Print this page
4045 zfs write throttle & i/o scheduler performance work
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>

@@ -22,41 +22,142 @@
  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 
 /*
- * Copyright (c) 2012 by Delphix. All rights reserved.
+ * Copyright (c) 2013 by Delphix. All rights reserved.
  */
 
 #include <sys/zfs_context.h>
 #include <sys/vdev_impl.h>
 #include <sys/spa_impl.h>
 #include <sys/zio.h>
 #include <sys/avl.h>
+#include <sys/dsl_pool.h>
 
 /*
- * These tunables are for performance analysis.
+ * ZFS I/O Scheduler
+ * ---------------
+ *
+ * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
+ * I/O scheduler determines when and in what order those operations are
+ * issued.  The I/O scheduler divides operations into five I/O classes
+ * prioritized in the following order: sync read, sync write, async read,
+ * async write, and scrub/resilver.  Each queue defines the minimum and
+ * maximum number of concurrent operations that may be issued to the device.
+ * In addition, the device has an aggregate maximum. Note that the sum of the
+ * per-queue minimums must not exceed the aggregate maximum, and if the
+ * aggregate maximum is equal to or greater than the sum of the per-queue
+ * maximums, the per-queue minimum has no effect.
+ *
+ * For many physical devices, throughput increases with the number of
+ * concurrent operations, but latency typically suffers. Further, physical
+ * devices typically have a limit at which more concurrent operations have no
+ * effect on throughput or can actually cause it to decrease.
+ *
+ * The scheduler selects the next operation to issue by first looking for an
+ * I/O class whose minimum has not been satisfied. Once all are satisfied and
+ * the aggregate maximum has not been hit, the scheduler looks for classes
+ * whose maximum has not been satisfied. Iteration through the I/O classes is
+ * done in the order specified above. No further operations are issued if the
+ * aggregate maximum number of concurrent operations has been hit or if there
+ * are no operations queued for an I/O class that has not hit its maximum.
+ * Every time an i/o is queued or an operation completes, the I/O scheduler
+ * looks for new operations to issue.
+ *
+ * All I/O classes have a fixed maximum number of outstanding operations
+ * except for the async write class. Asynchronous writes represent the data
+ * that is committed to stable storage during the syncing stage for
+ * transaction groups (see txg.c). Transaction groups enter the syncing state
+ * periodically so the number of queued async writes will quickly burst up and
+ * then bleed down to zero. Rather than servicing them as quickly as possible,
+ * the I/O scheduler changes the maximum number of active async write i/os
+ * according to the amount of dirty data in the pool (see dsl_pool.c). Since
+ * both throughput and latency typically increase with the number of
+ * concurrent operations issued to physical devices, reducing the burstiness
+ * in the number of concurrent operations also stabilizes the response time of
+ * operations from other -- and in particular synchronous -- queues. In broad
+ * strokes, the I/O scheduler will issue more concurrent operations from the
+ * async write queue as there's more dirty data in the pool.
+ *
+ * Async Writes
+ *
+ * The number of concurrent operations issued for the async write I/O class
+ * follows a piece-wise linear function defined by a few adjustable points.
+ *
+ *        |                   o---------| <-- zfs_vdev_async_write_max_active
+ *   ^    |                  /^         |
+ *   |    |                 / |         |
+ * active |                /  |         |
+ *  I/O   |               /   |         |
+ * count  |              /    |         |
+ *        |             /     |         |
+ *        |------------o      |         | <-- zfs_vdev_async_write_min_active
+ *       0|____________^______|_________|
+ *        0%           |      |       100% of zfs_dirty_data_max
+ *                     |      |
+ *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
+ *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
+ *
+ * Until the amount of dirty data exceeds a minimum percentage of the dirty
+ * data allowed in the pool, the I/O scheduler will limit the number of
+ * concurrent operations to the minimum. As that threshold is crossed, the
+ * number of concurrent operations issued increases linearly to the maximum at
+ * the specified maximum percentage of the dirty data allowed in the pool.
+ *
+ * Ideally, the amount of dirty data on a busy pool will stay in the sloped
+ * part of the function between zfs_vdev_async_write_active_min_dirty_percent
+ * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
+ * maximum percentage, this indicates that the rate of incoming data is
+ * greater than the rate that the backend storage can handle. In this case, we
+ * must further throttle incoming writes (see dmu_tx_delay() for details).
  */
 
