1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev_impl.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_pool.h> 41 42 /* 43 * The zfs intent log (ZIL) saves transaction records of system calls 44 * that change the file system in memory with enough information 45 * to be able to replay them. These are stored in memory until 46 * either the DMU transaction group (txg) commits them to the stable pool 47 * and they can be discarded, or they are flushed to the stable log 48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 49 * requirement. In the event of a panic or power fail then those log 50 * records (transactions) are replayed. 51 * 52 * There is one ZIL per file system. Its on-disk (pool) format consists 53 * of 3 parts: 54 * 55 * - ZIL header 56 * - ZIL blocks 57 * - ZIL records 58 * 59 * A log record holds a system call transaction. Log blocks can 60 * hold many log records and the blocks are chained together. 61 * Each ZIL block contains a block pointer (blkptr_t) to the next 62 * ZIL block in the chain. The ZIL header points to the first 63 * block in the chain. Note there is not a fixed place in the pool 64 * to hold blocks. They are dynamically allocated and freed as 65 * needed from the blocks available. Figure X shows the ZIL structure: 66 */ 67 68 /* 69 * Disable intent logging replay. This global ZIL switch affects all pools. 70 */ 71 int zil_replay_disable = 0; 72 73 /* 74 * Tunable parameter for debugging or performance analysis. Setting 75 * zfs_nocacheflush will cause corruption on power loss if a volatile 76 * out-of-order write cache is enabled. 77 */ 78 boolean_t zfs_nocacheflush = B_FALSE; 79 80 static kmem_cache_t *zil_lwb_cache; 81 82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 83 84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 85 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 86 87 88 /* 89 * ziltest is by and large an ugly hack, but very useful in 90 * checking replay without tedious work. 91 * When running ziltest we want to keep all itx's and so maintain 92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 93 * We subtract TXG_CONCURRENT_STATES to allow for common code. 94 */ 95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 96 97 static int 98 zil_bp_compare(const void *x1, const void *x2) 99 { 100 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 101 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 102 103 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 104 return (-1); 105 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 106 return (1); 107 108 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 109 return (-1); 110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 111 return (1); 112 113 return (0); 114 } 115 116 static void 117 zil_bp_tree_init(zilog_t *zilog) 118 { 119 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 120 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 121 } 122 123 static void 124 zil_bp_tree_fini(zilog_t *zilog) 125 { 126 avl_tree_t *t = &zilog->zl_bp_tree; 127 zil_bp_node_t *zn; 128 void *cookie = NULL; 129 130 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 131 kmem_free(zn, sizeof (zil_bp_node_t)); 132 133 avl_destroy(t); 134 } 135 136 int 137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 138 { 139 avl_tree_t *t = &zilog->zl_bp_tree; 140 const dva_t *dva = BP_IDENTITY(bp); 141 zil_bp_node_t *zn; 142 avl_index_t where; 143 144 if (avl_find(t, dva, &where) != NULL) 145 return (SET_ERROR(EEXIST)); 146 147 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 148 zn->zn_dva = *dva; 149 avl_insert(t, zn, where); 150 151 return (0); 152 } 153 154 static zil_header_t * 155 zil_header_in_syncing_context(zilog_t *zilog) 156 { 157 return ((zil_header_t *)zilog->zl_header); 158 } 159 160 static void 161 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 162 { 163 zio_cksum_t *zc = &bp->blk_cksum; 164 165 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 166 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 167 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 168 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 169 } 170 171 /* 172 * Read a log block and make sure it's valid. 173 */ 174 static int 175 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 176 char **end) 177 { 178 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 179 uint32_t aflags = ARC_WAIT; 180 arc_buf_t *abuf = NULL; 181 zbookmark_t zb; 182 int error; 183 184 if (zilog->zl_header->zh_claim_txg == 0) 185 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 186 187 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 188 zio_flags |= ZIO_FLAG_SPECULATIVE; 189 190 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 191 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 192 193 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 194 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 195 196 if (error == 0) { 197 zio_cksum_t cksum = bp->blk_cksum; 198 199 /* 200 * Validate the checksummed log block. 201 * 202 * Sequence numbers should be... sequential. The checksum 203 * verifier for the next block should be bp's checksum plus 1. 204 * 205 * Also check the log chain linkage and size used. 206 */ 207 cksum.zc_word[ZIL_ZC_SEQ]++; 208 209 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 210 zil_chain_t *zilc = abuf->b_data; 211 char *lr = (char *)(zilc + 1); 212 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 213 214 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 215 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 216 error = SET_ERROR(ECKSUM); 217 } else { 218 bcopy(lr, dst, len); 219 *end = (char *)dst + len; 220 *nbp = zilc->zc_next_blk; 221 } 222 } else { 223 char *lr = abuf->b_data; 224 uint64_t size = BP_GET_LSIZE(bp); 225 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 226 227 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 228 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 229 (zilc->zc_nused > (size - sizeof (*zilc)))) { 230 error = SET_ERROR(ECKSUM); 231 } else { 232 bcopy(lr, dst, zilc->zc_nused); 233 *end = (char *)dst + zilc->zc_nused; 234 *nbp = zilc->zc_next_blk; 235 } 236 } 237 238 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 239 } 240 241 return (error); 242 } 243 244 /* 245 * Read a TX_WRITE log data block. 246 */ 247 static int 248 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 249 { 250 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 251 const blkptr_t *bp = &lr->lr_blkptr; 252 uint32_t aflags = ARC_WAIT; 253 arc_buf_t *abuf = NULL; 254 zbookmark_t zb; 255 int error; 256 257 if (BP_IS_HOLE(bp)) { 258 if (wbuf != NULL) 259 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 260 return (0); 261 } 262 263 if (zilog->zl_header->zh_claim_txg == 0) 264 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 265 266 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 267 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 268 269 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 270 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 271 272 if (error == 0) { 273 if (wbuf != NULL) 274 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 275 (void) arc_buf_remove_ref(abuf, &abuf); 276 } 277 278 return (error); 279 } 280 281 /* 282 * Parse the intent log, and call parse_func for each valid record within. 283 */ 284 int 285 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 286 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 287 { 288 const zil_header_t *zh = zilog->zl_header; 289 boolean_t claimed = !!zh->zh_claim_txg; 290 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 291 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 292 uint64_t max_blk_seq = 0; 293 uint64_t max_lr_seq = 0; 294 uint64_t blk_count = 0; 295 uint64_t lr_count = 0; 296 blkptr_t blk, next_blk; 297 char *lrbuf, *lrp; 298 int error = 0; 299 300 /* 301 * Old logs didn't record the maximum zh_claim_lr_seq. 302 */ 303 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 304 claim_lr_seq = UINT64_MAX; 305 306 /* 307 * Starting at the block pointed to by zh_log we read the log chain. 