Print this page
    
4045 zfs write throttle & i/o scheduler performance work
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/vdev_cache.c
          +++ new/usr/src/uts/common/fs/zfs/vdev_cache.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23   23   * Use is subject to license terms.
  24   24   */
  25   25  /*
  26   26   * Copyright (c) 2013 by Delphix. All rights reserved.
  27   27   */
  28   28  
  29   29  #include <sys/zfs_context.h>
  30   30  #include <sys/spa.h>
  31   31  #include <sys/vdev_impl.h>
  32   32  #include <sys/zio.h>
  33   33  #include <sys/kstat.h>
  34   34  
  35   35  /*
  36   36   * Virtual device read-ahead caching.
  37   37   *
  38   38   * This file implements a simple LRU read-ahead cache.  When the DMU reads
  39   39   * a given block, it will often want other, nearby blocks soon thereafter.
  40   40   * We take advantage of this by reading a larger disk region and caching
  41   41   * the result.  In the best case, this can turn 128 back-to-back 512-byte
  42   42   * reads into a single 64k read followed by 127 cache hits; this reduces
  43   43   * latency dramatically.  In the worst case, it can turn an isolated 512-byte
  44   44   * read into a 64k read, which doesn't affect latency all that much but is
  45   45   * terribly wasteful of bandwidth.  A more intelligent version of the cache
  46   46   * could keep track of access patterns and not do read-ahead unless it sees
  47   47   * at least two temporally close I/Os to the same region.  Currently, only
  48   48   * metadata I/O is inflated.  A futher enhancement could take advantage of
  49   49   * more semantic information about the I/O.  And it could use something
  50   50   * faster than an AVL tree; that was chosen solely for convenience.
  51   51   *
  52   52   * There are five cache operations: allocate, fill, read, write, evict.
  53   53   *
  54   54   * (1) Allocate.  This reserves a cache entry for the specified region.
  55   55   *     We separate the allocate and fill operations so that multiple threads
  56   56   *     don't generate I/O for the same cache miss.
  57   57   *
  58   58   * (2) Fill.  When the I/O for a cache miss completes, the fill routine
  59   59   *     places the data in the previously allocated cache entry.
  60   60   *
  61   61   * (3) Read.  Read data from the cache.
  62   62   *
  63   63   * (4) Write.  Update cache contents after write completion.
  64   64   *
  65   65   * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
  66   66   *     if the total cache size exceeds zfs_vdev_cache_size.
  67   67   */
  68   68  
  69   69  /*
  70   70   * These tunables are for performance analysis.
  71   71   */
  72   72  /*
  73   73   * All i/os smaller than zfs_vdev_cache_max will be turned into
  74   74   * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
  75   75   * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
  76   76   * vdev's vdev_cache.
  77   77   *
  78   78   * TODO: Note that with the current ZFS code, it turns out that the
  79   79   * vdev cache is not helpful, and in some cases actually harmful.  It
  80   80   * is better if we disable this.  Once some time has passed, we should
  81   81   * actually remove this to simplify the code.  For now we just disable
  82   82   * it by setting the zfs_vdev_cache_size to zero.  Note that Solaris 11
  83   83   * has made these same changes.
