1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2013 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/fm/fs/zfs.h>
  29 #include <sys/spa.h>
  30 #include <sys/txg.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio_impl.h>
  34 #include <sys/zio_compress.h>
  35 #include <sys/zio_checksum.h>
  36 #include <sys/dmu_objset.h>
  37 #include <sys/arc.h>
  38 #include <sys/ddt.h>
  39 
  40 /*
  41  * ==========================================================================
  42  * I/O priority table
  43  * ==========================================================================
  44  */
  45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
  46         0,      /* ZIO_PRIORITY_NOW             */
  47         0,      /* ZIO_PRIORITY_SYNC_READ       */
  48         0,      /* ZIO_PRIORITY_SYNC_WRITE      */
  49         0,      /* ZIO_PRIORITY_LOG_WRITE       */
  50         1,      /* ZIO_PRIORITY_CACHE_FILL      */
  51         1,      /* ZIO_PRIORITY_AGG             */
  52         4,      /* ZIO_PRIORITY_FREE            */
  53         4,      /* ZIO_PRIORITY_ASYNC_WRITE     */
  54         6,      /* ZIO_PRIORITY_ASYNC_READ      */
  55         10,     /* ZIO_PRIORITY_RESILVER        */
  56         20,     /* ZIO_PRIORITY_SCRUB           */
  57         2,      /* ZIO_PRIORITY_DDT_PREFETCH    */
  58 };
  59 
  60 /*
  61  * ==========================================================================
  62  * I/O type descriptions
  63  * ==========================================================================
  64  */
  65 char *zio_type_name[ZIO_TYPES] = {
  66         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  67         "zio_ioctl"
  68 };
  69 
  70 /*
  71  * ==========================================================================
  72  * I/O kmem caches
  73  * ==========================================================================
  74  */
  75 kmem_cache_t *zio_cache;
  76 kmem_cache_t *zio_link_cache;
  77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  79 
  80 #ifdef _KERNEL
  81 extern vmem_t *zio_alloc_arena;
  82 #endif
  83 extern int zfs_mg_alloc_failures;
  84 
  85 /*
  86  * The following actions directly effect the spa's sync-to-convergence logic.
  87  * The values below define the sync pass when we start performing the action.
  88  * Care should be taken when changing these values as they directly impact
  89  * spa_sync() performance. Tuning these values may introduce subtle performance
  90  * pathologies and should only be done in the context of performance analysis.
  91  * These tunables will eventually be removed and replaced with #defines once
  92  * enough analysis has been done to determine optimal values.
  93  *
  94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
  95  * regular blocks are not deferred.
  96  */
  97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
  98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
  99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
 100 
 101 /*
 102  * An allocating zio is one that either currently has the DVA allocate
 103  * stage set or will have it later in its lifetime.
 104  */
 105 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
 106 
 107 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
 108 
 109 #ifdef ZFS_DEBUG
 110 int zio_buf_debug_limit = 16384;
 111 #else
 112 int zio_buf_debug_limit = 0;
 113 #endif
 114 
 115 void
 116 zio_init(void)
 117 {
 118         size_t c;
 119         vmem_t *data_alloc_arena = NULL;
 120 
 121 #ifdef _KERNEL
 122         data_alloc_arena = zio_alloc_arena;
 123 #endif
 124         zio_cache = kmem_cache_create("zio_cache",
 125             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 126         zio_link_cache = kmem_cache_create("zio_link_cache",
 127             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 128 
 129         /*
 130          * For small buffers, we want a cache for each multiple of
 131          * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
 132          * for each quarter-power of 2.  For large buffers, we want
 133          * a cache for each multiple of PAGESIZE.
 134          */
 135         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 136                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 137                 size_t p2 = size;
 138                 size_t align = 0;
 139                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 140 
 141                 while (p2 & (p2 - 1))
 142                         p2 &= p2 - 1;
 143 
 144 #ifndef _KERNEL
 145                 /*
 146                  * If we are using watchpoints, put each buffer on its own page,
 147                  * to eliminate the performance overhead of trapping to the
 148                  * kernel when modifying a non-watched buffer that shares the
 149                  * page with a watched buffer.
 150                  */
 151                 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
 152                         continue;
 153 #endif
 154                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 155                         align = SPA_MINBLOCKSIZE;
 156                 } else if (IS_P2ALIGNED(size, PAGESIZE)) {
 157                         align = PAGESIZE;
 158                 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
 159                         align = p2 >> 2;
 160                 }
 161 
 162                 if (align != 0) {
 163                         char name[36];
 164                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 165                         zio_buf_cache[c] = kmem_cache_create(name, size,
 166                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 167 
 168                         /*
 169                          * Since zio_data bufs do not appear in crash dumps, we
 170                          * pass KMC_NOTOUCH so that no allocator metadata is
 171                          * stored with the buffers.
 172                          */
 173                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 174                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 175                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 176                             cflags | KMC_NOTOUCH);
 177                 }
 178         }
 179 
 180         while (--c != 0) {
 181                 ASSERT(zio_buf_cache[c] != NULL);
 182                 if (zio_buf_cache[c - 1] == NULL)
 183                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 184 
 185                 ASSERT(zio_data_buf_cache[c] != NULL);
 186                 if (zio_data_buf_cache[c - 1] == NULL)
 187                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 188         }
 189 
 190         /*
 191          * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
 192          * to fail 3 times per txg or 8 failures, whichever is greater.
 193          */
 194         zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
 195 
 196         zio_inject_init();
 197 }
 198 
 199 void
 200 zio_fini(void)
 201 {
 202         size_t c;
 203         kmem_cache_t *last_cache = NULL;
 204         kmem_cache_t *last_data_cache = NULL;
 205 
 206         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 207                 if (zio_buf_cache[c] != last_cache) {
 208                         last_cache = zio_buf_cache[c];
 209                         kmem_cache_destroy(zio_buf_cache[c]);
 210                 }
 211                 zio_buf_cache[c] = NULL;
 212 
 213                 if (zio_data_buf_cache[c] != last_data_cache) {
 214                         last_data_cache = zio_data_buf_cache[c];
 215                         kmem_cache_destroy(zio_data_buf_cache[c]);
 216                 }
 217                 zio_data_buf_cache[c] = NULL;
 218         }
 219 
 220         kmem_cache_destroy(zio_link_cache);
 221         kmem_cache_destroy(zio_cache);
 222 
 223         zio_inject_fini();
 224 }
 225 
 226 /*
 227  * ==========================================================================
 228  * Allocate and free I/O buffers
 229  * ==========================================================================
 230  */
 231 
 232 /*
 233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 236  * excess / transient data in-core during a crashdump.
 237  */
 238 void *
 239 zio_buf_alloc(size_t size)
 240 {
 241         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 242 
 243         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 244 
 245         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 246 }
 247 
 248 /*
 249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 250  * crashdump if the kernel panics.  This exists so that we will limit the amount
 251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 252  * of kernel heap dumped to disk when the kernel panics)
 253  */
 254 void *
 255 zio_data_buf_alloc(size_t size)
 256 {
 257         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 258 
 259         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 260 
 261         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 262 }
 263 
 264 void
 265 zio_buf_free(void *buf, size_t size)
 266 {
 267         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 268 
 269         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 270 
 271         kmem_cache_free(zio_buf_cache[c], buf);
 272 }
 273 
 274 void
 275 zio_data_buf_free(void *buf, size_t size)
 276 {
 277         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 278 
 279         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 280 
 281         kmem_cache_free(zio_data_buf_cache[c], buf);
 282 }
 283 
 284 /*
 285  * ==========================================================================
 286  * Push and pop I/O transform buffers
 287  * ==========================================================================
 288  */
 289 static void
 290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
 291         zio_transform_func_t *transform)
 292 {
 293         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 294 
 295         zt->zt_orig_data = zio->io_data;
 296         zt->zt_orig_size = zio->io_size;
 297         zt->zt_bufsize = bufsize;
 298         zt->zt_transform = transform;
 299 
 300         zt->zt_next = zio->io_transform_stack;
 301         zio->io_transform_stack = zt;
 302 
 303         zio->io_data = data;
 304         zio->io_size = size;
 305 }
 306 
 307 static void
 308 zio_pop_transforms(zio_t *zio)
 309 {
 310         zio_transform_t *zt;
 311 
 312         while ((zt = zio->io_transform_stack) != NULL) {
 313                 if (zt->zt_transform != NULL)
 314                         zt->zt_transform(zio,
 315                             zt->zt_orig_data, zt->zt_orig_size);
 316 
 317                 if (zt->zt_bufsize != 0)
 318                         zio_buf_free(zio->io_data, zt->zt_bufsize);
 319 
 320                 zio->io_data = zt->zt_orig_data;
 321                 zio->io_size = zt->zt_orig_size;
 322                 zio->io_transform_stack = zt->zt_next;
 323 
 324                 kmem_free(zt, sizeof (zio_transform_t));
 325         }
 326 }
 327 
 328 /*
 329  * ==========================================================================
 330  * I/O transform callbacks for subblocks and decompression
 331  * ==========================================================================
 332  */
 333 static void
 334 zio_subblock(zio_t *zio, void *data, uint64_t size)
 335 {
 336         ASSERT(zio->io_size > size);
 337 
 338         if (zio->io_type == ZIO_TYPE_READ)
 339                 bcopy(zio->io_data, data, size);
 340 }
 341 
 342 static void
 343 zio_decompress(zio_t *zio, void *data, uint64_t size)
 344 {
 345         if (zio->io_error == 0 &&
 346             zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 347             zio->io_data, data, zio->io_size, size) != 0)
 348                 zio->io_error = SET_ERROR(EIO);
 349 }
 350 
 351 /*
 352  * ==========================================================================
 353  * I/O parent/child relationships and pipeline interlocks
 354  * ==========================================================================
 355  */
 356 /*
 357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
 358  *        continue calling these functions until they return NULL.
 359  *        Otherwise, the next caller will pick up the list walk in
 360  *        some indeterminate state.  (Otherwise every caller would
 361  *        have to pass in a cookie to keep the state represented by
 362  *        io_walk_link, which gets annoying.)
 363  */
 364 zio_t *
 365 zio_walk_parents(zio_t *cio)
 366 {
 367         zio_link_t *zl = cio->io_walk_link;
 368         list_t *pl = &cio->io_parent_list;
 369 
 370         zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
 371         cio->io_walk_link = zl;
 372 
 373         if (zl == NULL)
 374                 return (NULL);
 375 
 376         ASSERT(zl->zl_child == cio);
 377         return (zl->zl_parent);
 378 }
 379 
 380 zio_t *
 381 zio_walk_children(zio_t *pio)
 382 {
 383         zio_link_t *zl = pio->io_walk_link;
 384         list_t *cl = &pio->io_child_list;
 385 
 386         zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
 387         pio->io_walk_link = zl;
 388 
 389         if (zl == NULL)
 390                 return (NULL);
 391 
 392         ASSERT(zl->zl_parent == pio);
 393         return (zl->zl_child);
 394 }
 395 
 396 zio_t *
 397 zio_unique_parent(zio_t *cio)
 398 {
 399         zio_t *pio = zio_walk_parents(cio);
 400 
 401         VERIFY(zio_walk_parents(cio) == NULL);
 402         return (pio);
 403 }
 404 
 405 void
 406 zio_add_child(zio_t *pio, zio_t *cio)
 407 {
 408         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 409 
 410         /*
 411          * Logical I/Os can have logical, gang, or vdev children.
 412          * Gang I/Os can have gang or vdev children.
 413          * Vdev I/Os can only have vdev children.
 414          * The following ASSERT captures all of these constraints.