308 * For each block in the chain we strongly check that block to 309 * ensure its validity. We stop when an invalid block is found. 310 * For each block pointer in the chain we call parse_blk_func(). 311 * For each record in each valid block we call parse_lr_func(). 312 * If the log has been claimed, stop if we encounter a sequence 313 * number greater than the highest claimed sequence number. 314 */ 315 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 316 zil_bp_tree_init(zilog); 317 318 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 319 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 320 int reclen; 321 char *end; 322 323 if (blk_seq > claim_blk_seq) 324 break; 325 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 326 break; 327 ASSERT3U(max_blk_seq, <, blk_seq); 328 max_blk_seq = blk_seq; 329 blk_count++; 330 331 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 332 break; 333 334 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 335 if (error != 0) 336 break; 337 338 for (lrp = lrbuf; lrp < end; lrp += reclen) { 339 lr_t *lr = (lr_t *)lrp; 340 reclen = lr->lrc_reclen; 341 ASSERT3U(reclen, >=, sizeof (lr_t)); 342 if (lr->lrc_seq > claim_lr_seq) 343 goto done; 344 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 345 goto done; 346 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 347 max_lr_seq = lr->lrc_seq; 348 lr_count++; 349 } 350 } 351 done: 352 zilog->zl_parse_error = error; 353 zilog->zl_parse_blk_seq = max_blk_seq; 354 zilog->zl_parse_lr_seq = max_lr_seq; 355 zilog->zl_parse_blk_count = blk_count; 356 zilog->zl_parse_lr_count = lr_count; 357 358 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 359 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 360 361 zil_bp_tree_fini(zilog); 362 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 363 364 return (error); 365 } 366 367 static int 368 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 369 { 370 /* 371 * Claim log block if not already committed and not already claimed. 372 * If tx == NULL, just verify that the block is claimable. 373 */ 374 if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) 375 return (0); 376 377 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 378 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 379 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 380 } 381 382 static int 383 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 384 { 385 lr_write_t *lr = (lr_write_t *)lrc; 386 int error; 387 388 if (lrc->lrc_txtype != TX_WRITE) 389 return (0); 390 391 /* 392 * If the block is not readable, don't claim it. This can happen 393 * in normal operation when a log block is written to disk before 394 * some of the dmu_sync() blocks it points to. In this case, the 395 * transaction cannot have been committed to anyone (we would have 396 * waited for all writes to be stable first), so it is semantically 397 * correct to declare this the end of the log. 398 */ 399 if (lr->lr_blkptr.blk_birth >= first_txg && 400 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 401 return (error); 402 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 403 } 404 405 /* ARGSUSED */ 406 static int 407 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 408 { 409 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 410 411 return (0); 412 } 413 414 static int 415 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 416 { 417 lr_write_t *lr = (lr_write_t *)lrc; 418 blkptr_t *bp = &lr->lr_blkptr; 419 420 /* 421 * If we previously claimed it, we need to free it. 422 */ 423 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 424 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0) 425 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 426 427 return (0); 428 } 429 430 static lwb_t * 431 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 432 { 433 lwb_t *lwb; 434 435 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 436 lwb->lwb_zilog = zilog; 437 lwb->lwb_blk = *bp; 438 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 439 lwb->lwb_max_txg = txg; 440 lwb->lwb_zio = NULL; 441 lwb->lwb_tx = NULL; 442 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 443 lwb->lwb_nused = sizeof (zil_chain_t); 444 lwb->lwb_sz = BP_GET_LSIZE(bp); 445 } else { 446 lwb->lwb_nused = 0; 447 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 448 } 449 450 mutex_enter(&zilog->zl_lock); 451 list_insert_tail(&zilog->zl_lwb_list, lwb); 452 mutex_exit(&zilog->zl_lock); 453 454 return (lwb); 455 } 456 457 /* 458 * Called when we create in-memory log transactions so that we know 459 * to cleanup the itxs at the end of spa_sync(). 460 */ 461 void 462 zilog_dirty(zilog_t *zilog, uint64_t txg) 463 { 464 dsl_pool_t *dp = zilog->zl_dmu_pool; 465 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 466 467 if (dsl_dataset_is_snapshot(ds)) 468 panic("dirtying snapshot!"); 469 470 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 471 /* up the hold count until we can be written out */ 472 dmu_buf_add_ref(ds->ds_dbuf, zilog); 473 } 474 } 475 476 boolean_t 477 zilog_is_dirty(zilog_t *zilog) 478 { 479 dsl_pool_t *dp = zilog->zl_dmu_pool; 480 481 for (int t = 0; t < TXG_SIZE; t++) { 482 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 483 return (B_TRUE); 484 } 485 return (B_FALSE); 486 } 487 488 /* 489 * Create an on-disk intent log. 490 */ 491 static lwb_t * 492 zil_create(zilog_t *zilog) 493 { 494 const zil_header_t *zh = zilog->zl_header; 495 lwb_t *lwb = NULL; 496 uint64_t txg = 0; 497 dmu_tx_t *tx = NULL; 498 blkptr_t blk; 499 int error = 0; 500 501 /* 502 * Wait for any previous destroy to complete. 503 */ 504 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 505 506 ASSERT(zh->zh_claim_txg == 0); 507 ASSERT(zh->zh_replay_seq == 0); 508 509 blk = zh->zh_log; 510 511 /* 512 * Allocate an initial log block if: 513 * - there isn't one already 514 * - the existing block is the wrong endianess 515 */ 516 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 517 tx = dmu_tx_create(zilog->zl_os); 518 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 519 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 520 txg = dmu_tx_get_txg(tx); 521 522 if (!BP_IS_HOLE(&blk)) { 523 zio_free_zil(zilog->zl_spa, txg, &blk); 524 BP_ZERO(&blk); 525 } 526 527 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 528 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 529 530 if (error == 0) 531 zil_init_log_chain(zilog, &blk); 532 } 533 534 /* 535 * Allocate a log write buffer (lwb) for the first log block. 536 */ 537 if (error == 0) 538 lwb = zil_alloc_lwb(zilog, &blk, txg); 539 540 /* 541 * If we just allocated the first log block, commit our transaction 542 * and wait for zil_sync() to stuff the block poiner into zh_log. 543 * (zh is part of the MOS, so we cannot modify it in open context.) 544 */ 545 if (tx != NULL) { 546 dmu_tx_commit(tx); 547 txg_wait_synced(zilog->zl_dmu_pool, txg); 548 } 549 550 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 551 552 return (lwb); 553 } 554 555 /* 556 * In one tx, free all log blocks and clear the log header. 557 * If keep_first is set, then we're replaying a log with no content. 558 * We want to keep the first block, however, so that the first 559 * synchronous transaction doesn't require a txg_wait_synced() 560 * in zil_create(). We don't need to txg_wait_synced() here either 561 * when keep_first is set, because both zil_create() and zil_destroy() 562 * will wait for any in-progress destroys to complete. 