  84   84   */
  85   85  int zfs_vdev_cache_max = 1<<14;                 /* 16KB */
  86   86  int zfs_vdev_cache_size = 0;
  87   87  int zfs_vdev_cache_bshift = 16;
  88   88  
  89   89  #define VCBS (1 << zfs_vdev_cache_bshift)       /* 64KB */
  90   90  
  91   91  kstat_t *vdc_ksp = NULL;
  92   92  
  93   93  typedef struct vdc_stats {
  94   94          kstat_named_t vdc_stat_delegations;
  95   95          kstat_named_t vdc_stat_hits;
  96   96          kstat_named_t vdc_stat_misses;
  97   97  } vdc_stats_t;
  98   98  
  99   99  static vdc_stats_t vdc_stats = {
 100  100          { "delegations",        KSTAT_DATA_UINT64 },
 101  101          { "hits",               KSTAT_DATA_UINT64 },
 102  102          { "misses",             KSTAT_DATA_UINT64 }
 103  103  };
 104  104  
 105  105  #define VDCSTAT_BUMP(stat)      atomic_add_64(&vdc_stats.stat.value.ui64, 1);
 106  106  
 107  107  static int
 108  108  vdev_cache_offset_compare(const void *a1, const void *a2)
 109  109  {
 110  110          const vdev_cache_entry_t *ve1 = a1;
 111  111          const vdev_cache_entry_t *ve2 = a2;
 112  112  
 113  113          if (ve1->ve_offset < ve2->ve_offset)
 114  114                  return (-1);
 115  115          if (ve1->ve_offset > ve2->ve_offset)
 116  116                  return (1);
 117  117          return (0);
 118  118  }
 119  119  
 120  120  static int
 121  121  vdev_cache_lastused_compare(const void *a1, const void *a2)
 122  122  {
 123  123          const vdev_cache_entry_t *ve1 = a1;
 124  124          const vdev_cache_entry_t *ve2 = a2;
 125  125  
 126  126          if (ve1->ve_lastused < ve2->ve_lastused)
 127  127                  return (-1);
 128  128          if (ve1->ve_lastused > ve2->ve_lastused)
 129  129                  return (1);
 130  130  
 131  131          /*
 132  132           * Among equally old entries, sort by offset to ensure uniqueness.
 133  133           */
 134  134          return (vdev_cache_offset_compare(a1, a2));
 135  135  }
 136  136  
 137  137  /*
 138  138   * Evict the specified entry from the cache.
 139  139   */
 140  140  static void
 141  141  vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
 142  142  {
 143  143          ASSERT(MUTEX_HELD(&vc->vc_lock));
 144  144          ASSERT(ve->ve_fill_io == NULL);
 145  145          ASSERT(ve->ve_data != NULL);
 146  146  
 147  147          avl_remove(&vc->vc_lastused_tree, ve);
 148  148          avl_remove(&vc->vc_offset_tree, ve);
 149  149          zio_buf_free(ve->ve_data, VCBS);
 150  150          kmem_free(ve, sizeof (vdev_cache_entry_t));
 151  151  }
 152  152  
 153  153  /*
 154  154   * Allocate an entry in the cache.  At the point we don't have the data,
 155  155   * we're just creating a placeholder so that multiple threads don't all
 156  156   * go off and read the same blocks.
 157  157   */
 158  158  static vdev_cache_entry_t *
 159  159  vdev_cache_allocate(zio_t *zio)
 160  160  {
 161  161          vdev_cache_t *vc = &zio->io_vd->vdev_cache;
 162  162          uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
 163  163          vdev_cache_entry_t *ve;
 164  164  
 165  165          ASSERT(MUTEX_HELD(&vc->vc_lock));
 166  166  
 167  167          if (zfs_vdev_cache_size == 0)
 168  168                  return (NULL);
 169  169  
 170  170          /*
 171  171           * If adding a new entry would exceed the cache size,
 172  172           * evict the oldest entry (LRU).
 173  173           */
 174  174          if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
 175  175              zfs_vdev_cache_size) {
 176  176                  ve = avl_first(&vc->vc_lastused_tree);
 177  177                  if (ve->ve_fill_io != NULL)
 178  178                          return (NULL);
 179  179                  ASSERT(ve->ve_hits != 0);
 180  180                  vdev_cache_evict(vc, ve);
 181  181          }
 182  182  
 183  183          ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
 184  184          ve->ve_offset = offset;
 185  185          ve->ve_lastused = ddi_get_lbolt();
 186  186          ve->ve_data = zio_buf_alloc(VCBS);
 187  187  
 188  188          avl_add(&vc->vc_offset_tree, ve);
 189  189          avl_add(&vc->vc_lastused_tree, ve);
 190  190  
 191  191          return (ve);
 192  192  }
 193  193  
 194  194  static void
 195  195  vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
 196  196  {
 197  197          uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
 198  198  
 199  199          ASSERT(MUTEX_HELD(&vc->vc_lock));
 200  200          ASSERT(ve->ve_fill_io == NULL);
 201  201  
 202  202          if (ve->ve_lastused != ddi_get_lbolt()) {
 203  203                  avl_remove(&vc->vc_lastused_tree, ve);
 204  204                  ve->ve_lastused = ddi_get_lbolt();
 205  205                  avl_add(&vc->vc_lastused_tree, ve);
 206  206          }
 207  207  
 208  208          ve->ve_hits++;
 209  209          bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
 210  210  }
 211  211  
 212  212  /*
 213  213   * Fill a previously allocated cache entry with data.
