1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83
84 /*
85 * Programming rules.
86 *
87 * Each vnode op performs some logical unit of work. To do this, the ZPL must
88 * properly lock its in-core state, create a DMU transaction, do the work,
89 * record this work in the intent log (ZIL), commit the DMU transaction,
90 * and wait for the intent log to commit if it is a synchronous operation.
91 * Moreover, the vnode ops must work in both normal and log replay context.
92 * The ordering of events is important to avoid deadlocks and references
93 * to freed memory. The example below illustrates the following Big Rules:
94 *
95 * (1) A check must be made in each zfs thread for a mounted file system.
96 * This is done avoiding races using ZFS_ENTER(zfsvfs).
97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
99 * can return EIO from the calling function.
100 *
101 * (2) VN_RELE() should always be the last thing except for zil_commit()
102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
103 * First, if it's the last reference, the vnode/znode
104 * can be freed, so the zp may point to freed memory. Second, the last
105 * reference will call zfs_zinactive(), which may induce a lot of work --
106 * pushing cached pages (which acquires range locks) and syncing out
107 * cached atime changes. Third, zfs_zinactive() may require a new tx,
108 * which could deadlock the system if you were already holding one.
109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110 *
111 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
112 * as they can span dmu_tx_assign() calls.
113 *
114 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
115 * This is critical because we don't want to block while holding locks.
116 * Note, in particular, that if a lock is sometimes acquired before
117 * the tx assigns, and sometimes after (e.g. z_lock), then failing to
118 * use a non-blocking assign can deadlock the system. The scenario:
119 *
120 * Thread A has grabbed a lock before calling dmu_tx_assign().
121 * Thread B is in an already-assigned tx, and blocks for this lock.
122 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
123 * forever, because the previous txg can't quiesce until B's tx commits.
124 *
125 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
126 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
127 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
128 * to indicate that this operation has already called dmu_tx_wait().
129 * This will ensure that we don't retry forever, waiting a short bit
130 * each time.
131 *
132 * (5) If the operation succeeded, generate the intent log entry for it
133 * before dropping locks. This ensures that the ordering of events
134 * in the intent log matches the order in which they actually occurred.
135 * During ZIL replay the zfs_log_* functions will update the sequence
136 * number to indicate the zil transaction has replayed.
137 *
138 * (6) At the end of each vnode op, the DMU tx must always commit,
139 * regardless of whether there were any errors.
140 *
141 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
142 * to ensure that synchronous semantics are provided when necessary.
143 *
144 * In general, this is how things should be ordered in each vnode op:
145 *
146 * ZFS_ENTER(zfsvfs); // exit if unmounted
147 * top:
148 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
149 * rw_enter(...); // grab any other locks you need
150 * tx = dmu_tx_create(...); // get DMU tx
151 * dmu_tx_hold_*(); // hold each object you might modify
152 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
153 * if (error) {
154 * rw_exit(...); // drop locks
155 * zfs_dirent_unlock(dl); // unlock directory entry
156 * VN_RELE(...); // release held vnodes
157 * if (error == ERESTART) {
158 * waited = B_TRUE;
159 * dmu_tx_wait(tx);
160 * dmu_tx_abort(tx);
161 * goto top;
162 * }
163 * dmu_tx_abort(tx); // abort DMU tx
164 * ZFS_EXIT(zfsvfs); // finished in zfs
165 * return (error); // really out of space
166 * }
167 * error = do_real_work(); // do whatever this VOP does
168 * if (error == 0)
169 * zfs_log_*(...); // on success, make ZIL entry
170 * dmu_tx_commit(tx); // commit DMU tx -- error or not
171 * rw_exit(...); // drop locks
172 * zfs_dirent_unlock(dl); // unlock directory entry
173 * VN_RELE(...); // release held vnodes
174 * zil_commit(zilog, foid); // synchronous when necessary
175 * ZFS_EXIT(zfsvfs); // finished in zfs
176 * return (error); // done, report error
177 */
178
179 /* ARGSUSED */
180 static int
181 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
182 {
183 znode_t *zp = VTOZ(*vpp);
184 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
185
186 ZFS_ENTER(zfsvfs);
187 ZFS_VERIFY_ZP(zp);
188
189 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 ((flag & FAPPEND) == 0)) {
191 ZFS_EXIT(zfsvfs);
192 return (SET_ERROR(EPERM));
193 }
194
195 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
196 ZTOV(zp)->v_type == VREG &&
197 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
198 if (fs_vscan(*vpp, cr, 0) != 0) {
199 ZFS_EXIT(zfsvfs);
200 return (SET_ERROR(EACCES));
201 }
202 }
203
204 /* Keep a count of the synchronous opens in the znode */
205 if (flag & (FSYNC | FDSYNC))
206 atomic_inc_32(&zp->z_sync_cnt);
207
208 ZFS_EXIT(zfsvfs);
209 return (0);
210 }
211
212 /* ARGSUSED */
213 static int
214 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
215 caller_context_t *ct)
216 {
217 znode_t *zp = VTOZ(vp);
218 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
219
220 /*
221 * Clean up any locks held by this process on the vp.
222 */
223 cleanlocks(vp, ddi_get_pid(), 0);
224 cleanshares(vp, ddi_get_pid());
225
226 ZFS_ENTER(zfsvfs);
227 ZFS_VERIFY_ZP(zp);
228
229 /* Decrement the synchronous opens in the znode */
230 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
231 atomic_dec_32(&zp->z_sync_cnt);
232
233 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
234 ZTOV(zp)->v_type == VREG &&
235 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
236 VERIFY(fs_vscan(vp, cr, 1) == 0);
237
238 ZFS_EXIT(zfsvfs);
239 return (0);
240 }
241
242 /*
243 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
244 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
245 */
246 static int
247 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
248 {
249 znode_t *zp = VTOZ(vp);
250 uint64_t noff = (uint64_t)*off; /* new offset */
251 uint64_t file_sz;
252 int error;
253 boolean_t hole;
254
255 file_sz = zp->z_size;
256 if (noff >= file_sz) {
257 return (SET_ERROR(ENXIO));
258 }
259
260 if (cmd == _FIO_SEEK_HOLE)
261 hole = B_TRUE;
262 else
263 hole = B_FALSE;
264
265 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
266
267 /* end of file? */
268 if ((error == ESRCH) || (noff > file_sz)) {
269 /*
270 * Handle the virtual hole at the end of file.
271 */
272 if (hole) {
273 *off = file_sz;
274 return (0);
275 }
276 return (SET_ERROR(ENXIO));
277 }
278
279 if (noff < *off)
280 return (error);
281 *off = noff;
282 return (error);
283 }
284
285 /* ARGSUSED */
286 static int
287 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
288 int *rvalp, caller_context_t *ct)
289 {
290 offset_t off;
291 int error;
292 zfsvfs_t *zfsvfs;
293 znode_t *zp;
294
295 switch (com) {
296 case _FIOFFS:
297 return (zfs_sync(vp->v_vfsp, 0, cred));
298
299 /*
300 * The following two ioctls are used by bfu. Faking out,
301 * necessary to avoid bfu errors.
302 */
303 case _FIOGDIO:
304 case _FIOSDIO:
305 return (0);
306
307 case _FIO_SEEK_DATA:
308 case _FIO_SEEK_HOLE:
309 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
310 return (SET_ERROR(EFAULT));
311
312 zp = VTOZ(vp);
313 zfsvfs = zp->z_zfsvfs;
314 ZFS_ENTER(zfsvfs);
315 ZFS_VERIFY_ZP(zp);
316
317 /* offset parameter is in/out */
318 error = zfs_holey(vp, com, &off);
319 ZFS_EXIT(zfsvfs);
320 if (error)
321 return (error);
322 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
323 return (SET_ERROR(EFAULT));
324 return (0);
325 }
326 return (SET_ERROR(ENOTTY));
327 }
328
329 /*
330 * Utility functions to map and unmap a single physical page. These
331 * are used to manage the mappable copies of ZFS file data, and therefore
332 * do not update ref/mod bits.
333 */
334 caddr_t
335 zfs_map_page(page_t *pp, enum seg_rw rw)
336 {
337 if (kpm_enable)
338 return (hat_kpm_mapin(pp, 0));
339 ASSERT(rw == S_READ || rw == S_WRITE);
340 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
341 (caddr_t)-1));
342 }
343
344 void
345 zfs_unmap_page(page_t *pp, caddr_t addr)
346 {
347 if (kpm_enable) {
348 hat_kpm_mapout(pp, 0, addr);
349 } else {
350 ppmapout(addr);
351 }
352 }
353
354 /*
355 * When a file is memory mapped, we must keep the IO data synchronized
356 * between the DMU cache and the memory mapped pages. What this means:
357 *
358 * On Write: If we find a memory mapped page, we write to *both*
359 * the page and the dmu buffer.
360 */
361 static void
362 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
363 {
364 int64_t off;
365
366 off = start & PAGEOFFSET;
367 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
368 page_t *pp;
369 uint64_t nbytes = MIN(PAGESIZE - off, len);
370
371 if (pp = page_lookup(vp, start, SE_SHARED)) {
372 caddr_t va;
373
374 va = zfs_map_page(pp, S_WRITE);
375 (void) dmu_read(os, oid, start+off, nbytes, va+off,
376 DMU_READ_PREFETCH);
377 zfs_unmap_page(pp, va);
378 page_unlock(pp);
379 }
380 len -= nbytes;
381 off = 0;
382 }
383 }
384
385 /*
386 * When a file is memory mapped, we must keep the IO data synchronized
387 * between the DMU cache and the memory mapped pages. What this means:
388 *
389 * On Read: We "read" preferentially from memory mapped pages,
390 * else we default from the dmu buffer.
391 *
392 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
393 * the file is memory mapped.
394 */
395 static int
396 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
397 {
398 znode_t *zp = VTOZ(vp);
399 objset_t *os = zp->z_zfsvfs->z_os;
400 int64_t start, off;
401 int len = nbytes;
402 int error = 0;
403
404 start = uio->uio_loffset;
405 off = start & PAGEOFFSET;
406 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
407 page_t *pp;
408 uint64_t bytes = MIN(PAGESIZE - off, len);
409
410 if (pp = page_lookup(vp, start, SE_SHARED)) {
411 caddr_t va;
412
413 va = zfs_map_page(pp, S_READ);
414 error = uiomove(va + off, bytes, UIO_READ, uio);
415 zfs_unmap_page(pp, va);
416 page_unlock(pp);
417 } else {
418 error = dmu_read_uio(os, zp->z_id, uio, bytes);
419 }
420 len -= bytes;
421 off = 0;
422 if (error)
423 break;
424 }
425 return (error);
426 }
427
428 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
429
430 /*
431 * Read bytes from specified file into supplied buffer.
432 *
433 * IN: vp - vnode of file to be read from.
434 * uio - structure supplying read location, range info,
435 * and return buffer.
436 * ioflag - SYNC flags; used to provide FRSYNC semantics.
437 * cr - credentials of caller.
438 * ct - caller context
439 *
440 * OUT: uio - updated offset and range, buffer filled.
441 *
442 * RETURN: 0 on success, error code on failure.
443 *
444 * Side Effects:
445 * vp - atime updated if byte count > 0
446 */
447 /* ARGSUSED */
448 static int
449 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
450 {
451 znode_t *zp = VTOZ(vp);
452 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
453 objset_t *os;
454 ssize_t n, nbytes;
455 int error = 0;
456 rl_t *rl;
457 xuio_t *xuio = NULL;
458
459 ZFS_ENTER(zfsvfs);
460 ZFS_VERIFY_ZP(zp);
461 os = zfsvfs->z_os;
462
463 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
464 ZFS_EXIT(zfsvfs);
465 return (SET_ERROR(EACCES));
466 }
467
468 /*
469 * Validate file offset
470 */
471 if (uio->uio_loffset < (offset_t)0) {
472 ZFS_EXIT(zfsvfs);
473 return (SET_ERROR(EINVAL));
474 }
475
476 /*
477 * Fasttrack empty reads
478 */
479 if (uio->uio_resid == 0) {
480 ZFS_EXIT(zfsvfs);
481 return (0);
482 }
483
484 /*
485 * Check for mandatory locks
486 */
487 if (MANDMODE(zp->z_mode)) {
488 if (error = chklock(vp, FREAD,
489 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
490 ZFS_EXIT(zfsvfs);
491 return (error);
492 }
493 }
494
495 /*
496 * If we're in FRSYNC mode, sync out this znode before reading it.
497 */
498 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
499 zil_commit(zfsvfs->z_log, zp->z_id);
500
501 /*
502 * Lock the range against changes.
503 */
504 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
505
506 /*
507 * If we are reading past end-of-file we can skip
508 * to the end; but we might still need to set atime.
509 */
510 if (uio->uio_loffset >= zp->z_size) {
511 error = 0;
512 goto out;
513 }
514
515 ASSERT(uio->uio_loffset < zp->z_size);
516 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
517
518 if ((uio->uio_extflg == UIO_XUIO) &&
519 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
520 int nblk;
521 int blksz = zp->z_blksz;
522 uint64_t offset = uio->uio_loffset;
523
524 xuio = (xuio_t *)uio;
525 if ((ISP2(blksz))) {
526 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
527 blksz)) / blksz;
528 } else {
529 ASSERT(offset + n <= blksz);
530 nblk = 1;
531 }
532 (void) dmu_xuio_init(xuio, nblk);
533
534 if (vn_has_cached_data(vp)) {
535 /*
536 * For simplicity, we always allocate a full buffer
537 * even if we only expect to read a portion of a block.
538 */
539 while (--nblk >= 0) {
540 (void) dmu_xuio_add(xuio,
541 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
542 blksz), 0, blksz);
543 }
544 }
545 }
546
547 while (n > 0) {
548 nbytes = MIN(n, zfs_read_chunk_size -
549 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
550
551 if (vn_has_cached_data(vp))
552 error = mappedread(vp, nbytes, uio);
553 else
554 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
555 if (error) {
556 /* convert checksum errors into IO errors */
557 if (error == ECKSUM)
558 error = SET_ERROR(EIO);
559 break;
560 }
561
562 n -= nbytes;
563 }
564 out:
565 zfs_range_unlock(rl);
566
567 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
568 ZFS_EXIT(zfsvfs);
569 return (error);
570 }
571
572 /*
573 * Write the bytes to a file.
574 *
575 * IN: vp - vnode of file to be written to.
576 * uio - structure supplying write location, range info,
577 * and data buffer.
578 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
579 * set if in append mode.
580 * cr - credentials of caller.
581 * ct - caller context (NFS/CIFS fem monitor only)
582 *
583 * OUT: uio - updated offset and range.
584 *
585 * RETURN: 0 on success, error code on failure.
586 *
587 * Timestamps:
588 * vp - ctime|mtime updated if byte count > 0
589 */
590
591 /* ARGSUSED */
592 static int
593 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
594 {
595 znode_t *zp = VTOZ(vp);
596 rlim64_t limit = uio->uio_llimit;
597 ssize_t start_resid = uio->uio_resid;
598 ssize_t tx_bytes;
599 uint64_t end_size;
600 dmu_tx_t *tx;
601 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
602 zilog_t *zilog;
603 offset_t woff;
604 ssize_t n, nbytes;
605 rl_t *rl;
606 int max_blksz = zfsvfs->z_max_blksz;
607 int error = 0;
608 arc_buf_t *abuf;
609 iovec_t *aiov = NULL;
610 xuio_t *xuio = NULL;
611 int i_iov = 0;
612 int iovcnt = uio->uio_iovcnt;
613 iovec_t *iovp = uio->uio_iov;
614 int write_eof;
615 int count = 0;
616 sa_bulk_attr_t bulk[4];
617 uint64_t mtime[2], ctime[2];
618
619 /*
620 * Fasttrack empty write
621 */
622 n = start_resid;
623 if (n == 0)
624 return (0);
625
626 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
627 limit = MAXOFFSET_T;
628
629 ZFS_ENTER(zfsvfs);
630 ZFS_VERIFY_ZP(zp);
631
632 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
633 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
634 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
635 &zp->z_size, 8);
636 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
637 &zp->z_pflags, 8);
638
639 /*
640 * If immutable or not appending then return EPERM
641 */
642 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
643 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
644 (uio->uio_loffset < zp->z_size))) {
645 ZFS_EXIT(zfsvfs);
646 return (SET_ERROR(EPERM));
647 }
648
649 zilog = zfsvfs->z_log;
650
651 /*
652 * Validate file offset
653 */
654 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
655 if (woff < 0) {
656 ZFS_EXIT(zfsvfs);
657 return (SET_ERROR(EINVAL));
658 }
659
660 /*
661 * Check for mandatory locks before calling zfs_range_lock()
662 * in order to prevent a deadlock with locks set via fcntl().
663 */
664 if (MANDMODE((mode_t)zp->z_mode) &&
665 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
666 ZFS_EXIT(zfsvfs);
667 return (error);
668 }
669
670 /*
671 * Pre-fault the pages to ensure slow (eg NFS) pages
672 * don't hold up txg.
673 * Skip this if uio contains loaned arc_buf.
674 */
675 if ((uio->uio_extflg == UIO_XUIO) &&
676 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
677 xuio = (xuio_t *)uio;
678 else
679 uio_prefaultpages(MIN(n, max_blksz), uio);
680
681 /*
682 * If in append mode, set the io offset pointer to eof.
683 */
684 if (ioflag & FAPPEND) {
685 /*
686 * Obtain an appending range lock to guarantee file append
687 * semantics. We reset the write offset once we have the lock.
688 */
689 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
690 woff = rl->r_off;
691 if (rl->r_len == UINT64_MAX) {
692 /*
693 * We overlocked the file because this write will cause
694 * the file block size to increase.
695 * Note that zp_size cannot change with this lock held.
696 */
697 woff = zp->z_size;
698 }
699 uio->uio_loffset = woff;
700 } else {
701 /*
702 * Note that if the file block size will change as a result of
703 * this write, then this range lock will lock the entire file
704 * so that we can re-write the block safely.
705 */
706 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
707 }
708
709 if (woff >= limit) {
710 zfs_range_unlock(rl);
711 ZFS_EXIT(zfsvfs);
712 return (SET_ERROR(EFBIG));
713 }
714
715 if ((woff + n) > limit || woff > (limit - n))
716 n = limit - woff;
717
718 /* Will this write extend the file length? */
719 write_eof = (woff + n > zp->z_size);
720
721 end_size = MAX(zp->z_size, woff + n);
722
723 /*
724 * Write the file in reasonable size chunks. Each chunk is written
725 * in a separate transaction; this keeps the intent log records small
726 * and allows us to do more fine-grained space accounting.