563 */ 564 void 565 zil_destroy(zilog_t *zilog, boolean_t keep_first) 566 { 567 const zil_header_t *zh = zilog->zl_header; 568 lwb_t *lwb; 569 dmu_tx_t *tx; 570 uint64_t txg; 571 572 /* 573 * Wait for any previous destroy to complete. 574 */ 575 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 576 577 zilog->zl_old_header = *zh; /* debugging aid */ 578 579 if (BP_IS_HOLE(&zh->zh_log)) 580 return; 581 582 tx = dmu_tx_create(zilog->zl_os); 583 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 584 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 585 txg = dmu_tx_get_txg(tx); 586 587 mutex_enter(&zilog->zl_lock); 588 589 ASSERT3U(zilog->zl_destroy_txg, <, txg); 590 zilog->zl_destroy_txg = txg; 591 zilog->zl_keep_first = keep_first; 592 593 if (!list_is_empty(&zilog->zl_lwb_list)) { 594 ASSERT(zh->zh_claim_txg == 0); 595 VERIFY(!keep_first); 596 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 597 list_remove(&zilog->zl_lwb_list, lwb); 598 if (lwb->lwb_buf != NULL) 599 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 600 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 601 kmem_cache_free(zil_lwb_cache, lwb); 602 } 603 } else if (!keep_first) { 604 zil_destroy_sync(zilog, tx); 605 } 606 mutex_exit(&zilog->zl_lock); 607 608 dmu_tx_commit(tx); 609 } 610 611 void 612 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 613 { 614 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 615 (void) zil_parse(zilog, zil_free_log_block, 616 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 617 } 618 619 int 620 zil_claim(const char *osname, void *txarg) 621 { 622 dmu_tx_t *tx = txarg; 623 uint64_t first_txg = dmu_tx_get_txg(tx); 624 zilog_t *zilog; 625 zil_header_t *zh; 626 objset_t *os; 627 int error; 628 629 error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os); 630 if (error != 0) { 631 cmn_err(CE_WARN, "can't open objset for %s", osname); 632 return (0); 633 } 634 635 zilog = dmu_objset_zil(os); 636 zh = zil_header_in_syncing_context(zilog); 637 638 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 639 if (!BP_IS_HOLE(&zh->zh_log)) 640 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 641 BP_ZERO(&zh->zh_log); 642 dsl_dataset_dirty(dmu_objset_ds(os), tx); 643 dmu_objset_disown(os, FTAG); 644 return (0); 645 } 646 647 /* 648 * Claim all log blocks if we haven't already done so, and remember 649 * the highest claimed sequence number. This ensures that if we can 650 * read only part of the log now (e.g. due to a missing device), 651 * but we can read the entire log later, we will not try to replay 652 * or destroy beyond the last block we successfully claimed. 653 */ 654 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 655 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 656 (void) zil_parse(zilog, zil_claim_log_block, 657 zil_claim_log_record, tx, first_txg); 658 zh->zh_claim_txg = first_txg; 659 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 660 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 661 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 662 zh->zh_flags |= ZIL_REPLAY_NEEDED; 663 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 664 dsl_dataset_dirty(dmu_objset_ds(os), tx); 665 } 666 667 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 668 dmu_objset_disown(os, FTAG); 669 return (0); 670 } 671 672 /* 673 * Check the log by walking the log chain. 674 * Checksum errors are ok as they indicate the end of the chain. 675 * Any other error (no device or read failure) returns an error. 676 */ 677 int 678 zil_check_log_chain(const char *osname, void *tx) 679 { 680 zilog_t *zilog; 681 objset_t *os; 682 blkptr_t *bp; 683 int error; 684 685 ASSERT(tx == NULL); 686 687 error = dmu_objset_hold(osname, FTAG, &os); 688 if (error != 0) { 689 cmn_err(CE_WARN, "can't open objset for %s", osname); 690 return (0); 691 } 692 693 zilog = dmu_objset_zil(os); 694 bp = (blkptr_t *)&zilog->zl_header->zh_log; 695 696 /* 697 * Check the first block and determine if it's on a log device 698 * which may have been removed or faulted prior to loading this 699 * pool. If so, there's no point in checking the rest of the log 700 * as its content should have already been synced to the pool. 701 */ 702 if (!BP_IS_HOLE(bp)) { 703 vdev_t *vd; 704 boolean_t valid = B_TRUE; 705 706 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 707 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 708 if (vd->vdev_islog && vdev_is_dead(vd)) 709 valid = vdev_log_state_valid(vd); 710 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 711 712 if (!valid) { 713 dmu_objset_rele(os, FTAG); 714 return (0); 715 } 716 } 717 718 /* 719 * Because tx == NULL, zil_claim_log_block() will not actually claim 720 * any blocks, but just determine whether it is possible to do so. 721 * In addition to checking the log chain, zil_claim_log_block() 722 * will invoke zio_claim() with a done func of spa_claim_notify(), 723 * which will update spa_max_claim_txg. See spa_load() for details. 724 */ 725 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 726 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 727 728 dmu_objset_rele(os, FTAG); 729 730 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 731 } 732 733 static int 734 zil_vdev_compare(const void *x1, const void *x2) 735 { 736 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 737 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 738 739 if (v1 < v2) 740 return (-1); 741 if (v1 > v2) 742 return (1); 743 744 return (0); 745 } 746 747 void 748 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 749 { 750 avl_tree_t *t = &zilog->zl_vdev_tree; 751 avl_index_t where; 752 zil_vdev_node_t *zv, zvsearch; 753 int ndvas = BP_GET_NDVAS(bp); 754 int i; 755 756 if (zfs_nocacheflush) 757 return; 758 759 ASSERT(zilog->zl_writer); 760 761 /* 762 * Even though we're zl_writer, we still need a lock because the 763 * zl_get_data() callbacks may have dmu_sync() done callbacks 764 * that will run concurrently. 765 */ 766 mutex_enter(&zilog->zl_vdev_lock); 767 for (i = 0; i < ndvas; i++) { 768 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 769 if (avl_find(t, &zvsearch, &where) == NULL) { 770 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 771 zv->zv_vdev = zvsearch.zv_vdev; 772 avl_insert(t, zv, where); 773 } 774 } 775 mutex_exit(&zilog->zl_vdev_lock); 776 } 777 778 static void 779 zil_flush_vdevs(zilog_t *zilog) 780 { 781 spa_t *spa = zilog->zl_spa; 782 avl_tree_t *t = &zilog->zl_vdev_tree; 783 void *cookie = NULL; 784 zil_vdev_node_t *zv; 785 zio_t *zio; 786 787 ASSERT(zilog->zl_writer); 788 789 /* 790 * We don't need zl_vdev_lock here because we're the zl_writer, 791 * and all zl_get_data() callbacks are done. 792 */ 793 if (avl_numnodes(t) == 0) 794 return; 795 796 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 797 798 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 799 800 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 801 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 802 if (vd != NULL) 803 zio_flush(zio, vd); 804 kmem_free(zv, sizeof (*zv)); 805 } 806 807 /* 808 * Wait for all the flushes to complete. Not all devices actually 809 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 810 */ 811 (void) zio_wait(zio); 812 813 spa_config_exit(spa, SCL_STATE, FTAG); 814 } 815 816 /* 817 * Function called when a log block write completes 818 */ 819 static void 820 zil_lwb_write_done(zio_t *zio) 821 { 822 lwb_t *lwb = zio->io_private; 823 zilog_t *zilog = lwb->lwb_zilog; 824 dmu_tx_t *tx = lwb->lwb_tx; 825 826 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 827 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 828 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 829 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 830 ASSERT(!BP_IS_GANG(zio->io_bp)); 831 ASSERT(!BP_IS_HOLE(zio->io_bp)); 832 ASSERT(zio->io_bp->blk_fill == 0); 833 834 /* 835 * Ensure the lwb buffer pointer is cleared before releasing 836 * the txg. If we have had an allocation failure and 837 * the txg is waiting to sync then we want want zil_sync() 838 * to remove the lwb so that it's not picked up as the next new 839 * one in zil_commit_writer(). zil_sync() will only remove 840 * the lwb if lwb_buf is null. 841 */ 842 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 843 mutex_enter(&zilog->zl_lock); 844 lwb->lwb_buf = NULL; 845 lwb->lwb_tx = NULL; 846 mutex_exit(&zilog->zl_lock); 847 848 /* 849 * Now that we've written this log block, we have a stable pointer 850 * to the next block in the chain, so it's OK to let the txg in 851 * which we allocated the next block sync. 852 */ 853 dmu_tx_commit(tx); 854 } 855 856 /* 857 * Initialize the io for a log block. 