 415          */
 416         ASSERT(cio->io_child_type <= pio->io_child_type);
 417 
 418         zl->zl_parent = pio;
 419         zl->zl_child = cio;
 420 
 421         mutex_enter(&cio->io_lock);
 422         mutex_enter(&pio->io_lock);
 423 
 424         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 425 
 426         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 427                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 428 
 429         list_insert_head(&pio->io_child_list, zl);
 430         list_insert_head(&cio->io_parent_list, zl);
 431 
 432         pio->io_child_count++;
 433         cio->io_parent_count++;
 434 
 435         mutex_exit(&pio->io_lock);
 436         mutex_exit(&cio->io_lock);
 437 }
 438 
 439 static void
 440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 441 {
 442         ASSERT(zl->zl_parent == pio);
 443         ASSERT(zl->zl_child == cio);
 444 
 445         mutex_enter(&cio->io_lock);
 446         mutex_enter(&pio->io_lock);
 447 
 448         list_remove(&pio->io_child_list, zl);
 449         list_remove(&cio->io_parent_list, zl);
 450 
 451         pio->io_child_count--;
 452         cio->io_parent_count--;
 453 
 454         mutex_exit(&pio->io_lock);
 455         mutex_exit(&cio->io_lock);
 456 
 457         kmem_cache_free(zio_link_cache, zl);
 458 }
 459 
 460 static boolean_t
 461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
 462 {
 463         uint64_t *countp = &zio->io_children[child][wait];
 464         boolean_t waiting = B_FALSE;
 465 
 466         mutex_enter(&zio->io_lock);
 467         ASSERT(zio->io_stall == NULL);
 468         if (*countp != 0) {
 469                 zio->io_stage >>= 1;
 470                 zio->io_stall = countp;
 471                 waiting = B_TRUE;
 472         }
 473         mutex_exit(&zio->io_lock);
 474 
 475         return (waiting);
 476 }
 477 
 478 static void
 479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 480 {
 481         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 482         int *errorp = &pio->io_child_error[zio->io_child_type];
 483 
 484         mutex_enter(&pio->io_lock);
 485         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 486                 *errorp = zio_worst_error(*errorp, zio->io_error);
 487         pio->io_reexecute |= zio->io_reexecute;
 488         ASSERT3U(*countp, >, 0);
 489         if (--*countp == 0 && pio->io_stall == countp) {
 490                 pio->io_stall = NULL;
 491                 mutex_exit(&pio->io_lock);
 492                 zio_execute(pio);
 493         } else {
 494                 mutex_exit(&pio->io_lock);
 495         }
 496 }
 497 
 498 static void
 499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 500 {
 501         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 502                 zio->io_error = zio->io_child_error[c];
 503 }
 504 
 505 /*
 506  * ==========================================================================
 507  * Create the various types of I/O (read, write, free, etc)
 508  * ==========================================================================
 509  */
 510 static zio_t *
 511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 512     void *data, uint64_t size, zio_done_func_t *done, void *private,
 513     zio_type_t type, int priority, enum zio_flag flags,
 514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
 515     enum zio_stage stage, enum zio_stage pipeline)
 516 {
 517         zio_t *zio;
 518 
 519         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 520         ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
 521         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 522 
 523         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 524         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 525         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 526 
 527         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 528         bzero(zio, sizeof (zio_t));
 529 
 530         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 531         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 532 
 533         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 534             offsetof(zio_link_t, zl_parent_node));
 535         list_create(&zio->io_child_list, sizeof (zio_link_t),
 536             offsetof(zio_link_t, zl_child_node));
 537 
 538         if (vd != NULL)
 539                 zio->io_child_type = ZIO_CHILD_VDEV;
 540         else if (flags & ZIO_FLAG_GANG_CHILD)
 541                 zio->io_child_type = ZIO_CHILD_GANG;
 542         else if (flags & ZIO_FLAG_DDT_CHILD)
 543                 zio->io_child_type = ZIO_CHILD_DDT;
 544         else
 545                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 546 
 547         if (bp != NULL) {
 548                 zio->io_bp = (blkptr_t *)bp;
 549                 zio->io_bp_copy = *bp;
 550                 zio->io_bp_orig = *bp;
 551                 if (type != ZIO_TYPE_WRITE ||
 552                     zio->io_child_type == ZIO_CHILD_DDT)
 553                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 554                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 555                         zio->io_logical = zio;
 556                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 557                         pipeline |= ZIO_GANG_STAGES;
 558         }
 559 
 560         zio->io_spa = spa;
 561         zio->io_txg = txg;
 562         zio->io_done = done;
 563         zio->io_private = private;
 564         zio->io_type = type;
 565         zio->io_priority = priority;
 566         zio->io_vd = vd;
 567         zio->io_offset = offset;
 568         zio->io_orig_data = zio->io_data = data;
 569         zio->io_orig_size = zio->io_size = size;
 570         zio->io_orig_flags = zio->io_flags = flags;
 571         zio->io_orig_stage = zio->io_stage = stage;
 572         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 573 
 574         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 575         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 576 
 577         if (zb != NULL)
 578                 zio->io_bookmark = *zb;
 579 
 580         if (pio != NULL) {
 581                 if (zio->io_logical == NULL)
 582                         zio->io_logical = pio->io_logical;
 583                 if (zio->io_child_type == ZIO_CHILD_GANG)
 584                         zio->io_gang_leader = pio->io_gang_leader;
 585                 zio_add_child(pio, zio);
 586         }
 587 
 588         return (zio);
 589 }
 590 
 591 static void
 592 zio_destroy(zio_t *zio)
 593 {
 594         list_destroy(&zio->io_parent_list);
 595         list_destroy(&zio->io_child_list);
 596         mutex_destroy(&zio->io_lock);
 597         cv_destroy(&zio->io_cv);
 598         kmem_cache_free(zio_cache, zio);
 599 }
 600 
 601 zio_t *
 602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 603     void *private, enum zio_flag flags)
 604 {
 605         zio_t *zio;
 606 
 607         zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 608             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 609             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 610 
 611         return (zio);
 612 }
 613 
 614 zio_t *
 615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
 616 {
 617         return (zio_null(NULL, spa, NULL, done, private, flags));
 618 }
 619 
 620 zio_t *
 621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 622     void *data, uint64_t size, zio_done_func_t *done, void *private,
 623     int priority, enum zio_flag flags, const zbookmark_t *zb)
 624 {
 625         zio_t *zio;
 626 
 627         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 628             data, size, done, private,
 629             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 630             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 631             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 632 
 633         return (zio);
 634 }
 635 
 636 zio_t *
 637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 638     void *data, uint64_t size, const zio_prop_t *zp,
 639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
 640     int priority, enum zio_flag flags, const zbookmark_t *zb)
 641 {
 642         zio_t *zio;
 643 
 644         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 645             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 646             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 647             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 648             DMU_OT_IS_VALID(zp->zp_type) &&
 649             zp->zp_level < 32 &&
 650             zp->zp_copies > 0 &&
 651             zp->zp_copies <= spa_max_replication(spa));
 652 
 653         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 654             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 655             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 656             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 657 
 658         zio->io_ready = ready;
 659         zio->io_prop = *zp;
 660 
 661         return (zio);
 662 }
 663 
 664 zio_t *
 665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
 666     uint64_t size, zio_done_func_t *done, void *private, int priority,
 667     enum zio_flag flags, zbookmark_t *zb)
 668 {
 669         zio_t *zio;
 670 
 671         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 672             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 673             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
 674 
 675         return (zio);
 676 }
 677 
 678 void
 679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
 680 {
 681         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 682         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
 683         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
 684         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
 685 
 686         /*
 687          * We must reset the io_prop to match the values that existed
 688          * when the bp was first written by dmu_sync() keeping in mind
 689          * that nopwrite and dedup are mutually exclusive.
 690          */
 691         zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
 692         zio->io_prop.zp_nopwrite = nopwrite;
 693         zio->io_prop.zp_copies = copies;
 694         zio->io_bp_override = bp;
 695 }
 696 
 697 void
 698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
 699 {
 700         metaslab_check_free(spa, bp);
 701 
 702         /*
 703          * Frees that are for the currently-syncing txg, are not going to be
 704          * deferred, and which will not need to do a read (i.e. not GANG or
 705          * DEDUP), can be processed immediately.  Otherwise, put them on the
 706          * in-memory list for later processing.
 707          */
 708         if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
 709             txg != spa->spa_syncing_txg ||
 710             spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
 711                 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
 712         } else {
 713                 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
 714         }
 715 }
 716 
 717 zio_t *
 718 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 719     enum zio_flag flags)
 720 {
 721         zio_t *zio;
 722         enum zio_stage stage = ZIO_FREE_PIPELINE;
 723 
 724         dprintf_bp(bp, "freeing in txg %llu, pass %u",
 725             (longlong_t)txg, spa->spa_sync_pass);
 726 
 727         ASSERT(!BP_IS_HOLE(bp));
 728         ASSERT(spa_syncing_txg(spa) == txg);
 729         ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
 730 
 731         metaslab_check_free(spa, bp);
 732         arc_freed(spa, bp);
 733 
 734         /*
 735          * GANG and DEDUP blocks can induce a read (for the gang block header,
 736          * or the DDT), so issue them asynchronously so that this thread is
 737          * not tied up.
 738          */
 739         if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
 740                 stage |= ZIO_STAGE_ISSUE_ASYNC;
 741 
 742         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 743             NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
 744             NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
 745 
 746 
 747         return (zio);
 748 }
 749 
 750 zio_t *
 751 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 752     zio_done_func_t *done, void *private, enum zio_flag flags)
 753 {
 754         zio_t *zio;
 755 
 756         /*
 757          * A claim is an allocation of a specific block.  Claims are needed
 758          * to support immediate writes in the intent log.  The issue is that
 759          * immediate writes contain committed data, but in a txg that was
 760          * *not* committed.  Upon opening the pool after an unclean shutdown,
 761          * the intent log claims all blocks that contain immediate write data
 762          * so that the SPA knows they're in use.
 763          *
 764          * All claims *must* be resolved in the first txg -- before the SPA
 765          * starts allocating blocks -- so that nothing is allocated twice.
 766          * If txg == 0 we just verify that the block is claimable.
 767          */
 768         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
 769         ASSERT(txg == spa_first_txg(spa) || txg == 0);
 770         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
 771 
 772         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 773             done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
 774             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
 775 
 776         return (zio);
 777 }
 778 
 779 zio_t *
 780 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
 781     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
 782 {
 783         zio_t *zio;
 784         int c;
 785 
 786         if (vd->vdev_children == 0) {
 787                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 788                     ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
 789                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
 790 
 791                 zio->io_cmd = cmd;
 792         } else {
 793                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
 794 
 795                 for (c = 0; c < vd->vdev_children; c++)
 796                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
 797                             done, private, priority, flags));
 798         }
 799 
 800         return (zio);
 801 }
 802 
 803 zio_t *
 804 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 805     void *data, int checksum, zio_done_func_t *done, void *private,
 806     int priority, enum zio_flag flags, boolean_t labels)
 807 {
 808         zio_t *zio;
 809 
 810         ASSERT(vd->vdev_children == 0);
 811         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 812             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 813         ASSERT3U(offset + size, <=, vd->vdev_psize);
 814 
 815         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 816             ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
 817             ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
 818 
 819         zio->io_prop.zp_checksum = checksum;
 820 
 821         return (zio);
 822 }
 823 
 824 zio_t *
 825 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 826     void *data, int checksum, zio_done_func_t *done, void *private,
 827     int priority, enum zio_flag flags, boolean_t labels)
 828 {
 829         zio_t *zio;
 830 
 831         ASSERT(vd->vdev_children == 0);
 832         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 833             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 834         ASSERT3U(offset + size, <=, vd->vdev_psize);
 835 
 836         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 837             ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
 838             ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
 839 
 840         zio->io_prop.zp_checksum = checksum;
 841 
 842         if (zio_checksum_table[checksum].ci_eck) {
 843                 /*
 844                  * zec checksums are necessarily destructive -- they modify
 845                  * the end of the write buffer to hold the verifier/checksum.
 846                  * Therefore, we must make a local copy in case the data is
 847                  * being written to multiple places in parallel.