-/* The maximum number of I/Os concurrently pending to each device. */
-int zfs_vdev_max_pending = 10;
+/*
+ * The maximum number of i/os active to each device.  Ideally, this will be >=
+ * the sum of each queue's max_active.  It must be at least the sum of each
+ * queue's min_active.
+ */
+uint32_t zfs_vdev_max_active = 1000;
 
 /*
- * The initial number of I/Os pending to each device, before it starts ramping
- * up to zfs_vdev_max_pending.
+ * Per-queue limits on the number of i/os active to each device.  If the
+ * sum of the queue's max_active is < zfs_vdev_max_active, then the
+ * min_active comes into play.  We will send min_active from each queue,
+ * and then select from queues in the order defined by zio_priority_t.
+ *
+ * In general, smaller max_active's will lead to lower latency of synchronous
+ * operations.  Larger max_active's may lead to higher overall throughput,
+ * depending on underlying storage.
+ *
+ * The ratio of the queues' max_actives determines the balance of performance
+ * between reads, writes, and scrubs.  E.g., increasing
+ * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
+ * more quickly, but reads and writes to have higher latency and lower
+ * throughput.
  */
-int zfs_vdev_min_pending = 4;
+uint32_t zfs_vdev_sync_read_min_active = 10;
+uint32_t zfs_vdev_sync_read_max_active = 10;
+uint32_t zfs_vdev_sync_write_min_active = 10;
+uint32_t zfs_vdev_sync_write_max_active = 10;
+uint32_t zfs_vdev_async_read_min_active = 1;
+uint32_t zfs_vdev_async_read_max_active = 3;
+uint32_t zfs_vdev_async_write_min_active = 1;
+uint32_t zfs_vdev_async_write_max_active = 10;
+uint32_t zfs_vdev_scrub_min_active = 1;
+uint32_t zfs_vdev_scrub_max_active = 2;
 
 /*
- * The deadlines are grouped into buckets based on zfs_vdev_time_shift:
- * deadline = pri + gethrtime() >> time_shift)
+ * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
+ * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
+ * zfs_vdev_async_write_active_max_dirty_percent, use
+ * zfs_vdev_async_write_max_active. The value is linearly interpolated
+ * between min and max.
  */
-int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */
+int zfs_vdev_async_write_active_min_dirty_percent = 30;
+int zfs_vdev_async_write_active_max_dirty_percent = 60;
 
-/* exponential I/O issue ramp-up rate */
-int zfs_vdev_ramp_rate = 2;
-
 /*
  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
  * For read I/Os, we also aggregate across small adjacency gaps; for writes
  * we include spans of optional I/Os to aid aggregation at the disk even when
  * they aren't able to help us aggregate at this level.

@@ -63,24 +164,16 @@
  */
 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
 int zfs_vdev_read_gap_limit = 32 << 10;
 int zfs_vdev_write_gap_limit = 4 << 10;
 
-/*
- * Virtual device vector for disk I/O scheduling.
- */
 int
-vdev_queue_deadline_compare(const void *x1, const void *x2)
+vdev_queue_offset_compare(const void *x1, const void *x2)
 {
         const zio_t *z1 = x1;
         const zio_t *z2 = x2;
 
-        if (z1->io_deadline < z2->io_deadline)
-                return (-1);
-        if (z1->io_deadline > z2->io_deadline)
-                return (1);
-
         if (z1->io_offset < z2->io_offset)
                 return (-1);
         if (z1->io_offset > z2->io_offset)
                 return (1);
 

@@ -91,18 +184,18 @@
 
         return (0);
 }
 
 int
-vdev_queue_offset_compare(const void *x1, const void *x2)
+vdev_queue_timestamp_compare(const void *x1, const void *x2)
 {
         const zio_t *z1 = x1;
         const zio_t *z2 = x2;
 