858 */ 859 static void 860 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 861 { 862 zbookmark_t zb; 863 864 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 865 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 866 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 867 868 if (zilog->zl_root_zio == NULL) { 869 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 870 ZIO_FLAG_CANFAIL); 871 } 872 if (lwb->lwb_zio == NULL) { 873 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 874 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 875 zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE, 876 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 877 } 878 } 879 880 /* 881 * Define a limited set of intent log block sizes. 882 * 883 * These must be a multiple of 4KB. Note only the amount used (again 884 * aligned to 4KB) actually gets written. However, we can't always just 885 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. 886 */ 887 uint64_t zil_block_buckets[] = { 888 4096, /* non TX_WRITE */ 889 8192+4096, /* data base */ 890 32*1024 + 4096, /* NFS writes */ 891 UINT64_MAX 892 }; 893 894 /* 895 * Use the slog as long as the logbias is 'latency' and the current commit size 896 * is less than the limit or the total list size is less than 2X the limit. 897 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 898 */ 899 uint64_t zil_slog_limit = 1024 * 1024; 900 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 901 (((zilog)->zl_cur_used < zil_slog_limit) || \ 902 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 903 904 /* 905 * Start a log block write and advance to the next log block. 906 * Calls are serialized. 907 */ 908 static lwb_t * 909 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 910 { 911 lwb_t *nlwb = NULL; 912 zil_chain_t *zilc; 913 spa_t *spa = zilog->zl_spa; 914 blkptr_t *bp; 915 dmu_tx_t *tx; 916 uint64_t txg; 917 uint64_t zil_blksz, wsz; 918 int i, error; 919 920 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 921 zilc = (zil_chain_t *)lwb->lwb_buf; 922 bp = &zilc->zc_next_blk; 923 } else { 924 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 925 bp = &zilc->zc_next_blk; 926 } 927 928 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 929 930 /* 931 * Allocate the next block and save its address in this block 932 * before writing it in order to establish the log chain. 933 * Note that if the allocation of nlwb synced before we wrote 934 * the block that points at it (lwb), we'd leak it if we crashed. 935 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 936 * We dirty the dataset to ensure that zil_sync() will be called 937 * to clean up in the event of allocation failure or I/O failure. 938 */ 939 tx = dmu_tx_create(zilog->zl_os); 940 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 941 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 942 txg = dmu_tx_get_txg(tx); 943 944 lwb->lwb_tx = tx; 945 946 /* 947 * Log blocks are pre-allocated. Here we select the size of the next 948 * block, based on size used in the last block. 949 * - first find the smallest bucket that will fit the block from a 950 * limited set of block sizes. This is because it's faster to write 951 * blocks allocated from the same metaslab as they are adjacent or 952 * close. 953 * - next find the maximum from the new suggested size and an array of 954 * previous sizes. This lessens a picket fence effect of wrongly 955 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 956 * requests. 957 * 958 * Note we only write what is used, but we can't just allocate 959 * the maximum block size because we can exhaust the available 960 * pool log space. 961 */ 962 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 963 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 964 continue; 965 zil_blksz = zil_block_buckets[i]; 966 if (zil_blksz == UINT64_MAX) 967 zil_blksz = SPA_MAXBLOCKSIZE; 968 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 969 for (i = 0; i < ZIL_PREV_BLKS; i++) 970 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 971 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 972 973 BP_ZERO(bp); 974 /* pass the old blkptr in order to spread log blocks across devs */ 975 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 976 USE_SLOG(zilog)); 977 if (error == 0) { 978 ASSERT3U(bp->blk_birth, ==, txg); 979 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 980 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 981 982 /* 983 * Allocate a new log write buffer (lwb). 984 */ 985 nlwb = zil_alloc_lwb(zilog, bp, txg); 986 987 /* Record the block for later vdev flushing */ 988 zil_add_block(zilog, &lwb->lwb_blk); 989 } 990 991 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 992 /* For Slim ZIL only write what is used. */ 993 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 994 ASSERT3U(wsz, <=, lwb->lwb_sz); 995 zio_shrink(lwb->lwb_zio, wsz); 996 997 } else { 998 wsz = lwb->lwb_sz; 999 } 1000 1001 zilc->zc_pad = 0; 1002 zilc->zc_nused = lwb->lwb_nused; 1003 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1004 1005 /* 1006 * clear unused data for security 1007 */ 1008 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1009 1010 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 1011 1012 /* 1013 * If there was an allocation failure then nlwb will be null which 1014 * forces a txg_wait_synced(). 1015 */ 1016 return (nlwb); 1017 } 1018 1019 static lwb_t * 1020 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1021 { 1022 lr_t *lrc = &itx->itx_lr; /* common log record */ 1023 lr_write_t *lrw = (lr_write_t *)lrc; 1024 char *lr_buf; 1025 uint64_t txg = lrc->lrc_txg; 1026 uint64_t reclen = lrc->lrc_reclen; 1027 uint64_t dlen = 0; 1028 1029 if (lwb == NULL) 1030 return (NULL); 1031 1032 ASSERT(lwb->lwb_buf != NULL); 1033 ASSERT(zilog_is_dirty(zilog) || 1034 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1035 1036 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 1037 dlen = P2ROUNDUP_TYPED( 1038 lrw->lr_length, sizeof (uint64_t), uint64_t); 1039 1040 zilog->zl_cur_used += (reclen + dlen); 1041 1042 zil_lwb_write_init(zilog, lwb); 1043 1044 /* 1045 * If this record won't fit in the current log block, start a new one. 1046 */ 1047 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1048 lwb = zil_lwb_write_start(zilog, lwb); 1049 if (lwb == NULL) 1050 return (NULL); 1051 zil_lwb_write_init(zilog, lwb); 1052 ASSERT(LWB_EMPTY(lwb)); 1053 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1054 txg_wait_synced(zilog->zl_dmu_pool, txg); 1055 return (lwb); 1056 } 1057 } 1058 1059 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1060 bcopy(lrc, lr_buf, reclen); 1061 lrc = (lr_t *)lr_buf; 1062 lrw = (lr_write_t *)lrc; 1063 1064 /* 1065 * If it's a write, fetch the data or get its blkptr as appropriate. 