 848                  */
 849                 void *wbuf = zio_buf_alloc(size);
 850                 bcopy(data, wbuf, size);
 851                 zio_push_transform(zio, wbuf, size, size, NULL);
 852         }
 853 
 854         return (zio);
 855 }
 856 
 857 /*
 858  * Create a child I/O to do some work for us.
 859  */
 860 zio_t *
 861 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
 862         void *data, uint64_t size, int type, int priority, enum zio_flag flags,
 863         zio_done_func_t *done, void *private)
 864 {
 865         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
 866         zio_t *zio;
 867 
 868         ASSERT(vd->vdev_parent ==
 869             (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
 870 
 871         if (type == ZIO_TYPE_READ && bp != NULL) {
 872                 /*
 873                  * If we have the bp, then the child should perform the
 874                  * checksum and the parent need not.  This pushes error
 875                  * detection as close to the leaves as possible and
 876                  * eliminates redundant checksums in the interior nodes.
 877                  */
 878                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
 879                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
 880         }
 881 
 882         if (vd->vdev_children == 0)
 883                 offset += VDEV_LABEL_START_SIZE;
 884 
 885         flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
 886 
 887         /*
 888          * If we've decided to do a repair, the write is not speculative --
 889          * even if the original read was.
 890          */
 891         if (flags & ZIO_FLAG_IO_REPAIR)
 892                 flags &= ~ZIO_FLAG_SPECULATIVE;
 893 
 894         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
 895             done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
 896             ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
 897 
 898         return (zio);
 899 }
 900 
 901 zio_t *
 902 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
 903         int type, int priority, enum zio_flag flags,
 904         zio_done_func_t *done, void *private)
 905 {
 906         zio_t *zio;
 907 
 908         ASSERT(vd->vdev_ops->vdev_op_leaf);
 909 
 910         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
 911             data, size, done, private, type, priority,
 912             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
 913             vd, offset, NULL,
 914             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
 915 
 916         return (zio);
 917 }
 918 
 919 void
 920 zio_flush(zio_t *zio, vdev_t *vd)
 921 {
 922         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
 923             NULL, NULL, ZIO_PRIORITY_NOW,
 924             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
 925 }
 926 
 927 void
 928 zio_shrink(zio_t *zio, uint64_t size)
 929 {
 930         ASSERT(zio->io_executor == NULL);
 931         ASSERT(zio->io_orig_size == zio->io_size);
 932         ASSERT(size <= zio->io_size);
 933 
 934         /*
 935          * We don't shrink for raidz because of problems with the
 936          * reconstruction when reading back less than the block size.
 937          * Note, BP_IS_RAIDZ() assumes no compression.
 938          */
 939         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 940         if (!BP_IS_RAIDZ(zio->io_bp))
 941                 zio->io_orig_size = zio->io_size = size;
 942 }
 943 
 944 /*
 945  * ==========================================================================
 946  * Prepare to read and write logical blocks
 947  * ==========================================================================
 948  */
 949 
 950 static int
 951 zio_read_bp_init(zio_t *zio)
 952 {
 953         blkptr_t *bp = zio->io_bp;
 954 
 955         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
 956             zio->io_child_type == ZIO_CHILD_LOGICAL &&
 957             !(zio->io_flags & ZIO_FLAG_RAW)) {
 958                 uint64_t psize = BP_GET_PSIZE(bp);
 959                 void *cbuf = zio_buf_alloc(psize);
 960 
 961                 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
 962         }
 963 
 964         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
 965                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 966 
 967         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
 968                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 969 
 970         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
 971                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
 972 
 973         return (ZIO_PIPELINE_CONTINUE);
 974 }
 975 
 976 static int
 977 zio_write_bp_init(zio_t *zio)
 978 {
 979         spa_t *spa = zio->io_spa;
 980         zio_prop_t *zp = &zio->io_prop;
 981         enum zio_compress compress = zp->zp_compress;
 982         blkptr_t *bp = zio->io_bp;
 983         uint64_t lsize = zio->io_size;
 984         uint64_t psize = lsize;
 985         int pass = 1;
 986 
 987         /*
 988          * If our children haven't all reached the ready stage,
 989          * wait for them and then repeat this pipeline stage.
 990          */
 991         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
 992             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
 993                 return (ZIO_PIPELINE_STOP);
 994 
 995         if (!IO_IS_ALLOCATING(zio))
 996                 return (ZIO_PIPELINE_CONTINUE);
 997 
 998         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
 999 
1000         if (zio->io_bp_override) {
1001                 ASSERT(bp->blk_birth != zio->io_txg);
1002                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1003 
1004                 *bp = *zio->io_bp_override;
1005                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1006 
1007                 /*
1008                  * If we've been overridden and nopwrite is set then
1009                  * set the flag accordingly to indicate that a nopwrite
1010                  * has already occurred.
1011                  */
1012                 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1013                         ASSERT(!zp->zp_dedup);
1014                         zio->io_flags |= ZIO_FLAG_NOPWRITE;
1015                         return (ZIO_PIPELINE_CONTINUE);
1016                 }
1017 
1018                 ASSERT(!zp->zp_nopwrite);
1019 
1020                 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1021                         return (ZIO_PIPELINE_CONTINUE);
1022 
1023                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1024                     zp->zp_dedup_verify);
1025 
1026                 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1027                         BP_SET_DEDUP(bp, 1);
1028                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1029                         return (ZIO_PIPELINE_CONTINUE);
1030                 }
1031                 zio->io_bp_override = NULL;
1032                 BP_ZERO(bp);
1033         }
1034 
1035         if (bp->blk_birth == zio->io_txg) {
1036                 /*
1037                  * We're rewriting an existing block, which means we're
1038                  * working on behalf of spa_sync().  For spa_sync() to
1039                  * converge, it must eventually be the case that we don't
1040                  * have to allocate new blocks.  But compression changes
1041                  * the blocksize, which forces a reallocate, and makes
1042                  * convergence take longer.  Therefore, after the first
1043                  * few passes, stop compressing to ensure convergence.
1044                  */
1045                 pass = spa_sync_pass(spa);
1046 
1047                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1048                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1049                 ASSERT(!BP_GET_DEDUP(bp));
1050 
1051                 if (pass >= zfs_sync_pass_dont_compress)
1052                         compress = ZIO_COMPRESS_OFF;
1053 
1054                 /* Make sure someone doesn't change their mind on overwrites */
1055                 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1056                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1057         }
1058 
1059         if (compress != ZIO_COMPRESS_OFF) {
1060                 void *cbuf = zio_buf_alloc(lsize);
1061                 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1062                 if (psize == 0 || psize == lsize) {
1063                         compress = ZIO_COMPRESS_OFF;
1064                         zio_buf_free(cbuf, lsize);
1065                 } else {
1066                         ASSERT(psize < lsize);
1067                         zio_push_transform(zio, cbuf, psize, lsize, NULL);
1068                 }
1069         }
1070 
1071         /*
1072          * The final pass of spa_sync() must be all rewrites, but the first
1073          * few passes offer a trade-off: allocating blocks defers convergence,
1074          * but newly allocated blocks are sequential, so they can be written
1075          * to disk faster.  Therefore, we allow the first few passes of
1076          * spa_sync() to allocate new blocks, but force rewrites after that.
1077          * There should only be a handful of blocks after pass 1 in any case.
1078          */
1079         if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1080             pass >= zfs_sync_pass_rewrite) {
1081                 ASSERT(psize != 0);
1082                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1083                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1084                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1085         } else {
1086                 BP_ZERO(bp);
1087                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1088         }
1089 
1090         if (psize == 0) {
1091                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1092         } else {
1093                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1094                 BP_SET_LSIZE(bp, lsize);
1095                 BP_SET_PSIZE(bp, psize);
1096                 BP_SET_COMPRESS(bp, compress);
1097                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1098                 BP_SET_TYPE(bp, zp->zp_type);
1099                 BP_SET_LEVEL(bp, zp->zp_level);
1100                 BP_SET_DEDUP(bp, zp->zp_dedup);
1101                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1102                 if (zp->zp_dedup) {
1103                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1104                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1105                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1106                 }
1107                 if (zp->zp_nopwrite) {
1108                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1109                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1110                         zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1111                 }
1112         }
1113 
1114         return (ZIO_PIPELINE_CONTINUE);
1115 }
1116 
1117 static int
1118 zio_free_bp_init(zio_t *zio)
1119 {
1120         blkptr_t *bp = zio->io_bp;
1121 
1122         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1123                 if (BP_GET_DEDUP(bp))
1124                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1125         }
1126 
1127         return (ZIO_PIPELINE_CONTINUE);
1128 }
1129 
1130 /*
1131  * ==========================================================================
1132  * Execute the I/O pipeline
1133  * ==========================================================================
1134  */
1135 
1136 static void
1137 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1138 {
1139         spa_t *spa = zio->io_spa;
1140         zio_type_t t = zio->io_type;
1141         int flags = (cutinline ? TQ_FRONT : 0);
1142 
1143         /*
1144          * If we're a config writer or a probe, the normal issue and
1145          * interrupt threads may all be blocked waiting for the config lock.
1146          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1147          */
1148         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1149                 t = ZIO_TYPE_NULL;
1150 
1151         /*
1152          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1153          */
1154         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1155                 t = ZIO_TYPE_NULL;
1156 
1157         /*
1158          * If this is a high priority I/O, then use the high priority taskq if
1159          * available.
1160          */
1161         if (zio->io_priority == ZIO_PRIORITY_NOW &&
1162             spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1163                 q++;
1164 
1165         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1166 
1167         /*
1168          * NB: We are assuming that the zio can only be dispatched
1169          * to a single taskq at a time.  It would be a grievous error
1170          * to dispatch the zio to another taskq at the same time.
1171          */
1172         ASSERT(zio->io_tqent.tqent_next == NULL);
1173         spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1174             flags, &zio->io_tqent);
1175 }
1176 
1177 static boolean_t
1178 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1179 {
1180         kthread_t *executor = zio->io_executor;
1181         spa_t *spa = zio->io_spa;
1182 
1183         for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1184                 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1185                 uint_t i;
1186                 for (i = 0; i < tqs->stqs_count; i++) {
1187                         if (taskq_member(tqs->stqs_taskq[i], executor))
1188                                 return (B_TRUE);
1189                 }
1190         }
1191 
1192         return (B_FALSE);
1193 }
1194 
1195 static int
1196 zio_issue_async(zio_t *zio)
1197 {
1198         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1199 
1200         return (ZIO_PIPELINE_STOP);
1201 }
1202 
1203 void
1204 zio_interrupt(zio_t *zio)
1205 {
1206         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1207 }
1208 
1209 /*
1210  * Execute the I/O pipeline until one of the following occurs:
1211  *
1212  *      (1) the I/O completes
1213  *      (2) the pipeline stalls waiting for dependent child I/Os
1214  *      (3) the I/O issues, so we're waiting for an I/O completion interrupt
1215  *      (4) the I/O is delegated by vdev-level caching or aggregation
1216  *      (5) the I/O is deferred due to vdev-level queueing
1217  *      (6) the I/O is handed off to another thread.
1218  *
1219  * In all cases, the pipeline stops whenever there's no CPU work; it never
1220  * burns a thread in cv_wait().
1221  *
1222  * There's no locking on io_stage because there's no legitimate way
1223  * for multiple threads to be attempting to process the same I/O.
1224  */
1225 static zio_pipe_stage_t *zio_pipeline[];
1226 
1227 void
1228 zio_execute(zio_t *zio)
1229 {
1230         zio->io_executor = curthread;
1231 
1232         while (zio->io_stage < ZIO_STAGE_DONE) {
1233                 enum zio_stage pipeline = zio->io_pipeline;
1234                 enum zio_stage stage = zio->io_stage;
1235                 int rv;
1236 
1237                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1238                 ASSERT(ISP2(stage));
1239                 ASSERT(zio->io_stall == NULL);
1240 
1241                 do {
1242                         stage <<= 1;
1243                 } while ((stage & pipeline) == 0);
1244 
1245                 ASSERT(stage <= ZIO_STAGE_DONE);
1246 
1247                 /*
1248                  * If we are in interrupt context and this pipeline stage
1249                  * will grab a config lock that is held across I/O,
1250                  * or may wait for an I/O that needs an interrupt thread
1251                  * to complete, issue async to avoid deadlock.
1252                  *
1253                  * For VDEV_IO_START, we cut in line so that the io will
1254                  * be sent to disk promptly.
1255                  */
1256                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1257                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1258                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1259                             zio_requeue_io_start_cut_in_line : B_FALSE;
1260                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1261                         return;
1262                 }
1263 
1264                 zio->io_stage = stage;
1265                 rv = zio_pipeline[highbit(stage) - 1](zio);
1266 
1267                 if (rv == ZIO_PIPELINE_STOP)
1268                         return;
1269 
1270                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1271         }
1272 }
1273 
1274 /*
1275  * ==========================================================================
1276  * Initiate I/O, either sync or async
1277  * ==========================================================================
1278  */
1279 int
1280 zio_wait(zio_t *zio)
1281 {
1282         int error;
1283 
1284         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1285         ASSERT(zio->io_executor == NULL);
1286 
1287         zio->io_waiter = curthread;
1288 
1289         zio_execute(zio);
1290 
1291         mutex_enter(&zio->io_lock);
1292         while (zio->io_executor != NULL)
1293                 cv_wait(&zio->io_cv, &zio->io_lock);
1294         mutex_exit(&zio->io_lock);
1295 
1296         error = zio->io_error;
1297         zio_destroy(zio);
1298 
1299         return (error);
1300 }
1301 
1302 void
1303 zio_nowait(zio_t *zio)
1304 {
1305         ASSERT(zio->io_executor == NULL);
1306 
1307         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1308             zio_unique_parent(zio) == NULL) {
1309                 /*
1310                  * This is a logical async I/O with no parent to wait for it.
1311                  * We add it to the spa_async_root_zio "Godfather" I/O which
1312                  * will ensure they complete prior to unloading the pool.
1313                  */
1314                 spa_t *spa = zio->io_spa;
1315 
1316                 zio_add_child(spa->spa_async_zio_root, zio);
1317         }
1318 
1319         zio_execute(zio);
1320 }
1321 
1322 /*
1323  * ==========================================================================
1324  * Reexecute or suspend/resume failed I/O
1325  * ==========================================================================
1326  */
1327 
1328 static void
1329 zio_reexecute(zio_t *pio)
1330 {
1331         zio_t *cio, *cio_next;
1332 
1333         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1334         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1335         ASSERT(pio->io_gang_leader == NULL);
1336         ASSERT(pio->io_gang_tree == NULL);
1337 
1338         pio->io_flags = pio->io_orig_flags;
1339         pio->io_stage = pio->io_orig_stage;
1340         pio->io_pipeline = pio->io_orig_pipeline;
1341         pio->io_reexecute = 0;
1342         pio->io_flags |= ZIO_FLAG_REEXECUTED;
1343         pio->io_error = 0;
1344         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1345                 pio->io_state[w] = 0;
1346         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1347                 pio->io_child_error[c] = 0;
1348 
1349         if (IO_IS_ALLOCATING(pio))
1350                 BP_ZERO(pio->io_bp);
1351 
1352         /*
1353          * As we reexecute pio's children, new children could be created.
1354          * New children go to the head of pio's io_child_list, however,
1355          * so we will (correctly) not reexecute them.  The key is that
1356          * the remainder of pio's io_child_list, from 'cio_next' onward,
1357          * cannot be affected by any side effects of reexecuting 'cio'.
1358          */
1359         for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1360                 cio_next = zio_walk_children(pio);
1361                 mutex_enter(&pio->io_lock);
1362                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1363                         pio->io_children[cio->io_child_type][w]++;
1364                 mutex_exit(&pio->io_lock);
1365                 zio_reexecute(cio);
1366         }
1367 
1368         /*
1369          * Now that all children have been reexecuted, execute the parent.
1370          * We don't reexecute "The Godfather" I/O here as it's the
1371          * responsibility of the caller to wait on him.
1372          */
1373         if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1374                 zio_execute(pio);
1375 }
1376 
1377 void
1378 zio_suspend(spa_t *spa, zio_t *zio)
1379 {
1380         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1381                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1382                     "failure and the failure mode property for this pool "
1383                     "is set to panic.", spa_name(spa));
1384 
1385         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1386 
1387         mutex_enter(&spa->spa_suspend_lock);
1388 
1389         if (spa->spa_suspend_zio_root == NULL)
1390                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1391                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1392                     ZIO_FLAG_GODFATHER);
1393 
1394         spa->spa_suspended = B_TRUE;
1395 
1396         if (zio != NULL) {
1397                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1398                 ASSERT(zio != spa->spa_suspend_zio_root);
1399                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1400                 ASSERT(zio_unique_parent(zio) == NULL);
1401                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1402                 zio_add_child(spa->spa_suspend_zio_root, zio);
1403         }
1404 
1405         mutex_exit(&spa->spa_suspend_lock);
1406 }
1407 
1408 int
1409 zio_resume(spa_t *spa)
1410 {
1411         zio_t *pio;
1412 
1413         /*
1414          * Reexecute all previously suspended i/o.
1415          */
1416         mutex_enter(&spa->spa_suspend_lock);
1417         spa->spa_suspended = B_FALSE;
1418         cv_broadcast(&spa->spa_suspend_cv);
1419         pio = spa->spa_suspend_zio_root;
1420         spa->spa_suspend_zio_root = NULL;
1421         mutex_exit(&spa->spa_suspend_lock);
1422 
1423         if (pio == NULL)
1424                 return (0);
1425 
1426         zio_reexecute(pio);
1427         return (zio_wait(pio));
1428 }
1429 
1430 void
1431 zio_resume_wait(spa_t *spa)
1432 {
1433         mutex_enter(&spa->spa_suspend_lock);
1434         while (spa_suspended(spa))
1435                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1436         mutex_exit(&spa->spa_suspend_lock);
1437 }
1438 
1439 /*
1440  * ==========================================================================
1441  * Gang blocks.
1442  *
1443  * A gang block is a collection of small blocks that looks to the DMU
1444  * like one large block.  When zio_dva_allocate() cannot find a block
1445  * of the requested size, due to either severe fragmentation or the pool
1446  * being nearly full, it calls zio_write_gang_block() to construct the
1447  * block from smaller fragments.
1448  *
1449  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1450  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1451  * an indirect block: it's an array of block pointers.  It consumes
1452  * only one sector and hence is allocatable regardless of fragmentation.
1453  * The gang header's bps point to its gang members, which hold the data.
1454  *
1455  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1456  * as the verifier to ensure uniqueness of the SHA256 checksum.
1457  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1458  * not the gang header.  This ensures that data block signatures (needed for
1459  * deduplication) are independent of how the block is physically stored.
1460  *
1461  * Gang blocks can be nested: a gang member may itself be a gang block.
1462  * Thus every gang block is a tree in which root and all interior nodes are
1463  * gang headers, and the leaves are normal blocks that contain user data.
1464  * The root of the gang tree is called the gang leader.
1465  *
1466  * To perform any operation (read, rewrite, free, claim) on a gang block,
1467  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1468  * in the io_gang_tree field of the original logical i/o by recursively
1469  * reading the gang leader and all gang headers below it.  This yields
1470  * an in-core tree containing the contents of every gang header and the
1471  * bps for every constituent of the gang block.
1472  *
1473  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1474  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1475  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1476  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1477  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1478  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1479  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1480  * of the gang header plus zio_checksum_compute() of the data to update the
1481  * gang header's blk_cksum as described above.
1482  *
1483  * The two-phase assemble/issue model solves the problem of partial failure --
1484  * what if you'd freed part of a gang block but then couldn't read the
1485  * gang header for another part?  Assembling the entire gang tree first
1486  * ensures that all the necessary gang header I/O has succeeded before
1487  * starting the actual work of free, claim, or write.  Once the gang tree
1488  * is assembled, free and claim are in-memory operations that cannot fail.
1489  *
1490  * In the event that a gang write fails, zio_dva_unallocate() walks the
1491  * gang tree to immediately free (i.e. insert back into the space map)
1492  * everything we've allocated.  This ensures that we don't get ENOSPC
1493  * errors during repeated suspend/resume cycles due to a flaky device.
1494  *
1495  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1496  * the gang tree, we won't modify the block, so we can safely defer the free
1497  * (knowing that the block is still intact).  If we *can* assemble the gang
1498  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1499  * each constituent bp and we can allocate a new block on the next sync pass.
1500  *
1501  * In all cases, the gang tree allows complete recovery from partial failure.
1502  * ==========================================================================
1503  */
1504 
1505 static zio_t *
1506 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1507 {
1508         if (gn != NULL)
1509                 return (pio);
1510 
1511         return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1512             NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1513             &pio->io_bookmark));
1514 }
1515 
1516 zio_t *
1517 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1518 {
1519         zio_t *zio;
1520 
1521         if (gn != NULL) {
1522                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1523                     gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1524                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1525                 /*
1526                  * As we rewrite each gang header, the pipeline will compute
1527                  * a new gang block header checksum for it; but no one will
1528                  * compute a new data checksum, so we do that here.  The one
1529                  * exception is the gang leader: the pipeline already computed
1530                  * its data checksum because that stage precedes gang assembly.
1531                  * (Presently, nothing actually uses interior data checksums;
1532                  * this is just good hygiene.)
1533                  */
1534                 if (gn != pio->io_gang_leader->io_gang_tree) {
1535                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1536                             data, BP_GET_PSIZE(bp));
1537                 }
1538                 /*
1539                  * If we are here to damage data for testing purposes,
1540                  * leave the GBH alone so that we can detect the damage.
1541                  */
1542                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1543                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1544         } else {
1545                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1546                     data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1547                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1548         }
1549 
1550         return (zio);
1551 }
1552 
1553 /* ARGSUSED */
1554 zio_t *
1555 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1556 {
1557         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1558             ZIO_GANG_CHILD_FLAGS(pio)));
1559 }
1560 
1561 /* ARGSUSED */
1562 zio_t *
1563 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1564 {
1565         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1566             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1567 }
1568 
1569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1570         NULL,
1571         zio_read_gang,
1572         zio_rewrite_gang,
1573         zio_free_gang,
1574         zio_claim_gang,
1575         NULL
1576 };
1577 
1578 static void zio_gang_tree_assemble_done(zio_t *zio);
1579 
1580 static zio_gang_node_t *
1581 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1582 {
1583         zio_gang_node_t *gn;
1584 
1585         ASSERT(*gnpp == NULL);
1586 
1587         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1588         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1589         *gnpp = gn;
1590 
1591         return (gn);
1592 }
1593 
1594 static void
1595 zio_gang_node_free(zio_gang_node_t **gnpp)
1596 {
1597         zio_gang_node_t *gn = *gnpp;
1598 
1599         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1600                 ASSERT(gn->gn_child[g] == NULL);
1601 
1602         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1603         kmem_free(gn, sizeof (*gn));
1604         *gnpp = NULL;
1605 }
1606 
1607 static void
1608 zio_gang_tree_free(zio_gang_node_t **gnpp)
1609 {
1610         zio_gang_node_t *gn = *gnpp;
1611 
1612         if (gn == NULL)
1613                 return;
1614 
1615         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1616                 zio_gang_tree_free(&gn->gn_child[g]);
1617 
1618         zio_gang_node_free(gnpp);
1619 }
1620 
1621 static void
1622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1623 {
1624         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1625 
1626         ASSERT(gio->io_gang_leader == gio);
1627         ASSERT(BP_IS_GANG(bp));
1628 
1629         zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1630             SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1631             gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1632 }
1633 
1634 static void
1635 zio_gang_tree_assemble_done(zio_t *zio)
1636 {
1637         zio_t *gio = zio->io_gang_leader;
1638         zio_gang_node_t *gn = zio->io_private;
1639         blkptr_t *bp = zio->io_bp;
1640 
1641         ASSERT(gio == zio_unique_parent(zio));
1642         ASSERT(zio->io_child_count == 0);
1643 
1644         if (zio->io_error)
1645                 return;
1646 
1647         if (BP_SHOULD_BYTESWAP(bp))
1648                 byteswap_uint64_array(zio->io_data, zio->io_size);
1649 
1650         ASSERT(zio->io_data == gn->gn_gbh);
1651         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1652         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1653 
1654         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1655                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1656                 if (!BP_IS_GANG(gbp))
1657                         continue;
1658                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1659         }
1660 }
1661 
1662 static void
1663 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1664 {
1665         zio_t *gio = pio->io_gang_leader;
1666         zio_t *zio;
1667 
1668         ASSERT(BP_IS_GANG(bp) == !!gn);
1669         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1670         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1671 
1672         /*
1673          * If you're a gang header, your data is in gn->gn_gbh.