-        if (z1->io_offset < z2->io_offset)
+        if (z1->io_timestamp < z2->io_timestamp)
                 return (-1);
-        if (z1->io_offset > z2->io_offset)
+        if (z1->io_timestamp > z2->io_timestamp)
                 return (1);
 
         if (z1 < z2)
                 return (-1);
         if (z1 > z2)

@@ -115,144 +208,273 @@
 vdev_queue_init(vdev_t *vd)
 {
         vdev_queue_t *vq = &vd->vdev_queue;
 
         mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
+        vq->vq_vdev = vd;
 
-        avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
-            sizeof (zio_t), offsetof(struct zio, io_deadline_node));
+        avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
+            sizeof (zio_t), offsetof(struct zio, io_queue_node));
 
-        avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
-            sizeof (zio_t), offsetof(struct zio, io_offset_node));
-
-        avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
-            sizeof (zio_t), offsetof(struct zio, io_offset_node));
-
-        avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
-            sizeof (zio_t), offsetof(struct zio, io_offset_node));
+        for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
+                /*
+                 * The synchronous i/o queues are FIFO rather than LBA ordered.
+                 * This provides more consistent latency for these i/os, and
+                 * they tend to not be tightly clustered anyway so there is
+                 * little to no throughput loss.
+                 */
+                boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
+                    p == ZIO_PRIORITY_SYNC_WRITE);
+                avl_create(&vq->vq_class[p].vqc_queued_tree,
+                    fifo ? vdev_queue_timestamp_compare :
+                    vdev_queue_offset_compare,
+                    sizeof (zio_t), offsetof(struct zio, io_queue_node));
+        }
 }
 
 void
 vdev_queue_fini(vdev_t *vd)
 {
         vdev_queue_t *vq = &vd->vdev_queue;
 
-        avl_destroy(&vq->vq_deadline_tree);
-        avl_destroy(&vq->vq_read_tree);
-        avl_destroy(&vq->vq_write_tree);
-        avl_destroy(&vq->vq_pending_tree);
+        for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
+                avl_destroy(&vq->vq_class[p].vqc_queued_tree);
+        avl_destroy(&vq->vq_active_tree);
 
         mutex_destroy(&vq->vq_lock);
 }
 
 static void
 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
 {
         spa_t *spa = zio->io_spa;
-        avl_add(&vq->vq_deadline_tree, zio);
-        avl_add(zio->io_vdev_tree, zio);
+        ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
+        avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
 
-        if (spa->spa_iokstat != NULL) {
                 mutex_enter(&spa->spa_iokstat_lock);
+        spa->spa_queue_stats[zio->io_priority].spa_queued++;
+        if (spa->spa_iokstat != NULL)
                 kstat_waitq_enter(spa->spa_iokstat->ks_data);
                 mutex_exit(&spa->spa_iokstat_lock);
-        }
 }
 
 static void
 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
 {
         spa_t *spa = zio->io_spa;
-        avl_remove(&vq->vq_deadline_tree, zio);
-        avl_remove(zio->io_vdev_tree, zio);
+        ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
+        avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
 
-        if (spa->spa_iokstat != NULL) {
                 mutex_enter(&spa->spa_iokstat_lock);
+        ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
+        spa->spa_queue_stats[zio->io_priority].spa_queued--;
+        if (spa->spa_iokstat != NULL)
                 kstat_waitq_exit(spa->spa_iokstat->ks_data);
                 mutex_exit(&spa->spa_iokstat_lock);
-        }
 }
 
 static void
 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
 {
         spa_t *spa = zio->io_spa;
-        avl_add(&vq->vq_pending_tree, zio);
-        if (spa->spa_iokstat != NULL) {
+        ASSERT(MUTEX_HELD(&vq->vq_lock));
+        ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
+        vq->vq_class[zio->io_priority].vqc_active++;
+        avl_add(&vq->vq_active_tree, zio);
+
                 mutex_enter(&spa->spa_iokstat_lock);
+        spa->spa_queue_stats[zio->io_priority].spa_active++;
+        if (spa->spa_iokstat != NULL)
                 kstat_runq_enter(spa->spa_iokstat->ks_data);
                 mutex_exit(&spa->spa_iokstat_lock);
-        }
 }
 