1066 */ 1067 if (lrc->lrc_txtype == TX_WRITE) { 1068 if (txg > spa_freeze_txg(zilog->zl_spa)) 1069 txg_wait_synced(zilog->zl_dmu_pool, txg); 1070 if (itx->itx_wr_state != WR_COPIED) { 1071 char *dbuf; 1072 int error; 1073 1074 if (dlen) { 1075 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1076 dbuf = lr_buf + reclen; 1077 lrw->lr_common.lrc_reclen += dlen; 1078 } else { 1079 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1080 dbuf = NULL; 1081 } 1082 error = zilog->zl_get_data( 1083 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1084 if (error == EIO) { 1085 txg_wait_synced(zilog->zl_dmu_pool, txg); 1086 return (lwb); 1087 } 1088 if (error != 0) { 1089 ASSERT(error == ENOENT || error == EEXIST || 1090 error == EALREADY); 1091 return (lwb); 1092 } 1093 } 1094 } 1095 1096 /* 1097 * We're actually making an entry, so update lrc_seq to be the 1098 * log record sequence number. Note that this is generally not 1099 * equal to the itx sequence number because not all transactions 1100 * are synchronous, and sometimes spa_sync() gets there first. 1101 */ 1102 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1103 lwb->lwb_nused += reclen + dlen; 1104 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1105 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1106 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1107 1108 return (lwb); 1109 } 1110 1111 itx_t * 1112 zil_itx_create(uint64_t txtype, size_t lrsize) 1113 { 1114 itx_t *itx; 1115 1116 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1117 1118 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1119 itx->itx_lr.lrc_txtype = txtype; 1120 itx->itx_lr.lrc_reclen = lrsize; 1121 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1122 itx->itx_lr.lrc_seq = 0; /* defensive */ 1123 itx->itx_sync = B_TRUE; /* default is synchronous */ 1124 1125 return (itx); 1126 } 1127 1128 void 1129 zil_itx_destroy(itx_t *itx) 1130 { 1131 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1132 } 1133 1134 /* 1135 * Free up the sync and async itxs. The itxs_t has already been detached 1136 * so no locks are needed. 1137 */ 1138 static void 1139 zil_itxg_clean(itxs_t *itxs) 1140 { 1141 itx_t *itx; 1142 list_t *list; 1143 avl_tree_t *t; 1144 void *cookie; 1145 itx_async_node_t *ian; 1146 1147 list = &itxs->i_sync_list; 1148 while ((itx = list_head(list)) != NULL) { 1149 list_remove(list, itx); 1150 kmem_free(itx, offsetof(itx_t, itx_lr) + 1151 itx->itx_lr.lrc_reclen); 1152 } 1153 1154 cookie = NULL; 1155 t = &itxs->i_async_tree; 1156 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1157 list = &ian->ia_list; 1158 while ((itx = list_head(list)) != NULL) { 1159 list_remove(list, itx); 1160 kmem_free(itx, offsetof(itx_t, itx_lr) + 1161 itx->itx_lr.lrc_reclen); 1162 } 1163 list_destroy(list); 1164 kmem_free(ian, sizeof (itx_async_node_t)); 1165 } 1166 avl_destroy(t); 1167 1168 kmem_free(itxs, sizeof (itxs_t)); 1169 } 1170 1171 static int 1172 zil_aitx_compare(const void *x1, const void *x2) 1173 { 1174 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1175 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1176 1177 if (o1 < o2) 1178 return (-1); 1179 if (o1 > o2) 1180 return (1); 1181 1182 return (0); 1183 } 1184 1185 /* 1186 * Remove all async itx with the given oid. 1187 */ 1188 static void 1189 zil_remove_async(zilog_t *zilog, uint64_t oid) 1190 { 1191 uint64_t otxg, txg; 1192 itx_async_node_t *ian; 1193 avl_tree_t *t; 1194 avl_index_t where; 1195 list_t clean_list; 1196 itx_t *itx; 1197 1198 ASSERT(oid != 0); 1199 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1200 1201 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1202 otxg = ZILTEST_TXG; 1203 else 1204 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1205 1206 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1207 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1208 1209 mutex_enter(&itxg->itxg_lock); 1210 if (itxg->itxg_txg != txg) { 1211 mutex_exit(&itxg->itxg_lock); 1212 continue; 1213 } 1214 1215 /* 1216 * Locate the object node and append its list. 1217 */ 1218 t = &itxg->itxg_itxs->i_async_tree; 1219 ian = avl_find(t, &oid, &where); 1220 if (ian != NULL) 1221 list_move_tail(&clean_list, &ian->ia_list); 1222 mutex_exit(&itxg->itxg_lock); 1223 } 1224 while ((itx = list_head(&clean_list)) != NULL) { 1225 list_remove(&clean_list, itx); 1226 kmem_free(itx, offsetof(itx_t, itx_lr) + 1227 itx->itx_lr.lrc_reclen); 1228 } 1229 list_destroy(&clean_list); 1230 } 1231 1232 void 1233 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1234 { 1235 uint64_t txg; 1236 itxg_t *itxg; 1237 itxs_t *itxs, *clean = NULL; 1238 1239 /* 1240 * Object ids can be re-instantiated in the next txg so 1241 * remove any async transactions to avoid future leaks. 1242 * This can happen if a fsync occurs on the re-instantiated 1243 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1244 * the new file data and flushes a write record for the old object. 1245 */ 1246 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1247 zil_remove_async(zilog, itx->itx_oid); 1248 1249 /* 1250 * Ensure the data of a renamed file is committed before the rename. 1251 */ 1252 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1253 zil_async_to_sync(zilog, itx->itx_oid); 1254 1255 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1256 txg = ZILTEST_TXG; 1257 else 1258 txg = dmu_tx_get_txg(tx); 1259 1260 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1261 mutex_enter(&itxg->itxg_lock); 1262 itxs = itxg->itxg_itxs; 1263 if (itxg->itxg_txg != txg) { 1264 if (itxs != NULL) { 1265 /* 1266 * The zil_clean callback hasn't got around to cleaning 1267 * this itxg. Save the itxs for release below. 1268 * This should be rare. 1269 */ 1270 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1271 itxg->itxg_sod = 0; 1272 clean = itxg->itxg_itxs; 1273 } 1274 ASSERT(itxg->itxg_sod == 0); 1275 itxg->itxg_txg = txg; 1276 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1277 1278 list_create(&itxs->i_sync_list, sizeof (itx_t), 1279 offsetof(itx_t, itx_node)); 1280 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1281 sizeof (itx_async_node_t), 1282 offsetof(itx_async_node_t, ia_node)); 1283 } 1284 if (itx->itx_sync) { 1285 list_insert_tail(&itxs->i_sync_list, itx); 1286 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1287 itxg->itxg_sod += itx->itx_sod; 1288 } else { 1289 avl_tree_t *t = &itxs->i_async_tree; 1290 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1291 itx_async_node_t *ian; 1292 avl_index_t where; 1293 1294 ian = avl_find(t, &foid, &where); 1295 if (ian == NULL) { 1296 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1297 list_create(&ian->ia_list, sizeof (itx_t), 1298 offsetof(itx_t, itx_node)); 1299 ian->ia_foid = foid; 1300 avl_insert(t, ian, where); 1301 } 1302 list_insert_tail(&ian->ia_list, itx); 1303 } 1304 1305 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1306 zilog_dirty(zilog, txg); 1307 mutex_exit(&itxg->itxg_lock); 1308 1309 /* Release the old itxs now we've dropped the lock */ 1310 if (clean != NULL) 1311 zil_itxg_clean(clean); 1312 } 1313 1314 /* 1315 * If there are any in-memory intent log transactions which have now been 1316 * synced then start up a taskq to free them. We should only do this after we 1317 * have written out the uberblocks (i.e. txg has been comitted) so that 1318 * don't inadvertently clean out in-memory log records that would be required 1319 * by zil_commit(). 