727 */
728 while (n > 0) {
729 abuf = NULL;
730 woff = uio->uio_loffset;
731 again:
732 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
733 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
734 if (abuf != NULL)
735 dmu_return_arcbuf(abuf);
736 error = SET_ERROR(EDQUOT);
737 break;
738 }
739
740 if (xuio && abuf == NULL) {
741 ASSERT(i_iov < iovcnt);
742 aiov = &iovp[i_iov];
743 abuf = dmu_xuio_arcbuf(xuio, i_iov);
744 dmu_xuio_clear(xuio, i_iov);
745 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
746 iovec_t *, aiov, arc_buf_t *, abuf);
747 ASSERT((aiov->iov_base == abuf->b_data) ||
748 ((char *)aiov->iov_base - (char *)abuf->b_data +
749 aiov->iov_len == arc_buf_size(abuf)));
750 i_iov++;
751 } else if (abuf == NULL && n >= max_blksz &&
752 woff >= zp->z_size &&
753 P2PHASE(woff, max_blksz) == 0 &&
754 zp->z_blksz == max_blksz) {
755 /*
756 * This write covers a full block. "Borrow" a buffer
757 * from the dmu so that we can fill it before we enter
758 * a transaction. This avoids the possibility of
759 * holding up the transaction if the data copy hangs
760 * up on a pagefault (e.g., from an NFS server mapping).
761 */
762 size_t cbytes;
763
764 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
765 max_blksz);
766 ASSERT(abuf != NULL);
767 ASSERT(arc_buf_size(abuf) == max_blksz);
768 if (error = uiocopy(abuf->b_data, max_blksz,
769 UIO_WRITE, uio, &cbytes)) {
770 dmu_return_arcbuf(abuf);
771 break;
772 }
773 ASSERT(cbytes == max_blksz);
774 }
775
776 /*
777 * Start a transaction.
778 */
779 tx = dmu_tx_create(zfsvfs->z_os);
780 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
781 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
782 zfs_sa_upgrade_txholds(tx, zp);
783 error = dmu_tx_assign(tx, TXG_NOWAIT);
784 if (error) {
785 if (error == ERESTART) {
786 dmu_tx_wait(tx);
787 dmu_tx_abort(tx);
788 goto again;
789 }
790 dmu_tx_abort(tx);
791 if (abuf != NULL)
792 dmu_return_arcbuf(abuf);
793 break;
794 }
795
796 /*
797 * If zfs_range_lock() over-locked we grow the blocksize
798 * and then reduce the lock range. This will only happen
799 * on the first iteration since zfs_range_reduce() will
800 * shrink down r_len to the appropriate size.
801 */
802 if (rl->r_len == UINT64_MAX) {
803 uint64_t new_blksz;
804
805 if (zp->z_blksz > max_blksz) {
806 ASSERT(!ISP2(zp->z_blksz));
807 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
808 } else {
809 new_blksz = MIN(end_size, max_blksz);
810 }
811 zfs_grow_blocksize(zp, new_blksz, tx);
812 zfs_range_reduce(rl, woff, n);
813 }
814
815 /*
816 * XXX - should we really limit each write to z_max_blksz?
817 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
818 */
819 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
820
821 if (abuf == NULL) {
822 tx_bytes = uio->uio_resid;
823 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
824 uio, nbytes, tx);
825 tx_bytes -= uio->uio_resid;
826 } else {
827 tx_bytes = nbytes;
828 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
829 /*
830 * If this is not a full block write, but we are
831 * extending the file past EOF and this data starts
832 * block-aligned, use assign_arcbuf(). Otherwise,
833 * write via dmu_write().
834 */
835 if (tx_bytes < max_blksz && (!write_eof ||
836 aiov->iov_base != abuf->b_data)) {
837 ASSERT(xuio);
838 dmu_write(zfsvfs->z_os, zp->z_id, woff,
839 aiov->iov_len, aiov->iov_base, tx);
840 dmu_return_arcbuf(abuf);
841 xuio_stat_wbuf_copied();
842 } else {
843 ASSERT(xuio || tx_bytes == max_blksz);
844 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
845 woff, abuf, tx);
846 }
847 ASSERT(tx_bytes <= uio->uio_resid);
848 uioskip(uio, tx_bytes);
849 }
850 if (tx_bytes && vn_has_cached_data(vp)) {
851 update_pages(vp, woff,
852 tx_bytes, zfsvfs->z_os, zp->z_id);
853 }
854
855 /*
856 * If we made no progress, we're done. If we made even
857 * partial progress, update the znode and ZIL accordingly.
858 */
859 if (tx_bytes == 0) {
860 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
861 (void *)&zp->z_size, sizeof (uint64_t), tx);
862 dmu_tx_commit(tx);
863 ASSERT(error != 0);
864 break;
865 }
866
867 /*
868 * Clear Set-UID/Set-GID bits on successful write if not
869 * privileged and at least one of the excute bits is set.
870 *
871 * It would be nice to to this after all writes have
872 * been done, but that would still expose the ISUID/ISGID
873 * to another app after the partial write is committed.
874 *
875 * Note: we don't call zfs_fuid_map_id() here because
876 * user 0 is not an ephemeral uid.
877 */
878 mutex_enter(&zp->z_acl_lock);
879 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
880 (S_IXUSR >> 6))) != 0 &&
881 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
882 secpolicy_vnode_setid_retain(cr,
883 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
884 uint64_t newmode;
885 zp->z_mode &= ~(S_ISUID | S_ISGID);
886 newmode = zp->z_mode;
887 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
888 (void *)&newmode, sizeof (uint64_t), tx);
889 }
890 mutex_exit(&zp->z_acl_lock);
891
892 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
893 B_TRUE);
894
895 /*
896 * Update the file size (zp_size) if it has changed;
897 * account for possible concurrent updates.
898 */
899 while ((end_size = zp->z_size) < uio->uio_loffset) {
900 (void) atomic_cas_64(&zp->z_size, end_size,
901 uio->uio_loffset);
902 ASSERT(error == 0);
903 }
904 /*
905 * If we are replaying and eof is non zero then force
906 * the file size to the specified eof. Note, there's no
907 * concurrency during replay.
908 */
909 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
910 zp->z_size = zfsvfs->z_replay_eof;
911
912 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
913
914 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
915 dmu_tx_commit(tx);
916
917 if (error != 0)
918 break;
919 ASSERT(tx_bytes == nbytes);
920 n -= nbytes;
921
922 if (!xuio && n > 0)
923 uio_prefaultpages(MIN(n, max_blksz), uio);
924 }
925
926 zfs_range_unlock(rl);
927
928 /*
929 * If we're in replay mode, or we made no progress, return error.
930 * Otherwise, it's at least a partial write, so it's successful.
931 */
932 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
933 ZFS_EXIT(zfsvfs);
934 return (error);
935 }
936
937 if (ioflag & (FSYNC | FDSYNC) ||
938 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
939 zil_commit(zilog, zp->z_id);
940
941 ZFS_EXIT(zfsvfs);
942 return (0);
943 }
944
945 void
946 zfs_get_done(zgd_t *zgd, int error)
947 {
948 znode_t *zp = zgd->zgd_private;
949 objset_t *os = zp->z_zfsvfs->z_os;
950
951 if (zgd->zgd_db)
952 dmu_buf_rele(zgd->zgd_db, zgd);
953
954 zfs_range_unlock(zgd->zgd_rl);
955
956 /*
957 * Release the vnode asynchronously as we currently have the
958 * txg stopped from syncing.
959 */
960 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
961
962 if (error == 0 && zgd->zgd_bp)
963 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
964
965 kmem_free(zgd, sizeof (zgd_t));
966 }
967
968 #ifdef DEBUG
969 static int zil_fault_io = 0;
970 #endif
971
972 /*
973 * Get data to generate a TX_WRITE intent log record.
974 */
975 int
976 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
977 {
978 zfsvfs_t *zfsvfs = arg;
979 objset_t *os = zfsvfs->z_os;
980 znode_t *zp;
981 uint64_t object = lr->lr_foid;
982 uint64_t offset = lr->lr_offset;
983 uint64_t size = lr->lr_length;
984 blkptr_t *bp = &lr->lr_blkptr;
985 dmu_buf_t *db;
986 zgd_t *zgd;
987 int error = 0;
988
989 ASSERT(zio != NULL);
990 ASSERT(size != 0);
991
992 /*
993 * Nothing to do if the file has been removed
994 */
995 if (zfs_zget(zfsvfs, object, &zp) != 0)
996 return (SET_ERROR(ENOENT));
997 if (zp->z_unlinked) {
998 /*
999 * Release the vnode asynchronously as we currently have the
1000 * txg stopped from syncing.
1001 */
1002 VN_RELE_ASYNC(ZTOV(zp),
1003 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1004 return (SET_ERROR(ENOENT));
1005 }
1006
1007 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1008 zgd->zgd_zilog = zfsvfs->z_log;
1009 zgd->zgd_private = zp;
1010
1011 /*
1012 * Write records come in two flavors: immediate and indirect.
1013 * For small writes it's cheaper to store the data with the
1014 * log record (immediate); for large writes it's cheaper to
1015 * sync the data and get a pointer to it (indirect) so that
1016 * we don't have to write the data twice.
1017 */
1018 if (buf != NULL) { /* immediate write */
1019 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1020 /* test for truncation needs to be done while range locked */
1021 if (offset >= zp->z_size) {
1022 error = SET_ERROR(ENOENT);
1023 } else {
1024 error = dmu_read(os, object, offset, size, buf,
1025 DMU_READ_NO_PREFETCH);
1026 }
1027 ASSERT(error == 0 || error == ENOENT);
1028 } else { /* indirect write */
1029 /*
1030 * Have to lock the whole block to ensure when it's
1031 * written out and it's checksum is being calculated
1032 * that no one can change the data. We need to re-check
1033 * blocksize after we get the lock in case it's changed!
1034 */
1035 for (;;) {
1036 uint64_t blkoff;
1037 size = zp->z_blksz;
1038 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1039 offset -= blkoff;
1040 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1041 RL_READER);
1042 if (zp->z_blksz == size)
1043 break;
1044 offset += blkoff;
1045 zfs_range_unlock(zgd->zgd_rl);
1046 }
1047 /* test for truncation needs to be done while range locked */
1048 if (lr->lr_offset >= zp->z_size)
1049 error = SET_ERROR(ENOENT);
1050 #ifdef DEBUG
1051 if (zil_fault_io) {
1052 error = SET_ERROR(EIO);
1053 zil_fault_io = 0;
1054 }
1055 #endif
1056 if (error == 0)
1057 error = dmu_buf_hold(os, object, offset, zgd, &db,
1058 DMU_READ_NO_PREFETCH);
1059
1060 if (error == 0) {
1061 blkptr_t *obp = dmu_buf_get_blkptr(db);
1062 if (obp) {
1063 ASSERT(BP_IS_HOLE(bp));
1064 *bp = *obp;
1065 }
1066
1067 zgd->zgd_db = db;
1068 zgd->zgd_bp = bp;
1069
1070 ASSERT(db->db_offset == offset);
1071 ASSERT(db->db_size == size);
1072
1073 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1074 zfs_get_done, zgd);
1075 ASSERT(error || lr->lr_length <= zp->z_blksz);
1076
1077 /*
1078 * On success, we need to wait for the write I/O
1079 * initiated by dmu_sync() to complete before we can
1080 * release this dbuf. We will finish everything up
1081 * in the zfs_get_done() callback.
1082 */
1083 if (error == 0)
1084 return (0);
1085
1086 if (error == EALREADY) {
1087 lr->lr_common.lrc_txtype = TX_WRITE2;
1088 error = 0;
1089 }
1090 }
1091 }
1092
1093 zfs_get_done(zgd, error);
1094
1095 return (error);
1096 }
1097
1098 /*ARGSUSED*/
1099 static int
1100 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1101 caller_context_t *ct)
1102 {
1103 znode_t *zp = VTOZ(vp);
1104 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1105 int error;
1106
1107 ZFS_ENTER(zfsvfs);
1108 ZFS_VERIFY_ZP(zp);
1109
1110 if (flag & V_ACE_MASK)
1111 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1112 else
1113 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1114
1115 ZFS_EXIT(zfsvfs);
1116 return (error);
1117 }
1118
1119 /*
1120 * If vnode is for a device return a specfs vnode instead.
1121 */
1122 static int
1123 specvp_check(vnode_t **vpp, cred_t *cr)
1124 {
1125 int error = 0;
1126
1127 if (IS_DEVVP(*vpp)) {
1128 struct vnode *svp;
1129
1130 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1131 VN_RELE(*vpp);
1132 if (svp == NULL)
1133 error = SET_ERROR(ENOSYS);
1134 *vpp = svp;
1135 }
1136 return (error);
1137 }
1138
1139
1140 /*
1141 * Lookup an entry in a directory, or an extended attribute directory.
1142 * If it exists, return a held vnode reference for it.
1143 *
1144 * IN: dvp - vnode of directory to search.
1145 * nm - name of entry to lookup.
1146 * pnp - full pathname to lookup [UNUSED].
1147 * flags - LOOKUP_XATTR set if looking for an attribute.
1148 * rdir - root directory vnode [UNUSED].
1149 * cr - credentials of caller.
1150 * ct - caller context
1151 * direntflags - directory lookup flags
1152 * realpnp - returned pathname.
1153 *
1154 * OUT: vpp - vnode of located entry, NULL if not found.
1155 *
1156 * RETURN: 0 on success, error code on failure.
1157 *
1158 * Timestamps:
1159 * NA
1160 */
1161 /* ARGSUSED */
1162 static int
1163 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1164 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1165 int *direntflags, pathname_t *realpnp)
1166 {
1167 znode_t *zdp = VTOZ(dvp);
1168 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1169 int error = 0;
1170
1171 /* fast path */
1172 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1173
1174 if (dvp->v_type != VDIR) {
1175 return (SET_ERROR(ENOTDIR));
1176 } else if (zdp->z_sa_hdl == NULL) {
1177 return (SET_ERROR(EIO));
1178 }
1179
1180 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1181 error = zfs_fastaccesschk_execute(zdp, cr);
1182 if (!error) {
1183 *vpp = dvp;
1184 VN_HOLD(*vpp);
1185 return (0);
1186 }
1187 return (error);
1188 } else {
1189 vnode_t *tvp = dnlc_lookup(dvp, nm);
1190
1191 if (tvp) {
1192 error = zfs_fastaccesschk_execute(zdp, cr);
1193 if (error) {
1194 VN_RELE(tvp);
1195 return (error);
1196 }
1197 if (tvp == DNLC_NO_VNODE) {
1198 VN_RELE(tvp);
1199 return (SET_ERROR(ENOENT));
1200 } else {
1201 *vpp = tvp;
1202 return (specvp_check(vpp, cr));
1203 }
1204 }
1205 }
1206 }
1207
1208 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1209
1210 ZFS_ENTER(zfsvfs);
1211 ZFS_VERIFY_ZP(zdp);
1212
1213 *vpp = NULL;
1214
1215 if (flags & LOOKUP_XATTR) {
1216 /*
1217 * If the xattr property is off, refuse the lookup request.
1218 */
1219 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1220 ZFS_EXIT(zfsvfs);
1221 return (SET_ERROR(EINVAL));
1222 }
1223
1224 /*
1225 * We don't allow recursive attributes..
1226 * Maybe someday we will.
1227 */
1228 if (zdp->z_pflags & ZFS_XATTR) {
1229 ZFS_EXIT(zfsvfs);
1230 return (SET_ERROR(EINVAL));
1231 }
1232
1233 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1234 ZFS_EXIT(zfsvfs);
1235 return (error);
1236 }
1237
1238 /*
1239 * Do we have permission to get into attribute directory?
1240 */
1241
1242 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1243 B_FALSE, cr)) {
1244 VN_RELE(*vpp);
1245 *vpp = NULL;
1246 }
1247
1248 ZFS_EXIT(zfsvfs);
1249 return (error);
1250 }
1251
1252 if (dvp->v_type != VDIR) {
1253 ZFS_EXIT(zfsvfs);
1254 return (SET_ERROR(ENOTDIR));
1255 }
1256
1257 /*
1258 * Check accessibility of directory.
1259 */
1260
1261 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1262 ZFS_EXIT(zfsvfs);
1263 return (error);
1264 }
1265
1266 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1267 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1268 ZFS_EXIT(zfsvfs);
1269 return (SET_ERROR(EILSEQ));
1270 }
1271
1272 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1273 if (error == 0)
1274 error = specvp_check(vpp, cr);
1275
1276 ZFS_EXIT(zfsvfs);
1277 return (error);
1278 }
1279
1280 /*
1281 * Attempt to create a new entry in a directory. If the entry
1282 * already exists, truncate the file if permissible, else return
1283 * an error. Return the vp of the created or trunc'd file.
1284 *
1285 * IN: dvp - vnode of directory to put new file entry in.
1286 * name - name of new file entry.
1287 * vap - attributes of new file.
1288 * excl - flag indicating exclusive or non-exclusive mode.
1289 * mode - mode to open file with.
1290 * cr - credentials of caller.
1291 * flag - large file flag [UNUSED].
1292 * ct - caller context
1293 * vsecp - ACL to be set
1294 *
1295 * OUT: vpp - vnode of created or trunc'd entry.
1296 *
1297 * RETURN: 0 on success, error code on failure.
1298 *
1299 * Timestamps:
1300 * dvp - ctime|mtime updated if new entry created
1301 * vp - ctime|mtime always, atime if new
1302 */
1303
1304 /* ARGSUSED */
1305 static int
1306 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1307 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1308 vsecattr_t *vsecp)
1309 {
1310 znode_t *zp, *dzp = VTOZ(dvp);
1311 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1312 zilog_t *zilog;
1313 objset_t *os;
1314 zfs_dirlock_t *dl;
1315 dmu_tx_t *tx;
1316 int error;
1317 ksid_t *ksid;
1318 uid_t uid;
1319 gid_t gid = crgetgid(cr);
1320 zfs_acl_ids_t acl_ids;
1321 boolean_t fuid_dirtied;
1322 boolean_t have_acl = B_FALSE;
1323 boolean_t waited = B_FALSE;
1324
1325 /*
1326 * If we have an ephemeral id, ACL, or XVATTR then
1327 * make sure file system is at proper version
1328 */
1329
1330 ksid = crgetsid(cr, KSID_OWNER);
1331 if (ksid)
1332 uid = ksid_getid(ksid);
1333 else
1334 uid = crgetuid(cr);
1335
1336 if (zfsvfs->z_use_fuids == B_FALSE &&
1337 (vsecp || (vap->va_mask & AT_XVATTR) ||
1338 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1339 return (SET_ERROR(EINVAL));
1340
1341 ZFS_ENTER(zfsvfs);
1342 ZFS_VERIFY_ZP(dzp);
1343 os = zfsvfs->z_os;
1344 zilog = zfsvfs->z_log;
1345
1346 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1347 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1348 ZFS_EXIT(zfsvfs);
1349 return (SET_ERROR(EILSEQ));
1350 }
1351
1352 if (vap->va_mask & AT_XVATTR) {
1353 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1354 crgetuid(cr), cr, vap->va_type)) != 0) {
1355 ZFS_EXIT(zfsvfs);
1356 return (error);
1357 }
1358 }
1359 top:
1360 *vpp = NULL;
1361
1362 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1363 vap->va_mode &= ~VSVTX;
1364
1365 if (*name == '\0') {
1366 /*
1367 * Null component name refers to the directory itself.