 static void
 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
 {
         spa_t *spa = zio->io_spa;
-        avl_remove(&vq->vq_pending_tree, zio);
+        ASSERT(MUTEX_HELD(&vq->vq_lock));
+        ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
+        vq->vq_class[zio->io_priority].vqc_active--;
+        avl_remove(&vq->vq_active_tree, zio);
+
+        mutex_enter(&spa->spa_iokstat_lock);
+        ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
+        spa->spa_queue_stats[zio->io_priority].spa_active--;
         if (spa->spa_iokstat != NULL) {
                 kstat_io_t *ksio = spa->spa_iokstat->ks_data;
 
-                mutex_enter(&spa->spa_iokstat_lock);
                 kstat_runq_exit(spa->spa_iokstat->ks_data);
                 if (zio->io_type == ZIO_TYPE_READ) {
                         ksio->reads++;
                         ksio->nread += zio->io_size;
                 } else if (zio->io_type == ZIO_TYPE_WRITE) {
                         ksio->writes++;
                         ksio->nwritten += zio->io_size;
                 }
-                mutex_exit(&spa->spa_iokstat_lock);
         }
+        mutex_exit(&spa->spa_iokstat_lock);
 }
 
 static void
 vdev_queue_agg_io_done(zio_t *aio)
 {
+        if (aio->io_type == ZIO_TYPE_READ) {
         zio_t *pio;
-
-        while ((pio = zio_walk_parents(aio)) != NULL)
-                if (aio->io_type == ZIO_TYPE_READ)
+                while ((pio = zio_walk_parents(aio)) != NULL) {
                         bcopy((char *)aio->io_data + (pio->io_offset -
                             aio->io_offset), pio->io_data, pio->io_size);
+                }
+        }
 
         zio_buf_free(aio->io_data, aio->io_size);
 }
 
+static int
+vdev_queue_class_min_active(zio_priority_t p)
+{
+        switch (p) {
+        case ZIO_PRIORITY_SYNC_READ:
+                return (zfs_vdev_sync_read_min_active);
+        case ZIO_PRIORITY_SYNC_WRITE:
+                return (zfs_vdev_sync_write_min_active);
+        case ZIO_PRIORITY_ASYNC_READ:
+                return (zfs_vdev_async_read_min_active);
+        case ZIO_PRIORITY_ASYNC_WRITE:
+                return (zfs_vdev_async_write_min_active);
+        case ZIO_PRIORITY_SCRUB:
+                return (zfs_vdev_scrub_min_active);
+        default:
+                panic("invalid priority %u", p);
+                return (0);
+        }
+}
+
+static int
+vdev_queue_max_async_writes(uint64_t dirty)
+{
+        int writes;
+        uint64_t min_bytes = zfs_dirty_data_max *
+            zfs_vdev_async_write_active_min_dirty_percent / 100;
+        uint64_t max_bytes = zfs_dirty_data_max *
+            zfs_vdev_async_write_active_max_dirty_percent / 100;
+
+        if (dirty < min_bytes)
+                return (zfs_vdev_async_write_min_active);
+        if (dirty > max_bytes)
+                return (zfs_vdev_async_write_max_active);
+
+        /*
+         * linear interpolation:
+         * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
+         * move right by min_bytes
+         * move up by min_writes
+         */
+        writes = (dirty - min_bytes) *
+            (zfs_vdev_async_write_max_active -
+            zfs_vdev_async_write_min_active) /
+            (max_bytes - min_bytes) +
+            zfs_vdev_async_write_min_active;
+        ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
+        ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
+        return (writes);
+}
+
+static int
+vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
+{
+        switch (p) {
+        case ZIO_PRIORITY_SYNC_READ:
+                return (zfs_vdev_sync_read_max_active);
+        case ZIO_PRIORITY_SYNC_WRITE:
+                return (zfs_vdev_sync_write_max_active);
+        case ZIO_PRIORITY_ASYNC_READ:
+                return (zfs_vdev_async_read_max_active);
+        case ZIO_PRIORITY_ASYNC_WRITE:
+                return (vdev_queue_max_async_writes(
+                    spa->spa_dsl_pool->dp_dirty_total));
+        case ZIO_PRIORITY_SCRUB:
+                return (zfs_vdev_scrub_max_active);
+        default:
+                panic("invalid priority %u", p);
+                return (0);
+        }
+}
+
 /*
+ * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
+ * there is no eligible class.
+ */
+static zio_priority_t
+vdev_queue_class_to_issue(vdev_queue_t *vq)
+{
+        spa_t *spa = vq->vq_vdev->vdev_spa;
+        zio_priority_t p;
+
+        if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
+                return (ZIO_PRIORITY_NUM_QUEUEABLE);
+
+        /* find a queue that has not reached its minimum # outstanding i/os */
+        for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
+                if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
+                    vq->vq_class[p].vqc_active <
+                    vdev_queue_class_min_active(p))
+                        return (p);
+        }
+
+        /*
+         * If we haven't found a queue, look for one that hasn't reached its
+         * maximum # outstanding i/os.
+         */
+        for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
+                if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
+                    vq->vq_class[p].vqc_active <
+                    vdev_queue_class_max_active(spa, p))
+                        return (p);
+        }
+
+        /* No eligible queued i/os */
+        return (ZIO_PRIORITY_NUM_QUEUEABLE);
+}
+
+/*
  * Compute the range spanned by two i/os, which is the endpoint of the last
  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
  */
 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
 