1320 */ 1321 void 1322 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1323 { 1324 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1325 itxs_t *clean_me; 1326 1327 mutex_enter(&itxg->itxg_lock); 1328 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1329 mutex_exit(&itxg->itxg_lock); 1330 return; 1331 } 1332 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1333 ASSERT(itxg->itxg_txg != 0); 1334 ASSERT(zilog->zl_clean_taskq != NULL); 1335 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1336 itxg->itxg_sod = 0; 1337 clean_me = itxg->itxg_itxs; 1338 itxg->itxg_itxs = NULL; 1339 itxg->itxg_txg = 0; 1340 mutex_exit(&itxg->itxg_lock); 1341 /* 1342 * Preferably start a task queue to free up the old itxs but 1343 * if taskq_dispatch can't allocate resources to do that then 1344 * free it in-line. This should be rare. Note, using TQ_SLEEP 1345 * created a bad performance problem. 1346 */ 1347 if (taskq_dispatch(zilog->zl_clean_taskq, 1348 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1349 zil_itxg_clean(clean_me); 1350 } 1351 1352 /* 1353 * Get the list of itxs to commit into zl_itx_commit_list. 1354 */ 1355 static void 1356 zil_get_commit_list(zilog_t *zilog) 1357 { 1358 uint64_t otxg, txg; 1359 list_t *commit_list = &zilog->zl_itx_commit_list; 1360 uint64_t push_sod = 0; 1361 1362 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1363 otxg = ZILTEST_TXG; 1364 else 1365 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1366 1367 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1368 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1369 1370 mutex_enter(&itxg->itxg_lock); 1371 if (itxg->itxg_txg != txg) { 1372 mutex_exit(&itxg->itxg_lock); 1373 continue; 1374 } 1375 1376 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1377 push_sod += itxg->itxg_sod; 1378 itxg->itxg_sod = 0; 1379 1380 mutex_exit(&itxg->itxg_lock); 1381 } 1382 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1383 } 1384 1385 /* 1386 * Move the async itxs for a specified object to commit into sync lists. 1387 */ 1388 static void 1389 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1390 { 1391 uint64_t otxg, txg; 1392 itx_async_node_t *ian; 1393 avl_tree_t *t; 1394 avl_index_t where; 1395 1396 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1397 otxg = ZILTEST_TXG; 1398 else 1399 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1400 1401 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1402 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1403 1404 mutex_enter(&itxg->itxg_lock); 1405 if (itxg->itxg_txg != txg) { 1406 mutex_exit(&itxg->itxg_lock); 1407 continue; 1408 } 1409 1410 /* 1411 * If a foid is specified then find that node and append its 1412 * list. Otherwise walk the tree appending all the lists 1413 * to the sync list. We add to the end rather than the 1414 * beginning to ensure the create has happened. 1415 */ 1416 t = &itxg->itxg_itxs->i_async_tree; 1417 if (foid != 0) { 1418 ian = avl_find(t, &foid, &where); 1419 if (ian != NULL) { 1420 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1421 &ian->ia_list); 1422 } 1423 } else { 1424 void *cookie = NULL; 1425 1426 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1427 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1428 &ian->ia_list); 1429 list_destroy(&ian->ia_list); 1430 kmem_free(ian, sizeof (itx_async_node_t)); 1431 } 1432 } 1433 mutex_exit(&itxg->itxg_lock); 1434 } 1435 } 1436 1437 static void 1438 zil_commit_writer(zilog_t *zilog) 1439 { 1440 uint64_t txg; 1441 itx_t *itx; 1442 lwb_t *lwb; 1443 spa_t *spa = zilog->zl_spa; 1444 int error = 0; 1445 1446 ASSERT(zilog->zl_root_zio == NULL); 1447 1448 mutex_exit(&zilog->zl_lock); 1449 1450 zil_get_commit_list(zilog); 1451 1452 /* 1453 * Return if there's nothing to commit before we dirty the fs by 1454 * calling zil_create(). 1455 */ 1456 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1457 mutex_enter(&zilog->zl_lock); 1458 return; 1459 } 1460 1461 if (zilog->zl_suspend) { 1462 lwb = NULL; 1463 } else { 1464 lwb = list_tail(&zilog->zl_lwb_list); 1465 if (lwb == NULL) 1466 lwb = zil_create(zilog); 1467 } 1468 1469 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1470 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1471 txg = itx->itx_lr.lrc_txg; 1472 ASSERT(txg); 1473 1474 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1475 lwb = zil_lwb_commit(zilog, itx, lwb); 1476 list_remove(&zilog->zl_itx_commit_list, itx); 1477 kmem_free(itx, offsetof(itx_t, itx_lr) 1478 + itx->itx_lr.lrc_reclen); 1479 } 1480 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1481 1482 /* write the last block out */ 1483 if (lwb != NULL && lwb->lwb_zio != NULL) 1484 lwb = zil_lwb_write_start(zilog, lwb); 1485 1486 zilog->zl_cur_used = 0; 1487 1488 /* 1489 * Wait if necessary for the log blocks to be on stable storage. 1490 */ 1491 if (zilog->zl_root_zio) { 1492 error = zio_wait(zilog->zl_root_zio); 1493 zilog->zl_root_zio = NULL; 1494 zil_flush_vdevs(zilog); 1495 } 1496 1497 if (error || lwb == NULL) 1498 txg_wait_synced(zilog->zl_dmu_pool, 0); 1499 1500 mutex_enter(&zilog->zl_lock); 1501 1502 /* 1503 * Remember the highest committed log sequence number for ztest. 1504 * We only update this value when all the log writes succeeded, 1505 * because ztest wants to ASSERT that it got the whole log chain. 1506 */ 1507 if (error == 0 && lwb != NULL) 1508 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1509 } 1510 1511 /* 1512 * Commit zfs transactions to stable storage. 1513 * If foid is 0 push out all transactions, otherwise push only those 1514 * for that object or might reference that object. 1515 * 1516 * itxs are committed in batches. In a heavily stressed zil there will be 1517 * a commit writer thread who is writing out a bunch of itxs to the log 1518 * for a set of committing threads (cthreads) in the same batch as the writer. 1519 * Those cthreads are all waiting on the same cv for that batch. 1520 * 1521 * There will also be a different and growing batch of threads that are 1522 * waiting to commit (qthreads). When the committing batch completes 1523 * a transition occurs such that the cthreads exit and the qthreads become 1524 * cthreads. One of the new cthreads becomes the writer thread for the 1525 * batch. Any new threads arriving become new qthreads. 1526 * 1527 * Only 2 condition variables are needed and there's no transition 1528 * between the two cvs needed. They just flip-flop between qthreads 1529 * and cthreads. 1530 * 1531 * Using this scheme we can efficiently wakeup up only those threads 1532 * that have been committed. 1533 */ 1534 void 1535 zil_commit(zilog_t *zilog, uint64_t foid) 1536 { 1537 uint64_t mybatch; 1538 1539 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1540 return; 1541 1542 /* move the async itxs for the foid to the sync queues */ 1543 zil_async_to_sync(zilog, foid); 1544 1545 mutex_enter(&zilog->zl_lock); 1546 mybatch = zilog->zl_next_batch; 1547 while (zilog->zl_writer) { 1548 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1549 if (mybatch <= zilog->zl_com_batch) { 1550 mutex_exit(&zilog->zl_lock); 1551 return; 1552 } 1553 } 1554 1555 zilog->zl_next_batch++; 1556 zilog->zl_writer = B_TRUE; 1557 zil_commit_writer(zilog); 1558 zilog->zl_com_batch = mybatch; 1559 zilog->zl_writer = B_FALSE; 1560 mutex_exit(&zilog->zl_lock); 1561 1562 /* wake up one thread to become the next writer */ 1563 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1564 1565 /* wake up all threads waiting for this batch to be committed */ 1566 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1567 } 1568 1569 /* 1570 * Called in syncing context to free committed log blocks and update log header. 1571 */ 1572 void 1573 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1574 { 1575 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1576 uint64_t txg = dmu_tx_get_txg(tx); 1577 spa_t *spa = zilog->zl_spa; 1578 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1579 lwb_t *lwb; 1580 1581 /* 1582 * We don't zero out zl_destroy_txg, so make sure we don't try 1583 * to destroy it twice. 1584 */ 1585 if (spa_sync_pass(spa) != 1) 1586 return; 1587 1588 mutex_enter(&zilog->zl_lock); 1589 1590 ASSERT(zilog->zl_stop_sync == 0); 1591 1592 if (*replayed_seq != 0) { 1593 ASSERT(zh->zh_replay_seq < *replayed_seq); 1594 zh->zh_replay_seq = *replayed_seq; 1595 *replayed_seq = 0; 1596 } 1597 1598 if (zilog->zl_destroy_txg == txg) { 1599 blkptr_t blk = zh->zh_log; 1600 1601 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1602 1603 bzero(zh, sizeof (zil_header_t)); 1604 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1605 1606 if (zilog->zl_keep_first) { 1607 /* 1608 * If this block was part of log chain that couldn't 1609 * be claimed because a device was missing during 1610 * zil_claim(), but that device later returns, 1611 * then this block could erroneously appear valid. 1612 * To guard against this, assign a new GUID to the new 1613 * log chain so it doesn't matter what blk points to. 1614 */ 1615 zil_init_log_chain(zilog, &blk); 1616 zh->zh_log = blk; 1617 } 1618 } 1619 1620 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1621 zh->zh_log = lwb->lwb_blk; 1622 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1623 break; 1624 list_remove(&zilog->zl_lwb_list, lwb); 1625 zio_free_zil(spa, txg, &lwb->lwb_blk); 1626 kmem_cache_free(zil_lwb_cache, lwb); 1627 1628 /* 1629 * If we don't have anything left in the lwb list then 1630 * we've had an allocation failure and we need to zero 1631 * out the zil_header blkptr so that we don't end 1632 * up freeing the same block twice. 1633 */ 1634 if (list_head(&zilog->zl_lwb_list) == NULL) 1635 BP_ZERO(&zh->zh_log); 1636 } 1637 mutex_exit(&zilog->zl_lock); 1638 } 1639 1640 void 1641 zil_init(void) 1642 { 1643 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1644 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1645 } 1646 1647 void 1648 zil_fini(void) 1649 { 1650 kmem_cache_destroy(zil_lwb_cache); 1651 } 1652 1653 void 1654 zil_set_sync(zilog_t *zilog, uint64_t sync) 1655 { 1656 zilog->zl_sync = sync; 1657 } 1658 1659 void 1660 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1661 { 1662 zilog->zl_logbias = logbias; 1663 } 1664 1665 zilog_t * 1666 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1667 { 1668 zilog_t *zilog; 1669 1670 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1671 1672 zilog->zl_header = zh_phys; 1673 zilog->zl_os = os; 1674 zilog->zl_spa = dmu_objset_spa(os); 1675 zilog->zl_dmu_pool = dmu_objset_pool(os); 1676 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1677 zilog->zl_logbias = dmu_objset_logbias(os); 1678 zilog->zl_sync = dmu_objset_syncprop(os); 1679 zilog->zl_next_batch = 1; 1680 1681 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1682 1683 for (int i = 0; i < TXG_SIZE; i++) { 1684 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1685 MUTEX_DEFAULT, NULL); 1686 } 1687 1688 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1689 offsetof(lwb_t, lwb_node)); 1690 1691 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1692 offsetof(itx_t, itx_node)); 1693 1694 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1695 1696 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1697 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1698 1699 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1700 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1701 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1702 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1703 1704 return (zilog); 1705 } 1706 1707 void 1708 zil_free(zilog_t *zilog) 1709 { 1710 zilog->zl_stop_sync = 1; 1711 1712 ASSERT0(zilog->zl_suspend); 1713 ASSERT0(zilog->zl_suspending); 1714 1715 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1716 list_destroy(&zilog->zl_lwb_list); 1717 1718 avl_destroy(&zilog->zl_vdev_tree); 1719 mutex_destroy(&zilog->zl_vdev_lock); 1720 1721 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1722 list_destroy(&zilog->zl_itx_commit_list); 1723 1724 for (int i = 0; i < TXG_SIZE; i++) { 1725 /* 1726 * It's possible for an itx to be generated that doesn't dirty 1727 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1728 * callback to remove the entry. We remove those here. 1729 * 1730 * Also free up the ziltest itxs. 1731 */ 1732 if (zilog->zl_itxg[i].itxg_itxs) 1733 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1734 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1735 } 1736 1737 mutex_destroy(&zilog->zl_lock); 1738 1739 cv_destroy(&zilog->zl_cv_writer); 1740 cv_destroy(&zilog->zl_cv_suspend); 1741 cv_destroy(&zilog->zl_cv_batch[0]); 1742 cv_destroy(&zilog->zl_cv_batch[1]); 1743 1744 kmem_free(zilog, sizeof (zilog_t)); 1745 } 1746 1747 /* 1748 * Open an intent log. 1749 */ 1750 zilog_t * 1751 zil_open(objset_t *os, zil_get_data_t *get_data) 1752 { 1753 zilog_t *zilog = dmu_objset_zil(os); 1754 1755 ASSERT(zilog->zl_clean_taskq == NULL); 1756 ASSERT(zilog->zl_get_data == NULL); 1757 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1758 1759 zilog->zl_get_data = get_data; 1760 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1761 2, 2, TASKQ_PREPOPULATE); 1762 1763 return (zilog); 1764 } 1765 1766 /* 1767 * Close an intent log. 1768 */ 1769 void 1770 zil_close(zilog_t *zilog) 1771 { 1772 lwb_t *lwb; 1773 uint64_t txg = 0; 1774 1775 zil_commit(zilog, 0); /* commit all itx */ 1776 1777 /* 1778 * The lwb_max_txg for the stubby lwb will reflect the last activity 1779 * for the zil. After a txg_wait_synced() on the txg we know all the 1780 * callbacks have occurred that may clean the zil. Only then can we 1781 * destroy the zl_clean_taskq. 1782 */ 1783 mutex_enter(&zilog->zl_lock); 1784 lwb = list_tail(&zilog->zl_lwb_list); 1785 if (lwb != NULL) 1786 txg = lwb->lwb_max_txg; 1787 mutex_exit(&zilog->zl_lock); 1788 if (txg) 1789 txg_wait_synced(zilog->zl_dmu_pool, txg); 1790 ASSERT(!zilog_is_dirty(zilog)); 1791 1792 taskq_destroy(zilog->zl_clean_taskq); 1793 zilog->zl_clean_taskq = NULL; 1794 zilog->zl_get_data = NULL; 1795 1796 /* 1797 * We should have only one LWB left on the list; remove it now. 1798 */ 1799 mutex_enter(&zilog->zl_lock); 1800 lwb = list_head(&zilog->zl_lwb_list); 1801 if (lwb != NULL) { 1802 ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); 1803 list_remove(&zilog->zl_lwb_list, lwb); 1804 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1805 kmem_cache_free(zil_lwb_cache, lwb); 1806 } 1807 mutex_exit(&zilog->zl_lock); 1808 } 1809 1810 static char *suspend_tag = "zil suspending"; 1811 1812 /* 1813 * Suspend an intent log. While in suspended mode, we still honor 1814 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1815 * On old version pools, we suspend the log briefly when taking a 1816 * snapshot so that it will have an empty intent log. 1817 * 1818 * Long holds are not really intended to be used the way we do here -- 1819 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 1820 * could fail. Therefore we take pains to only put a long hold if it is 1821 * actually necessary. Fortunately, it will only be necessary if the 1822 * objset is currently mounted (or the ZVOL equivalent). In that case it 1823 * will already have a long hold, so we are not really making things any worse. 1824 * 1825 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 1826 * zvol_state_t), and use their mechanism to prevent their hold from being 1827 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 1828 * very little gain. 1829 * 1830 * if cookiep == NULL, this does both the suspend & resume. 1831 * Otherwise, it returns with the dataset "long held", and the cookie 1832 * should be passed into zil_resume(). 