto out;
3757 
3758         if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3759                 *bs = ixgbe_fcoe_bootstatus_enabled;
3760         else
3761                 *bs = ixgbe_fcoe_bootstatus_disabled;
3762 
3763 out:
3764         return status;
3765 }
3766 
3767 /**
3768  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3769  *  @hw: pointer to hardware structure
3770  *  @enable: enable or disable switch for anti-spoofing
3771  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3772  *
3773  **/
3774 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3775 {
3776         int j;
3777         int pf_target_reg = pf >> 3;
3778         int pf_target_shift = pf % 8;
3779         u32 pfvfspoof = 0;
3780 
3781         if (hw->mac.type == ixgbe_mac_82598EB)
3782                 return;
3783 
3784         if (enable)
3785                 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3786 
3787         /*
3788          * PFVFSPOOF register array is size 8 with 8 bits assigned to
3789          * MAC anti-spoof enables in each register array element.
3790          */
3791         for (j = 0; j < pf_target_reg; j++)
3792                 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3793 
3794         /*
3795          * The PF should be allowed to spoof so that it can support
3796          * emulation mode NICs.  Do not set the bits assigned to the PF
3797          */
3798         pfvfspoof &= (1 << pf_target_shift) - 1;
3799         IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3800 
3801         /*
3802          * Remaining pools belong to the PF so they do not need to have
3803          * anti-spoofing enabled.
3804          */
3805         for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3806                 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3807 }
3808 
3809 /**
3810  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3811  *  @hw: pointer to hardware structure
3812  *  @enable: enable or disable switch for VLAN anti-spoofing
3813  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3814  *
3815  **/
3816 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3817 {
3818         int vf_target_reg = vf >> 3;
3819         int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3820         u32 pfvfspoof;
3821 
3822         if (hw->mac.type == ixgbe_mac_82598EB)
3823                 return;
3824 
3825         pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3826         if (enable)
3827                 pfvfspoof |= (1 << vf_target_shift);
3828         else
3829                 pfvfspoof &= ~(1 << vf_target_shift);
3830         IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3831 }
3832 
3833 /**
3834  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3835  *  @hw: pointer to hardware structure
3836  *  @device_caps: the EEPROM word with the extra device capabilities
3837  *
3838  *  This function will read the EEPROM location for the device capabilities,
3839  *  and return the word through device_caps.
3840  **/
3841 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3842 {
3843         DEBUGFUNC("ixgbe_get_device_caps_generic");
3844 
3845         hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3846 
3847         return IXGBE_SUCCESS;
3848 }
3849 
3850 /**
3851  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
3852  *  @hw: pointer to hardware structure
3853  *
3854  **/
3855 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
3856 {
3857         u32 regval;
3858         u32 i;
3859 
3860         DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
3861 
3862         /* Enable relaxed ordering */
3863         for (i = 0; i < hw->mac.max_tx_queues; i++) {
3864                 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
3865                 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3866                 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3867         }
3868 
3869         for (i = 0; i < hw->mac.max_rx_queues; i++) {
3870                 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3871                 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
3872                           IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
3873                 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3874         }
3875 
3876 }
3877 
3878 /**
3879  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3880  *  @buffer: pointer to EEPROM
3881  *  @length: size of EEPROM to calculate a checksum for
3882  *  Calculates the checksum for some buffer on a specified length.  The
3883  *  checksum calculated is returned.
3884  **/
3885 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3886 {
3887         u32 i;
3888         u8 sum = 0;
3889 
3890         DEBUGFUNC("ixgbe_calculate_checksum");
3891 
3892         if (!buffer)
3893                 return 0;
3894 
3895         for (i = 0; i < length; i++)
3896                 sum += buffer[i];
3897 
3898         return (u8) (0 - sum);
3899 }
3900 
3901 /**
3902  *  ixgbe_host_interface_command - Issue command to manageability block
3903  *  @hw: pointer to the HW structure
3904  *  @buffer: contains the command to write and where the return status will
3905  *   be placed
3906  *  @length: length of buffer, must be multiple of 4 bytes
3907  *
3908  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
3909  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3910  **/
3911 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3912                                         u32 length)
3913 {
3914         u32 hicr, i, bi;
3915         u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3916         u8 buf_len, dword_len;
3917 
3918         s32 ret_val = IXGBE_SUCCESS;
3919 
3920         DEBUGFUNC("ixgbe_host_interface_command");
3921 
3922         if (length == 0 || length & 0x3 ||
3923             length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3924                 DEBUGOUT("Buffer length failure.\n");
3925                 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3926                 goto out;
3927         }
3928 
3929         /* Check that the host interface is enabled. */
3930         hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3931         if ((hicr & IXGBE_HICR_EN) == 0) {
3932                 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
3933                 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3934                 goto out;
3935         }
3936 
3937         /* Calculate length in DWORDs */
3938         dword_len = length >> 2;
3939 
3940         /*
3941          * The device driver writes the relevant command block
3942          * into the ram area.