 214  214   */
 215  215  static void
 216  216  vdev_cache_fill(zio_t *fio)
 217  217  {
 218  218          vdev_t *vd = fio->io_vd;
 219  219          vdev_cache_t *vc = &vd->vdev_cache;
 220  220          vdev_cache_entry_t *ve = fio->io_private;
 221  221          zio_t *pio;
 222  222  
 223  223          ASSERT(fio->io_size == VCBS);
 224  224  
 225  225          /*
 226  226           * Add data to the cache.
 227  227           */
 228  228          mutex_enter(&vc->vc_lock);
 229  229  
 230  230          ASSERT(ve->ve_fill_io == fio);
 231  231          ASSERT(ve->ve_offset == fio->io_offset);
 232  232          ASSERT(ve->ve_data == fio->io_data);
 233  233  
 234  234          ve->ve_fill_io = NULL;
 235  235  
 236  236          /*
 237  237           * Even if this cache line was invalidated by a missed write update,
 238  238           * any reads that were queued up before the missed update are still
 239  239           * valid, so we can satisfy them from this line before we evict it.
 240  240           */
 241  241          while ((pio = zio_walk_parents(fio)) != NULL)
 242  242                  vdev_cache_hit(vc, ve, pio);
 243  243  
 244  244          if (fio->io_error || ve->ve_missed_update)
 245  245                  vdev_cache_evict(vc, ve);
 246  246  
 247  247          mutex_exit(&vc->vc_lock);
 248  248  }
 249  249  
 250  250  /*
 251  251   * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
 252  252   */
 253  253  int
 254  254  vdev_cache_read(zio_t *zio)
 255  255  {
 256  256          vdev_cache_t *vc = &zio->io_vd->vdev_cache;
 257  257          vdev_cache_entry_t *ve, ve_search;
 258  258          uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
 259  259          uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
 260  260          zio_t *fio;
 261  261  
 262  262          ASSERT(zio->io_type == ZIO_TYPE_READ);
 263  263  
 264  264          if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
 265  265                  return (SET_ERROR(EINVAL));
 266  266  
 267  267          if (zio->io_size > zfs_vdev_cache_max)
 268  268                  return (SET_ERROR(EOVERFLOW));
 269  269  
 270  270          /*
 271  271           * If the I/O straddles two or more cache blocks, don't cache it.
 272  272           */
 273  273          if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
 274  274                  return (SET_ERROR(EXDEV));
 275  275  
 276  276          ASSERT(cache_phase + zio->io_size <= VCBS);
 277  277  
 278  278          mutex_enter(&vc->vc_lock);
 279  279  
 280  280          ve_search.ve_offset = cache_offset;
 281  281          ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
 282  282  
 283  283          if (ve != NULL) {
 284  284                  if (ve->ve_missed_update) {
 285  285                          mutex_exit(&vc->vc_lock);
 286  286                          return (SET_ERROR(ESTALE));
 287  287                  }
 288  288  
 289  289                  if ((fio = ve->ve_fill_io) != NULL) {
 290  290                          zio_vdev_io_bypass(zio);
 291  291                          zio_add_child(zio, fio);
 292  292                          mutex_exit(&vc->vc_lock);
 293  293                          VDCSTAT_BUMP(vdc_stat_delegations);
 294  294                          return (0);
 295  295                  }
 296  296  
 297  297                  vdev_cache_hit(vc, ve, zio);
 298  298                  zio_vdev_io_bypass(zio);
 299  299  
 300  300                  mutex_exit(&vc->vc_lock);
 301  301                  VDCSTAT_BUMP(vdc_stat_hits);
 302  302                  return (0);
  
    | ↓ open down ↓ | 302 lines elided | ↑ open up ↑ | 
 303  303          }
 304  304  
 305  305          ve = vdev_cache_allocate(zio);
 306  306  
 307  307          if (ve == NULL) {
 308  308                  mutex_exit(&vc->vc_lock);
 309  309                  return (SET_ERROR(ENOMEM));
 310  310          }
 311  311  
 312  312          fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
 313      -            ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
      313 +            ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
 314  314              ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
 315  315  
 316  316          ve->ve_fill_io = fio;
 317  317          zio_vdev_io_bypass(zio);
 318  318          zio_add_child(zio, fio);
 319  319  
 320  320          mutex_exit(&vc->vc_lock);
 321  321          zio_nowait(fio);
 322  322          VDCSTAT_BUMP(vdc_stat_misses);
 323  323  
 324  324          return (0);
 325  325  }
 326  326  
 327  327  /*
 328  328   * Update cache contents upon write completion.