1368 */
1369 VN_HOLD(dvp);
1370 zp = dzp;
1371 dl = NULL;
1372 error = 0;
1373 } else {
1374 /* possible VN_HOLD(zp) */
1375 int zflg = 0;
1376
1377 if (flag & FIGNORECASE)
1378 zflg |= ZCILOOK;
1379
1380 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1381 NULL, NULL);
1382 if (error) {
1383 if (have_acl)
1384 zfs_acl_ids_free(&acl_ids);
1385 if (strcmp(name, "..") == 0)
1386 error = SET_ERROR(EISDIR);
1387 ZFS_EXIT(zfsvfs);
1388 return (error);
1389 }
1390 }
1391
1392 if (zp == NULL) {
1393 uint64_t txtype;
1394
1395 /*
1396 * Create a new file object and update the directory
1397 * to reference it.
1398 */
1399 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1400 if (have_acl)
1401 zfs_acl_ids_free(&acl_ids);
1402 goto out;
1403 }
1404
1405 /*
1406 * We only support the creation of regular files in
1407 * extended attribute directories.
1408 */
1409
1410 if ((dzp->z_pflags & ZFS_XATTR) &&
1411 (vap->va_type != VREG)) {
1412 if (have_acl)
1413 zfs_acl_ids_free(&acl_ids);
1414 error = SET_ERROR(EINVAL);
1415 goto out;
1416 }
1417
1418 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1419 cr, vsecp, &acl_ids)) != 0)
1420 goto out;
1421 have_acl = B_TRUE;
1422
1423 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1424 zfs_acl_ids_free(&acl_ids);
1425 error = SET_ERROR(EDQUOT);
1426 goto out;
1427 }
1428
1429 tx = dmu_tx_create(os);
1430
1431 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1432 ZFS_SA_BASE_ATTR_SIZE);
1433
1434 fuid_dirtied = zfsvfs->z_fuid_dirty;
1435 if (fuid_dirtied)
1436 zfs_fuid_txhold(zfsvfs, tx);
1437 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1438 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1439 if (!zfsvfs->z_use_sa &&
1440 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1441 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1442 0, acl_ids.z_aclp->z_acl_bytes);
1443 }
1444 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1445 if (error) {
1446 zfs_dirent_unlock(dl);
1447 if (error == ERESTART) {
1448 waited = B_TRUE;
1449 dmu_tx_wait(tx);
1450 dmu_tx_abort(tx);
1451 goto top;
1452 }
1453 zfs_acl_ids_free(&acl_ids);
1454 dmu_tx_abort(tx);
1455 ZFS_EXIT(zfsvfs);
1456 return (error);
1457 }
1458 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1459
1460 if (fuid_dirtied)
1461 zfs_fuid_sync(zfsvfs, tx);
1462
1463 (void) zfs_link_create(dl, zp, tx, ZNEW);
1464 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1465 if (flag & FIGNORECASE)
1466 txtype |= TX_CI;
1467 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1468 vsecp, acl_ids.z_fuidp, vap);
1469 zfs_acl_ids_free(&acl_ids);
1470 dmu_tx_commit(tx);
1471 } else {
1472 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1473
1474 if (have_acl)
1475 zfs_acl_ids_free(&acl_ids);
1476 have_acl = B_FALSE;
1477
1478 /*
1479 * A directory entry already exists for this name.
1480 */
1481 /*
1482 * Can't truncate an existing file if in exclusive mode.
1483 */
1484 if (excl == EXCL) {
1485 error = SET_ERROR(EEXIST);
1486 goto out;
1487 }
1488 /*
1489 * Can't open a directory for writing.
1490 */
1491 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1492 error = SET_ERROR(EISDIR);
1493 goto out;
1494 }
1495 /*
1496 * Verify requested access to file.
1497 */
1498 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1499 goto out;
1500 }
1501
1502 mutex_enter(&dzp->z_lock);
1503 dzp->z_seq++;
1504 mutex_exit(&dzp->z_lock);
1505
1506 /*
1507 * Truncate regular files if requested.
1508 */
1509 if ((ZTOV(zp)->v_type == VREG) &&
1510 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1511 /* we can't hold any locks when calling zfs_freesp() */
1512 zfs_dirent_unlock(dl);
1513 dl = NULL;
1514 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1515 if (error == 0) {
1516 vnevent_create(ZTOV(zp), ct);
1517 }
1518 }
1519 }
1520 out:
1521
1522 if (dl)
1523 zfs_dirent_unlock(dl);
1524
1525 if (error) {
1526 if (zp)
1527 VN_RELE(ZTOV(zp));
1528 } else {
1529 *vpp = ZTOV(zp);
1530 error = specvp_check(vpp, cr);
1531 }
1532
1533 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1534 zil_commit(zilog, 0);
1535
1536 ZFS_EXIT(zfsvfs);
1537 return (error);
1538 }
1539
1540 /*
1541 * Remove an entry from a directory.
1542 *
1543 * IN: dvp - vnode of directory to remove entry from.
1544 * name - name of entry to remove.
1545 * cr - credentials of caller.
1546 * ct - caller context
1547 * flags - case flags
1548 *
1549 * RETURN: 0 on success, error code on failure.
1550 *
1551 * Timestamps:
1552 * dvp - ctime|mtime
1553 * vp - ctime (if nlink > 0)
1554 */
1555
1556 uint64_t null_xattr = 0;
1557
1558 /*ARGSUSED*/
1559 static int
1560 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1561 int flags)
1562 {
1563 znode_t *zp, *dzp = VTOZ(dvp);
1564 znode_t *xzp;
1565 vnode_t *vp;
1566 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1567 zilog_t *zilog;
1568 uint64_t acl_obj, xattr_obj;
1569 uint64_t xattr_obj_unlinked = 0;
1570 uint64_t obj = 0;
1571 zfs_dirlock_t *dl;
1572 dmu_tx_t *tx;
1573 boolean_t may_delete_now, delete_now = FALSE;
1574 boolean_t unlinked, toobig = FALSE;
1575 uint64_t txtype;
1576 pathname_t *realnmp = NULL;
1577 pathname_t realnm;
1578 int error;
1579 int zflg = ZEXISTS;
1580 boolean_t waited = B_FALSE;
1581
1582 ZFS_ENTER(zfsvfs);
1583 ZFS_VERIFY_ZP(dzp);
1584 zilog = zfsvfs->z_log;
1585
1586 if (flags & FIGNORECASE) {
1587 zflg |= ZCILOOK;
1588 pn_alloc(&realnm);
1589 realnmp = &realnm;
1590 }
1591
1592 top:
1593 xattr_obj = 0;
1594 xzp = NULL;
1595 /*
1596 * Attempt to lock directory; fail if entry doesn't exist.
1597 */
1598 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1599 NULL, realnmp)) {
1600 if (realnmp)
1601 pn_free(realnmp);
1602 ZFS_EXIT(zfsvfs);
1603 return (error);
1604 }
1605
1606 vp = ZTOV(zp);
1607
1608 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1609 goto out;
1610 }
1611
1612 /*
1613 * Need to use rmdir for removing directories.
1614 */
1615 if (vp->v_type == VDIR) {
1616 error = SET_ERROR(EPERM);
1617 goto out;
1618 }
1619
1620 vnevent_remove(vp, dvp, name, ct);
1621
1622 if (realnmp)
1623 dnlc_remove(dvp, realnmp->pn_buf);
1624 else
1625 dnlc_remove(dvp, name);
1626
1627 mutex_enter(&vp->v_lock);
1628 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1629 mutex_exit(&vp->v_lock);
1630
1631 /*
1632 * We may delete the znode now, or we may put it in the unlinked set;
1633 * it depends on whether we're the last link, and on whether there are
1634 * other holds on the vnode. So we dmu_tx_hold() the right things to
1635 * allow for either case.
1636 */
1637 obj = zp->z_id;
1638 tx = dmu_tx_create(zfsvfs->z_os);
1639 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1640 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1641 zfs_sa_upgrade_txholds(tx, zp);
1642 zfs_sa_upgrade_txholds(tx, dzp);
1643 if (may_delete_now) {
1644 toobig =
1645 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1646 /* if the file is too big, only hold_free a token amount */
1647 dmu_tx_hold_free(tx, zp->z_id, 0,
1648 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1649 }
1650
1651 /* are there any extended attributes? */
1652 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1653 &xattr_obj, sizeof (xattr_obj));
1654 if (error == 0 && xattr_obj) {
1655 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1656 ASSERT0(error);
1657 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1658 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1659 }
1660
1661 mutex_enter(&zp->z_lock);
1662 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1663 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1664 mutex_exit(&zp->z_lock);
1665
1666 /* charge as an update -- would be nice not to charge at all */
1667 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1668
1669 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1670 if (error) {
1671 zfs_dirent_unlock(dl);
1672 VN_RELE(vp);
1673 if (xzp)
1674 VN_RELE(ZTOV(xzp));
1675 if (error == ERESTART) {
1676 waited = B_TRUE;
1677 dmu_tx_wait(tx);
1678 dmu_tx_abort(tx);
1679 goto top;
1680 }
1681 if (realnmp)
1682 pn_free(realnmp);
1683 dmu_tx_abort(tx);
1684 ZFS_EXIT(zfsvfs);
1685 return (error);
1686 }
1687
1688 /*
1689 * Remove the directory entry.
1690 */
1691 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1692
1693 if (error) {
1694 dmu_tx_commit(tx);
1695 goto out;
1696 }
1697
1698 if (unlinked) {
1699
1700 /*
1701 * Hold z_lock so that we can make sure that the ACL obj
1702 * hasn't changed. Could have been deleted due to
1703 * zfs_sa_upgrade().
1704 */
1705 mutex_enter(&zp->z_lock);
1706 mutex_enter(&vp->v_lock);
1707 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1708 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1709 delete_now = may_delete_now && !toobig &&
1710 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1711 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1712 acl_obj;
1713 mutex_exit(&vp->v_lock);
1714 }
1715
1716 if (delete_now) {
1717 if (xattr_obj_unlinked) {
1718 ASSERT3U(xzp->z_links, ==, 2);
1719 mutex_enter(&xzp->z_lock);
1720 xzp->z_unlinked = 1;
1721 xzp->z_links = 0;
1722 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1723 &xzp->z_links, sizeof (xzp->z_links), tx);
1724 ASSERT3U(error, ==, 0);
1725 mutex_exit(&xzp->z_lock);
1726 zfs_unlinked_add(xzp, tx);
1727
1728 if (zp->z_is_sa)
1729 error = sa_remove(zp->z_sa_hdl,
1730 SA_ZPL_XATTR(zfsvfs), tx);
1731 else
1732 error = sa_update(zp->z_sa_hdl,
1733 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1734 sizeof (uint64_t), tx);
1735 ASSERT0(error);
1736 }
1737 mutex_enter(&vp->v_lock);
1738 vp->v_count--;
1739 ASSERT0(vp->v_count);
1740 mutex_exit(&vp->v_lock);
1741 mutex_exit(&zp->z_lock);
1742 zfs_znode_delete(zp, tx);
1743 } else if (unlinked) {
1744 mutex_exit(&zp->z_lock);
1745 zfs_unlinked_add(zp, tx);
1746 }
1747
1748 txtype = TX_REMOVE;
1749 if (flags & FIGNORECASE)
1750 txtype |= TX_CI;
1751 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1752
1753 dmu_tx_commit(tx);
1754 out:
1755 if (realnmp)
1756 pn_free(realnmp);
1757
1758 zfs_dirent_unlock(dl);
1759
1760 if (!delete_now)
1761 VN_RELE(vp);
1762 if (xzp)
1763 VN_RELE(ZTOV(xzp));
1764
1765 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1766 zil_commit(zilog, 0);
1767
1768 ZFS_EXIT(zfsvfs);
1769 return (error);
1770 }
1771
1772 /*
1773 * Create a new directory and insert it into dvp using the name
1774 * provided. Return a pointer to the inserted directory.
1775 *
1776 * IN: dvp - vnode of directory to add subdir to.
1777 * dirname - name of new directory.
1778 * vap - attributes of new directory.
1779 * cr - credentials of caller.
1780 * ct - caller context
1781 * flags - case flags
1782 * vsecp - ACL to be set
1783 *
1784 * OUT: vpp - vnode of created directory.
1785 *
1786 * RETURN: 0 on success, error code on failure.
1787 *
1788 * Timestamps:
1789 * dvp - ctime|mtime updated
1790 * vp - ctime|mtime|atime updated
1791 */
1792 /*ARGSUSED*/
1793 static int
1794 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1795 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1796 {
1797 znode_t *zp, *dzp = VTOZ(dvp);
1798 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1799 zilog_t *zilog;
1800 zfs_dirlock_t *dl;
1801 uint64_t txtype;
1802 dmu_tx_t *tx;
1803 int error;
1804 int zf = ZNEW;
1805 ksid_t *ksid;
1806 uid_t uid;
1807 gid_t gid = crgetgid(cr);
1808 zfs_acl_ids_t acl_ids;
1809 boolean_t fuid_dirtied;
1810 boolean_t waited = B_FALSE;
1811
1812 ASSERT(vap->va_type == VDIR);
1813
1814 /*
1815 * If we have an ephemeral id, ACL, or XVATTR then
1816 * make sure file system is at proper version
1817 */
1818
1819 ksid = crgetsid(cr, KSID_OWNER);
1820 if (ksid)
1821 uid = ksid_getid(ksid);
1822 else
1823 uid = crgetuid(cr);
1824 if (zfsvfs->z_use_fuids == B_FALSE &&
1825 (vsecp || (vap->va_mask & AT_XVATTR) ||
1826 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1827 return (SET_ERROR(EINVAL));
1828
1829 ZFS_ENTER(zfsvfs);
1830 ZFS_VERIFY_ZP(dzp);
1831 zilog = zfsvfs->z_log;
1832
1833 if (dzp->z_pflags & ZFS_XATTR) {
1834 ZFS_EXIT(zfsvfs);
1835 return (SET_ERROR(EINVAL));
1836 }
1837
1838 if (zfsvfs->z_utf8 && u8_validate(dirname,
1839 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1840 ZFS_EXIT(zfsvfs);
1841 return (SET_ERROR(EILSEQ));
1842 }
1843 if (flags & FIGNORECASE)
1844 zf |= ZCILOOK;
1845
1846 if (vap->va_mask & AT_XVATTR) {
1847 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1848 crgetuid(cr), cr, vap->va_type)) != 0) {
1849 ZFS_EXIT(zfsvfs);
1850 return (error);
1851 }
1852 }
1853
1854 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1855 vsecp, &acl_ids)) != 0) {
1856 ZFS_EXIT(zfsvfs);
1857 return (error);
1858 }
1859 /*
1860 * First make sure the new directory doesn't exist.
1861 *
1862 * Existence is checked first to make sure we don't return
1863 * EACCES instead of EEXIST which can cause some applications
1864 * to fail.
1865 */
1866 top:
1867 *vpp = NULL;
1868
1869 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1870 NULL, NULL)) {
1871 zfs_acl_ids_free(&acl_ids);
1872 ZFS_EXIT(zfsvfs);
1873 return (error);
1874 }
1875
1876 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1877 zfs_acl_ids_free(&acl_ids);
1878 zfs_dirent_unlock(dl);
1879 ZFS_EXIT(zfsvfs);
1880 return (error);
1881 }
1882
1883 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1884 zfs_acl_ids_free(&acl_ids);
1885 zfs_dirent_unlock(dl);
1886 ZFS_EXIT(zfsvfs);
1887 return (SET_ERROR(EDQUOT));
1888 }
1889
1890 /*
1891 * Add a new entry to the directory.
1892 */
1893 tx = dmu_tx_create(zfsvfs->z_os);
1894 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1895 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1896 fuid_dirtied = zfsvfs->z_fuid_dirty;
1897 if (fuid_dirtied)
1898 zfs_fuid_txhold(zfsvfs, tx);
1899 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1900 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1901 acl_ids.z_aclp->z_acl_bytes);
1902 }
1903
1904 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1905 ZFS_SA_BASE_ATTR_SIZE);
1906
1907 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1908 if (error) {
1909 zfs_dirent_unlock(dl);
1910 if (error == ERESTART) {
1911 waited = B_TRUE;
1912 dmu_tx_wait(tx);
1913 dmu_tx_abort(tx);
1914 goto top;
1915 }
1916 zfs_acl_ids_free(&acl_ids);
1917 dmu_tx_abort(tx);
1918 ZFS_EXIT(zfsvfs);
1919 return (error);
1920 }
1921
1922 /*
1923 * Create new node.
1924 */
1925 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1926
1927 if (fuid_dirtied)
1928 zfs_fuid_sync(zfsvfs, tx);
1929
1930 /*
1931 * Now put new name in parent dir.
1932 */
1933 (void) zfs_link_create(dl, zp, tx, ZNEW);
1934
1935 *vpp = ZTOV(zp);
1936
1937 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1938 if (flags & FIGNORECASE)
1939 txtype |= TX_CI;
1940 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1941 acl_ids.z_fuidp, vap);
1942
1943 zfs_acl_ids_free(&acl_ids);
1944
1945 dmu_tx_commit(tx);
1946
1947 zfs_dirent_unlock(dl);
1948
1949 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1950 zil_commit(zilog, 0);
1951
1952 ZFS_EXIT(zfsvfs);
1953 return (0);
1954 }
1955
1956 /*
1957 * Remove a directory subdir entry. If the current working
1958 * directory is the same as the subdir to be removed, the
1959 * remove will fail.
1960 *
1961 * IN: dvp - vnode of directory to remove from.
1962 * name - name of directory to be removed.
1963 * cwd - vnode of current working directory.
1964 * cr - credentials of caller.
1965 * ct - caller context
1966 * flags - case flags
1967 *
1968 * RETURN: 0 on success, error code on failure.
1969 *
1970 * Timestamps:
1971 * dvp - ctime|mtime updated
1972 */
1973 /*ARGSUSED*/
1974 static int
1975 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1976 caller_context_t *ct, int flags)
1977 {
1978 znode_t *dzp = VTOZ(dvp);
1979 znode_t *zp;
1980 vnode_t *vp;
1981 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1982 zilog_t *zilog;
1983 zfs_dirlock_t *dl;
1984 dmu_tx_t *tx;
1985 int error;
1986 int zflg = ZEXISTS;
1987 boolean_t waited = B_FALSE;
1988
1989 ZFS_ENTER(zfsvfs);
1990 ZFS_VERIFY_ZP(dzp);
1991 zilog = zfsvfs->z_log;
1992
1993 if (flags & FIGNORECASE)
1994 zflg |= ZCILOOK;
1995 top:
1996 zp = NULL;
1997
1998 /*
1999 * Attempt to lock directory; fail if entry doesn't exist.
2000 */
2001 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2002 NULL, NULL)) {
2003 ZFS_EXIT(zfsvfs);
2004 return (error);
2005 }
2006
2007 vp = ZTOV(zp);
2008
2009 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2010 goto out;
2011 }
2012
2013 if (vp->v_type != VDIR) {
2014 error = SET_ERROR(ENOTDIR);
2015 goto out;
2016 }
2017
2018 if (vp == cwd) {
2019 error = SET_ERROR(EINVAL);
2020 goto out;
2021 }
2022
2023 vnevent_rmdir(vp, dvp, name, ct);
2024
2025 /*
2026 * Grab a lock on the directory to make sure that noone is
2027 * trying to add (or lookup) entries while we are removing it.
2028 */
2029 rw_enter(&zp->z_name_lock, RW_WRITER);
2030
2031 /*
2032 * Grab a lock on the parent pointer to make sure we play well
2033 * with the treewalk and directory rename code.
2034 */
2035 rw_enter(&zp->z_parent_lock, RW_WRITER);
2036
2037 tx = dmu_tx_create(zfsvfs->z_os);
2038 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2039 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2040 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2041 zfs_sa_upgrade_txholds(tx, zp);
2042 zfs_sa_upgrade_txholds(tx, dzp);
2043 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2044 if (error) {
2045 rw_exit(&zp->z_parent_lock);
2046 rw_exit(&zp->z_name_lock);
2047 zfs_dirent_unlock(dl);
2048 VN_RELE(vp);
2049 if (error == ERESTART) {
2050 waited = B_TRUE;
2051 dmu_tx_wait(tx);
2052 dmu_tx_abort(tx);
2053 goto top;
2054 }
2055 dmu_tx_abort(tx);
2056 ZFS_EXIT(zfsvfs);
2057 return (error);
2058 }
2059
2060 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2061
2062 if (error == 0) {
2063 uint64_t txtype = TX_RMDIR;
2064 if (flags & FIGNORECASE)
2065 txtype |= TX_CI;
2066 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2067 }
2068
2069 dmu_tx_commit(tx);
2070
2071 rw_exit(&zp->z_parent_lock);
2072 rw_exit(&zp->z_name_lock);
2073 out:
2074 zfs_dirent_unlock(dl);
2075
2076 VN_RELE(vp);
2077
2078 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2079 zil_commit(zilog, 0);
2080
2081 ZFS_EXIT(zfsvfs);
2082 return (error);
2083 }
2084
2085 /*
2086 * Read as many directory entries as will fit into the provided
2087 * buffer from the given directory cursor position (specified in
2088 * the uio structure).
2089 *
2090 * IN: vp - vnode of directory to read.
2091 * uio - structure supplying read location, range info,
2092 * and return buffer.
2093 * cr - credentials of caller.
2094 * ct - caller context
2095 * flags - case flags
2096 *
2097 * OUT: uio - updated offset and range, buffer filled.
2098 * eofp - set to true if end-of-file detected.
2099 *
2100 * RETURN: 0 on success, error code on failure.
2101 *
2102 * Timestamps:
2103 * vp - atime updated
2104 *
2105 * Note that the low 4 bits of the cookie returned by zap is always zero.
2106 * This allows us to use the low range for "special" directory entries:
2107 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2108 * we use the offset 2 for the '.zfs' directory.
2109 */
2110 /* ARGSUSED */
2111 static int
2112 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2113 caller_context_t *ct, int flags)
2114 {
2115 znode_t *zp = VTOZ(vp);
2116 iovec_t *iovp;
2117 edirent_t *eodp;
2118 dirent64_t *odp;
2119 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2120 objset_t *os;
2121 caddr_t outbuf;
2122 size_t bufsize;
2123 zap_cursor_t zc;
2124 zap_attribute_t zap;
2125 uint_t bytes_wanted;
2126 uint64_t offset; /* must be unsigned; checks for < 1 */
2127 uint64_t parent;
2128 int local_eof;
2129 int outcount;
2130 int error;
2131 uint8_t prefetch;
2132 boolean_t check_sysattrs;
2133
2134 ZFS_ENTER(zfsvfs);
2135 ZFS_VERIFY_ZP(zp);
2136
2137 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2138 &parent, sizeof (parent))) != 0) {
2139 ZFS_EXIT(zfsvfs);
2140 return (error);
2141 }
2142
2143 /*
2144 * If we are not given an eof variable,
2145 * use a local one.
2146 */
2147 if (eofp == NULL)
2148 eofp = &local_eof;
2149
2150 /*
2151 * Check for valid iov_len.
2152 */
2153 if (uio->uio_iov->iov_len <= 0) {
2154 ZFS_EXIT(zfsvfs);
2155 return (SET_ERROR(EINVAL));
2156 }
2157
2158 /*
2159 * Quit if directory has been removed (posix)
2160 */
2161 if ((*eofp = zp->z_unlinked) != 0) {
2162 ZFS_EXIT(zfsvfs);
2163 return (0);
2164 }
2165
2166 error = 0;
2167 os = zfsvfs->z_os;
2168 offset = uio->uio_loffset;
2169 prefetch = zp->z_zn_prefetch;
2170
2171 /*
2172 * Initialize the iterator cursor.
2173 */
2174 if (offset <= 3) {
2175 /*
2176 * Start iteration from the beginning of the directory.
2177 */
2178 zap_cursor_init(&zc, os, zp->z_id);
2179 } else {
2180 /*
2181 * The offset is a serialized cursor.
2182 */
2183 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2184 }
2185
2186 /*
2187 * Get space to change directory entries into fs independent format.
2188 */
2189 iovp = uio->uio_iov;
2190 bytes_wanted = iovp->iov_len;
2191 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2192 bufsize = bytes_wanted;
2193 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2194 odp = (struct dirent64 *)outbuf;
2195 } else {
2196 bufsize = bytes_wanted;
2197 outbuf = NULL;
2198 odp = (struct dirent64 *)iovp->iov_base;
2199 }
2200 eodp = (struct edirent *)odp;
2201
2202 /*
2203 * If this VFS supports the system attribute view interface; and
2204 * we're looking at an extended attribute directory; and we care
2205 * about normalization conflicts on this vfs; then we must check
2206 * for normalization conflicts with the sysattr name space.
2207 */
2208 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2209 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2210 (flags & V_RDDIR_ENTFLAGS);
2211
2212 /*
2213 * Transform to file-system independent format
2214 */
2215 outcount = 0;
2216 while (outcount < bytes_wanted) {
2217 ino64_t objnum;
2218 ushort_t reclen;
2219 off64_t *next = NULL;
2220
2221 /*
2222 * Special case `.', `..', and `.zfs'.
2223 */
2224 if (offset == 0) {
2225 (void) strcpy(zap.za_name, ".");
2226 zap.za_normalization_conflict = 0;
2227 objnum = zp->z_id;
2228 } else if (offset == 1) {
2229 (void) strcpy(zap.za_name, "..");
2230 zap.za_normalization_conflict = 0;
2231 objnum = parent;
2232 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2233 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2234 zap.za_normalization_conflict = 0;
2235 objnum = ZFSCTL_INO_ROOT;
2236 } else {
2237 /*
2238 * Grab next entry.
2239 */
2240 if (error = zap_cursor_retrieve(&zc, &zap)) {
2241 if ((*eofp = (error == ENOENT)) != 0)
2242 break;
2243 else
2244 goto update;
2245 }
2246
2247 if (zap.za_integer_length != 8 ||
2248 zap.za_num_integers != 1) {
2249 cmn_err(CE_WARN, "zap_readdir: bad directory "
2250 "entry, obj = %lld, offset = %lld\n",
2251 (u_longlong_t)zp->z_id,
2252 (u_longlong_t)offset);
2253 error = SET_ERROR(ENXIO);
2254 goto update;
2255 }
2256
2257 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2258 /*
2259 * MacOS X can extract the object type here such as:
2260 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2261 */
2262
2263 if (check_sysattrs && !zap.za_normalization_conflict) {
2264 zap.za_normalization_conflict =
2265 xattr_sysattr_casechk(zap.za_name);
2266 }
2267 }
2268
2269 if (flags & V_RDDIR_ACCFILTER) {
2270 /*
2271 * If we have no access at all, don't include
2272 * this entry in the returned information
2273 */
2274 znode_t *ezp;
2275 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2276 goto skip_entry;
2277 if (!zfs_has_access(ezp, cr)) {
2278 VN_RELE(ZTOV(ezp));
2279 goto skip_entry;
2280 }
2281 VN_RELE(ZTOV(ezp));
2282 }
2283
2284 if (flags & V_RDDIR_ENTFLAGS)
2285 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2286 else
2287 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2288
2289 /*
2290 * Will this entry fit in the buffer?
2291 */
2292 if (outcount + reclen > bufsize) {
2293 /*
2294 * Did we manage to fit anything in the buffer?
2295 */
2296 if (!outcount) {
2297 error = SET_ERROR(EINVAL);
2298 goto update;
2299 }
2300 break;
2301 }
2302 if (flags & V_RDDIR_ENTFLAGS) {
2303 /*
2304 * Add extended flag entry:
2305 */
2306 eodp->ed_ino = objnum;
2307 eodp->ed_reclen = reclen;
2308 /* NOTE: ed_off is the offset for the *next* entry */
2309 next = &(eodp->ed_off);
2310 eodp->ed_eflags = zap.za_normalization_conflict ?
2311 ED_CASE_CONFLICT : 0;
2312 (void) strncpy(eodp->ed_name, zap.za_name,
2313 EDIRENT_NAMELEN(reclen));
2314 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2315 } else {
2316 /*
2317 * Add normal entry:
2318 */
2319 odp->d_ino = objnum;
2320 odp->d_reclen = reclen;
2321 /* NOTE: d_off is the offset for the *next* entry */
2322 next = &(odp->d_off);
2323 (void) strncpy(odp->d_name, zap.za_name,
2324 DIRENT64_NAMELEN(reclen));
2325 odp = (dirent64_t *)((intptr_t)odp + reclen);
2326 }
2327 outcount += reclen;
2328
2329 ASSERT(outcount <= bufsize);
2330
2331 /* Prefetch znode */
2332 if (prefetch)
2333 dmu_prefetch(os, objnum, 0, 0);
2334
2335 skip_entry:
2336 /*
2337 * Move to the next entry, fill in the previous offset.
2338 */
2339 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2340 zap_cursor_advance(&zc);
2341 offset = zap_cursor_serialize(&zc);
2342 } else {
2343 offset += 1;
2344 }
2345 if (next)
2346 *next = offset;
2347 }
2348 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2349
2350 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2351 iovp->iov_base += outcount;
2352 iovp->iov_len -= outcount;
2353 uio->uio_resid -= outcount;
2354 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2355 /*
2356 * Reset the pointer.
2357 */
2358 offset = uio->uio_loffset;
2359 }
2360
2361 update:
2362 zap_cursor_fini(&zc);
2363 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2364 kmem_free(outbuf, bufsize);
2365
2366 if (error == ENOENT)
2367 error = 0;
2368
2369 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2370
2371 uio->uio_loffset = offset;
2372 ZFS_EXIT(zfsvfs);
2373 return (error);
2374 }
2375
2376 ulong_t zfs_fsync_sync_cnt = 4;
2377
2378 static int
2379 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2380 {
2381 znode_t *zp = VTOZ(vp);
2382 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2383
2384 /*
2385 * Regardless of whether this is required for standards conformance,
2386 * this is the logical behavior when fsync() is called on a file with
2387 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2388 * going to be pushed out as part of the zil_commit().
2389 */
2390 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2391 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2392 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2393
2394 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2395
2396 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2397 ZFS_ENTER(zfsvfs);
2398 ZFS_VERIFY_ZP(zp);
2399 zil_commit(zfsvfs->z_log, zp->z_id);
2400 ZFS_EXIT(zfsvfs);
2401 }
2402 return (0);
2403 }
2404
2405
2406 /*
2407 * Get the requested file attributes and place them in the provided
2408 * vattr structure.
2409 *
2410 * IN: vp - vnode of file.
2411 * vap - va_mask identifies requested attributes.
2412 * If AT_XVATTR set, then optional attrs are requested
2413 * flags - ATTR_NOACLCHECK (CIFS server context)
2414 * cr - credentials of caller.
2415 * ct - caller context
2416 *
2417 * OUT: vap - attribute values.
2418 *
2419 * RETURN: 0 (always succeeds).
2420 */
2421 /* ARGSUSED */
2422 static int
2423 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2424 caller_context_t *ct)
2425 {
2426 znode_t *zp = VTOZ(vp);
2427 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2428 int error = 0;
2429 uint64_t links;
2430 uint64_t mtime[2], ctime[2];
2431 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2432 xoptattr_t *xoap = NULL;
2433 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2434 sa_bulk_attr_t bulk[2];
2435 int count = 0;
2436
2437 ZFS_ENTER(zfsvfs);
2438 ZFS_VERIFY_ZP(zp);
2439
2440 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2441
2442 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2443 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2444
2445 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2446 ZFS_EXIT(zfsvfs);
2447 return (error);
2448 }
2449
2450 /*
2451 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2452 * Also, if we are the owner don't bother, since owner should
2453 * always be allowed to read basic attributes of file.
2454 */
2455 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2456 (vap->va_uid != crgetuid(cr))) {
2457 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2458 skipaclchk, cr)) {
2459 ZFS_EXIT(zfsvfs);
2460 return (error);
2461 }
2462 }
2463
2464 /*
2465 * Return all attributes. It's cheaper to provide the answer
2466 * than to determine whether we were asked the question.
2467 */
2468
2469 mutex_enter(&zp->z_lock);
2470 vap->va_type = vp->v_type;
2471 vap->va_mode = zp->z_mode & MODEMASK;
2472 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2473 vap->va_nodeid = zp->z_id;
2474 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2475 links = zp->z_links + 1;
2476 else
2477 links = zp->z_links;
2478 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2479 vap->va_size = zp->z_size;
2480 vap->va_rdev = vp->v_rdev;
2481 vap->va_seq = zp->z_seq;
2482
2483 /*
2484 * Add in any requested optional attributes and the create time.
2485 * Also set the corresponding bits in the returned attribute bitmap.
2486 */
2487 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2488 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2489 xoap->xoa_archive =
2490 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2491 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2492 }
2493
2494 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2495 xoap->xoa_readonly =
2496 ((zp->z_pflags & ZFS_READONLY) != 0);
2497 XVA_SET_RTN(xvap, XAT_READONLY);
2498 }
2499
2500 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2501 xoap->xoa_system =
2502 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2503 XVA_SET_RTN(xvap, XAT_SYSTEM);
2504 }
2505
2506 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2507 xoap->xoa_hidden =
2508 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2509 XVA_SET_RTN(xvap, XAT_HIDDEN);
2510 }
2511
2512 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2513 xoap->xoa_nounlink =
2514 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2515 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2516 }
2517
2518 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2519 xoap->xoa_immutable =
2520 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2521 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2522 }
2523
2524 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2525 xoap->xoa_appendonly =
2526 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2527 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2528 }
2529
2530 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2531 xoap->xoa_nodump =
2532 ((zp->z_pflags & ZFS_NODUMP) != 0);
2533 XVA_SET_RTN(xvap, XAT_NODUMP);
2534 }
2535
2536 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2537 xoap->xoa_opaque =
2538 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2539 XVA_SET_RTN(xvap, XAT_OPAQUE);
2540 }
2541
2542 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2543 xoap->xoa_av_quarantined =
2544 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2545 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2546 }
2547
2548 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2549 xoap->xoa_av_modified =
2550 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2551 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2552 }
2553
2554 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2555 vp->v_type == VREG) {
2556 zfs_sa_get_scanstamp(zp, xvap);
2557 }
2558
2559 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2560 uint64_t times[2];
2561
2562 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2563 times, sizeof (times));
2564 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2565 XVA_SET_RTN(xvap, XAT_CREATETIME);
2566 }
2567
2568 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2569 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2570 XVA_SET_RTN(xvap, XAT_REPARSE);
2571 }
2572 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2573 xoap->xoa_generation = zp->z_gen;
2574 XVA_SET_RTN(xvap, XAT_GEN);
2575 }
2576
2577 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2578 xoap->xoa_offline =
2579 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2580 XVA_SET_RTN(xvap, XAT_OFFLINE);
2581 }
2582
2583 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2584 xoap->xoa_sparse =
2585 ((zp->z_pflags & ZFS_SPARSE) != 0);
2586 XVA_SET_RTN(xvap, XAT_SPARSE);
2587 }
2588 }
2589
2590 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2591 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2592 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2593
2594 mutex_exit(&zp->z_lock);
2595
2596 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2597
2598 if (zp->z_blksz == 0) {
2599 /*
2600 * Block size hasn't been set; suggest maximal I/O transfers.
2601 */
2602 vap->va_blksize = zfsvfs->z_max_blksz;
2603 }
2604
2605 ZFS_EXIT(zfsvfs);
2606 return (0);
2607 }
2608
2609 /*
2610 * Set the file attributes to the values contained in the
2611 * vattr structure.
2612 *
2613 * IN: vp - vnode of file to be modified.
2614 * vap - new attribute values.
2615 * If AT_XVATTR set, then optional attrs are being set
2616 * flags - ATTR_UTIME set if non-default time values provided.
2617 * - ATTR_NOACLCHECK (CIFS context only).
2618 * cr - credentials of caller.
2619 * ct - caller context
2620 *
2621 * RETURN: 0 on success, error code on failure.
2622 *
2623 * Timestamps:
2624 * vp - ctime updated, mtime updated if size changed.
2625 */
2626 /* ARGSUSED */
2627 static int
2628 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2629 caller_context_t *ct)
2630 {
2631 znode_t *zp = VTOZ(vp);
2632 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2633 zilog_t *zilog;
2634 dmu_tx_t *tx;
2635 vattr_t oldva;
2636 xvattr_t tmpxvattr;
2637 uint_t mask = vap->va_mask;
2638 uint_t saved_mask = 0;
2639 int trim_mask = 0;
2640 uint64_t new_mode;
2641 uint64_t new_uid, new_gid;
2642 uint64_t xattr_obj;
2643 uint64_t mtime[2], ctime[2];
2644 znode_t *attrzp;
2645 int need_policy = FALSE;
2646 int err, err2;
2647 zfs_fuid_info_t *fuidp = NULL;
2648 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2649 xoptattr_t *xoap;
2650 zfs_acl_t *aclp;
2651 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2652 boolean_t fuid_dirtied = B_FALSE;
2653 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2654 int count = 0, xattr_count = 0;
2655
2656 if (mask == 0)
2657 return (0);
2658
2659 if (mask & AT_NOSET)
2660 return (SET_ERROR(EINVAL));
2661
2662 ZFS_ENTER(zfsvfs);
2663 ZFS_VERIFY_ZP(zp);
2664
2665 zilog = zfsvfs->z_log;
2666
2667 /*
2668 * Make sure that if we have ephemeral uid/gid or xvattr specified
2669 * that file system is at proper version level
2670 */
2671
2672 if (zfsvfs->z_use_fuids == B_FALSE &&
2673 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2674 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2675 (mask & AT_XVATTR))) {
2676 ZFS_EXIT(zfsvfs);
2677 return (SET_ERROR(EINVAL));
2678 }
2679
2680 if (mask & AT_SIZE && vp->v_type == VDIR) {
2681 ZFS_EXIT(zfsvfs);
2682 return (SET_ERROR(EISDIR));
2683 }
2684
2685 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2686 ZFS_EXIT(zfsvfs);
2687 return (SET_ERROR(EINVAL));
2688 }
2689
2690 /*
2691 * If this is an xvattr_t, then get a pointer to the structure of
2692 * optional attributes. If this is NULL, then we have a vattr_t.
2693 */
2694 xoap = xva_getxoptattr(xvap);
2695
2696 xva_init(&tmpxvattr);
2697
2698 /*
2699 * Immutable files can only alter immutable bit and atime
2700 */
2701 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2702 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2703 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2704 ZFS_EXIT(zfsvfs);
2705 return (SET_ERROR(EPERM));
2706 }
2707
2708 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2709 ZFS_EXIT(zfsvfs);
2710 return (SET_ERROR(EPERM));
2711 }
2712
2713 /*
2714 * Verify timestamps doesn't overflow 32 bits.
2715 * ZFS can handle large timestamps, but 32bit syscalls can't
2716 * handle times greater than 2039. This check should be removed
2717 * once large timestamps are fully supported.
2718 */
2719 if (mask & (AT_ATIME | AT_MTIME)) {
2720 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2721 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2722 ZFS_EXIT(zfsvfs);
2723 return (SET_ERROR(EOVERFLOW));
2724 }
2725 }
2726
2727 top:
2728 attrzp = NULL;
2729 aclp = NULL;
2730
2731 /* Can this be moved to before the top label? */
2732 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2733 ZFS_EXIT(zfsvfs);
2734 return (SET_ERROR(EROFS));
2735 }
2736
2737 /*
2738 * First validate permissions
2739 */
2740
2741 if (mask & AT_SIZE) {
2742 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2743 if (err) {
2744 ZFS_EXIT(zfsvfs);
2745 return (err);
2746 }
2747 /*
2748 * XXX - Note, we are not providing any open
2749 * mode flags here (like FNDELAY), so we may
2750 * block if there are locks present... this
2751 * should be addressed in openat().
2752 */
2753 /* XXX - would it be OK to generate a log record here? */
2754 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2755 if (err) {
2756 ZFS_EXIT(zfsvfs);
2757 return (err);
2758 }
2759 }
2760
2761 if (mask & (AT_ATIME|AT_MTIME) ||
2762 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2763 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2764 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2765 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2766 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2767 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2768 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2769 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2770 skipaclchk, cr);
2771 }
2772
2773 if (mask & (AT_UID|AT_GID)) {
2774 int idmask = (mask & (AT_UID|AT_GID));
2775 int take_owner;
2776 int take_group;
2777
2778 /*
2779 * NOTE: even if a new mode is being set,
2780 * we may clear S_ISUID/S_ISGID bits.
2781 */
2782
2783 if (!(mask & AT_MODE))
2784 vap->va_mode = zp->z_mode;
2785
2786 /*
2787 * Take ownership or chgrp to group we are a member of
2788 */
2789
2790 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2791 take_group = (mask & AT_GID) &&
2792 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2793
2794 /*
2795 * If both AT_UID and AT_GID are set then take_owner and
2796 * take_group must both be set in order to allow taking
2797 * ownership.
2798 *
2799 * Otherwise, send the check through secpolicy_vnode_setattr()
2800 *
2801 */
2802
2803 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2804 ((idmask == AT_UID) && take_owner) ||
2805 ((idmask == AT_GID) && take_group)) {
2806 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2807 skipaclchk, cr) == 0) {
2808 /*
2809 * Remove setuid/setgid for non-privileged users
2810 */
2811 secpolicy_setid_clear(vap, cr);
2812 trim_mask = (mask & (AT_UID|AT_GID));
2813 } else {
2814 need_policy = TRUE;
2815 }
2816 } else {
2817 need_policy = TRUE;
2818 }
2819 }
2820
2821 mutex_enter(&zp->z_lock);
2822 oldva.va_mode = zp->z_mode;
2823 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2824 if (mask & AT_XVATTR) {
2825 /*
2826 * Update xvattr mask to include only those attributes
2827 * that are actually changing.
2828 *
2829 * the bits will be restored prior to actually setting
2830 * the attributes so the caller thinks they were set.
2831 */
2832 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2833 if (xoap->xoa_appendonly !=
2834 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2835 need_policy = TRUE;
2836 } else {
2837 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2838 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2839 }
2840 }
2841
2842 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2843 if (xoap->xoa_nounlink !=
2844 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2845 need_policy = TRUE;
2846 } else {
2847 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2848 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2849 }
2850 }
2851
2852 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2853 if (xoap->xoa_immutable !=
2854 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2855 need_policy = TRUE;
2856 } else {
2857 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2858 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2859 }
2860 }
2861
2862 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2863 if (xoap->xoa_nodump !=
2864 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2865 need_policy = TRUE;
2866 } else {
2867 XVA_CLR_REQ(xvap, XAT_NODUMP);
2868 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2869 }
2870 }
2871
2872 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2873 if (xoap->xoa_av_modified !=
2874 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2875 need_policy = TRUE;
2876 } else {
2877 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2878 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2879 }
2880 }
2881
2882 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2883 if ((vp->v_type != VREG &&
2884 xoap->xoa_av_quarantined) ||
2885 xoap->xoa_av_quarantined !=
2886 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2887 need_policy = TRUE;
2888 } else {
2889 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2890 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2891 }
2892 }
2893
2894 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2895 mutex_exit(&zp->z_lock);
2896 ZFS_EXIT(zfsvfs);
2897 return (SET_ERROR(EPERM));
2898 }
2899
2900 if (need_policy == FALSE &&
2901 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2902 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2903 need_policy = TRUE;
2904 }
2905 }
2906
2907 mutex_exit(&zp->z_lock);
2908
2909 if (mask & AT_MODE) {
2910 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2911 err = secpolicy_setid_setsticky_clear(vp, vap,
2912 &oldva, cr);
2913 if (err) {
2914 ZFS_EXIT(zfsvfs);
2915 return (err);
2916 }
2917 trim_mask |= AT_MODE;
2918 } else {
2919 need_policy = TRUE;
2920 }
2921 }
2922
2923 if (need_policy) {
2924 /*
2925 * If trim_mask is set then take ownership
2926 * has been granted or write_acl is present and user
2927 * has the ability to modify mode. In that case remove
2928 * UID|GID and or MODE from mask so that
2929 * secpolicy_vnode_setattr() doesn't revoke it.
2930 */
2931
2932 if (trim_mask) {
2933 saved_mask = vap->va_mask;
2934 vap->va_mask &= ~trim_mask;
2935 }
2936 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2937 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2938 if (err) {
2939 ZFS_EXIT(zfsvfs);
2940 return (err);
2941 }
2942
2943 if (trim_mask)
2944 vap->va_mask |= saved_mask;
2945 }
2946
2947 /*
2948 * secpolicy_vnode_setattr, or take ownership may have
2949 * changed va_mask
2950 */
2951 mask = vap->va_mask;
2952
2953 if ((mask & (AT_UID | AT_GID))) {
2954 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2955 &xattr_obj, sizeof (xattr_obj));
2956
2957 if (err == 0 && xattr_obj) {
2958 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2959 if (err)
2960 goto out2;
2961 }
2962 if (mask & AT_UID) {
2963 new_uid = zfs_fuid_create(zfsvfs,
2964 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2965 if (new_uid != zp->z_uid &&
2966 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2967 if (attrzp)
2968 VN_RELE(ZTOV(attrzp));
2969 err = SET_ERROR(EDQUOT);
2970 goto out2;
2971 }
2972 }
2973
2974 if (mask & AT_GID) {
2975 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2976 cr, ZFS_GROUP, &fuidp);
2977 if (new_gid != zp->z_gid &&
2978 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2979 if (attrzp)
2980 VN_RELE(ZTOV(attrzp));
2981 err = SET_ERROR(EDQUOT);
2982 goto out2;
2983 }
2984 }
2985 }
2986 tx = dmu_tx_create(zfsvfs->z_os);
2987
2988 if (mask & AT_MODE) {
2989 uint64_t pmode = zp->z_mode;
2990 uint64_t acl_obj;
2991 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2992
2993 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
2994 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2995 err = SET_ERROR(EPERM);
2996 goto out;
2997 }
2998
2999 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3000 goto out;
3001
3002 mutex_enter(&zp->z_lock);
3003 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3004 /*
3005 * Are we upgrading ACL from old V0 format
3006 * to V1 format?
3007 */
3008 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3009 zfs_znode_acl_version(zp) ==
3010 ZFS_ACL_VERSION_INITIAL) {
3011 dmu_tx_hold_free(tx, acl_obj, 0,
3012 DMU_OBJECT_END);
3013 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3014 0, aclp->z_acl_bytes);
3015 } else {
3016 dmu_tx_hold_write(tx, acl_obj, 0,
3017 aclp->z_acl_bytes);
3018 }
3019 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3020 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3021 0, aclp->z_acl_bytes);
3022 }
3023 mutex_exit(&zp->z_lock);
3024 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3025 } else {
3026 if ((mask & AT_XVATTR) &&
3027 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3028 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3029 else
3030 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3031 }
3032
3033 if (attrzp) {
3034 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3035 }
3036
3037 fuid_dirtied = zfsvfs->z_fuid_dirty;
3038 if (fuid_dirtied)
3039 zfs_fuid_txhold(zfsvfs, tx);
3040
3041 zfs_sa_upgrade_txholds(tx, zp);
3042
3043 err = dmu_tx_assign(tx, TXG_NOWAIT);
3044 if (err) {
3045 if (err == ERESTART)
3046 dmu_tx_wait(tx);
3047 goto out;
3048 }
3049
3050 count = 0;
3051 /*
3052 * Set each attribute requested.
3053 * We group settings according to the locks they need to acquire.
3054 *
3055 * Note: you cannot set ctime directly, although it will be
3056 * updated as a side-effect of calling this function.
3057 */
3058
3059
3060 if (mask & (AT_UID|AT_GID|AT_MODE))
3061 mutex_enter(&zp->z_acl_lock);
3062 mutex_enter(&zp->z_lock);
3063
3064 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3065 &zp->z_pflags, sizeof (zp->z_pflags));
3066
3067 if (attrzp) {
3068 if (mask & (AT_UID|AT_GID|AT_MODE))
3069 mutex_enter(&attrzp->z_acl_lock);
3070 mutex_enter(&attrzp->z_lock);
3071 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3072 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3073 sizeof (attrzp->z_pflags));
3074 }
3075
3076 if (mask & (AT_UID|AT_GID)) {
3077
3078 if (mask & AT_UID) {
3079 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3080 &new_uid, sizeof (new_uid));
3081 zp->z_uid = new_uid;
3082 if (attrzp) {
3083 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3084 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3085 sizeof (new_uid));
3086 attrzp->z_uid = new_uid;
3087 }
3088 }
3089
3090 if (mask & AT_GID) {
3091 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3092 NULL, &new_gid, sizeof (new_gid));
3093 zp->z_gid = new_gid;
3094 if (attrzp) {
3095 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3096 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3097 sizeof (new_gid));
3098 attrzp->z_gid = new_gid;
3099 }
3100 }
3101 if (!(mask & AT_MODE)) {
3102 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3103 NULL, &new_mode, sizeof (new_mode));
3104 new_mode = zp->z_mode;
3105 }
3106 err = zfs_acl_chown_setattr(zp);
3107 ASSERT(err == 0);
3108 if (attrzp) {
3109 err = zfs_acl_chown_setattr(attrzp);
3110 ASSERT(err == 0);
3111 }
3112 }
3113
3114 if (mask & AT_MODE) {
3115 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3116 &new_mode, sizeof (new_mode));
3117 zp->z_mode = new_mode;
3118 ASSERT3U((uintptr_t)aclp, !=, NULL);
3119 err = zfs_aclset_common(zp, aclp, cr, tx);
3120 ASSERT0(err);
3121 if (zp->z_acl_cached)
3122 zfs_acl_free(zp->z_acl_cached);
3123 zp->z_acl_cached = aclp;
3124 aclp = NULL;
3125 }
3126
3127
3128 if (mask & AT_ATIME) {
3129 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3130 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3131 &zp->z_atime, sizeof (zp->z_atime));
3132 }
3133
3134 if (mask & AT_MTIME) {
3135 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3136 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3137 mtime, sizeof (mtime));
3138 }
3139
3140 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3141 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3142 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3143 NULL, mtime, sizeof (mtime));
3144 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3145 &ctime, sizeof (ctime));
3146 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3147 B_TRUE);
3148 } else if (mask != 0) {
3149 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3150 &ctime, sizeof (ctime));
3151 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3152 B_TRUE);
3153 if (attrzp) {
3154 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3155 SA_ZPL_CTIME(zfsvfs), NULL,
3156 &ctime, sizeof (ctime));
3157 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3158 mtime, ctime, B_TRUE);
3159 }
3160 }
3161 /*
3162 * Do this after setting timestamps to prevent timestamp
3163 * update from toggling bit
3164 */
3165
3166 if (xoap && (mask & AT_XVATTR)) {
3167
3168 /*
3169 * restore trimmed off masks
3170 * so that return masks can be set for caller.
3171 */
3172
3173 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3174 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3175 }
3176 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3177 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3178 }
3179 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3180 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3181 }
3182 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3183 XVA_SET_REQ(xvap, XAT_NODUMP);
3184 }
3185 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3186 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3187 }
3188 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3189 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3190 }
3191
3192 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3193 ASSERT(vp->v_type == VREG);
3194
3195 zfs_xvattr_set(zp, xvap, tx);
3196 }
3197
3198 if (fuid_dirtied)
3199 zfs_fuid_sync(zfsvfs, tx);
3200
3201 if (mask != 0)
3202 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3203
3204 mutex_exit(&zp->z_lock);
3205 if (mask & (AT_UID|AT_GID|AT_MODE))
3206 mutex_exit(&zp->z_acl_lock);
3207
3208 if (attrzp) {
3209 if (mask & (AT_UID|AT_GID|AT_MODE))
3210 mutex_exit(&attrzp->z_acl_lock);
3211 mutex_exit(&attrzp->z_lock);
3212 }
3213 out:
3214 if (err == 0 && attrzp) {
3215 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3216 xattr_count, tx);
3217 ASSERT(err2 == 0);
3218 }
3219
3220 if (attrzp)
3221 VN_RELE(ZTOV(attrzp));
3222
3223 if (aclp)
3224 zfs_acl_free(aclp);
3225
3226 if (fuidp) {
3227 zfs_fuid_info_free(fuidp);
3228 fuidp = NULL;
3229 }
3230
3231 if (err) {
3232 dmu_tx_abort(tx);
3233 if (err == ERESTART)
3234 goto top;
3235 } else {
3236 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3237 dmu_tx_commit(tx);
3238 }
3239
3240 out2:
3241 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3242 zil_commit(zilog, 0);
3243
3244 ZFS_EXIT(zfsvfs);
3245 return (err);
3246 }
3247
3248 typedef struct zfs_zlock {
3249 krwlock_t *zl_rwlock; /* lock we acquired */
3250 znode_t *zl_znode; /* znode we held */
3251 struct zfs_zlock *zl_next; /* next in list */
3252 } zfs_zlock_t;
3253
3254 /*
3255 * Drop locks and release vnodes that were held by zfs_rename_lock().
3256 */
3257 static void
3258 zfs_rename_unlock(zfs_zlock_t **zlpp)
3259 {
3260 zfs_zlock_t *zl;
3261
3262 while ((zl = *zlpp) != NULL) {
3263 if (zl->zl_znode != NULL)
3264 VN_RELE(ZTOV(zl->zl_znode));
3265 rw_exit(zl->zl_rwlock);
3266 *zlpp = zl->zl_next;
3267 kmem_free(zl, sizeof (*zl));
3268 }
3269 }
3270
3271 /*
3272 * Search back through the directory tree, using the ".." entries.
3273 * Lock each directory in the chain to prevent concurrent renames.
3274 * Fail any attempt to move a directory into one of its own descendants.
3275 * XXX - z_parent_lock can overlap with map or grow locks
3276 */
3277 static int
3278 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3279 {
3280 zfs_zlock_t *zl;
3281 znode_t *zp = tdzp;
3282 uint64_t rootid = zp->z_zfsvfs->z_root;
3283 uint64_t oidp = zp->z_id;
3284 krwlock_t *rwlp = &szp->z_parent_lock;
3285 krw_t rw = RW_WRITER;
3286
3287 /*
3288 * First pass write-locks szp and compares to zp->z_id.
3289 * Later passes read-lock zp and compare to zp->z_parent.
3290 */
3291 do {
3292 if (!rw_tryenter(rwlp, rw)) {
3293 /*
3294 * Another thread is renaming in this path.
3295 * Note that if we are a WRITER, we don't have any
3296 * parent_locks held yet.
3297 */
3298 if (rw == RW_READER && zp->z_id > szp->z_id) {
3299 /*
3300 * Drop our locks and restart
3301 */
3302 zfs_rename_unlock(&zl);
3303 *zlpp = NULL;
3304 zp = tdzp;
3305 oidp = zp->z_id;
3306 rwlp = &szp->z_parent_lock;
3307 rw = RW_WRITER;
3308 continue;
3309 } else {
3310 /*
3311 * Wait for other thread to drop its locks
3312 */
3313 rw_enter(rwlp, rw);
3314 }
3315 }
3316
3317 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3318 zl->zl_rwlock = rwlp;
3319 zl->zl_znode = NULL;
3320 zl->zl_next = *zlpp;
3321 *zlpp = zl;
3322
3323 if (oidp == szp->z_id) /* We're a descendant of szp */
3324 return (SET_ERROR(EINVAL));
3325
3326 if (oidp == rootid) /* We've hit the top */
3327 return (0);
3328
3329 if (rw == RW_READER) { /* i.e. not the first pass */
3330 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3331 if (error)
3332 return (error);
3333 zl->zl_znode = zp;
3334 }
3335 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3336 &oidp, sizeof (oidp));
3337 rwlp = &zp->z_parent_lock;
3338 rw = RW_READER;
3339
3340 } while (zp->z_id != sdzp->z_id);
3341
3342 return (0);
3343 }
3344
3345 /*
3346 * Move an entry from the provided source directory to the target
3347 * directory. Change the entry name as indicated.
3348 *
3349 * IN: sdvp - Source directory containing the "old entry".
3350 * snm - Old entry name.
3351 * tdvp - Target directory to contain the "new entry".
3352 * tnm - New entry name.
3353 * cr - credentials of caller.
3354 * ct - caller context
3355 * flags - case flags
3356 *
3357 * RETURN: 0 on success, error code on failure.
3358 *
3359 * Timestamps:
3360 * sdvp,tdvp - ctime|mtime updated
3361 */
3362 /*ARGSUSED*/
3363 static int
3364 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3365 caller_context_t *ct, int flags)
3366 {
3367 znode_t *tdzp, *szp, *tzp;
3368 znode_t *sdzp = VTOZ(sdvp);
3369 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3370 zilog_t *zilog;
3371 vnode_t *realvp;
3372 zfs_dirlock_t *sdl, *tdl;
3373 dmu_tx_t *tx;
3374 zfs_zlock_t *zl;
3375 int cmp, serr, terr;
3376 int error = 0;
3377 int zflg = 0;
3378 boolean_t waited = B_FALSE;
3379
3380 ZFS_ENTER(zfsvfs);
3381 ZFS_VERIFY_ZP(sdzp);
3382 zilog = zfsvfs->z_log;
3383
3384 /*
3385 * Make sure we have the real vp for the target directory.
3386 */
3387 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3388 tdvp = realvp;
3389
3390 tdzp = VTOZ(tdvp);
3391 ZFS_VERIFY_ZP(tdzp);
3392
3393 /*
3394 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3395 * ctldir appear to have the same v_vfsp.
3396 */
3397 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3398 ZFS_EXIT(zfsvfs);
3399 return (SET_ERROR(EXDEV));
3400 }
3401
3402 if (zfsvfs->z_utf8 && u8_validate(tnm,
3403 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3404 ZFS_EXIT(zfsvfs);
3405 return (SET_ERROR(EILSEQ));
3406 }
3407
3408 if (flags & FIGNORECASE)
3409 zflg |= ZCILOOK;
3410
3411 top:
3412 szp = NULL;
3413 tzp = NULL;
3414 zl = NULL;
3415
3416 /*
3417 * This is to prevent the creation of links into attribute space
3418 * by renaming a linked file into/outof an attribute directory.
3419 * See the comment in zfs_link() for why this is considered bad.
3420 */
3421 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3422 ZFS_EXIT(zfsvfs);
3423 return (SET_ERROR(EINVAL));
3424 }
3425
3426 /*
3427 * Lock source and target directory entries. To prevent deadlock,
3428 * a lock ordering must be defined. We lock the directory with
3429 * the smallest object id first, or if it's a tie, the one with
3430 * the lexically first name.
3431 */
3432 if (sdzp->z_id < tdzp->z_id) {
3433 cmp = -1;
3434 } else if (sdzp->z_id > tdzp->z_id) {
3435 cmp = 1;
3436 } else {
3437 /*
3438 * First compare the two name arguments without
3439 * considering any case folding.
3440 */
3441 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3442
3443 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3444 ASSERT(error == 0 || !zfsvfs->z_utf8);
3445 if (cmp == 0) {
3446 /*
3447 * POSIX: "If the old argument and the new argument
3448 * both refer to links to the same existing file,
3449 * the rename() function shall return successfully
3450 * and perform no other action."
3451 */
3452 ZFS_EXIT(zfsvfs);
3453 return (0);
3454 }
3455 /*
3456 * If the file system is case-folding, then we may
3457 * have some more checking to do. A case-folding file
3458 * system is either supporting mixed case sensitivity
3459 * access or is completely case-insensitive. Note
3460 * that the file system is always case preserving.
3461 *
3462 * In mixed sensitivity mode case sensitive behavior
3463 * is the default. FIGNORECASE must be used to
3464 * explicitly request case insensitive behavior.
3465 *
3466 * If the source and target names provided differ only
3467 * by case (e.g., a request to rename 'tim' to 'Tim'),
3468 * we will treat this as a special case in the
3469 * case-insensitive mode: as long as the source name
3470 * is an exact match, we will allow this to proceed as
3471 * a name-change request.
3472 */
3473 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3474 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3475 flags & FIGNORECASE)) &&
3476 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3477 &error) == 0) {
3478 /*
3479 * case preserving rename request, require exact
3480 * name matches
3481 */
3482 zflg |= ZCIEXACT;
3483 zflg &= ~ZCILOOK;
3484 }
3485 }
3486
3487 /*
3488 * If the source and destination directories are the same, we should
3489 * grab the z_name_lock of that directory only once.
3490 */
3491 if (sdzp == tdzp) {
3492 zflg |= ZHAVELOCK;
3493 rw_enter(&sdzp->z_name_lock, RW_READER);
3494 }
3495
3496 if (cmp < 0) {
3497 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3498 ZEXISTS | zflg, NULL, NULL);
3499 terr = zfs_dirent_lock(&tdl,
3500 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3501 } else {
3502 terr = zfs_dirent_lock(&tdl,
3503 tdzp, tnm, &tzp, zflg, NULL, NULL);
3504 serr = zfs_dirent_lock(&sdl,
3505 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3506 NULL, NULL);
3507 }
3508
3509 if (serr) {
3510 /*
3511 * Source entry invalid or not there.
3512 */
3513 if (!terr) {
3514 zfs_dirent_unlock(tdl);
3515 if (tzp)
3516 VN_RELE(ZTOV(tzp));
3517 }
3518
3519 if (sdzp == tdzp)
3520 rw_exit(&sdzp->z_name_lock);
3521
3522 if (strcmp(snm, "..") == 0)
3523 serr = SET_ERROR(EINVAL);
3524 ZFS_EXIT(zfsvfs);
3525 return (serr);
3526 }
3527 if (terr) {
3528 zfs_dirent_unlock(sdl);
3529 VN_RELE(ZTOV(szp));
3530
3531 if (sdzp == tdzp)
3532 rw_exit(&sdzp->z_name_lock);
3533
3534 if (strcmp(tnm, "..") == 0)
3535 terr = SET_ERROR(EINVAL);
3536 ZFS_EXIT(zfsvfs);
3537 return (terr);
3538 }
3539
3540 /*
3541 * Must have write access at the source to remove the old entry
3542 * and write access at the target to create the new entry.
3543 * Note that if target and source are the same, this can be
3544 * done in a single check.
3545 */
3546
3547 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3548 goto out;
3549
3550 if (ZTOV(szp)->v_type == VDIR) {
3551 /*
3552 * Check to make sure rename is valid.
3553 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3554 */
3555 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3556 goto out;
3557 }
3558
3559 /*
3560 * Does target exist?
3561 */
3562 if (tzp) {
3563 /*
3564 * Source and target must be the same type.
3565 */
3566 if (ZTOV(szp)->v_type == VDIR) {
3567 if (ZTOV(tzp)->v_type != VDIR) {
3568 error = SET_ERROR(ENOTDIR);
3569 goto out;
3570 }
3571 } else {
3572 if (ZTOV(tzp)->v_type == VDIR) {
3573 error = SET_ERROR(EISDIR);
3574 goto out;
3575 }
3576 }
3577 /*
3578 * POSIX dictates that when the source and target
3579 * entries refer to the same file object, rename
3580 * must do nothing and exit without error.
3581 */
3582 if (szp->z_id == tzp->z_id) {
3583 error = 0;
3584 goto out;
3585 }
3586 }
3587
3588 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3589 if (tzp)
3590 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3591
3592 /*
3593 * notify the target directory if it is not the same
3594 * as source directory.
3595 */
3596 if (tdvp != sdvp) {
3597 vnevent_rename_dest_dir(tdvp, ct);
3598 }
3599
3600 tx = dmu_tx_create(zfsvfs->z_os);
3601 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3602 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3603 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3604 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3605 if (sdzp != tdzp) {
3606 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3607 zfs_sa_upgrade_txholds(tx, tdzp);
3608 }
3609 if (tzp) {
3610 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3611 zfs_sa_upgrade_txholds(tx, tzp);
3612 }
3613
3614 zfs_sa_upgrade_txholds(tx, szp);
3615 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3616 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3617 if (error) {
3618 if (zl != NULL)
3619 zfs_rename_unlock(&zl);
3620 zfs_dirent_unlock(sdl);
3621 zfs_dirent_unlock(tdl);
3622
3623 if (sdzp == tdzp)
3624 rw_exit(&sdzp->z_name_lock);
3625
3626 VN_RELE(ZTOV(szp));
3627 if (tzp)
3628 VN_RELE(ZTOV(tzp));
3629 if (error == ERESTART) {
3630 waited = B_TRUE;
3631 dmu_tx_wait(tx);
3632 dmu_tx_abort(tx);
3633 goto top;
3634 }
3635 dmu_tx_abort(tx);
3636 ZFS_EXIT(zfsvfs);
3637 return (error);
3638 }
3639
3640 if (tzp) /* Attempt to remove the existing target */
3641 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3642
3643 if (error == 0) {
3644 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3645 if (error == 0) {
3646 szp->z_pflags |= ZFS_AV_MODIFIED;
3647
3648 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3649 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3650 ASSERT0(error);
3651
3652 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3653 if (error == 0) {
3654 zfs_log_rename(zilog, tx, TX_RENAME |
3655 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3656 sdl->dl_name, tdzp, tdl->dl_name, szp);
3657
3658 /*
3659 * Update path information for the target vnode
3660 */
3661 vn_renamepath(tdvp, ZTOV(szp), tnm,
3662 strlen(tnm));
3663 } else {
3664 /*
3665 * At this point, we have successfully created
3666 * the target name, but have failed to remove
3667 * the source name. Since the create was done
3668 * with the ZRENAMING flag, there are
3669 * complications; for one, the link count is
3670 * wrong. The easiest way to deal with this
3671 * is to remove the newly created target, and
3672 * return the original error. This must
3673 * succeed; fortunately, it is very unlikely to
3674 * fail, since we just created it.
3675 */
3676 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3677 ZRENAMING, NULL), ==, 0);
3678 }
3679 }
3680 }
3681
3682 dmu_tx_commit(tx);
3683 out:
3684 if (zl != NULL)
3685 zfs_rename_unlock(&zl);
3686
3687 zfs_dirent_unlock(sdl);
3688 zfs_dirent_unlock(tdl);
3689
3690 if (sdzp == tdzp)
3691 rw_exit(&sdzp->z_name_lock);
3692
3693
3694 VN_RELE(ZTOV(szp));
3695 if (tzp)
3696 VN_RELE(ZTOV(tzp));
3697
3698 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3699 zil_commit(zilog, 0);
3700
3701 ZFS_EXIT(zfsvfs);
3702 return (error);
3703 }
3704
3705 /*
3706 * Insert the indicated symbolic reference entry into the directory.
3707 *
3708 * IN: dvp - Directory to contain new symbolic link.
3709 * link - Name for new symlink entry.
3710 * vap - Attributes of new entry.
3711 * cr - credentials of caller.
3712 * ct - caller context
3713 * flags - case flags
3714 *
3715 * RETURN: 0 on success, error code on failure.
3716 *
3717 * Timestamps:
3718 * dvp - ctime|mtime updated
3719 */
3720 /*ARGSUSED*/
3721 static int
3722 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3723 caller_context_t *ct, int flags)
3724 {
3725 znode_t *zp, *dzp = VTOZ(dvp);
3726 zfs_dirlock_t *dl;
3727 dmu_tx_t *tx;
3728 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3729 zilog_t *zilog;
3730 uint64_t len = strlen(link);
3731 int error;
3732 int zflg = ZNEW;
3733 zfs_acl_ids_t acl_ids;
3734 boolean_t fuid_dirtied;
3735 uint64_t txtype = TX_SYMLINK;
3736 boolean_t waited = B_FALSE;
3737
3738 ASSERT(vap->va_type == VLNK);
3739
3740 ZFS_ENTER(zfsvfs);
3741 ZFS_VERIFY_ZP(dzp);
3742 zilog = zfsvfs->z_log;
3743
3744 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3745 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3746 ZFS_EXIT(zfsvfs);
3747 return (SET_ERROR(EILSEQ));
3748 }
3749 if (flags & FIGNORECASE)
3750 zflg |= ZCILOOK;
3751
3752 if (len > MAXPATHLEN) {
3753 ZFS_EXIT(zfsvfs);
3754 return (SET_ERROR(ENAMETOOLONG));
3755 }
3756
3757 if ((error = zfs_acl_ids_create(dzp, 0,
3758 vap, cr, NULL, &acl_ids)) != 0) {
3759 ZFS_EXIT(zfsvfs);
3760 return (error);
3761 }
3762 top:
3763 /*
3764 * Attempt to lock directory; fail if entry already exists.
3765 */
3766 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3767 if (error) {
3768 zfs_acl_ids_free(&acl_ids);
3769 ZFS_EXIT(zfsvfs);
3770 return (error);
3771 }
3772
3773 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3774 zfs_acl_ids_free(&acl_ids);
3775 zfs_dirent_unlock(dl);
3776 ZFS_EXIT(zfsvfs);
3777 return (error);
3778 }
3779
3780 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3781 zfs_acl_ids_free(&acl_ids);
3782 zfs_dirent_unlock(dl);
3783 ZFS_EXIT(zfsvfs);
3784 return (SET_ERROR(EDQUOT));
3785 }
3786 tx = dmu_tx_create(zfsvfs->z_os);
3787 fuid_dirtied = zfsvfs->z_fuid_dirty;
3788 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3789 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3790 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3791 ZFS_SA_BASE_ATTR_SIZE + len);
3792 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3793 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3794 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3795 acl_ids.z_aclp->z_acl_bytes);
3796 }
3797 if (fuid_dirtied)
3798 zfs_fuid_txhold(zfsvfs, tx);
3799 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3800 if (error) {
3801 zfs_dirent_unlock(dl);
3802 if (error == ERESTART) {
3803 waited = B_TRUE;
3804 dmu_tx_wait(tx);
3805 dmu_tx_abort(tx);
3806 goto top;
3807 }
3808 zfs_acl_ids_free(&acl_ids);
3809 dmu_tx_abort(tx);
3810 ZFS_EXIT(zfsvfs);
3811 return (error);
3812 }
3813
3814 /*
3815 * Create a new object for the symlink.
3816 * for version 4 ZPL datsets the symlink will be an SA attribute
3817 */
3818 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3819
3820 if (fuid_dirtied)
3821 zfs_fuid_sync(zfsvfs, tx);
3822
3823 mutex_enter(&zp->z_lock);
3824 if (zp->z_is_sa)
3825 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3826 link, len, tx);
3827 else
3828 zfs_sa_symlink(zp, link, len, tx);
3829 mutex_exit(&zp->z_lock);
3830
3831 zp->z_size = len;
3832 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3833 &zp->z_size, sizeof (zp->z_size), tx);
3834 /*
3835 * Insert the new object into the directory.
3836 */
3837 (void) zfs_link_create(dl, zp, tx, ZNEW);
3838
3839 if (flags & FIGNORECASE)
3840 txtype |= TX_CI;
3841 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3842
3843 zfs_acl_ids_free(&acl_ids);
3844
3845 dmu_tx_commit(tx);
3846
3847 zfs_dirent_unlock(dl);
3848
3849 VN_RELE(ZTOV(zp));
3850
3851 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3852 zil_commit(zilog, 0);
3853
3854 ZFS_EXIT(zfsvfs);
3855 return (error);
3856 }
3857
3858 /*
3859 * Return, in the buffer contained in the provided uio structure,
3860 * the symbolic path referred to by vp.
3861 *
3862 * IN: vp - vnode of symbolic link.
3863 * uio - structure to contain the link path.
3864 * cr - credentials of caller.
3865 * ct - caller context
3866 *
3867 * OUT: uio - structure containing the link path.
3868 *
3869 * RETURN: 0 on success, error code on failure.
3870 *
3871 * Timestamps:
3872 * vp - atime updated
3873 */
3874 /* ARGSUSED */
3875 static int
3876 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3877 {
3878 znode_t *zp = VTOZ(vp);
3879 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3880 int error;
3881
3882 ZFS_ENTER(zfsvfs);
3883 ZFS_VERIFY_ZP(zp);
3884
3885 mutex_enter(&zp->z_lock);
3886 if (zp->z_is_sa)
3887 error = sa_lookup_uio(zp->z_sa_hdl,
3888 SA_ZPL_SYMLINK(zfsvfs), uio);
3889 else
3890 error = zfs_sa_readlink(zp, uio);
3891 mutex_exit(&zp->z_lock);
3892
3893 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3894
3895 ZFS_EXIT(zfsvfs);
3896 return (error);
3897 }
3898
3899 /*
3900 * Insert a new entry into directory tdvp referencing svp.
3901 *
3902 * IN: tdvp - Directory to contain new entry.
3903 * svp - vnode of new entry.
3904 * name - name of new entry.
3905 * cr - credentials of caller.
3906 * ct - caller context
3907 *
3908 * RETURN: 0 on success, error code on failure.
3909 *
3910 * Timestamps:
3911 * tdvp - ctime|mtime updated
3912 * svp - ctime updated
3913 */
3914 /* ARGSUSED */
3915 static int
3916 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3917 caller_context_t *ct, int flags)
3918 {
3919 znode_t *dzp = VTOZ(tdvp);
3920 znode_t *tzp, *szp;
3921 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3922 zilog_t *zilog;
3923 zfs_dirlock_t *dl;
3924 dmu_tx_t *tx;
3925 vnode_t *realvp;
3926 int error;
3927 int zf = ZNEW;
3928 uint64_t parent;
3929 uid_t owner;
3930 boolean_t waited = B_FALSE;
3931
3932 ASSERT(tdvp->v_type == VDIR);
3933
3934 ZFS_ENTER(zfsvfs);
3935 ZFS_VERIFY_ZP(dzp);
3936 zilog = zfsvfs->z_log;
3937
3938 if (VOP_REALVP(svp, &realvp, ct) == 0)
3939 svp = realvp;
3940
3941 /*
3942 * POSIX dictates that we return EPERM here.
3943 * Better choices include ENOTSUP or EISDIR.
3944 */
3945 if (svp->v_type == VDIR) {
3946 ZFS_EXIT(zfsvfs);
3947 return (SET_ERROR(EPERM));
3948 }
3949
3950 szp = VTOZ(svp);
3951 ZFS_VERIFY_ZP(szp);
3952
3953 /*
3954 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3955 * ctldir appear to have the same v_vfsp.
3956 */
3957 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
3958 ZFS_EXIT(zfsvfs);
3959 return (SET_ERROR(EXDEV));
3960 }
3961
3962 /* Prevent links to .zfs/shares files */
3963
3964 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3965 &parent, sizeof (uint64_t))) != 0) {
3966 ZFS_EXIT(zfsvfs);
3967 return (error);
3968 }
3969 if (parent == zfsvfs->z_shares_dir) {
3970 ZFS_EXIT(zfsvfs);
3971 return (SET_ERROR(EPERM));
3972 }
3973
3974 if (zfsvfs->z_utf8 && u8_validate(name,
3975 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3976 ZFS_EXIT(zfsvfs);
3977 return (SET_ERROR(EILSEQ));
3978 }
3979 if (flags & FIGNORECASE)
3980 zf |= ZCILOOK;
3981
3982 /*
3983 * We do not support links between attributes and non-attributes
3984 * because of the potential security risk of creating links
3985 * into "normal" file space in order to circumvent restrictions
3986 * imposed in attribute space.
3987 */
3988 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3989 ZFS_EXIT(zfsvfs);
3990 return (SET_ERROR(EINVAL));
3991 }
3992
3993
3994 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3995 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3996 ZFS_EXIT(zfsvfs);
3997 return (SET_ERROR(EPERM));
3998 }
3999
4000 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4001 ZFS_EXIT(zfsvfs);
4002 return (error);
4003 }
4004
4005 top:
4006 /*
4007 * Attempt to lock directory; fail if entry already exists.
4008 */
4009 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4010 if (error) {
4011 ZFS_EXIT(zfsvfs);
4012 return (error);
4013 }
4014
4015 tx = dmu_tx_create(zfsvfs->z_os);
4016 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4017 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4018 zfs_sa_upgrade_txholds(tx, szp);
4019 zfs_sa_upgrade_txholds(tx, dzp);
4020 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4021 if (error) {
4022 zfs_dirent_unlock(dl);
4023 if (error == ERESTART) {
4024 waited = B_TRUE;
4025 dmu_tx_wait(tx);
4026 dmu_tx_abort(tx);
4027 goto top;
4028 }
4029 dmu_tx_abort(tx);
4030 ZFS_EXIT(zfsvfs);
4031 return (error);
4032 }
4033
4034 error = zfs_link_create(dl, szp, tx, 0);
4035
4036 if (error == 0) {
4037 uint64_t txtype = TX_LINK;
4038 if (flags & FIGNORECASE)
4039 txtype |= TX_CI;
4040 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4041 }
4042
4043 dmu_tx_commit(tx);
4044
4045 zfs_dirent_unlock(dl);
4046
4047 if (error == 0) {
4048 vnevent_link(svp, ct);
4049 }
4050
4051 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4052 zil_commit(zilog, 0);
4053
4054 ZFS_EXIT(zfsvfs);
4055 return (error);
4056 }
4057
4058 /*
4059 * zfs_null_putapage() is used when the file system has been force
4060 * unmounted. It just drops the pages.
4061 */
4062 /* ARGSUSED */
4063 static int
4064 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4065 size_t *lenp, int flags, cred_t *cr)
4066 {
4067 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4068 return (0);
4069 }
4070
4071 /*
4072 * Push a page out to disk, klustering if possible.
4073 *
4074 * IN: vp - file to push page to.
4075 * pp - page to push.
4076 * flags - additional flags.
4077 * cr - credentials of caller.
4078 *
4079 * OUT: offp - start of range pushed.
4080 * lenp - len of range pushed.
4081 *
4082 * RETURN: 0 on success, error code on failure.
4083 *
4084 * NOTE: callers must have locked the page to be pushed. On
4085 * exit, the page (and all other pages in the kluster) must be
4086 * unlocked.
4087 */
4088 /* ARGSUSED */
4089 static int
4090 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4091 size_t *lenp, int flags, cred_t *cr)
4092 {
4093 znode_t *zp = VTOZ(vp);
4094 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4095 dmu_tx_t *tx;
4096 u_offset_t off, koff;
4097 size_t len, klen;
4098 int err;
4099
4100 off = pp->p_offset;
4101 len = PAGESIZE;
4102 /*
4103 * If our blocksize is bigger than the page size, try to kluster
4104 * multiple pages so that we write a full block (thus avoiding
4105 * a read-modify-write).
4106 */
4107 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4108 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4109 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4110 ASSERT(koff <= zp->z_size);
4111 if (koff + klen > zp->z_size)
4112 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4113 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4114 }
4115 ASSERT3U(btop(len), ==, btopr(len));
4116
4117 /*
4118 * Can't push pages past end-of-file.
4119 */
4120 if (off >= zp->z_size) {
4121 /* ignore all pages */
4122 err = 0;
4123 goto out;
4124 } else if (off + len > zp->z_size) {
4125 int npages = btopr(zp->z_size - off);
4126 page_t *trunc;
4127
4128 page_list_break(&pp, &trunc, npages);
4129 /* ignore pages past end of file */
4130 if (trunc)
4131 pvn_write_done(trunc, flags);
4132 len = zp->z_size - off;
4133 }
4134
4135 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4136 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4137 err = SET_ERROR(EDQUOT);
4138 goto out;
4139 }
4140 top:
4141 tx = dmu_tx_create(zfsvfs->z_os);
4142 dmu_tx_hold_write(tx, zp->z_id, off, len);
4143
4144 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4145 zfs_sa_upgrade_txholds(tx, zp);
4146 err = dmu_tx_assign(tx, TXG_NOWAIT);
4147 if (err != 0) {
4148 if (err == ERESTART) {
4149 dmu_tx_wait(tx);
4150 dmu_tx_abort(tx);
4151 goto top;
4152 }
4153 dmu_tx_abort(tx);
4154 goto out;
4155 }
4156
4157 if (zp->z_blksz <= PAGESIZE) {
4158 caddr_t va = zfs_map_page(pp, S_READ);
4159 ASSERT3U(len, <=, PAGESIZE);
4160 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4161 zfs_unmap_page(pp, va);
4162 } else {
4163 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4164 }
4165
4166 if (err == 0) {
4167 uint64_t mtime[2], ctime[2];
4168 sa_bulk_attr_t bulk[3];
4169 int count = 0;
4170
4171 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4172 &mtime, 16);
4173 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4174 &ctime, 16);
4175 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4176 &zp->z_pflags, 8);
4177 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4178 B_TRUE);
4179 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4180 }
4181 dmu_tx_commit(tx);
4182
4183 out:
4184 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4185 if (offp)
4186 *offp = off;
4187 if (lenp)
4188 *lenp = len;
4189
4190 return (err);
4191 }
4192
4193 /*
4194 * Copy the portion of the file indicated from pages into the file.
4195 * The pages are stored in a page list attached to the files vnode.
4196 *
4197 * IN: vp - vnode of file to push page data to.
4198 * off - position in file to put data.
4199 * len - amount of data to write.
4200 * flags - flags to control the operation.
4201 * cr - credentials of caller.
4202 * ct - caller context.
4203 *
4204 * RETURN: 0 on success, error code on failure.
4205 *
4206 * Timestamps:
4207 * vp - ctime|mtime updated
4208 */
4209 /*ARGSUSED*/
4210 static int
4211 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4212 caller_context_t *ct)
4213 {
4214 znode_t *zp = VTOZ(vp);
4215 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4216 page_t *pp;
4217 size_t io_len;
4218 u_offset_t io_off;
4219 uint_t blksz;
4220 rl_t *rl;
4221 int error = 0;
4222
4223 ZFS_ENTER(zfsvfs);
4224 ZFS_VERIFY_ZP(zp);
4225
4226 /*
4227 * There's nothing to do if no data is cached.
4228 */
4229 if (!vn_has_cached_data(vp)) {
4230 ZFS_EXIT(zfsvfs);
4231 return (0);
4232 }
4233
4234 /*
4235 * Align this request to the file block size in case we kluster.
4236 * XXX - this can result in pretty aggresive locking, which can
4237 * impact simultanious read/write access. One option might be
4238 * to break up long requests (len == 0) into block-by-block
4239 * operations to get narrower locking.
4240 */
4241 blksz = zp->z_blksz;
4242 if (ISP2(blksz))
4243 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4244 else
4245 io_off = 0;
4246 if (len > 0 && ISP2(blksz))
4247 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4248 else
4249 io_len = 0;
4250
4251 if (io_len == 0) {
4252 /*
4253 * Search the entire vp list for pages >= io_off.
4254 */
4255 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4256 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4257 goto out;
4258 }
4259 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4260
4261 if (off > zp->z_size) {
4262 /* past end of file */
4263 zfs_range_unlock(rl);
4264 ZFS_EXIT(zfsvfs);
4265 return (0);
4266 }
4267
4268 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4269
4270 for (off = io_off; io_off < off + len; io_off += io_len) {
4271 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4272 pp = page_lookup(vp, io_off,
4273 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4274 } else {
4275 pp = page_lookup_nowait(vp, io_off,
4276 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4277 }
4278
4279 if (pp != NULL && pvn_getdirty(pp, flags)) {
4280 int err;
4281
4282 /*
4283 * Found a dirty page to push
4284 */
4285 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4286 if (err)
4287 error = err;
4288 } else {
4289 io_len = PAGESIZE;
4290 }
4291 }
4292 out:
4293 zfs_range_unlock(rl);
4294 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4295 zil_commit(zfsvfs->z_log, zp->z_id);
4296 ZFS_EXIT(zfsvfs);
4297 return (error);
4298 }
4299
4300 /*ARGSUSED*/
4301 void
4302 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4303 {
4304 znode_t *zp = VTOZ(vp);
4305 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4306 int error;
4307
4308 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4309 if (zp->z_sa_hdl == NULL) {
4310 /*
4311 * The fs has been unmounted, or we did a
4312 * suspend/resume and this file no longer exists.
4313 */
4314 if (vn_has_cached_data(vp)) {
4315 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4316 B_INVAL, cr);
4317 }
4318
4319 mutex_enter(&zp->z_lock);
4320 mutex_enter(&vp->v_lock);
4321 ASSERT(vp->v_count == 1);
4322 vp->v_count = 0;
4323 mutex_exit(&vp->v_lock);
4324 mutex_exit(&zp->z_lock);
4325 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4326 zfs_znode_free(zp);
4327 return;
4328 }
4329
4330 /*
4331 * Attempt to push any data in the page cache. If this fails
4332 * we will get kicked out later in zfs_zinactive().
4333 */
4334 if (vn_has_cached_data(vp)) {
4335 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4336 cr);
4337 }
4338
4339 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4340 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4341
4342 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4343 zfs_sa_upgrade_txholds(tx, zp);
4344 error = dmu_tx_assign(tx, TXG_WAIT);
4345 if (error) {
4346 dmu_tx_abort(tx);
4347 } else {
4348 mutex_enter(&zp->z_lock);
4349 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4350 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4351 zp->z_atime_dirty = 0;
4352 mutex_exit(&zp->z_lock);
4353 dmu_tx_commit(tx);
4354 }
4355 }
4356
4357 zfs_zinactive(zp);
4358 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4359 }
4360
4361 /*
4362 * Bounds-check the seek operation.
4363 *
4364 * IN: vp - vnode seeking within
4365 * ooff - old file offset
4366 * noffp - pointer to new file offset
4367 * ct - caller context
4368 *
4369 * RETURN: 0 on success, EINVAL if new offset invalid.
4370 */
4371 /* ARGSUSED */
4372 static int
4373 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4374 caller_context_t *ct)
4375 {
4376 if (vp->v_type == VDIR)
4377 return (0);
4378 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4379 }
4380
4381 /*
4382 * Pre-filter the generic locking function to trap attempts to place
4383 * a mandatory lock on a memory mapped file.
4384 */
4385 static int
4386 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4387 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4388 {
4389 znode_t *zp = VTOZ(vp);
4390 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4391
4392 ZFS_ENTER(zfsvfs);
4393 ZFS_VERIFY_ZP(zp);
4394
4395 /*
4396 * We are following the UFS semantics with respect to mapcnt
4397 * here: If we see that the file is mapped already, then we will
4398 * return an error, but we don't worry about races between this
4399 * function and zfs_map().
4400 */
4401 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4402 ZFS_EXIT(zfsvfs);
4403 return (SET_ERROR(EAGAIN));
4404 }
4405 ZFS_EXIT(zfsvfs);
4406 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4407 }
4408
4409 /*
4410 * If we can't find a page in the cache, we will create a new page
4411 * and fill it with file data. For efficiency, we may try to fill
4412 * multiple pages at once (klustering) to fill up the supplied page
4413 * list. Note that the pages to be filled are held with an exclusive
4414 * lock to prevent access by other threads while they are being filled.
4415 */
4416 static int
4417 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4418 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4419 {
4420 znode_t *zp = VTOZ(vp);
4421 page_t *pp, *cur_pp;
4422 objset_t *os = zp->z_zfsvfs->z_os;
4423 u_offset_t io_off, total;
4424 size_t io_len;
4425 int err;
4426
4427 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4428 /*
4429 * We only have a single page, don't bother klustering
4430 */
4431 io_off = off;
4432 io_len = PAGESIZE;
4433 pp = page_create_va(vp, io_off, io_len,
4434 PG_EXCL | PG_WAIT, seg, addr);
4435 } else {
4436 /*
4437 * Try to find enough pages to fill the page list
4438 */
4439 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4440 &io_len, off, plsz, 0);
4441 }
4442 if (pp == NULL) {
4443 /*
4444 * The page already exists, nothing to do here.
4445 */
4446 *pl = NULL;
4447 return (0);
4448 }
4449
4450 /*
4451 * Fill the pages in the kluster.
4452 */
4453 cur_pp = pp;
4454 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4455 caddr_t va;
4456
4457 ASSERT3U(io_off, ==, cur_pp->p_offset);
4458 va = zfs_map_page(cur_pp, S_WRITE);
4459 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4460 DMU_READ_PREFETCH);
4461 zfs_unmap_page(cur_pp, va);
4462 if (err) {
4463 /* On error, toss the entire kluster */
4464 pvn_read_done(pp, B_ERROR);
4465 /* convert checksum errors into IO errors */
4466 if (err == ECKSUM)
4467 err = SET_ERROR(EIO);
4468 return (err);
4469 }
4470 cur_pp = cur_pp->p_next;
4471 }
4472
4473 /*
4474 * Fill in the page list array from the kluster starting
4475 * from the desired offset `off'.
4476 * NOTE: the page list will always be null terminated.
4477 */
4478 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4479 ASSERT(pl == NULL || (*pl)->p_offset == off);
4480
4481 return (0);
4482 }
4483
4484 /*
4485 * Return pointers to the pages for the file region [off, off + len]
4486 * in the pl array. If plsz is greater than len, this function may
4487 * also return page pointers from after the specified region
4488 * (i.e. the region [off, off + plsz]). These additional pages are
4489 * only returned if they are already in the cache, or were created as
4490 * part of a klustered read.
4491 *
4492 * IN: vp - vnode of file to get data from.
4493 * off - position in file to get data from.
4494 * len - amount of data to retrieve.
4495 * plsz - length of provided page list.
4496 * seg - segment to obtain pages for.
4497 * addr - virtual address of fault.
4498 * rw - mode of created pages.
4499 * cr - credentials of caller.
4500 * ct - caller context.
4501 *
4502 * OUT: protp - protection mode of created pages.
4503 * pl - list of pages created.
4504 *
4505 * RETURN: 0 on success, error code on failure.
4506 *
4507 * Timestamps:
4508 * vp - atime updated
4509 */
4510 /* ARGSUSED */
4511 static int
4512 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4513 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4514 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4515 {
4516 znode_t *zp = VTOZ(vp);
4517 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4518 page_t **pl0 = pl;
4519 int err = 0;
4520
4521 /* we do our own caching, faultahead is unnecessary */
4522 if (pl == NULL)
4523 return (0);
4524 else if (len > plsz)
4525 len = plsz;
4526 else
4527 len = P2ROUNDUP(len, PAGESIZE);
4528 ASSERT(plsz >= len);
4529
4530 ZFS_ENTER(zfsvfs);
4531 ZFS_VERIFY_ZP(zp);
4532
4533 if (protp)
4534 *protp = PROT_ALL;
4535
4536 /*
4537 * Loop through the requested range [off, off + len) looking
4538 * for pages. If we don't find a page, we will need to create
4539 * a new page and fill it with data from the file.
4540 */
4541 while (len > 0) {
4542 if (*pl = page_lookup(vp, off, SE_SHARED))
4543 *(pl+1) = NULL;
4544 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4545 goto out;
4546 while (*pl) {
4547 ASSERT3U((*pl)->p_offset, ==, off);
4548 off += PAGESIZE;
4549 addr += PAGESIZE;
4550 if (len > 0) {
4551 ASSERT3U(len, >=, PAGESIZE);
4552 len -= PAGESIZE;
4553 }
4554 ASSERT3U(plsz, >=, PAGESIZE);
4555 plsz -= PAGESIZE;
4556 pl++;
4557 }
4558 }
4559
4560 /*
4561 * Fill out the page array with any pages already in the cache.
4562 */
4563 while (plsz > 0 &&
4564 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4565 off += PAGESIZE;
4566 plsz -= PAGESIZE;
4567 }
4568 out:
4569 if (err) {
4570 /*
4571 * Release any pages we have previously locked.
4572 */
4573 while (pl > pl0)
4574 page_unlock(*--pl);
4575 } else {
4576 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4577 }
4578
4579 *pl = NULL;
4580
4581 ZFS_EXIT(zfsvfs);
4582 return (err);
4583 }
4584
4585 /*
4586 * Request a memory map for a section of a file. This code interacts
4587 * with common code and the VM system as follows:
4588 *
4589 * - common code calls mmap(), which ends up in smmap_common()
4590 * - this calls VOP_MAP(), which takes you into (say) zfs
4591 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4592 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4593 * - zfs_addmap() updates z_mapcnt
4594 */
4595 /*ARGSUSED*/
4596 static int
4597 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4598 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4599 caller_context_t *ct)
4600 {
4601 znode_t *zp = VTOZ(vp);
4602 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4603 segvn_crargs_t vn_a;
4604 int error;
4605
4606 ZFS_ENTER(zfsvfs);
4607 ZFS_VERIFY_ZP(zp);
4608
4609 if ((prot & PROT_WRITE) && (zp->z_pflags &
4610 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4611 ZFS_EXIT(zfsvfs);
4612 return (SET_ERROR(EPERM));
4613 }
4614
4615 if ((prot & (PROT_READ | PROT_EXEC)) &&
4616 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4617 ZFS_EXIT(zfsvfs);
4618 return (SET_ERROR(EACCES));
4619 }
4620
4621 if (vp->v_flag & VNOMAP) {
4622 ZFS_EXIT(zfsvfs);
4623 return (SET_ERROR(ENOSYS));
4624 }
4625
4626 if (off < 0 || len > MAXOFFSET_T - off) {
4627 ZFS_EXIT(zfsvfs);
4628 return (SET_ERROR(ENXIO));
4629 }
4630
4631 if (vp->v_type != VREG) {
4632 ZFS_EXIT(zfsvfs);
4633 return (SET_ERROR(ENODEV));
4634 }
4635
4636 /*
4637 * If file is locked, disallow mapping.
4638 */
4639 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4640 ZFS_EXIT(zfsvfs);
4641 return (SET_ERROR(EAGAIN));
4642 }
4643
4644 as_rangelock(as);
4645 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4646 if (error != 0) {
4647 as_rangeunlock(as);
4648 ZFS_EXIT(zfsvfs);
4649 return (error);
4650 }
4651
4652 vn_a.vp = vp;
4653 vn_a.offset = (u_offset_t)off;
4654 vn_a.type = flags & MAP_TYPE;
4655 vn_a.prot = prot;
4656 vn_a.maxprot = maxprot;
4657 vn_a.cred = cr;
4658 vn_a.amp = NULL;
4659 vn_a.flags = flags & ~MAP_TYPE;
4660 vn_a.szc = 0;
4661 vn_a.lgrp_mem_policy_flags = 0;
4662
4663 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4664
4665 as_rangeunlock(as);
4666 ZFS_EXIT(zfsvfs);
4667 return (error);
4668 }
4669
4670 /* ARGSUSED */
4671 static int
4672 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4673 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4674 caller_context_t *ct)
4675 {
4676 uint64_t pages = btopr(len);
4677
4678 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4679 return (0);
4680 }
4681
4682 /*
4683 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4684 * more accurate mtime for the associated file. Since we don't have a way of
4685 * detecting when the data was actually modified, we have to resort to
4686 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4687 * last page is pushed. The problem occurs when the msync() call is omitted,
4688 * which by far the most common case:
4689 *
4690 * open()
4691 * mmap()
4692 * <modify memory>
4693 * munmap()
4694 * close()
4695 * <time lapse>
4696 * putpage() via fsflush
4697 *
4698 * If we wait until fsflush to come along, we can have a modification time that
4699 * is some arbitrary point in the future. In order to prevent this in the
4700 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4701 * torn down.
4702 */
4703 /* ARGSUSED */
4704 static int
4705 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4706 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4707 caller_context_t *ct)
4708 {
4709 uint64_t pages = btopr(len);
4710
4711 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4712 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4713
4714 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4715 vn_has_cached_data(vp))
4716 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4717
4718 return (0);
4719 }
4720
4721 /*
4722 * Free or allocate space in a file. Currently, this function only
4723 * supports the `F_FREESP' command. However, this command is somewhat
4724 * misnamed, as its functionality includes the ability to allocate as
4725 * well as free space.
4726 *
4727 * IN: vp - vnode of file to free data in.
4728 * cmd - action to take (only F_FREESP supported).
4729 * bfp - section of file to free/alloc.
4730 * flag - current file open mode flags.
4731 * offset - current file offset.
4732 * cr - credentials of caller [UNUSED].
4733 * ct - caller context.
4734 *
4735 * RETURN: 0 on success, error code on failure.
4736 *
4737 * Timestamps:
4738 * vp - ctime|mtime updated
4739 */
4740 /* ARGSUSED */
4741 static int
4742 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4743 offset_t offset, cred_t *cr, caller_context_t *ct)
4744 {
4745 znode_t *zp = VTOZ(vp);
4746 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4747 uint64_t off, len;
4748 int error;
4749
4750 ZFS_ENTER(zfsvfs);
4751 ZFS_VERIFY_ZP(zp);
4752
4753 if (cmd != F_FREESP) {
4754 ZFS_EXIT(zfsvfs);
4755 return (SET_ERROR(EINVAL));
4756 }
4757
4758 if (error = convoff(vp, bfp, 0, offset)) {
4759 ZFS_EXIT(zfsvfs);
4760 return (error);
4761 }
4762
4763 if (bfp->l_len < 0) {
4764 ZFS_EXIT(zfsvfs);
4765 return (SET_ERROR(EINVAL));
4766 }
4767
4768 off = bfp->l_start;
4769 len = bfp->l_len; /* 0 means from off to end of file */
4770
4771 error = zfs_freesp(zp, off, len, flag, TRUE);
4772
4773 ZFS_EXIT(zfsvfs);
4774 return (error);
4775 }
4776
4777 /*ARGSUSED*/
4778 static int
4779 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4780 {
4781 znode_t *zp = VTOZ(vp);
4782 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4783 uint32_t gen;
4784 uint64_t gen64;
4785 uint64_t object = zp->z_id;
4786 zfid_short_t *zfid;
4787 int size, i, error;
4788
4789 ZFS_ENTER(zfsvfs);
4790 ZFS_VERIFY_ZP(zp);
4791
4792 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4793 &gen64, sizeof (uint64_t))) != 0) {
4794 ZFS_EXIT(zfsvfs);
4795 return (error);
4796 }
4797
4798 gen = (uint32_t)gen64;
4799
4800 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4801 if (fidp->fid_len < size) {
4802 fidp->fid_len = size;
4803 ZFS_EXIT(zfsvfs);
4804 return (SET_ERROR(ENOSPC));
4805 }
4806
4807 zfid = (zfid_short_t *)fidp;
4808
4809 zfid->zf_len = size;
4810
4811 for (i = 0; i < sizeof (zfid->zf_object); i++)
4812 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4813
4814 /* Must have a non-zero generation number to distinguish from .zfs */
4815 if (gen == 0)
4816 gen = 1;
4817 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4818 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4819
4820 if (size == LONG_FID_LEN) {
4821 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4822 zfid_long_t *zlfid;
4823
4824 zlfid = (zfid_long_t *)fidp;
4825
4826 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4827 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4828
4829 /* XXX - this should be the generation number for the objset */
4830 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4831 zlfid->zf_setgen[i] = 0;
4832 }
4833
4834 ZFS_EXIT(zfsvfs);
4835 return (0);
4836 }
4837
4838 static int
4839 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4840 caller_context_t *ct)
4841 {
4842 znode_t *zp, *xzp;
4843 zfsvfs_t *zfsvfs;
4844 zfs_dirlock_t *dl;
4845 int error;
4846
4847 switch (cmd) {
4848 case _PC_LINK_MAX:
4849 *valp = ULONG_MAX;
4850 return (0);
4851
4852 case _PC_FILESIZEBITS:
4853 *valp = 64;
4854 return (0);
4855
4856 case _PC_XATTR_EXISTS:
4857 zp = VTOZ(vp);
4858 zfsvfs = zp->z_zfsvfs;
4859 ZFS_ENTER(zfsvfs);
4860 ZFS_VERIFY_ZP(zp);
4861 *valp = 0;
4862 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4863 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4864 if (error == 0) {
4865 zfs_dirent_unlock(dl);
4866 if (!zfs_dirempty(xzp))
4867 *valp = 1;
4868 VN_RELE(ZTOV(xzp));
4869 } else if (error == ENOENT) {
4870 /*
4871 * If there aren't extended attributes, it's the
4872 * same as having zero of them.
4873 */
4874 error = 0;
4875 }
4876 ZFS_EXIT(zfsvfs);
4877 return (error);
4878
4879 case _PC_SATTR_ENABLED:
4880 case _PC_SATTR_EXISTS:
4881 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4882 (vp->v_type == VREG || vp->v_type == VDIR);
4883 return (0);
4884
4885 case _PC_ACCESS_FILTERING:
4886 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4887 vp->v_type == VDIR;
4888 return (0);
4889
4890 case _PC_ACL_ENABLED:
4891 *valp = _ACL_ACE_ENABLED;
4892 return (0);
4893
4894 case _PC_MIN_HOLE_SIZE:
4895 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4896 return (0);
4897
4898 case _PC_TIMESTAMP_RESOLUTION:
4899 /* nanosecond timestamp resolution */
4900 *valp = 1L;
4901 return (0);
4902
4903 default:
4904 return (fs_pathconf(vp, cmd, valp, cr, ct));
4905 }
4906 }
4907
4908 /*ARGSUSED*/
4909 static int
4910 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4911 caller_context_t *ct)
4912 {
4913 znode_t *zp = VTOZ(vp);
4914 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4915 int error;
4916 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4917
4918 ZFS_ENTER(zfsvfs);
4919 ZFS_VERIFY_ZP(zp);
4920 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4921 ZFS_EXIT(zfsvfs);
4922
4923 return (error);
4924 }
4925
4926 /*ARGSUSED*/
4927 static int
4928 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4929 caller_context_t *ct)
4930 {
4931 znode_t *zp = VTOZ(vp);
4932 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4933 int error;
4934 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4935 zilog_t *zilog = zfsvfs->z_log;
4936
4937 ZFS_ENTER(zfsvfs);
4938 ZFS_VERIFY_ZP(zp);
4939
4940 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4941
4942 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4943 zil_commit(zilog, 0);
4944
4945 ZFS_EXIT(zfsvfs);
4946 return (error);
4947 }
4948
4949 /*
4950 * The smallest read we may consider to loan out an arcbuf.
4951 * This must be a power of 2.
4952 */
4953 int zcr_blksz_min = (1 << 10); /* 1K */
4954 /*
4955 * If set to less than the file block size, allow loaning out of an
4956 * arcbuf for a partial block read. This must be a power of 2.
4957 */
4958 int zcr_blksz_max = (1 << 17); /* 128K */
4959
4960 /*ARGSUSED*/
4961 static int
4962 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4963 caller_context_t *ct)
4964 {
4965 znode_t *zp = VTOZ(vp);
4966 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4967 int max_blksz = zfsvfs->z_max_blksz;
4968 uio_t *uio = &xuio->xu_uio;
4969 ssize_t size = uio->uio_resid;
4970 offset_t offset = uio->uio_loffset;
4971 int blksz;
4972 int fullblk, i;
4973 arc_buf_t *abuf;
4974 ssize_t maxsize;
4975 int preamble, postamble;
4976
4977 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4978 return (SET_ERROR(EINVAL));
4979
4980 ZFS_ENTER(zfsvfs);
4981 ZFS_VERIFY_ZP(zp);
4982 switch (ioflag) {
4983 case UIO_WRITE:
4984 /*
4985 * Loan out an arc_buf for write if write size is bigger than
4986 * max_blksz, and the file's block size is also max_blksz.
4987 */
4988 blksz = max_blksz;
4989 if (size < blksz || zp->z_blksz != blksz) {
4990 ZFS_EXIT(zfsvfs);
4991 return (SET_ERROR(EINVAL));
4992 }
4993 /*
4994 * Caller requests buffers for write before knowing where the
4995 * write offset might be (e.g. NFS TCP write).
4996 */
4997 if (offset == -1) {
4998 preamble = 0;
4999 } else {
5000 preamble = P2PHASE(offset, blksz);
5001 if (preamble) {
5002 preamble = blksz - preamble;
5003 size -= preamble;
5004 }
5005 }
5006
5007 postamble = P2PHASE(size, blksz);
5008 size -= postamble;
5009
5010 fullblk = size / blksz;
5011 (void) dmu_xuio_init(xuio,
5012 (preamble != 0) + fullblk + (postamble != 0));
5013 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5014 int, postamble, int,
5015 (preamble != 0) + fullblk + (postamble != 0));
5016
5017 /*
5018 * Have to fix iov base/len for partial buffers. They
5019 * currently represent full arc_buf's.
5020 */
5021 if (preamble) {
5022 /* data begins in the middle of the arc_buf */
5023 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5024 blksz);
5025 ASSERT(abuf);
5026 (void) dmu_xuio_add(xuio, abuf,
5027 blksz - preamble, preamble);
5028 }
5029
5030 for (i = 0; i < fullblk; i++) {
5031 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5032 blksz);
5033 ASSERT(abuf);
5034 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5035 }
5036
5037 if (postamble) {
5038 /* data ends in the middle of the arc_buf */
5039 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5040 blksz);
5041 ASSERT(abuf);
5042 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5043 }
5044 break;
5045 case UIO_READ:
5046 /*
5047 * Loan out an arc_buf for read if the read size is larger than
5048 * the current file block size. Block alignment is not
5049 * considered. Partial arc_buf will be loaned out for read.
5050 */
5051 blksz = zp->z_blksz;
5052 if (blksz < zcr_blksz_min)
5053 blksz = zcr_blksz_min;
5054 if (blksz > zcr_blksz_max)
5055 blksz = zcr_blksz_max;
5056 /* avoid potential complexity of dealing with it */
5057 if (blksz > max_blksz) {
5058 ZFS_EXIT(zfsvfs);
5059 return (SET_ERROR(EINVAL));
5060 }
5061
5062 maxsize = zp->z_size - uio->uio_loffset;
5063 if (size > maxsize)
5064 size = maxsize;
5065
5066 if (size < blksz || vn_has_cached_data(vp)) {
5067 ZFS_EXIT(zfsvfs);
5068 return (SET_ERROR(EINVAL));
5069 }
5070 break;
5071 default:
5072 ZFS_EXIT(zfsvfs);
5073 return (SET_ERROR(EINVAL));
5074 }
5075
5076 uio->uio_extflg = UIO_XUIO;
5077 XUIO_XUZC_RW(xuio) = ioflag;
5078 ZFS_EXIT(zfsvfs);
5079 return (0);
5080 }
5081
5082 /*ARGSUSED*/
5083 static int
5084 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5085 {
5086 int i;
5087 arc_buf_t *abuf;
5088 int ioflag = XUIO_XUZC_RW(xuio);
5089
5090 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5091
5092 i = dmu_xuio_cnt(xuio);
5093 while (i-- > 0) {
5094 abuf = dmu_xuio_arcbuf(xuio, i);
5095 /*
5096 * if abuf == NULL, it must be a write buffer
5097 * that has been returned in zfs_write().
5098 */
5099 if (abuf)
5100 dmu_return_arcbuf(abuf);
5101 ASSERT(abuf || ioflag == UIO_WRITE);
5102 }
5103
5104 dmu_xuio_fini(xuio);
5105 return (0);
5106 }
5107
5108 /*
5109 * Predeclare these here so that the compiler assumes that
5110 * this is an "old style" function declaration that does
5111 * not include arguments => we won't get type mismatch errors
5112 * in the initializations that follow.
5113 */
5114 static int zfs_inval();
5115 static int zfs_isdir();
5116
5117 static int
5118 zfs_inval()
5119 {
5120 return (SET_ERROR(EINVAL));
5121 }
5122
5123 static int
5124 zfs_isdir()
5125 {
5126 return (SET_ERROR(EISDIR));
5127 }
5128 /*
5129 * Directory vnode operations template
5130 */
5131 vnodeops_t *zfs_dvnodeops;
5132 const fs_operation_def_t zfs_dvnodeops_template[] = {
5133 VOPNAME_OPEN, { .vop_open = zfs_open },
5134 VOPNAME_CLOSE, { .vop_close = zfs_close },
5135 VOPNAME_READ, { .error = zfs_isdir },
5136 VOPNAME_WRITE, { .error = zfs_isdir },
5137 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5138 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5139 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5140 VOPNAME_ACCESS, { .vop_access = zfs_access },
5141 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5142 VOPNAME_CREATE, { .vop_create = zfs_create },
5143 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5144 VOPNAME_LINK, { .vop_link = zfs_link },
5145 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5146 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5147 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5148 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5149 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5150 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5151 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5152 VOPNAME_FID, { .vop_fid = zfs_fid },
5153 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5154 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5155 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5156 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5157 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5158 NULL, NULL
5159 };
5160
5161 /*
5162 * Regular file vnode operations template
5163 */
5164 vnodeops_t *zfs_fvnodeops;
5165 const fs_operation_def_t zfs_fvnodeops_template[] = {
5166 VOPNAME_OPEN, { .vop_open = zfs_open },
5167 VOPNAME_CLOSE, { .vop_close = zfs_close },
5168 VOPNAME_READ, { .vop_read = zfs_read },
5169 VOPNAME_WRITE, { .vop_write = zfs_write },
5170 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5171 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5172 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5173 VOPNAME_ACCESS, { .vop_access = zfs_access },
5174 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5175 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5176 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5177 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5178 VOPNAME_FID, { .vop_fid = zfs_fid },
5179 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5180 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5181 VOPNAME_SPACE, { .vop_space = zfs_space },
5182 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5183 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5184 VOPNAME_MAP, { .vop_map = zfs_map },
5185 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5186 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5187 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5188 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5189 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5190 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5191 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5192 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5193 NULL, NULL
5194 };
5195
5196 /*
5197 * Symbolic link vnode operations template
5198 */
5199 vnodeops_t *zfs_symvnodeops;
5200 const fs_operation_def_t zfs_symvnodeops_template[] = {
5201 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5202 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5203 VOPNAME_ACCESS, { .vop_access = zfs_access },
5204 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5205 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5206 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5207 VOPNAME_FID, { .vop_fid = zfs_fid },
5208 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5209 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5210 NULL, NULL
5211 };
5212
5213 /*
5214 * special share hidden files vnode operations template
5215 */
5216 vnodeops_t *zfs_sharevnodeops;
5217 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5218 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5219 VOPNAME_ACCESS, { .vop_access = zfs_access },
5220 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5221 VOPNAME_FID, { .vop_fid = zfs_fid },
5222 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5223 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5224 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5225 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5226 NULL, NULL
5227 };
5228
5229 /*
5230 * Extended attribute directory vnode operations template
5231 *
5232 * This template is identical to the directory vnodes
5233 * operation template except for restricted operations:
5234 * VOP_MKDIR()
5235 * VOP_SYMLINK()
5236 *
5237 * Note that there are other restrictions embedded in:
5238 * zfs_create() - restrict type to VREG
5239 * zfs_link() - no links into/out of attribute space
5240 * zfs_rename() - no moves into/out of attribute space
5241 */
5242 vnodeops_t *zfs_xdvnodeops;
5243 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5244 VOPNAME_OPEN, { .vop_open = zfs_open },
5245 VOPNAME_CLOSE, { .vop_close = zfs_close },
5246 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5247 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5248 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5249 VOPNAME_ACCESS, { .vop_access = zfs_access },
5250 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5251 VOPNAME_CREATE, { .vop_create = zfs_create },
5252 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5253 VOPNAME_LINK, { .vop_link = zfs_link },
5254 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5255 VOPNAME_MKDIR, { .error = zfs_inval },
5256 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5257 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5258 VOPNAME_SYMLINK, { .error = zfs_inval },
5259 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5260 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5261 VOPNAME_FID, { .vop_fid = zfs_fid },
5262 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5263 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5264 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5265 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5266 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5267 NULL, NULL
5268 };
5269
5270 /*
5271 * Error vnode operations template
5272 */
5273 vnodeops_t *zfs_evnodeops;
5274 const fs_operation_def_t zfs_evnodeops_template[] = {
5275 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5276 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5277 NULL, NULL
5278 };