 static zio_t *
-vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
+vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
 {
-        zio_t *fio, *lio, *aio, *dio, *nio, *mio;
-        avl_tree_t *t;
-        int flags;
-        uint64_t maxspan = zfs_vdev_aggregation_limit;
-        uint64_t maxgap;
-        int stretch;
+        zio_t *first, *last, *aio, *dio, *mandatory, *nio;
+        uint64_t maxgap = 0;
+        uint64_t size;
+        boolean_t stretch = B_FALSE;
+        vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority];
+        avl_tree_t *t = &vqc->vqc_queued_tree;
+        enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
 
-again:
-        ASSERT(MUTEX_HELD(&vq->vq_lock));
+        if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
+                return (NULL);
 
-        if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
-            avl_numnodes(&vq->vq_deadline_tree) == 0)
+        /*
+         * The synchronous i/o queues are not sorted by LBA, so we can't
+         * find adjacent i/os.  These i/os tend to not be tightly clustered,
+         * or too large to aggregate, so this has little impact on performance.
+         */
+        if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
+            zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
                 return (NULL);
 
-        fio = lio = avl_first(&vq->vq_deadline_tree);
+        first = last = zio;
 
-        t = fio->io_vdev_tree;
-        flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
-        maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
+        if (zio->io_type == ZIO_TYPE_READ)
+                maxgap = zfs_vdev_read_gap_limit;
 
-        if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
                 /*
                  * We can aggregate I/Os that are sufficiently adjacent and of
                  * the same flavor, as expressed by the AGG_INHERIT flags.
                  * The latter requirement is necessary so that certain
                  * attributes of the I/O, such as whether it's a normal I/O

@@ -262,43 +484,43 @@
                  */
 
                 /*
                  * We keep track of the last non-optional I/O.
                  */
-                mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
+        mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
 
                 /*
                  * Walk backwards through sufficiently contiguous I/Os
                  * recording the last non-option I/O.
                  */
-                while ((dio = AVL_PREV(t, fio)) != NULL &&
+        while ((dio = AVL_PREV(t, first)) != NULL &&
                     (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
-                    IO_SPAN(dio, lio) <= maxspan &&
-                    IO_GAP(dio, fio) <= maxgap) {
-                        fio = dio;
-                        if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
-                                mio = fio;
+            IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
+            IO_GAP(dio, first) <= maxgap) {
+                first = dio;
+                if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
+                        mandatory = first;
                 }
 
                 /*
                  * Skip any initial optional I/Os.
                  */
-                while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
-                        fio = AVL_NEXT(t, fio);
-                        ASSERT(fio != NULL);
+        while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
+                first = AVL_NEXT(t, first);
+                ASSERT(first != NULL);
                 }
 
                 /*
                  * Walk forward through sufficiently contiguous I/Os.
                  */
-                while ((dio = AVL_NEXT(t, lio)) != NULL &&
+        while ((dio = AVL_NEXT(t, last)) != NULL &&
                     (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
-                    IO_SPAN(fio, dio) <= maxspan &&
-                    IO_GAP(lio, dio) <= maxgap) {
-                        lio = dio;
-                        if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
-                                mio = lio;
+            IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
+            IO_GAP(last, dio) <= maxgap) {
+                last = dio;
+                if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
+                        mandatory = last;
                 }
 
                 /*
                  * Now that we've established the range of the I/O aggregation
                  * we must decide what to do with trailing optional I/Os.

@@ -307,16 +529,15 @@
                  * I/O would allow the underlying device to aggregate with
                  * subsequent I/Os. We must therefore determine if the next
                  * non-optional I/O is close enough to make aggregation
                  * worthwhile.
                  */
-                stretch = B_FALSE;
-                if (t != &vq->vq_read_tree && mio != NULL) {
-                        nio = lio;
+        if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
+                zio_t *nio = last;
                         while ((dio = AVL_NEXT(t, nio)) != NULL &&
                             IO_GAP(nio, dio) == 0 &&
-                            IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
+                    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
                                 nio = dio;
                                 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
                                         stretch = B_TRUE;
                                         break;
                                 }

@@ -323,40 +544,40 @@
                         }
                 }
 
                 if (stretch) {
                         /* This may be a no-op. */
-                        VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
+                dio = AVL_NEXT(t, last);
                         dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
                 } else {
-                        while (lio != mio && lio != fio) {
-                                ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
-                                lio = AVL_PREV(t, lio);
-                                ASSERT(lio != NULL);
+                while (last != mandatory && last != first) {
+                        ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
+                        last = AVL_PREV(t, last);
+                        ASSERT(last != NULL);
                         }
                 }
-        }
 
-        if (fio != lio) {
-                uint64_t size = IO_SPAN(fio, lio);
-                ASSERT(size <= zfs_vdev_aggregation_limit);
+        if (first == last)
+                return (NULL);
 
-                aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
-                    zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
+        size = IO_SPAN(first, last);
+        ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
+
+        aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
+            zio_buf_alloc(size), size, first->io_type, zio->io_priority,
                     flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
                     vdev_queue_agg_io_done, NULL);
-                aio->io_timestamp = fio->io_timestamp;
+        aio->io_timestamp = first->io_timestamp;
 
-                nio = fio;
+        nio = first;
                 do {
                         dio = nio;
                         nio = AVL_NEXT(t, dio);
-                        ASSERT(dio->io_type == aio->io_type);
-                        ASSERT(dio->io_vdev_tree == t);
+                ASSERT3U(dio->io_type, ==, aio->io_type);
 
                         if (dio->io_flags & ZIO_FLAG_NODATA) {
-                                ASSERT(dio->io_type == ZIO_TYPE_WRITE);
+                        ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
                                 bzero((char *)aio->io_data + (dio->io_offset -
                                     aio->io_offset), dio->io_size);
                         } else if (dio->io_type == ZIO_TYPE_WRITE) {
                                 bcopy(dio->io_data, (char *)aio->io_data +
                                     (dio->io_offset - aio->io_offset),

@@ -365,67 +586,106 @@
 
                         zio_add_child(dio, aio);
                         vdev_queue_io_remove(vq, dio);
                         zio_vdev_io_bypass(dio);
                         zio_execute(dio);
-                } while (dio != lio);
+        } while (dio != last);
 
-                vdev_queue_pending_add(vq, aio);
-
                 return (aio);
+}
+
+static zio_t *
+vdev_queue_io_to_issue(vdev_queue_t *vq)
+{
+        zio_t *zio, *aio;
+        zio_priority_t p;
+        avl_index_t idx;
+        vdev_queue_class_t *vqc;
+        zio_t search;
+
+again:
+        ASSERT(MUTEX_HELD(&vq->vq_lock));
+
+        p = vdev_queue_class_to_issue(vq);
+
+        if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
+                /* No eligible queued i/os */
+                return (NULL);
         }
 
-        ASSERT(fio->io_vdev_tree == t);
-        vdev_queue_io_remove(vq, fio);
+        /*
+         * For LBA-ordered queues (async / scrub), issue the i/o which follows
+         * the most recently issued i/o in LBA (offset) order.
+         *
+         * For FIFO queues (sync), issue the i/o with the lowest timestamp.
+         */
+        vqc = &vq->vq_class[p];
+        search.io_timestamp = 0;
+        search.io_offset = vq->vq_last_offset + 1;
+        VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
+        zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
+        if (zio == NULL)
+                zio = avl_first(&vqc->vqc_queued_tree);
+        ASSERT3U(zio->io_priority, ==, p);
 
+        aio = vdev_queue_aggregate(vq, zio);
+        if (aio != NULL)
+                zio = aio;
+        else
+                vdev_queue_io_remove(vq, zio);
+
         /*
          * If the I/O is or was optional and therefore has no data, we need to
          * simply discard it. We need to drop the vdev queue's lock to avoid a
          * deadlock that we could encounter since this I/O will complete
          * immediately.
          */
-        if (fio->io_flags & ZIO_FLAG_NODATA) {
+        if (zio->io_flags & ZIO_FLAG_NODATA) {
                 mutex_exit(&vq->vq_lock);
-                zio_vdev_io_bypass(fio);
-                zio_execute(fio);
+                zio_vdev_io_bypass(zio);
+                zio_execute(zio);
                 mutex_enter(&vq->vq_lock);
                 goto again;
         }
 
-        vdev_queue_pending_add(vq, fio);
+        vdev_queue_pending_add(vq, zio);
+        vq->vq_last_offset = zio->io_offset;
 
-        return (fio);
+        return (zio);
 }
 
 zio_t *
 vdev_queue_io(zio_t *zio)
 {
         vdev_queue_t *vq = &zio->io_vd->vdev_queue;
         zio_t *nio;
 
-        ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
-
         if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
                 return (zio);
 
+        /*
+         * Children i/os inherent their parent's priority, which might
+         * not match the child's i/o type.  Fix it up here.
+         */
+        if (zio->io_type == ZIO_TYPE_READ) {
+                if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
+                    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
+                    zio->io_priority != ZIO_PRIORITY_SCRUB)
+                        zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
+        } else {
+                ASSERT(zio->io_type == ZIO_TYPE_WRITE);
+                if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
+                    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
+                        zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
+        }
+
         zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
 
-        if (zio->io_type == ZIO_TYPE_READ)
-                zio->io_vdev_tree = &vq->vq_read_tree;
-        else
-                zio->io_vdev_tree = &vq->vq_write_tree;
-
         mutex_enter(&vq->vq_lock);
-
         zio->io_timestamp = gethrtime();
-        zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) +
-            zio->io_priority;
-
         vdev_queue_io_add(vq, zio);
-
-        nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
-
+        nio = vdev_queue_io_to_issue(vq);
         mutex_exit(&vq->vq_lock);
 
         if (nio == NULL)
                 return (NULL);
 

@@ -439,10 +699,11 @@
 
 void
 vdev_queue_io_done(zio_t *zio)
 {
         vdev_queue_t *vq = &zio->io_vd->vdev_queue;
+        zio_t *nio;
 
         if (zio_injection_enabled)
                 delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
 
         mutex_enter(&vq->vq_lock);

@@ -449,14 +710,11 @@
 
         vdev_queue_pending_remove(vq, zio);
 
         vq->vq_io_complete_ts = gethrtime();
 
-        for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
-                zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
-                if (nio == NULL)
-                        break;
+        while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
                 mutex_exit(&vq->vq_lock);
                 if (nio->io_done == vdev_queue_agg_io_done) {
                         zio_nowait(nio);
                 } else {
                         zio_vdev_io_reissue(nio);