1674          * If you're a gang member, your data is in 'data' and gn == NULL.
1675          */
1676         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1677 
1678         if (gn != NULL) {
1679                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1680 
1681                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1682                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1683                         if (BP_IS_HOLE(gbp))
1684                                 continue;
1685                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1686                         data = (char *)data + BP_GET_PSIZE(gbp);
1687                 }
1688         }
1689 
1690         if (gn == gio->io_gang_tree)
1691                 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1692 
1693         if (zio != pio)
1694                 zio_nowait(zio);
1695 }
1696 
1697 static int
1698 zio_gang_assemble(zio_t *zio)
1699 {
1700         blkptr_t *bp = zio->io_bp;
1701 
1702         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1703         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1704 
1705         zio->io_gang_leader = zio;
1706 
1707         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1708 
1709         return (ZIO_PIPELINE_CONTINUE);
1710 }
1711 
1712 static int
1713 zio_gang_issue(zio_t *zio)
1714 {
1715         blkptr_t *bp = zio->io_bp;
1716 
1717         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1718                 return (ZIO_PIPELINE_STOP);
1719 
1720         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1721         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1722 
1723         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1724                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1725         else
1726                 zio_gang_tree_free(&zio->io_gang_tree);
1727 
1728         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1729 
1730         return (ZIO_PIPELINE_CONTINUE);
1731 }
1732 
1733 static void
1734 zio_write_gang_member_ready(zio_t *zio)
1735 {
1736         zio_t *pio = zio_unique_parent(zio);
1737         zio_t *gio = zio->io_gang_leader;
1738         dva_t *cdva = zio->io_bp->blk_dva;
1739         dva_t *pdva = pio->io_bp->blk_dva;
1740         uint64_t asize;
1741 
1742         if (BP_IS_HOLE(zio->io_bp))
1743                 return;
1744 
1745         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1746 
1747         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1748         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1749         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1750         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1751         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1752 
1753         mutex_enter(&pio->io_lock);
1754         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1755                 ASSERT(DVA_GET_GANG(&pdva[d]));
1756                 asize = DVA_GET_ASIZE(&pdva[d]);
1757                 asize += DVA_GET_ASIZE(&cdva[d]);
1758                 DVA_SET_ASIZE(&pdva[d], asize);
1759         }
1760         mutex_exit(&pio->io_lock);
1761 }
1762 
1763 static int
1764 zio_write_gang_block(zio_t *pio)
1765 {
1766         spa_t *spa = pio->io_spa;
1767         blkptr_t *bp = pio->io_bp;
1768         zio_t *gio = pio->io_gang_leader;
1769         zio_t *zio;
1770         zio_gang_node_t *gn, **gnpp;
1771         zio_gbh_phys_t *gbh;
1772         uint64_t txg = pio->io_txg;
1773         uint64_t resid = pio->io_size;
1774         uint64_t lsize;
1775         int copies = gio->io_prop.zp_copies;
1776         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1777         zio_prop_t zp;
1778         int error;
1779 
1780         error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1781             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1782             METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1783         if (error) {
1784                 pio->io_error = error;
1785                 return (ZIO_PIPELINE_CONTINUE);
1786         }
1787 
1788         if (pio == gio) {
1789                 gnpp = &gio->io_gang_tree;
1790         } else {
1791                 gnpp = pio->io_private;
1792                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1793         }
1794 
1795         gn = zio_gang_node_alloc(gnpp);
1796         gbh = gn->gn_gbh;
1797         bzero(gbh, SPA_GANGBLOCKSIZE);
1798 
1799         /*
1800          * Create the gang header.
1801          */
1802         zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1803             pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1804 
1805         /*
1806          * Create and nowait the gang children.
1807          */
1808         for (int g = 0; resid != 0; resid -= lsize, g++) {
1809                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1810                     SPA_MINBLOCKSIZE);
1811                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1812 
1813                 zp.zp_checksum = gio->io_prop.zp_checksum;
1814                 zp.zp_compress = ZIO_COMPRESS_OFF;
1815                 zp.zp_type = DMU_OT_NONE;
1816                 zp.zp_level = 0;
1817                 zp.zp_copies = gio->io_prop.zp_copies;
1818                 zp.zp_dedup = B_FALSE;
1819                 zp.zp_dedup_verify = B_FALSE;
1820                 zp.zp_nopwrite = B_FALSE;
1821 
1822                 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1823                     (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1824                     zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1825                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1826                     &pio->io_bookmark));
1827         }
1828 
1829         /*
1830          * Set pio's pipeline to just wait for zio to finish.
1831          */
1832         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1833 
1834         zio_nowait(zio);
1835 
1836         return (ZIO_PIPELINE_CONTINUE);
1837 }
1838 
1839 /*
1840  * The zio_nop_write stage in the pipeline determines if allocating
1841  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1842  * such as SHA256, we can compare the checksums of the new data and the old
1843  * to determine if allocating a new block is required.  The nopwrite
1844  * feature can handle writes in either syncing or open context (i.e. zil
1845  * writes) and as a result is mutually exclusive with dedup.
1846  */
1847 static int
1848 zio_nop_write(zio_t *zio)
1849 {
1850         blkptr_t *bp = zio->io_bp;
1851         blkptr_t *bp_orig = &zio->io_bp_orig;
1852         zio_prop_t *zp = &zio->io_prop;
1853 
1854         ASSERT(BP_GET_LEVEL(bp) == 0);
1855         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1856         ASSERT(zp->zp_nopwrite);
1857         ASSERT(!zp->zp_dedup);
1858         ASSERT(zio->io_bp_override == NULL);
1859         ASSERT(IO_IS_ALLOCATING(zio));
1860 
1861         /*
1862          * Check to see if the original bp and the new bp have matching
1863          * characteristics (i.e. same checksum, compression algorithms, etc).
1864          * If they don't then just continue with the pipeline which will
1865          * allocate a new bp.
1866          */
1867         if (BP_IS_HOLE(bp_orig) ||
1868             !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1869             BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1870             BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1871             BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1872             zp->zp_copies != BP_GET_NDVAS(bp_orig))
1873                 return (ZIO_PIPELINE_CONTINUE);
1874 
1875         /*
1876          * If the checksums match then reset the pipeline so that we
1877          * avoid allocating a new bp and issuing any I/O.
1878          */
1879         if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1880                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1881                 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1882                 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1883                 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1884                 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1885                     sizeof (uint64_t)) == 0);
1886 
1887                 *bp = *bp_orig;
1888                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1889                 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1890         }
1891 
1892         return (ZIO_PIPELINE_CONTINUE);
1893 }
1894 
1895 /*
1896  * ==========================================================================
1897  * Dedup
1898  * ==========================================================================
1899  */
1900 static void
1901 zio_ddt_child_read_done(zio_t *zio)
1902 {
1903         blkptr_t *bp = zio->io_bp;
1904         ddt_entry_t *dde = zio->io_private;
1905         ddt_phys_t *ddp;
1906         zio_t *pio = zio_unique_parent(zio);
1907 
1908         mutex_enter(&pio->io_lock);
1909         ddp = ddt_phys_select(dde, bp);
1910         if (zio->io_error == 0)
1911                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
1912         if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1913                 dde->dde_repair_data = zio->io_data;
1914         else
1915                 zio_buf_free(zio->io_data, zio->io_size);
1916         mutex_exit(&pio->io_lock);
1917 }
1918 
1919 static int
1920 zio_ddt_read_start(zio_t *zio)
1921 {
1922         blkptr_t *bp = zio->io_bp;
1923 
1924         ASSERT(BP_GET_DEDUP(bp));
1925         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1926         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1927 
1928         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1929                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1930                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1931                 ddt_phys_t *ddp = dde->dde_phys;
1932                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1933                 blkptr_t blk;
1934 
1935                 ASSERT(zio->io_vsd == NULL);
1936                 zio->io_vsd = dde;
1937 
1938                 if (ddp_self == NULL)
1939                         return (ZIO_PIPELINE_CONTINUE);
1940 
1941                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1942                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1943                                 continue;
1944                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1945                             &blk);
1946                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
1947                             zio_buf_alloc(zio->io_size), zio->io_size,
1948                             zio_ddt_child_read_done, dde, zio->io_priority,
1949                             ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1950                             &zio->io_bookmark));
1951                 }
1952                 return (ZIO_PIPELINE_CONTINUE);
1953         }
1954 
1955         zio_nowait(zio_read(zio, zio->io_spa, bp,
1956             zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1957             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1958 
1959         return (ZIO_PIPELINE_CONTINUE);
1960 }
1961 
1962 static int
1963 zio_ddt_read_done(zio_t *zio)
1964 {
1965         blkptr_t *bp = zio->io_bp;
1966 
1967         if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1968                 return (ZIO_PIPELINE_STOP);
1969 
1970         ASSERT(BP_GET_DEDUP(bp));
1971         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1972         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1973 
1974         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1975                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1976                 ddt_entry_t *dde = zio->io_vsd;
1977                 if (ddt == NULL) {
1978                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1979                         return (ZIO_PIPELINE_CONTINUE);
1980                 }
1981                 if (dde == NULL) {
1982                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1983                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1984                         return (ZIO_PIPELINE_STOP);
1985                 }
1986                 if (dde->dde_repair_data != NULL) {
1987                         bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1988                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
1989                 }
1990                 ddt_repair_done(ddt, dde);
1991                 zio->io_vsd = NULL;
1992         }
1993 
1994         ASSERT(zio->io_vsd == NULL);
1995 
1996         return (ZIO_PIPELINE_CONTINUE);
1997 }
1998 
1999 static boolean_t
2000 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2001 {
2002         spa_t *spa = zio->io_spa;
2003 
2004         /*
2005          * Note: we compare the original data, not the transformed data,
2006          * because when zio->io_bp is an override bp, we will not have
2007          * pushed the I/O transforms.  That's an important optimization
2008          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2009          */
2010         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2011                 zio_t *lio = dde->dde_lead_zio[p];
2012 
2013                 if (lio != NULL) {
2014                         return (lio->io_orig_size != zio->io_orig_size ||
2015                             bcmp(zio->io_orig_data, lio->io_orig_data,
2016                             zio->io_orig_size) != 0);
2017                 }
2018         }
2019 
2020         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2021                 ddt_phys_t *ddp = &dde->dde_phys[p];
2022 
2023                 if (ddp->ddp_phys_birth != 0) {
2024                         arc_buf_t *abuf = NULL;
2025                         uint32_t aflags = ARC_WAIT;
2026                         blkptr_t blk = *zio->io_bp;
2027                         int error;
2028 
2029                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2030 
2031                         ddt_exit(ddt);
2032 
2033                         error = arc_read(NULL, spa, &blk,
2034                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2035                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2036                             &aflags, &zio->io_bookmark);
2037 
2038                         if (error == 0) {
2039                                 if (arc_buf_size(abuf) != zio->io_orig_size ||
2040                                     bcmp(abuf->b_data, zio->io_orig_data,
2041                                     zio->io_orig_size) != 0)
2042                                         error = SET_ERROR(EEXIST);
2043                                 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2044                         }
2045 
2046                         ddt_enter(ddt);
2047                         return (error != 0);
2048                 }
2049         }
2050 
2051         return (B_FALSE);
2052 }
2053 
2054 static void
2055 zio_ddt_child_write_ready(zio_t *zio)
2056 {
2057         int p = zio->io_prop.zp_copies;
2058         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2059         ddt_entry_t *dde = zio->io_private;
2060         ddt_phys_t *ddp = &dde->dde_phys[p];
2061         zio_t *pio;
2062 
2063         if (zio->io_error)
2064                 return;
2065 
2066         ddt_enter(ddt);
2067 
2068         ASSERT(dde->dde_lead_zio[p] == zio);
2069 
2070         ddt_phys_fill(ddp, zio->io_bp);
2071 
2072         while ((pio = zio_walk_parents(zio)) != NULL)
2073                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2074 
2075         ddt_exit(ddt);
2076 }
2077 
2078 static void
2079 zio_ddt_child_write_done(zio_t *zio)
2080 {
2081         int p = zio->io_prop.zp_copies;
2082         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2083         ddt_entry_t *dde = zio->io_private;
2084         ddt_phys_t *ddp = &dde->dde_phys[p];
2085 
2086         ddt_enter(ddt);
2087 
2088         ASSERT(ddp->ddp_refcnt == 0);
2089         ASSERT(dde->dde_lead_zio[p] == zio);
2090         dde->dde_lead_zio[p] = NULL;
2091 
2092         if (zio->io_error == 0) {
2093                 while (zio_walk_parents(zio) != NULL)
2094                         ddt_phys_addref(ddp);
2095         } else {
2096                 ddt_phys_clear(ddp);
2097         }
2098 
2099         ddt_exit(ddt);
2100 }
2101 
2102 static void
2103 zio_ddt_ditto_write_done(zio_t *zio)
2104 {
2105         int p = DDT_PHYS_DITTO;
2106         zio_prop_t *zp = &zio->io_prop;
2107         blkptr_t *bp = zio->io_bp;
2108         ddt_t *ddt = ddt_select(zio->io_spa, bp);
2109         ddt_entry_t *dde = zio->io_private;
2110         ddt_phys_t *ddp = &dde->dde_phys[p];
2111         ddt_key_t *ddk = &dde->dde_key;
2112 
2113         ddt_enter(ddt);
2114 
2115         ASSERT(ddp->ddp_refcnt == 0);
2116         ASSERT(dde->dde_lead_zio[p] == zio);
2117         dde->dde_lead_zio[p] = NULL;
2118 
2119         if (zio->io_error == 0) {
2120                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2121                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2122                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2123                 if (ddp->ddp_phys_birth != 0)
2124                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2125                 ddt_phys_fill(ddp, bp);
2126         }
2127 
2128         ddt_exit(ddt);
2129 }
2130 
2131 static int
2132 zio_ddt_write(zio_t *zio)
2133 {
2134         spa_t *spa = zio->io_spa;
2135         blkptr_t *bp = zio->io_bp;
2136         uint64_t txg = zio->io_txg;
2137         zio_prop_t *zp = &zio->io_prop;
2138         int p = zp->zp_copies;
2139         int ditto_copies;
2140         zio_t *cio = NULL;
2141         zio_t *dio = NULL;
2142         ddt_t *ddt = ddt_select(spa, bp);
2143         ddt_entry_t *dde;
2144         ddt_phys_t *ddp;
2145 
2146         ASSERT(BP_GET_DEDUP(bp));
2147         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2148         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2149 
2150         ddt_enter(ddt);
2151         dde = ddt_lookup(ddt, bp, B_TRUE);
2152         ddp = &dde->dde_phys[p];
2153 
2154         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2155                 /*
2156                  * If we're using a weak checksum, upgrade to a strong checksum
2157                  * and try again.  If we're already using a strong checksum,
2158                  * we can't resolve it, so just convert to an ordinary write.
2159                  * (And automatically e-mail a paper to Nature?)
2160                  */
2161                 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2162                         zp->zp_checksum = spa_dedup_checksum(spa);
2163                         zio_pop_transforms(zio);
2164                         zio->io_stage = ZIO_STAGE_OPEN;
2165                         BP_ZERO(bp);
2166                 } else {
2167                         zp->zp_dedup = B_FALSE;
2168                 }
2169                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2170                 ddt_exit(ddt);
2171                 return (ZIO_PIPELINE_CONTINUE);
2172         }
2173 
2174         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2175         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2176 
2177         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2178             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2179                 zio_prop_t czp = *zp;
2180 
2181                 czp.zp_copies = ditto_copies;
2182 
2183                 /*
2184                  * If we arrived here with an override bp, we won't have run
2185                  * the transform stack, so we won't have the data we need to
2186                  * generate a child i/o.  So, toss the override bp and restart.
2187                  * This is safe, because using the override bp is just an
2188                  * optimization; and it's rare, so the cost doesn't matter.
2189                  */
2190                 if (zio->io_bp_override) {
2191                         zio_pop_transforms(zio);
2192                         zio->io_stage = ZIO_STAGE_OPEN;
2193                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2194                         zio->io_bp_override = NULL;
2195                         BP_ZERO(bp);
2196                         ddt_exit(ddt);
2197                         return (ZIO_PIPELINE_CONTINUE);
2198                 }
2199 
2200                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2201                     zio->io_orig_size, &czp, NULL,
2202                     zio_ddt_ditto_write_done, dde, zio->io_priority,
2203                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2204 
2205                 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2206                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2207         }
2208 
2209         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2210                 if (ddp->ddp_phys_birth != 0)
2211                         ddt_bp_fill(ddp, bp, txg);
2212                 if (dde->dde_lead_zio[p] != NULL)
2213                         zio_add_child(zio, dde->dde_lead_zio[p]);
2214                 else
2215                         ddt_phys_addref(ddp);
2216         } else if (zio->io_bp_override) {
2217                 ASSERT(bp->blk_birth == txg);
2218                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2219                 ddt_phys_fill(ddp, bp);
2220                 ddt_phys_addref(ddp);
2221         } else {
2222                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2223                     zio->io_orig_size, zp, zio_ddt_child_write_ready,
2224                     zio_ddt_child_write_done, dde, zio->io_priority,
2225                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2226 
2227                 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2228                 dde->dde_lead_zio[p] = cio;
2229         }
2230 
2231         ddt_exit(ddt);
2232 
2233         if (cio)
2234                 zio_nowait(cio);
2235         if (dio)
2236                 zio_nowait(dio);
2237 
2238         return (ZIO_PIPELINE_CONTINUE);
2239 }
2240 
2241 ddt_entry_t *freedde; /* for debugging */
2242 
2243 static int
2244 zio_ddt_free(zio_t *zio)
2245 {
2246         spa_t *spa = zio->io_spa;
2247         blkptr_t *bp = zio->io_bp;
2248         ddt_t *ddt = ddt_select(spa, bp);
2249         ddt_entry_t *dde;
2250         ddt_phys_t *ddp;
2251 
2252         ASSERT(BP_GET_DEDUP(bp));
2253         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2254 
2255         ddt_enter(ddt);
2256         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2257         ddp = ddt_phys_select(dde, bp);
2258         ddt_phys_decref(ddp);
2259         ddt_exit(ddt);
2260 
2261         return (ZIO_PIPELINE_CONTINUE);
2262 }
2263 
2264 /*
2265  * ==========================================================================
2266  * Allocate and free blocks
2267  * ==========================================================================
2268  */
2269 static int
2270 zio_dva_allocate(zio_t *zio)
2271 {
2272         spa_t *spa = zio->io_spa;
2273         metaslab_class_t *mc = spa_normal_class(spa);
2274         blkptr_t *bp = zio->io_bp;
2275         int error;
2276         int flags = 0;
2277 
2278         if (zio->io_gang_leader == NULL) {
2279                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2280                 zio->io_gang_leader = zio;
2281         }
2282 
2283         ASSERT(BP_IS_HOLE(bp));
2284         ASSERT0(BP_GET_NDVAS(bp));
2285         ASSERT3U(zio->io_prop.zp_copies, >, 0);
2286         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2287         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2288 
2289         /*
2290          * The dump device does not support gang blocks so allocation on
2291          * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2292          * the "fast" gang feature.
2293          */
2294         flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2295         flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2296             METASLAB_GANG_CHILD : 0;
2297         error = metaslab_alloc(spa, mc, zio->io_size, bp,
2298             zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2299 
2300         if (error) {
2301                 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2302                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2303                     error);
2304                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2305                         return (zio_write_gang_block(zio));
2306                 zio->io_error = error;
2307         }
2308 
2309         return (ZIO_PIPELINE_CONTINUE);
2310 }
2311 
2312 static int
2313 zio_dva_free(zio_t *zio)
2314 {
2315         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2316 
2317         return (ZIO_PIPELINE_CONTINUE);
2318 }
2319 
2320 static int
2321 zio_dva_claim(zio_t *zio)
2322 {
2323         int error;
2324 
2325         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2326         if (error)
2327                 zio->io_error = error;
2328 
2329         return (ZIO_PIPELINE_CONTINUE);
2330 }
2331 
2332 /*
2333  * Undo an allocation.  This is used by zio_done() when an I/O fails
2334  * and we want to give back the block we just allocated.
2335  * This handles both normal blocks and gang blocks.
2336  */
2337 static void
2338 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2339 {
2340         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2341         ASSERT(zio->io_bp_override == NULL);
2342 
2343         if (!BP_IS_HOLE(bp))
2344                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2345 
2346         if (gn != NULL) {
2347                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2348                         zio_dva_unallocate(zio, gn->gn_child[g],
2349                             &gn->gn_gbh->zg_blkptr[g]);
2350                 }
2351         }
2352 }
2353 
2354 /*
2355  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2356  */
2357 int
2358 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2359     uint64_t size, boolean_t use_slog)
2360 {
2361         int error = 1;
2362 
2363         ASSERT(txg > spa_syncing_txg(spa));
2364 
2365         /*
2366          * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2367          * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2368          * when allocating them.
2369          */
2370         if (use_slog) {
2371                 error = metaslab_alloc(spa, spa_log_class(spa), size,
2372                     new_bp, 1, txg, old_bp,
2373                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2374         }
2375 
2376         if (error) {
2377                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2378                     new_bp, 1, txg, old_bp,
2379                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2380         }
2381 
2382         if (error == 0) {
2383                 BP_SET_LSIZE(new_bp, size);
2384                 BP_SET_PSIZE(new_bp, size);
2385                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2386                 BP_SET_CHECKSUM(new_bp,
2387                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2388                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2389                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2390                 BP_SET_LEVEL(new_bp, 0);
2391                 BP_SET_DEDUP(new_bp, 0);
2392                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2393         }
2394 
2395         return (error);
2396 }
2397 
2398 /*
2399  * Free an intent log block.
2400  */
2401 void
2402 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2403 {
2404         ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2405         ASSERT(!BP_IS_GANG(bp));
2406 
2407         zio_free(spa, txg, bp);
2408 }
2409 
2410 /*
2411  * ==========================================================================
2412  * Read and write to physical devices
2413  * ==========================================================================
2414  */
2415 static int
2416 zio_vdev_io_start(zio_t *zio)
2417 {
2418         vdev_t *vd = zio->io_vd;
2419         uint64_t align;
2420         spa_t *spa = zio->io_spa;
2421 
2422         ASSERT(zio->io_error == 0);
2423         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2424 
2425         if (vd == NULL) {
2426                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2427                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2428 
2429                 /*
2430                  * The mirror_ops handle multiple DVAs in a single BP.
2431                  */
2432                 return (vdev_mirror_ops.vdev_op_io_start(zio));
2433         }
2434 
2435         /*
2436          * We keep track of time-sensitive I/Os so that the scan thread
2437          * can quickly react to certain workloads.  In particular, we care
2438          * about non-scrubbing, top-level reads and writes with the following
2439          * characteristics:
2440          *      - synchronous writes of user data to non-slog devices
2441          *      - any reads of user data
2442          * When these conditions are met, adjust the timestamp of spa_last_io
2443          * which allows the scan thread to adjust its workload accordingly.
2444          */
2445         if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2446             vd == vd->vdev_top && !vd->vdev_islog &&
2447             zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2448             zio->io_txg != spa_syncing_txg(spa)) {
2449                 uint64_t old = spa->spa_last_io;
2450                 uint64_t new = ddi_get_lbolt64();
2451                 if (old != new)
2452                         (void) atomic_cas_64(&spa->spa_last_io, old, new);
2453         }
2454 
2455         align = 1ULL << vd->vdev_top->vdev_ashift;
2456 
2457         if (P2PHASE(zio->io_size, align) != 0) {
2458                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2459                 char *abuf = zio_buf_alloc(asize);
2460                 ASSERT(vd == vd->vdev_top);
2461                 if (zio->io_type == ZIO_TYPE_WRITE) {
2462                         bcopy(zio->io_data, abuf, zio->io_size);
2463                         bzero(abuf + zio->io_size, asize - zio->io_size);
2464                 }
2465                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2466         }
2467 
2468         ASSERT(P2PHASE(zio->io_offset, align) == 0);
2469         ASSERT(P2PHASE(zio->io_size, align) == 0);
2470         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2471 
2472         /*
2473          * If this is a repair I/O, and there's no self-healing involved --
2474          * that is, we're just resilvering what we expect to resilver --
2475          * then don't do the I/O unless zio's txg is actually in vd's DTL.
2476          * This prevents spurious resilvering with nested replication.
2477          * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2478          * A is out of date, we'll read from C+D, then use the data to
2479          * resilver A+B -- but we don't actually want to resilver B, just A.
2480          * The top-level mirror has no way to know this, so instead we just
2481          * discard unnecessary repairs as we work our way down the vdev tree.
2482          * The same logic applies to any form of nested replication:
2483          * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2484          */
2485         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2486             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2487             zio->io_txg != 0 &&      /* not a delegated i/o */
2488             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2489                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2490                 zio_vdev_io_bypass(zio);
2491                 return (ZIO_PIPELINE_CONTINUE);
2492         }
2493 
2494         if (vd->vdev_ops->vdev_op_leaf &&
2495             (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2496 
2497                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2498                         return (ZIO_PIPELINE_CONTINUE);
2499 
2500                 if ((zio = vdev_queue_io(zio)) == NULL)
2501                         return (ZIO_PIPELINE_STOP);
2502 
2503                 if (!vdev_accessible(vd, zio)) {
2504                         zio->io_error = SET_ERROR(ENXIO);
2505                         zio_interrupt(zio);
2506                         return (ZIO_PIPELINE_STOP);
2507                 }
2508         }
2509 
2510         return (vd->vdev_ops->vdev_op_io_start(zio));
2511 }
2512 
2513 static int
2514 zio_vdev_io_done(zio_t *zio)
2515 {
2516         vdev_t *vd = zio->io_vd;
2517         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2518         boolean_t unexpected_error = B_FALSE;
2519 
2520         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2521                 return (ZIO_PIPELINE_STOP);
2522 
2523         ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2524 
2525         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2526 
2527                 vdev_queue_io_done(zio);
2528 
2529                 if (zio->io_type == ZIO_TYPE_WRITE)
2530                         vdev_cache_write(zio);
2531 
2532                 if (zio_injection_enabled && zio->io_error == 0)
2533                         zio->io_error = zio_handle_device_injection(vd,
2534                             zio, EIO);
2535 
2536                 if (zio_injection_enabled && zio->io_error == 0)
2537                         zio->io_error = zio_handle_label_injection(zio, EIO);
2538 
2539                 if (zio->io_error) {
2540                         if (!vdev_accessible(vd, zio)) {
2541                                 zio->io_error = SET_ERROR(ENXIO);
2542                         } else {
2543                                 unexpected_error = B_TRUE;
2544                         }
2545                 }
2546         }
2547 
2548         ops->vdev_op_io_done(zio);
2549 
2550         if (unexpected_error)
2551                 VERIFY(vdev_probe(vd, zio) == NULL);
2552 
2553         return (ZIO_PIPELINE_CONTINUE);
2554 }
2555 
2556 /*
2557  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2558  * disk, and use that to finish the checksum ereport later.
2559  */
2560 static void
2561 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2562     const void *good_buf)
2563 {
2564         /* no processing needed */
2565         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2566 }
2567 
2568 /*ARGSUSED*/
2569 void
2570 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2571 {
2572         void *buf = zio_buf_alloc(zio->io_size);
2573 
2574         bcopy(zio->io_data, buf, zio->io_size);
2575 
2576         zcr->zcr_cbinfo = zio->io_size;
2577         zcr->zcr_cbdata = buf;
2578         zcr->zcr_finish = zio_vsd_default_cksum_finish;
2579         zcr->zcr_free = zio_buf_free;
2580 }
2581 
2582 static int
2583 zio_vdev_io_assess(zio_t *zio)
2584 {
2585         vdev_t *vd = zio->io_vd;
2586 
2587         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2588                 return (ZIO_PIPELINE_STOP);
2589 
2590         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2591                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2592 
2593         if (zio->io_vsd != NULL) {
2594                 zio->io_vsd_ops->vsd_free(zio);
2595                 zio->io_vsd = NULL;
2596         }
2597 
2598         if (zio_injection_enabled && zio->io_error == 0)
2599                 zio->io_error = zio_handle_fault_injection(zio, EIO);
2600 
2601         /*
2602          * If the I/O failed, determine whether we should attempt to retry it.
2603          *
2604          * On retry, we cut in line in the issue queue, since we don't want
2605          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2606          */
2607         if (zio->io_error && vd == NULL &&
2608             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2609                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
2610                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
2611                 zio->io_error = 0;
2612                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2613                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2614                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2615                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2616                     zio_requeue_io_start_cut_in_line);
2617                 return (ZIO_PIPELINE_STOP);
2618         }
2619 
2620         /*
2621          * If we got an error on a leaf device, convert it to ENXIO
2622          * if the device is not accessible at all.
2623          */
2624         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2625             !vdev_accessible(vd, zio))
2626                 zio->io_error = SET_ERROR(ENXIO);
2627 
2628         /*
2629          * If we can't write to an interior vdev (mirror or RAID-Z),
2630          * set vdev_cant_write so that we stop trying to allocate from it.
2631          */
2632         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2633             vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2634                 vd->vdev_cant_write = B_TRUE;
2635         }
2636 
2637         if (zio->io_error)
2638                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2639 
2640         return (ZIO_PIPELINE_CONTINUE);
2641 }
2642 
2643 void
2644 zio_vdev_io_reissue(zio_t *zio)
2645 {
2646         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2647         ASSERT(zio->io_error == 0);
2648 
2649         zio->io_stage >>= 1;
2650 }
2651 
2652 void
2653 zio_vdev_io_redone(zio_t *zio)
2654 {
2655         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2656 
2657         zio->io_stage >>= 1;
2658 }
2659 
2660 void
2661 zio_vdev_io_bypass(zio_t *zio)
2662 {
2663         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2664         ASSERT(zio->io_error == 0);
2665 
2666         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2667         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2668 }
2669 
2670 /*
2671  * ==========================================================================
2672  * Generate and verify checksums
2673  * ==========================================================================
2674  */
2675 static int
2676 zio_checksum_generate(zio_t *zio)
2677 {
2678         blkptr_t *bp = zio->io_bp;
2679         enum zio_checksum checksum;
2680 
2681         if (bp == NULL) {
2682                 /*
2683                  * This is zio_write_phys().
2684                  * We're either generating a label checksum, or none at all.
2685                  */
2686                 checksum = zio->io_prop.zp_checksum;
2687 
2688                 if (checksum == ZIO_CHECKSUM_OFF)
2689                         return (ZIO_PIPELINE_CONTINUE);
2690 
2691                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2692         } else {
2693                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2694                         ASSERT(!IO_IS_ALLOCATING(zio));
2695                         checksum = ZIO_CHECKSUM_GANG_HEADER;
2696                 } else {
2697                         checksum = BP_GET_CHECKSUM(bp);
2698                 }
2699         }
2700 
2701         zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2702 
2703         return (ZIO_PIPELINE_CONTINUE);
2704 }
2705 
2706 static int
2707 zio_checksum_verify(zio_t *zio)
2708 {
2709         zio_bad_cksum_t info;
2710         blkptr_t *bp = zio->io_bp;
2711         int error;
2712 
2713         ASSERT(zio->io_vd != NULL);
2714 
2715         if (bp == NULL) {
2716                 /*
2717                  * This is zio_read_phys().
2718                  * We're either verifying a label checksum, or nothing at all.
2719                  */
2720                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2721                         return (ZIO_PIPELINE_CONTINUE);
2722 
2723                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2724         }
2725 
2726         if ((error = zio_checksum_error(zio, &info)) != 0) {
2727                 zio->io_error = error;
2728                 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2729                         zfs_ereport_start_checksum(zio->io_spa,
2730                             zio->io_vd, zio, zio->io_offset,
2731                             zio->io_size, NULL, &info);
2732                 }
2733         }
2734 
2735         return (ZIO_PIPELINE_CONTINUE);
2736 }
2737 
2738 /*
2739  * Called by RAID-Z to ensure we don't compute the checksum twice.
2740  */
2741 void
2742 zio_checksum_verified(zio_t *zio)
2743 {
2744         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2745 }
2746 
2747 /*
2748  * ==========================================================================
2749  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2750  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2751  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2752  * indicate errors that are specific to one I/O, and most likely permanent.
2753  * Any other error is presumed to be worse because we weren't expecting it.
2754  * ==========================================================================
2755  */
2756 int
2757 zio_worst_error(int e1, int e2)
2758 {
2759         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2760         int r1, r2;
2761 
2762         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2763                 if (e1 == zio_error_rank[r1])
2764                         break;
2765 
2766         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2767                 if (e2 == zio_error_rank[r2])
2768                         break;
2769 
2770         return (r1 > r2 ? e1 : e2);
2771 }
2772 
2773 /*
2774  * ==========================================================================
2775  * I/O completion
2776  * ==========================================================================
2777  */
2778 static int
2779 zio_ready(zio_t *zio)
2780 {
2781         blkptr_t *bp = zio->io_bp;
2782         zio_t *pio, *pio_next;
2783 
2784         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2785             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2786                 return (ZIO_PIPELINE_STOP);
2787 
2788         if (zio->io_ready) {
2789                 ASSERT(IO_IS_ALLOCATING(zio));
2790                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2791                     (zio->io_flags & ZIO_FLAG_NOPWRITE));
2792                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2793 
2794                 zio->io_ready(zio);
2795         }
2796 
2797         if (bp != NULL && bp != &zio->io_bp_copy)
2798                 zio->io_bp_copy = *bp;
2799 
2800         if (zio->io_error)
2801                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2802 
2803         mutex_enter(&zio->io_lock);
2804         zio->io_state[ZIO_WAIT_READY] = 1;
2805         pio = zio_walk_parents(zio);
2806         mutex_exit(&zio->io_lock);
2807 
2808         /*
2809          * As we notify zio's parents, new parents could be added.
2810          * New parents go to the head of zio's io_parent_list, however,
2811          * so we will (correctly) not notify them.  The remainder of zio's
2812          * io_parent_list, from 'pio_next' onward, cannot change because
2813          * all parents must wait for us to be done before they can be done.
2814          */
2815         for (; pio != NULL; pio = pio_next) {
2816                 pio_next = zio_walk_parents(zio);
2817                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2818         }
2819 
2820         if (zio->io_flags & ZIO_FLAG_NODATA) {
2821                 if (BP_IS_GANG(bp)) {
2822                         zio->io_flags &= ~ZIO_FLAG_NODATA;
2823                 } else {
2824                         ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2825                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2826                 }
2827         }
2828 
2829         if (zio_injection_enabled &&
2830             zio->io_spa->spa_syncing_txg == zio->io_txg)
2831                 zio_handle_ignored_writes(zio);
2832 
2833         return (ZIO_PIPELINE_CONTINUE);
2834 }
2835 
2836 static int
2837 zio_done(zio_t *zio)
2838 {
2839         spa_t *spa = zio->io_spa;
2840         zio_t *lio = zio->io_logical;
2841         blkptr_t *bp = zio->io_bp;
2842         vdev_t *vd = zio->io_vd;
2843         uint64_t psize = zio->io_size;
2844         zio_t *pio, *pio_next;
2845 
2846         /*
2847          * If our children haven't all completed,
2848          * wait for them and then repeat this pipeline stage.
2849          */
2850         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2851             zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2852             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2853             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2854                 return (ZIO_PIPELINE_STOP);
2855 
2856         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2857                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2858                         ASSERT(zio->io_children[c][w] == 0);
2859 
2860         if (bp != NULL) {
2861                 ASSERT(bp->blk_pad[0] == 0);
2862                 ASSERT(bp->blk_pad[1] == 0);
2863                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2864                     (bp == zio_unique_parent(zio)->io_bp));
2865                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2866                     zio->io_bp_override == NULL &&
2867                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2868                         ASSERT(!BP_SHOULD_BYTESWAP(bp));
2869                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2870                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
2871                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2872                 }
2873                 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2874                         VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2875         }
2876 
2877         /*
2878          * If there were child vdev/gang/ddt errors, they apply to us now.
2879          */
2880         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2881         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2882         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2883 
2884         /*
2885          * If the I/O on the transformed data was successful, generate any
2886          * checksum reports now while we still have the transformed data.
2887          */
2888         if (zio->io_error == 0) {
2889                 while (zio->io_cksum_report != NULL) {
2890                         zio_cksum_report_t *zcr = zio->io_cksum_report;
2891                         uint64_t align = zcr->zcr_align;
2892                         uint64_t asize = P2ROUNDUP(psize, align);
2893                         char *abuf = zio->io_data;
2894 
2895                         if (asize != psize) {
2896                                 abuf = zio_buf_alloc(asize);
2897                                 bcopy(zio->io_data, abuf, psize);
2898                                 bzero(abuf + psize, asize - psize);
2899                         }
2900 
2901                         zio->io_cksum_report = zcr->zcr_next;
2902                         zcr->zcr_next = NULL;
2903                         zcr->zcr_finish(zcr, abuf);
2904                         zfs_ereport_free_checksum(zcr);
2905 
2906                         if (asize != psize)
2907                                 zio_buf_free(abuf, asize);
2908                 }
2909         }
2910 
2911         zio_pop_transforms(zio);        /* note: may set zio->io_error */
2912 
2913         vdev_stat_update(zio, psize);
2914 
2915         if (zio->io_error) {
2916                 /*
2917                  * If this I/O is attached to a particular vdev,
2918                  * generate an error message describing the I/O failure
2919                  * at the block level.  We ignore these errors if the
2920                  * device is currently unavailable.
2921                  */
2922                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2923                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2924 
2925                 if ((zio->io_error == EIO || !(zio->io_flags &
2926                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2927                     zio == lio) {
2928                         /*
2929                          * For logical I/O requests, tell the SPA to log the
2930                          * error and generate a logical data ereport.
2931                          */
2932                         spa_log_error(spa, zio);
2933                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2934                             0, 0);
2935                 }
2936         }
2937 
2938         if (zio->io_error && zio == lio) {
2939                 /*
2940                  * Determine whether zio should be reexecuted.  This will
2941                  * propagate all the way to the root via zio_notify_parent().
2942                  */
2943                 ASSERT(vd == NULL && bp != NULL);
2944                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2945 
2946                 if (IO_IS_ALLOCATING(zio) &&
2947                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2948                         if (zio->io_error != ENOSPC)
2949                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2950                         else
2951                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2952                 }
2953 
2954                 if ((zio->io_type == ZIO_TYPE_READ ||
2955                     zio->io_type == ZIO_TYPE_FREE) &&
2956                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2957                     zio->io_error == ENXIO &&
2958                     spa_load_state(spa) == SPA_LOAD_NONE &&
2959                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2960                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2961 
2962                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2963                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2964 
2965                 /*
2966                  * Here is a possibly good place to attempt to do
2967                  * either combinatorial reconstruction or error correction
2968                  * based on checksums.  It also might be a good place
2969                  * to send out preliminary ereports before we suspend
2970                  * processing.
2971                  */
2972         }
2973 
2974         /*
2975          * If there were logical child errors, they apply to us now.
2976          * We defer this until now to avoid conflating logical child
2977          * errors with errors that happened to the zio itself when
2978          * updating vdev stats and reporting FMA events above.
2979          */
2980         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2981 
2982         if ((zio->io_error || zio->io_reexecute) &&
2983             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2984             !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2985                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2986 
2987         zio_gang_tree_free(&zio->io_gang_tree);
2988 
2989         /*
2990          * Godfather I/Os should never suspend.
2991          */
2992         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2993             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2994                 zio->io_reexecute = 0;
2995 
2996         if (zio->io_reexecute) {
2997                 /*
2998                  * This is a logical I/O that wants to reexecute.
2999                  *
3000                  * Reexecute is top-down.  When an i/o fails, if it's not
3001                  * the root, it simply notifies its parent and sticks around.
3002                  * The parent, seeing that it still has children in zio_done(),
3003                  * does the same.  This percolates all the way up to the root.
3004                  * The root i/o will reexecute or suspend the entire tree.
3005                  *
3006                  * This approach ensures that zio_reexecute() honors
3007                  * all the original i/o dependency relationships, e.g.
3008                  * parents not executing until children are ready.
3009                  */
3010                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3011 
3012                 zio->io_gang_leader = NULL;
3013 
3014                 mutex_enter(&zio->io_lock);
3015                 zio->io_state[ZIO_WAIT_DONE] = 1;
3016                 mutex_exit(&zio->io_lock);
3017 
3018                 /*
3019                  * "The Godfather" I/O monitors its children but is
3020                  * not a true parent to them. It will track them through
3021                  * the pipeline but severs its ties whenever they get into
3022                  * trouble (e.g. suspended). This allows "The Godfather"
3023                  * I/O to return status without blocking.
3024                  */
3025                 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3026                         zio_link_t *zl = zio->io_walk_link;
3027                         pio_next = zio_walk_parents(zio);
3028 
3029                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3030                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3031                                 zio_remove_child(pio, zio, zl);
3032                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3033                         }
3034                 }
3035 
3036                 if ((pio = zio_unique_parent(zio)) != NULL) {
3037                         /*
3038                          * We're not a root i/o, so there's nothing to do
3039                          * but notify our parent.  Don't propagate errors
3040                          * upward since we haven't permanently failed yet.
3041                          */
3042                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3043                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3044                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3045                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3046                         /*
3047                          * We'd fail again if we reexecuted now, so suspend
3048                          * until conditions improve (e.g. device comes online).
3049                          */
3050                         zio_suspend(spa, zio);
3051                 } else {
3052                         /*
3053                          * Reexecution is potentially a huge amount of work.
3054                          * Hand it off to the otherwise-unused claim taskq.
3055                          */
3056                         ASSERT(zio->io_tqent.tqent_next == NULL);
3057                         spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3058                             ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3059                             0, &zio->io_tqent);
3060                 }
3061                 return (ZIO_PIPELINE_STOP);
3062         }
3063 
3064         ASSERT(zio->io_child_count == 0);
3065         ASSERT(zio->io_reexecute == 0);
3066         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3067 
3068         /*
3069          * Report any checksum errors, since the I/O is complete.
3070          */
3071         while (zio->io_cksum_report != NULL) {
3072                 zio_cksum_report_t *zcr = zio->io_cksum_report;
3073                 zio->io_cksum_report = zcr->zcr_next;
3074                 zcr->zcr_next = NULL;
3075                 zcr->zcr_finish(zcr, NULL);
3076                 zfs_ereport_free_checksum(zcr);
3077         }
3078 
3079         /*
3080          * It is the responsibility of the done callback to ensure that this
3081          * particular zio is no longer discoverable for adoption, and as
3082          * such, cannot acquire any new parents.
3083          */
3084         if (zio->io_done)
3085                 zio->io_done(zio);
3086 
3087         mutex_enter(&zio->io_lock);
3088         zio->io_state[ZIO_WAIT_DONE] = 1;
3089         mutex_exit(&zio->io_lock);
3090 
3091         for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3092                 zio_link_t *zl = zio->io_walk_link;
3093                 pio_next = zio_walk_parents(zio);
3094                 zio_remove_child(pio, zio, zl);
3095                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3096         }
3097 
3098         if (zio->io_waiter != NULL) {
3099                 mutex_enter(&zio->io_lock);
3100                 zio->io_executor = NULL;
3101                 cv_broadcast(&zio->io_cv);
3102                 mutex_exit(&zio->io_lock);
3103         } else {
3104                 zio_destroy(zio);
3105         }
3106 
3107         return (ZIO_PIPELINE_STOP);
3108 }
3109 
3110 /*
3111  * ==========================================================================
3112  * I/O pipeline definition
3113  * ==========================================================================
3114  */
3115 static zio_pipe_stage_t *zio_pipeline[] = {
3116         NULL,
3117         zio_read_bp_init,
3118         zio_free_bp_init,
3119         zio_issue_async,
3120         zio_write_bp_init,
3121         zio_checksum_generate,
3122         zio_nop_write,
3123         zio_ddt_read_start,
3124         zio_ddt_read_done,
3125         zio_ddt_write,
3126         zio_ddt_free,
3127         zio_gang_assemble,
3128         zio_gang_issue,
3129         zio_dva_allocate,
3130         zio_dva_free,
3131         zio_dva_claim,
3132         zio_ready,
3133         zio_vdev_io_start,
3134         zio_vdev_io_done,
3135         zio_vdev_io_assess,
3136         zio_checksum_verify,
3137         zio_done
3138 };
3139 
3140 /* dnp is the dnode for zb1->zb_object */
3141 boolean_t
3142 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3143     const zbookmark_t *zb2)
3144 {
3145         uint64_t zb1nextL0, zb2thisobj;
3146 
3147         ASSERT(zb1->zb_objset == zb2->zb_objset);
3148         ASSERT(zb2->zb_level == 0);
3149 
3150         /*
3151          * A bookmark in the deadlist is considered to be after
3152          * everything else.
3153          */
3154         if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3155                 return (B_TRUE);
3156 
3157         /* The objset_phys_t isn't before anything. */
3158         if (dnp == NULL)
3159                 return (B_FALSE);
3160 
3161         zb1nextL0 = (zb1->zb_blkid + 1) <<
3162             ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3163 
3164         zb2thisobj = zb2->zb_object ? zb2->zb_object :
3165             zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3166 
3167         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3168                 uint64_t nextobj = zb1nextL0 *
3169                     (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3170                 return (nextobj <= zb2thisobj);
3171         }
3172 
3173         if (zb1->zb_object < zb2thisobj)
3174                 return (B_TRUE);
3175         if (zb1->zb_object > zb2thisobj)
3176                 return (B_FALSE);
3177         if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3178                 return (B_FALSE);
3179         return (zb1nextL0 <= zb2->zb_blkid);
3180 }