1833 */ 1834 int 1835 zil_suspend(const char *osname, void **cookiep) 1836 { 1837 objset_t *os; 1838 zilog_t *zilog; 1839 const zil_header_t *zh; 1840 int error; 1841 1842 error = dmu_objset_hold(osname, suspend_tag, &os); 1843 if (error != 0) 1844 return (error); 1845 zilog = dmu_objset_zil(os); 1846 1847 mutex_enter(&zilog->zl_lock); 1848 zh = zilog->zl_header; 1849 1850 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1851 mutex_exit(&zilog->zl_lock); 1852 dmu_objset_rele(os, suspend_tag); 1853 return (SET_ERROR(EBUSY)); 1854 } 1855 1856 /* 1857 * Don't put a long hold in the cases where we can avoid it. This 1858 * is when there is no cookie so we are doing a suspend & resume 1859 * (i.e. called from zil_vdev_offline()), and there's nothing to do 1860 * for the suspend because it's already suspended, or there's no ZIL. 1861 */ 1862 if (cookiep == NULL && !zilog->zl_suspending && 1863 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 1864 mutex_exit(&zilog->zl_lock); 1865 dmu_objset_rele(os, suspend_tag); 1866 return (0); 1867 } 1868 1869 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 1870 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 1871 1872 zilog->zl_suspend++; 1873 1874 if (zilog->zl_suspend > 1) { 1875 /* 1876 * Someone else is already suspending it. 1877 * Just wait for them to finish. 1878 */ 1879 1880 while (zilog->zl_suspending) 1881 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1882 mutex_exit(&zilog->zl_lock); 1883 1884 if (cookiep == NULL) 1885 zil_resume(os); 1886 else 1887 *cookiep = os; 1888 return (0); 1889 } 1890 1891 /* 1892 * If there is no pointer to an on-disk block, this ZIL must not 1893 * be active (e.g. filesystem not mounted), so there's nothing 1894 * to clean up. 1895 */ 1896 if (BP_IS_HOLE(&zh->zh_log)) { 1897 ASSERT(cookiep != NULL); /* fast path already handled */ 1898 1899 *cookiep = os; 1900 mutex_exit(&zilog->zl_lock); 1901 return (0); 1902 } 1903 1904 zilog->zl_suspending = B_TRUE; 1905 mutex_exit(&zilog->zl_lock); 1906 1907 zil_commit(zilog, 0); 1908 1909 zil_destroy(zilog, B_FALSE); 1910 1911 mutex_enter(&zilog->zl_lock); 1912 zilog->zl_suspending = B_FALSE; 1913 cv_broadcast(&zilog->zl_cv_suspend); 1914 mutex_exit(&zilog->zl_lock); 1915 1916 if (cookiep == NULL) 1917 zil_resume(os); 1918 else 1919 *cookiep = os; 1920 return (0); 1921 } 1922 1923 void 1924 zil_resume(void *cookie) 1925 { 1926 objset_t *os = cookie; 1927 zilog_t *zilog = dmu_objset_zil(os); 1928 1929 mutex_enter(&zilog->zl_lock); 1930 ASSERT(zilog->zl_suspend != 0); 1931 zilog->zl_suspend--; 1932 mutex_exit(&zilog->zl_lock); 1933 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 1934 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 1935 } 1936 1937 typedef struct zil_replay_arg { 1938 zil_replay_func_t **zr_replay; 1939 void *zr_arg; 1940 boolean_t zr_byteswap; 1941 char *zr_lr; 1942 } zil_replay_arg_t; 1943 1944 static int 1945 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1946 { 1947 char name[MAXNAMELEN]; 1948 1949 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1950 1951 dmu_objset_name(zilog->zl_os, name); 1952 1953 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1954 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1955 (u_longlong_t)lr->lrc_seq, 1956 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1957 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1958 1959 return (error); 1960 } 1961 1962 static int 1963 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1964 { 1965 zil_replay_arg_t *zr = zra; 1966 const zil_header_t *zh = zilog->zl_header; 1967 uint64_t reclen = lr->lrc_reclen; 1968 uint64_t txtype = lr->lrc_txtype; 1969 int error = 0; 1970 1971 zilog->zl_replaying_seq = lr->lrc_seq; 1972 1973 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1974 return (0); 1975 1976 if (lr->lrc_txg < claim_txg) /* already committed */ 1977 return (0); 1978 1979 /* Strip case-insensitive bit, still present in log record */ 1980 txtype &= ~TX_CI; 1981 1982 if (txtype == 0 || txtype >= TX_MAX_TYPE) 1983 return (zil_replay_error(zilog, lr, EINVAL)); 1984 1985 /* 1986 * If this record type can be logged out of order, the object 1987 * (lr_foid) may no longer exist. That's legitimate, not an error. 1988 */ 1989 if (TX_OOO(txtype)) { 1990 error = dmu_object_info(zilog->zl_os, 1991 ((lr_ooo_t *)lr)->lr_foid, NULL); 1992 if (error == ENOENT || error == EEXIST) 1993 return (0); 1994 } 1995 1996 /* 1997 * Make a copy of the data so we can revise and extend it. 1998 */ 1999 bcopy(lr, zr->zr_lr, reclen); 2000 2001 /* 2002 * If this is a TX_WRITE with a blkptr, suck in the data. 2003 */ 2004 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 2005 error = zil_read_log_data(zilog, (lr_write_t *)lr, 2006 zr->zr_lr + reclen); 2007 if (error != 0) 2008 return (zil_replay_error(zilog, lr, error)); 2009 } 2010 2011 /* 2012 * The log block containing this lr may have been byteswapped 2013 * so that we can easily examine common fields like lrc_txtype. 2014 * However, the log is a mix of different record types, and only the 2015 * replay vectors know how to byteswap their records. Therefore, if 2016 * the lr was byteswapped, undo it before invoking the replay vector. 2017 */ 2018 if (zr->zr_byteswap) 2019 byteswap_uint64_array(zr->zr_lr, reclen); 2020 2021 /* 2022 * We must now do two things atomically: replay this log record, 2023 * and update the log header sequence number to reflect the fact that 2024 * we did so. At the end of each replay function the sequence number 2025 * is updated if we are in replay mode. 2026 */ 2027 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 2028 if (error != 0) { 2029 /* 2030 * The DMU's dnode layer doesn't see removes until the txg 2031 * commits, so a subsequent claim can spuriously fail with 2032 * EEXIST. So if we receive any error we try syncing out 2033 * any removes then retry the transaction. Note that we 2034 * specify B_FALSE for byteswap now, so we don't do it twice. 2035 */ 2036 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 2037 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 2038 if (error != 0) 2039 return (zil_replay_error(zilog, lr, error)); 2040 } 2041 return (0); 2042 } 2043 2044 /* ARGSUSED */ 2045 static int 2046 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 2047 { 2048 zilog->zl_replay_blks++; 2049 2050 return (0); 2051 } 2052 2053 /* 2054 * If this dataset has a non-empty intent log, replay it and destroy it. 2055 */ 2056 void 2057 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 2058 { 2059 zilog_t *zilog = dmu_objset_zil(os); 2060 const zil_header_t *zh = zilog->zl_header; 2061 zil_replay_arg_t zr; 2062 2063 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 2064 zil_destroy(zilog, B_TRUE); 2065 return; 2066 } 2067 2068 zr.zr_replay = replay_func; 2069 zr.zr_arg = arg; 2070 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 2071 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 2072 2073 /* 2074 * Wait for in-progress removes to sync before starting replay. 2075 */ 2076 txg_wait_synced(zilog->zl_dmu_pool, 0); 2077 2078 zilog->zl_replay = B_TRUE; 2079 zilog->zl_replay_time = ddi_get_lbolt(); 2080 ASSERT(zilog->zl_replay_blks == 0); 2081 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 2082 zh->zh_claim_txg); 2083 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 2084 2085 zil_destroy(zilog, B_FALSE); 2086 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 2087 zilog->zl_replay = B_FALSE; 2088 } 2089 2090 boolean_t 2091 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 2092 { 2093 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2094 return (B_TRUE); 2095 2096 if (zilog->zl_replay) { 2097 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 2098 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 2099 zilog->zl_replaying_seq; 2100 return (B_TRUE); 2101 } 2102 2103 return (B_FALSE); 2104 } 2105 2106 /* ARGSUSED */ 2107 int 2108 zil_vdev_offline(const char *osname, void *arg) 2109 { 2110 int error; 2111 2112 error = zil_suspend(osname, NULL); 2113 if (error != 0) 2114 return (SET_ERROR(EEXIST)); 2115 return (0); 2116 }