1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2012 by Delphix. All rights reserved.
  28  */
  29 
  30 #include <sys/zfs_context.h>
  31 #include <sys/vdev_impl.h>
  32 #include <sys/spa_impl.h>
  33 #include <sys/zio.h>
  34 #include <sys/avl.h>
  35 
  36 /*
  37  * These tunables are for performance analysis.
  38  */
  39 
  40 /* The maximum number of I/Os concurrently pending to each device. */
  41 int zfs_vdev_max_pending = 10;
  42 
  43 /*
  44  * The initial number of I/Os pending to each device, before it starts ramping
  45  * up to zfs_vdev_max_pending.
  46  */
  47 int zfs_vdev_min_pending = 4;
  48 
  49 /*
  50  * The deadlines are grouped into buckets based on zfs_vdev_time_shift:
  51  * deadline = pri + gethrtime() >> time_shift)
  52  */
  53 int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */
  54 
  55 /* exponential I/O issue ramp-up rate */
  56 int zfs_vdev_ramp_rate = 2;
  57 
  58 /*
  59  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
  60  * For read I/Os, we also aggregate across small adjacency gaps; for writes
  61  * we include spans of optional I/Os to aid aggregation at the disk even when
  62  * they aren't able to help us aggregate at this level.
  63  */
  64 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
  65 int zfs_vdev_read_gap_limit = 32 << 10;
  66 int zfs_vdev_write_gap_limit = 4 << 10;
  67 
  68 /*
  69  * Virtual device vector for disk I/O scheduling.
  70  */
  71 int
  72 vdev_queue_deadline_compare(const void *x1, const void *x2)
  73 {
  74         const zio_t *z1 = x1;
  75         const zio_t *z2 = x2;
  76 
  77         if (z1->io_deadline < z2->io_deadline)
  78                 return (-1);
  79         if (z1->io_deadline > z2->io_deadline)
  80                 return (1);
  81 
  82         if (z1->io_offset < z2->io_offset)
  83                 return (-1);
  84         if (z1->io_offset > z2->io_offset)
  85                 return (1);
  86 
  87         if (z1 < z2)
  88                 return (-1);
  89         if (z1 > z2)
  90                 return (1);
  91 
  92         return (0);
  93 }
  94 
  95 int
  96 vdev_queue_offset_compare(const void *x1, const void *x2)
  97 {
  98         const zio_t *z1 = x1;
  99         const zio_t *z2 = x2;
 100 
 101         if (z1->io_offset < z2->io_offset)
 102                 return (-1);
 103         if (z1->io_offset > z2->io_offset)
 104                 return (1);
 105 
 106         if (z1 < z2)
 107                 return (-1);
 108         if (z1 > z2)
 109                 return (1);
 110 
 111         return (0);
 112 }
 113 
 114 void
 115 vdev_queue_init(vdev_t *vd)
 116 {
 117         vdev_queue_t *vq = &vd->vdev_queue;
 118 
 119         mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
 120 
 121         avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
 122             sizeof (zio_t), offsetof(struct zio, io_deadline_node));
 123 
 124         avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
 125             sizeof (zio_t), offsetof(struct zio, io_offset_node));
 126 
 127         avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
 128             sizeof (zio_t), offsetof(struct zio, io_offset_node));
 129 
 130         avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
 131             sizeof (zio_t), offsetof(struct zio, io_offset_node));
 132 }
 133 
 134 void
 135 vdev_queue_fini(vdev_t *vd)
 136 {
 137         vdev_queue_t *vq = &vd->vdev_queue;
 138 
 139         avl_destroy(&vq->vq_deadline_tree);
 140         avl_destroy(&vq->vq_read_tree);
 141         avl_destroy(&vq->vq_write_tree);
 142         avl_destroy(&vq->vq_pending_tree);
 143 
 144         mutex_destroy(&vq->vq_lock);
 145 }
 146 
 147 static void
 148 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
 149 {
 150         spa_t *spa = zio->io_spa;
 151         avl_add(&vq->vq_deadline_tree, zio);
 152         avl_add(zio->io_vdev_tree, zio);
 153 
 154         if (spa->spa_iokstat != NULL) {
 155                 mutex_enter(&spa->spa_iokstat_lock);
 156                 kstat_waitq_enter(spa->spa_iokstat->ks_data);
 157                 mutex_exit(&spa->spa_iokstat_lock);
 158         }
 159 }
 160 
 161 static void
 162 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
 163 {
 164         spa_t *spa = zio->io_spa;
 165         avl_remove(&vq->vq_deadline_tree, zio);
 166         avl_remove(zio->io_vdev_tree, zio);
 167 
 168         if (spa->spa_iokstat != NULL) {
 169                 mutex_enter(&spa->spa_iokstat_lock);
 170                 kstat_waitq_exit(spa->spa_iokstat->ks_data);
 171                 mutex_exit(&spa->spa_iokstat_lock);
 172         }
 173 }
 174 
 175 static void
 176 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
 177 {
 178         spa_t *spa = zio->io_spa;
 179         avl_add(&vq->vq_pending_tree, zio);
 180         if (spa->spa_iokstat != NULL) {
 181                 mutex_enter(&spa->spa_iokstat_lock);
 182                 kstat_runq_enter(spa->spa_iokstat->ks_data);
 183                 mutex_exit(&spa->spa_iokstat_lock);
 184         }
 185 }
 186 
 187 static void
 188 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
 189 {
 190         spa_t *spa = zio->io_spa;
 191         avl_remove(&vq->vq_pending_tree, zio);
 192         if (spa->spa_iokstat != NULL) {
 193                 kstat_io_t *ksio = spa->spa_iokstat->ks_data;
 194 
 195                 mutex_enter(&spa->spa_iokstat_lock);
 196                 kstat_runq_exit(spa->spa_iokstat->ks_data);
 197                 if (zio->io_type == ZIO_TYPE_READ) {
 198                         ksio->reads++;
 199                         ksio->nread += zio->io_size;
 200                 } else if (zio->io_type == ZIO_TYPE_WRITE) {
 201                         ksio->writes++;
 202                         ksio->nwritten += zio->io_size;
 203                 }
 204                 mutex_exit(&spa->spa_iokstat_lock);
 205         }
 206 }
 207 
 208 static void
 209 vdev_queue_agg_io_done(zio_t *aio)
 210 {
 211         zio_t *pio;
 212 
 213         while ((pio = zio_walk_parents(aio)) != NULL)
 214                 if (aio->io_type == ZIO_TYPE_READ)
 215                         bcopy((char *)aio->io_data + (pio->io_offset -
 216                             aio->io_offset), pio->io_data, pio->io_size);
 217 
 218         zio_buf_free(aio->io_data, aio->io_size);
 219 }
 220 
 221 /*
 222  * Compute the range spanned by two i/os, which is the endpoint of the last
 223  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
 224  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
 225  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
 226  */
 227 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
 228 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
 229 
 230 static zio_t *
 231 vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
 232 {
 233         zio_t *fio, *lio, *aio, *dio, *nio, *mio;
 234         avl_tree_t *t;
 235         int flags;
 236         uint64_t maxspan = zfs_vdev_aggregation_limit;
 237         uint64_t maxgap;
 238         int stretch;
 239 
 240 again:
 241         ASSERT(MUTEX_HELD(&vq->vq_lock));
 242 
 243         if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
 244             avl_numnodes(&vq->vq_deadline_tree) == 0)
 245                 return (NULL);
 246 
 247         fio = lio = avl_first(&vq->vq_deadline_tree);
 248 
 249         t = fio->io_vdev_tree;
 250         flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
 251         maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
 252 
 253         if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
 254                 /*
 255                  * We can aggregate I/Os that are sufficiently adjacent and of
 256                  * the same flavor, as expressed by the AGG_INHERIT flags.
 257                  * The latter requirement is necessary so that certain
 258                  * attributes of the I/O, such as whether it's a normal I/O
 259                  * or a scrub/resilver, can be preserved in the aggregate.
 260                  * We can include optional I/Os, but don't allow them
 261                  * to begin a range as they add no benefit in that situation.
 262                  */
 263 
 264                 /*
 265                  * We keep track of the last non-optional I/O.
 266                  */
 267                 mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
 268 
 269                 /*
 270                  * Walk backwards through sufficiently contiguous I/Os
 271                  * recording the last non-option I/O.
 272                  */
 273                 while ((dio = AVL_PREV(t, fio)) != NULL &&
 274                     (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
 275                     IO_SPAN(dio, lio) <= maxspan &&
 276                     IO_GAP(dio, fio) <= maxgap) {
 277                         fio = dio;
 278                         if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
 279                                 mio = fio;
 280                 }
 281 
 282                 /*
 283                  * Skip any initial optional I/Os.
 284                  */
 285                 while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
 286                         fio = AVL_NEXT(t, fio);
 287                         ASSERT(fio != NULL);
 288                 }
 289 
 290                 /*
 291                  * Walk forward through sufficiently contiguous I/Os.
 292                  */
 293                 while ((dio = AVL_NEXT(t, lio)) != NULL &&
 294                     (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
 295                     IO_SPAN(fio, dio) <= maxspan &&
 296                     IO_GAP(lio, dio) <= maxgap) {
 297                         lio = dio;
 298                         if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
 299                                 mio = lio;
 300                 }
 301 
 302                 /*
 303                  * Now that we've established the range of the I/O aggregation
 304                  * we must decide what to do with trailing optional I/Os.
 305                  * For reads, there's nothing to do. While we are unable to
 306                  * aggregate further, it's possible that a trailing optional
 307                  * I/O would allow the underlying device to aggregate with
 308                  * subsequent I/Os. We must therefore determine if the next
 309                  * non-optional I/O is close enough to make aggregation
 310                  * worthwhile.
 311                  */
 312                 stretch = B_FALSE;
 313                 if (t != &vq->vq_read_tree && mio != NULL) {
 314                         nio = lio;
 315                         while ((dio = AVL_NEXT(t, nio)) != NULL &&
 316                             IO_GAP(nio, dio) == 0 &&
 317                             IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
 318                                 nio = dio;
 319                                 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
 320                                         stretch = B_TRUE;
 321                                         break;
 322                                 }
 323                         }
 324                 }
 325 
 326                 if (stretch) {
 327                         /* This may be a no-op. */
 328                         VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
 329                         dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
 330                 } else {
 331                         while (lio != mio && lio != fio) {
 332                                 ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
 333                                 lio = AVL_PREV(t, lio);
 334                                 ASSERT(lio != NULL);
 335                         }
 336                 }
 337         }
 338 
 339         if (fio != lio) {
 340                 uint64_t size = IO_SPAN(fio, lio);
 341                 ASSERT(size <= zfs_vdev_aggregation_limit);
 342 
 343                 aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
 344                     zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
 345                     flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
 346                     vdev_queue_agg_io_done, NULL);
 347                 aio->io_timestamp = fio->io_timestamp;
 348 
 349                 nio = fio;
 350                 do {
 351                         dio = nio;
 352                         nio = AVL_NEXT(t, dio);
 353                         ASSERT(dio->io_type == aio->io_type);
 354                         ASSERT(dio->io_vdev_tree == t);
 355 
 356                         if (dio->io_flags & ZIO_FLAG_NODATA) {
 357                                 ASSERT(dio->io_type == ZIO_TYPE_WRITE);
 358                                 bzero((char *)aio->io_data + (dio->io_offset -
 359                                     aio->io_offset), dio->io_size);
 360                         } else if (dio->io_type == ZIO_TYPE_WRITE) {
 361                                 bcopy(dio->io_data, (char *)aio->io_data +
 362                                     (dio->io_offset - aio->io_offset),
 363                                     dio->io_size);
 364                         }
 365 
 366                         zio_add_child(dio, aio);
 367                         vdev_queue_io_remove(vq, dio);
 368                         zio_vdev_io_bypass(dio);
 369                         zio_execute(dio);
 370                 } while (dio != lio);
 371 
 372                 vdev_queue_pending_add(vq, aio);
 373 
 374                 return (aio);
 375         }
 376 
 377         ASSERT(fio->io_vdev_tree == t);
 378         vdev_queue_io_remove(vq, fio);
 379 
 380         /*
 381          * If the I/O is or was optional and therefore has no data, we need to
 382          * simply discard it. We need to drop the vdev queue's lock to avoid a
 383          * deadlock that we could encounter since this I/O will complete
 384          * immediately.
 385          */
 386         if (fio->io_flags & ZIO_FLAG_NODATA) {
 387                 mutex_exit(&vq->vq_lock);
 388                 zio_vdev_io_bypass(fio);
 389                 zio_execute(fio);
 390                 mutex_enter(&vq->vq_lock);
 391                 goto again;
 392         }
 393 
 394         vdev_queue_pending_add(vq, fio);
 395 
 396         return (fio);
 397 }
 398 
 399 zio_t *
 400 vdev_queue_io(zio_t *zio)
 401 {
 402         vdev_queue_t *vq = &zio->io_vd->vdev_queue;
 403         zio_t *nio;
 404 
 405         ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
 406 
 407         if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
 408                 return (zio);
 409 
 410         zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
 411 
 412         if (zio->io_type == ZIO_TYPE_READ)
 413                 zio->io_vdev_tree = &vq->vq_read_tree;
 414         else
 415                 zio->io_vdev_tree = &vq->vq_write_tree;
 416 
 417         mutex_enter(&vq->vq_lock);
 418 
 419         zio->io_timestamp = gethrtime();
 420         zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) +
 421             zio->io_priority;
 422 
 423         vdev_queue_io_add(vq, zio);
 424 
 425         nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
 426 
 427         mutex_exit(&vq->vq_lock);
 428 
 429         if (nio == NULL)
 430                 return (NULL);
 431 
 432         if (nio->io_done == vdev_queue_agg_io_done) {
 433                 zio_nowait(nio);
 434                 return (NULL);
 435         }
 436 
 437         return (nio);
 438 }
 439 
 440 void
 441 vdev_queue_io_done(zio_t *zio)
 442 {
 443         vdev_queue_t *vq = &zio->io_vd->vdev_queue;
 444 
 445         if (zio_injection_enabled)
 446                 delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
 447 
 448         mutex_enter(&vq->vq_lock);
 449 
 450         vdev_queue_pending_remove(vq, zio);
 451 
 452         vq->vq_io_complete_ts = gethrtime();
 453 
 454         for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
 455                 zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
 456                 if (nio == NULL)
 457                         break;
 458                 mutex_exit(&vq->vq_lock);
 459                 if (nio->io_done == vdev_queue_agg_io_done) {
 460                         zio_nowait(nio);
 461                 } else {
 462                         zio_vdev_io_reissue(nio);
 463                         zio_execute(nio);
 464                 }
 465                 mutex_enter(&vq->vq_lock);
 466         }
 467 
 468         mutex_exit(&vq->vq_lock);
 469 }