3943          */
3944         for (i = 0; i < dword_len; i++)
3945                 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3946                                       i, IXGBE_CPU_TO_LE32(buffer[i]));
3947 
3948         /* Setting this bit tells the ARC that a new command is pending. */
3949         IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3950 
3951         for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3952                 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3953                 if (!(hicr & IXGBE_HICR_C))
3954                         break;
3955                 msec_delay(1);
3956         }
3957 
3958         /* Check command successful completion. */
3959         if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3960             (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3961                 DEBUGOUT("Command has failed with no status valid.\n");
3962                 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3963                 goto out;
3964         }
3965 
3966         /* Calculate length in DWORDs */
3967         dword_len = hdr_size >> 2;
3968 
3969         /* first pull in the header so we know the buffer length */
3970         for (bi = 0; bi < dword_len; bi++) {
3971                 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3972                 buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3973         }
3974 
3975         /* If there is any thing in data position pull it in */
3976         buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3977         if (buf_len == 0)
3978                 goto out;
3979 
3980         if (length < (buf_len + hdr_size)) {
3981                 DEBUGOUT("Buffer not large enough for reply message.\n");
3982                 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3983                 goto out;
3984         }
3985 
3986         /* Calculate length in DWORDs, add 3 for odd lengths */
3987         dword_len = (buf_len + 3) >> 2;
3988 
3989         /* Pull in the rest of the buffer (bi is where we left off)*/
3990         for (; bi <= dword_len; bi++) {
3991                 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3992                 buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3993         }
3994 
3995 out:
3996         return ret_val;
3997 }
3998 
3999 /**
4000  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4001  *  @hw: pointer to the HW structure
4002  *  @maj: driver version major number
4003  *  @min: driver version minor number
4004  *  @build: driver version build number
4005  *  @sub: driver version sub build number
4006  *
4007  *  Sends driver version number to firmware through the manageability
4008  *  block.  On success return IXGBE_SUCCESS
4009  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4010  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4011  **/
4012 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4013                                  u8 build, u8 sub)
4014 {
4015         struct ixgbe_hic_drv_info fw_cmd;
4016         int i;
4017         s32 ret_val = IXGBE_SUCCESS;
4018 
4019         DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4020 
4021         if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4022             != IXGBE_SUCCESS) {
4023                 ret_val = IXGBE_ERR_SWFW_SYNC;
4024                 goto out;
4025         }
4026 
4027         fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4028         fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4029         fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4030         fw_cmd.port_num = (u8)hw->bus.func;
4031         fw_cmd.ver_maj = maj;
4032         fw_cmd.ver_min = min;
4033         fw_cmd.ver_build = build;
4034         fw_cmd.ver_sub = sub;
4035         fw_cmd.hdr.checksum = 0;
4036         fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4037                                 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4038         fw_cmd.pad = 0;
4039         fw_cmd.pad2 = 0;
4040 
4041         for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4042                 /* LINTED */
4043                 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4044                                                        sizeof(fw_cmd));
4045                 if (ret_val != IXGBE_SUCCESS)
4046                         continue;
4047 
4048                 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4049                     FW_CEM_RESP_STATUS_SUCCESS)
4050                         ret_val = IXGBE_SUCCESS;
4051                 else
4052                         ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4053 
4054                 break;
4055         }
4056 
4057         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4058 out:
4059         return ret_val;
4060 }
4061 
4062 /**
4063  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4064  * @hw: pointer to hardware structure
4065  * @num_pb: number of packet buffers to allocate
4066  * @headroom: reserve n KB of headroom
4067  * @strategy: packet buffer allocation strategy
4068  **/
4069 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4070                              int strategy)
4071 {
4072         u32 pbsize = hw->mac.rx_pb_size;
4073         int i = 0;
4074         u32 rxpktsize, txpktsize, txpbthresh;
4075 
4076         /* Reserve headroom */
4077         pbsize -= headroom;
4078 
4079         if (!num_pb)
4080                 num_pb = 1;
4081 
4082         /* Divide remaining packet buffer space amongst the number of packet
4083          * buffers requested using supplied strategy.
4084          */
4085         switch (strategy) {
4086         case PBA_STRATEGY_WEIGHTED:
4087                 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4088                  * buffer with 5/8 of the packet buffer space.
4089                  */
4090                 rxpktsize = (pbsize * 5) / (num_pb * 4);
4091                 pbsize -= rxpktsize * (num_pb / 2);
4092                 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4093                 for (; i < (num_pb / 2); i++)
4094                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4095                 /* Fall through to configure remaining packet buffers */
4096                 /* FALLTHRU */
4097         case PBA_STRATEGY_EQUAL:
4098                 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4099                 for (; i < num_pb; i++)
4100                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4101                 break;
4102         default:
4103                 break;
4104         }
4105 
4106         /* Only support an equally distributed Tx packet buffer strategy. */
4107         txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4108         txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4109         for (i = 0; i < num_pb; i++) {
4110                 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4111                 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4112         }
4113 
4114         /* Clear unused TCs, if any, to zero buffer size*/
4115         for (; i < IXGBE_MAX_PB; i++) {
4116                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4117                 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4118                 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4119         }
4120 }
4121 
4122 /**
4123  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4124  * @hw: pointer to the hardware structure
4125  *
4126  * The 82599 and x540 MACs can experience issues if TX work is still pending
4127  * when a reset occurs.  This function prevents this by flushing the PCIe
4128  * buffers on the system.
4129  **/
4130 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4131 {
4132         u32 gcr_ext, hlreg0;
4133 
4134         /*
4135          * If double reset is not requested then all transactions should
4136          * already be clear and as such there is no work to do
4137          */
4138         if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4139                 return;
4140 
4141         /*
4142          * Set loopback enable to prevent any transmits from being sent
4143          * should the link come up.  This assumes that the RXCTRL.RXEN bit
4144          * has already been cleared.
4145          */
4146         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4147         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4148 
4149         /* initiate cleaning flow for buffers in the PCIe transaction layer */
4150         gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4151         IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4152                         gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4153 
4154         /* Flush all writes and allow 20usec for all transactions to clear */
4155         IXGBE_WRITE_FLUSH(hw);
4156         usec_delay(20);
4157 
4158         /* restore previous register values */
4159         IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4160         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4161 }
4162