 329  329   */
 330  330  void
 331  331  vdev_cache_write(zio_t *zio)
 332  332  {
 333  333          vdev_cache_t *vc = &zio->io_vd->vdev_cache;
 334  334          vdev_cache_entry_t *ve, ve_search;
 335  335          uint64_t io_start = zio->io_offset;
 336  336          uint64_t io_end = io_start + zio->io_size;
 337  337          uint64_t min_offset = P2ALIGN(io_start, VCBS);
 338  338          uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
 339  339          avl_index_t where;
 340  340  
 341  341          ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 342  342  
 343  343          mutex_enter(&vc->vc_lock);
 344  344  
 345  345          ve_search.ve_offset = min_offset;
 346  346          ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
 347  347  
 348  348          if (ve == NULL)
 349  349                  ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
 350  350  
 351  351          while (ve != NULL && ve->ve_offset < max_offset) {
 352  352                  uint64_t start = MAX(ve->ve_offset, io_start);
 353  353                  uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
 354  354  
 355  355                  if (ve->ve_fill_io != NULL) {
 356  356                          ve->ve_missed_update = 1;
 357  357                  } else {
 358  358                          bcopy((char *)zio->io_data + start - io_start,
 359  359                              ve->ve_data + start - ve->ve_offset, end - start);
 360  360                  }
 361  361                  ve = AVL_NEXT(&vc->vc_offset_tree, ve);
 362  362          }
 363  363          mutex_exit(&vc->vc_lock);
 364  364  }
 365  365  
 366  366  void
 367  367  vdev_cache_purge(vdev_t *vd)
 368  368  {
 369  369          vdev_cache_t *vc = &vd->vdev_cache;
 370  370          vdev_cache_entry_t *ve;
 371  371  
 372  372          mutex_enter(&vc->vc_lock);
 373  373          while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
 374  374                  vdev_cache_evict(vc, ve);
 375  375          mutex_exit(&vc->vc_lock);
 376  376  }
 377  377  
 378  378  void
 379  379  vdev_cache_init(vdev_t *vd)
 380  380  {
 381  381          vdev_cache_t *vc = &vd->vdev_cache;
 382  382  
 383  383          mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
 384  384  
 385  385          avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
 386  386              sizeof (vdev_cache_entry_t),
 387  387              offsetof(struct vdev_cache_entry, ve_offset_node));
 388  388  
 389  389          avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
 390  390              sizeof (vdev_cache_entry_t),
 391  391              offsetof(struct vdev_cache_entry, ve_lastused_node));
 392  392  }
 393  393  
 394  394  void
 395  395  vdev_cache_fini(vdev_t *vd)
 396  396  {
 397  397          vdev_cache_t *vc = &vd->vdev_cache;
 398  398  
 399  399          vdev_cache_purge(vd);
 400  400  
 401  401          avl_destroy(&vc->vc_offset_tree);
 402  402          avl_destroy(&vc->vc_lastused_tree);
 403  403  
 404  404          mutex_destroy(&vc->vc_lock);
 405  405  }
 406  406  
 407  407  void
 408  408  vdev_cache_stat_init(void)
 409  409  {
 410  410          vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
 411  411              KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
 412  412              KSTAT_FLAG_VIRTUAL);
 413  413          if (vdc_ksp != NULL) {
 414  414                  vdc_ksp->ks_data = &vdc_stats;
 415  415                  kstat_install(vdc_ksp);
 416  416          }
 417  417  }
 418  418  
 419  419  void
 420  420  vdev_cache_stat_fini(void)
 421  421  {
 422  422          if (vdc_ksp != NULL) {
 423  423                  kstat_delete(vdc_ksp);
 424  424                  vdc_ksp = NULL;
 425  425          }
 426  426  }
  
    | ↓ open down ↓ | 103 lines elided | ↑ open up ↑ | 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX