Print this page
4045 zfs write throttle & i/o scheduler performance work
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/vdev.c
+++ new/usr/src/uts/common/fs/zfs/vdev.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 26 */
27 27
28 28 #include <sys/zfs_context.h>
29 29 #include <sys/fm/fs/zfs.h>
30 30 #include <sys/spa.h>
31 31 #include <sys/spa_impl.h>
32 32 #include <sys/dmu.h>
33 33 #include <sys/dmu_tx.h>
34 34 #include <sys/vdev_impl.h>
35 35 #include <sys/uberblock_impl.h>
36 36 #include <sys/metaslab.h>
37 37 #include <sys/metaslab_impl.h>
38 38 #include <sys/space_map.h>
39 39 #include <sys/zio.h>
40 40 #include <sys/zap.h>
41 41 #include <sys/fs/zfs.h>
42 42 #include <sys/arc.h>
43 43 #include <sys/zil.h>
44 44 #include <sys/dsl_scan.h>
45 45
46 46 /*
47 47 * Virtual device management.
48 48 */
49 49
50 50 static vdev_ops_t *vdev_ops_table[] = {
51 51 &vdev_root_ops,
52 52 &vdev_raidz_ops,
53 53 &vdev_mirror_ops,
54 54 &vdev_replacing_ops,
55 55 &vdev_spare_ops,
56 56 &vdev_disk_ops,
57 57 &vdev_file_ops,
58 58 &vdev_missing_ops,
59 59 &vdev_hole_ops,
60 60 NULL
61 61 };
62 62
63 63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 64 int zfs_scrub_limit = 10;
65 65
66 66 /*
67 67 * Given a vdev type, return the appropriate ops vector.
68 68 */
69 69 static vdev_ops_t *
70 70 vdev_getops(const char *type)
71 71 {
72 72 vdev_ops_t *ops, **opspp;
73 73
74 74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 75 if (strcmp(ops->vdev_op_type, type) == 0)
76 76 break;
77 77
78 78 return (ops);
79 79 }
80 80
81 81 /*
82 82 * Default asize function: return the MAX of psize with the asize of
83 83 * all children. This is what's used by anything other than RAID-Z.
84 84 */
85 85 uint64_t
86 86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 87 {
88 88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 89 uint64_t csize;
90 90
91 91 for (int c = 0; c < vd->vdev_children; c++) {
92 92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 93 asize = MAX(asize, csize);
94 94 }
95 95
96 96 return (asize);
97 97 }
98 98
99 99 /*
100 100 * Get the minimum allocatable size. We define the allocatable size as
101 101 * the vdev's asize rounded to the nearest metaslab. This allows us to
102 102 * replace or attach devices which don't have the same physical size but
103 103 * can still satisfy the same number of allocations.
104 104 */
105 105 uint64_t
106 106 vdev_get_min_asize(vdev_t *vd)
107 107 {
108 108 vdev_t *pvd = vd->vdev_parent;
109 109
110 110 /*
111 111 * If our parent is NULL (inactive spare or cache) or is the root,
112 112 * just return our own asize.
113 113 */
114 114 if (pvd == NULL)
115 115 return (vd->vdev_asize);
116 116
117 117 /*
118 118 * The top-level vdev just returns the allocatable size rounded
119 119 * to the nearest metaslab.
120 120 */
121 121 if (vd == vd->vdev_top)
122 122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
123 123
124 124 /*
125 125 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 126 * so each child must provide at least 1/Nth of its asize.
127 127 */
128 128 if (pvd->vdev_ops == &vdev_raidz_ops)
129 129 return (pvd->vdev_min_asize / pvd->vdev_children);
130 130
131 131 return (pvd->vdev_min_asize);
132 132 }
133 133
134 134 void
135 135 vdev_set_min_asize(vdev_t *vd)
136 136 {
137 137 vd->vdev_min_asize = vdev_get_min_asize(vd);
138 138
139 139 for (int c = 0; c < vd->vdev_children; c++)
140 140 vdev_set_min_asize(vd->vdev_child[c]);
141 141 }
142 142
143 143 vdev_t *
144 144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 145 {
146 146 vdev_t *rvd = spa->spa_root_vdev;
147 147
148 148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149 149
150 150 if (vdev < rvd->vdev_children) {
151 151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 152 return (rvd->vdev_child[vdev]);
153 153 }
154 154
155 155 return (NULL);
156 156 }
157 157
158 158 vdev_t *
159 159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 160 {
161 161 vdev_t *mvd;
162 162
163 163 if (vd->vdev_guid == guid)
164 164 return (vd);
165 165
166 166 for (int c = 0; c < vd->vdev_children; c++)
167 167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
168 168 NULL)
169 169 return (mvd);
170 170
171 171 return (NULL);
172 172 }
173 173
174 174 void
175 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
176 176 {
177 177 size_t oldsize, newsize;
178 178 uint64_t id = cvd->vdev_id;
179 179 vdev_t **newchild;
180 180
181 181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
182 182 ASSERT(cvd->vdev_parent == NULL);
183 183
184 184 cvd->vdev_parent = pvd;
185 185
186 186 if (pvd == NULL)
187 187 return;
188 188
189 189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
190 190
191 191 oldsize = pvd->vdev_children * sizeof (vdev_t *);
192 192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
193 193 newsize = pvd->vdev_children * sizeof (vdev_t *);
194 194
195 195 newchild = kmem_zalloc(newsize, KM_SLEEP);
196 196 if (pvd->vdev_child != NULL) {
197 197 bcopy(pvd->vdev_child, newchild, oldsize);
198 198 kmem_free(pvd->vdev_child, oldsize);
199 199 }
200 200
201 201 pvd->vdev_child = newchild;
202 202 pvd->vdev_child[id] = cvd;
203 203
204 204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
205 205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
206 206
207 207 /*
208 208 * Walk up all ancestors to update guid sum.
209 209 */
210 210 for (; pvd != NULL; pvd = pvd->vdev_parent)
211 211 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
212 212 }
213 213
214 214 void
215 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 216 {
217 217 int c;
218 218 uint_t id = cvd->vdev_id;
219 219
220 220 ASSERT(cvd->vdev_parent == pvd);
221 221
222 222 if (pvd == NULL)
223 223 return;
224 224
225 225 ASSERT(id < pvd->vdev_children);
226 226 ASSERT(pvd->vdev_child[id] == cvd);
227 227
228 228 pvd->vdev_child[id] = NULL;
229 229 cvd->vdev_parent = NULL;
230 230
231 231 for (c = 0; c < pvd->vdev_children; c++)
232 232 if (pvd->vdev_child[c])
233 233 break;
234 234
235 235 if (c == pvd->vdev_children) {
236 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 237 pvd->vdev_child = NULL;
238 238 pvd->vdev_children = 0;
239 239 }
240 240
241 241 /*
242 242 * Walk up all ancestors to update guid sum.
243 243 */
244 244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246 246 }
247 247
248 248 /*
249 249 * Remove any holes in the child array.
250 250 */
251 251 void
252 252 vdev_compact_children(vdev_t *pvd)
253 253 {
254 254 vdev_t **newchild, *cvd;
255 255 int oldc = pvd->vdev_children;
256 256 int newc;
257 257
258 258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
259 259
260 260 for (int c = newc = 0; c < oldc; c++)
261 261 if (pvd->vdev_child[c])
262 262 newc++;
263 263
264 264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
265 265
266 266 for (int c = newc = 0; c < oldc; c++) {
267 267 if ((cvd = pvd->vdev_child[c]) != NULL) {
268 268 newchild[newc] = cvd;
269 269 cvd->vdev_id = newc++;
270 270 }
271 271 }
272 272
273 273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
274 274 pvd->vdev_child = newchild;
275 275 pvd->vdev_children = newc;
276 276 }
277 277
278 278 /*
279 279 * Allocate and minimally initialize a vdev_t.
280 280 */
281 281 vdev_t *
282 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
283 283 {
284 284 vdev_t *vd;
285 285
286 286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
287 287
288 288 if (spa->spa_root_vdev == NULL) {
289 289 ASSERT(ops == &vdev_root_ops);
290 290 spa->spa_root_vdev = vd;
291 291 spa->spa_load_guid = spa_generate_guid(NULL);
292 292 }
293 293
294 294 if (guid == 0 && ops != &vdev_hole_ops) {
295 295 if (spa->spa_root_vdev == vd) {
296 296 /*
297 297 * The root vdev's guid will also be the pool guid,
298 298 * which must be unique among all pools.
299 299 */
300 300 guid = spa_generate_guid(NULL);
301 301 } else {
302 302 /*
303 303 * Any other vdev's guid must be unique within the pool.
304 304 */
305 305 guid = spa_generate_guid(spa);
306 306 }
307 307 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
308 308 }
309 309
310 310 vd->vdev_spa = spa;
311 311 vd->vdev_id = id;
312 312 vd->vdev_guid = guid;
313 313 vd->vdev_guid_sum = guid;
314 314 vd->vdev_ops = ops;
315 315 vd->vdev_state = VDEV_STATE_CLOSED;
316 316 vd->vdev_ishole = (ops == &vdev_hole_ops);
317 317
318 318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
321 321 for (int t = 0; t < DTL_TYPES; t++) {
322 322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
323 323 &vd->vdev_dtl_lock);
324 324 }
325 325 txg_list_create(&vd->vdev_ms_list,
326 326 offsetof(struct metaslab, ms_txg_node));
327 327 txg_list_create(&vd->vdev_dtl_list,
328 328 offsetof(struct vdev, vdev_dtl_node));
329 329 vd->vdev_stat.vs_timestamp = gethrtime();
330 330 vdev_queue_init(vd);
331 331 vdev_cache_init(vd);
332 332
333 333 return (vd);
334 334 }
335 335
336 336 /*
337 337 * Allocate a new vdev. The 'alloctype' is used to control whether we are
338 338 * creating a new vdev or loading an existing one - the behavior is slightly
339 339 * different for each case.
340 340 */
341 341 int
342 342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
343 343 int alloctype)
344 344 {
345 345 vdev_ops_t *ops;
346 346 char *type;
347 347 uint64_t guid = 0, islog, nparity;
348 348 vdev_t *vd;
349 349
350 350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351 351
352 352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
353 353 return (SET_ERROR(EINVAL));
354 354
355 355 if ((ops = vdev_getops(type)) == NULL)
356 356 return (SET_ERROR(EINVAL));
357 357
358 358 /*
359 359 * If this is a load, get the vdev guid from the nvlist.
360 360 * Otherwise, vdev_alloc_common() will generate one for us.
361 361 */
362 362 if (alloctype == VDEV_ALLOC_LOAD) {
363 363 uint64_t label_id;
364 364
365 365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
366 366 label_id != id)
367 367 return (SET_ERROR(EINVAL));
368 368
369 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 370 return (SET_ERROR(EINVAL));
371 371 } else if (alloctype == VDEV_ALLOC_SPARE) {
372 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 373 return (SET_ERROR(EINVAL));
374 374 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
375 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 376 return (SET_ERROR(EINVAL));
377 377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
378 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 379 return (SET_ERROR(EINVAL));
380 380 }
381 381
382 382 /*
383 383 * The first allocated vdev must be of type 'root'.
384 384 */
385 385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
386 386 return (SET_ERROR(EINVAL));
387 387
388 388 /*
389 389 * Determine whether we're a log vdev.
390 390 */
391 391 islog = 0;
392 392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
393 393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
394 394 return (SET_ERROR(ENOTSUP));
395 395
396 396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
397 397 return (SET_ERROR(ENOTSUP));
398 398
399 399 /*
400 400 * Set the nparity property for RAID-Z vdevs.
401 401 */
402 402 nparity = -1ULL;
403 403 if (ops == &vdev_raidz_ops) {
404 404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
405 405 &nparity) == 0) {
406 406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
407 407 return (SET_ERROR(EINVAL));
408 408 /*
409 409 * Previous versions could only support 1 or 2 parity
410 410 * device.
411 411 */
412 412 if (nparity > 1 &&
413 413 spa_version(spa) < SPA_VERSION_RAIDZ2)
414 414 return (SET_ERROR(ENOTSUP));
415 415 if (nparity > 2 &&
416 416 spa_version(spa) < SPA_VERSION_RAIDZ3)
417 417 return (SET_ERROR(ENOTSUP));
418 418 } else {
419 419 /*
420 420 * We require the parity to be specified for SPAs that
421 421 * support multiple parity levels.
422 422 */
423 423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
424 424 return (SET_ERROR(EINVAL));
425 425 /*
426 426 * Otherwise, we default to 1 parity device for RAID-Z.
427 427 */
428 428 nparity = 1;
429 429 }
430 430 } else {
431 431 nparity = 0;
432 432 }
433 433 ASSERT(nparity != -1ULL);
434 434
435 435 vd = vdev_alloc_common(spa, id, guid, ops);
436 436
437 437 vd->vdev_islog = islog;
438 438 vd->vdev_nparity = nparity;
439 439
440 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 441 vd->vdev_path = spa_strdup(vd->vdev_path);
442 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 443 vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 445 &vd->vdev_physpath) == 0)
446 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 448 vd->vdev_fru = spa_strdup(vd->vdev_fru);
449 449
450 450 /*
451 451 * Set the whole_disk property. If it's not specified, leave the value
452 452 * as -1.
453 453 */
454 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 455 &vd->vdev_wholedisk) != 0)
456 456 vd->vdev_wholedisk = -1ULL;
457 457
458 458 /*
459 459 * Look for the 'not present' flag. This will only be set if the device
460 460 * was not present at the time of import.
461 461 */
462 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 463 &vd->vdev_not_present);
464 464
465 465 /*
466 466 * Get the alignment requirement.
467 467 */
468 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
469 469
470 470 /*
471 471 * Retrieve the vdev creation time.
472 472 */
473 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
474 474 &vd->vdev_crtxg);
475 475
476 476 /*
477 477 * If we're a top-level vdev, try to load the allocation parameters.
478 478 */
479 479 if (parent && !parent->vdev_parent &&
480 480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
481 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
482 482 &vd->vdev_ms_array);
483 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
484 484 &vd->vdev_ms_shift);
485 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
486 486 &vd->vdev_asize);
487 487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
488 488 &vd->vdev_removing);
489 489 }
490 490
491 491 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
492 492 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 493 alloctype == VDEV_ALLOC_ADD ||
494 494 alloctype == VDEV_ALLOC_SPLIT ||
495 495 alloctype == VDEV_ALLOC_ROOTPOOL);
496 496 vd->vdev_mg = metaslab_group_create(islog ?
497 497 spa_log_class(spa) : spa_normal_class(spa), vd);
498 498 }
499 499
500 500 /*
501 501 * If we're a leaf vdev, try to load the DTL object and other state.
502 502 */
503 503 if (vd->vdev_ops->vdev_op_leaf &&
504 504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 505 alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 506 if (alloctype == VDEV_ALLOC_LOAD) {
507 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 508 &vd->vdev_dtl_smo.smo_object);
509 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 510 &vd->vdev_unspare);
511 511 }
512 512
513 513 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 514 uint64_t spare = 0;
515 515
516 516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 517 &spare) == 0 && spare)
518 518 spa_spare_add(vd);
519 519 }
520 520
521 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 522 &vd->vdev_offline);
523 523
524 524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
525 525 &vd->vdev_resilver_txg);
526 526
527 527 /*
528 528 * When importing a pool, we want to ignore the persistent fault
529 529 * state, as the diagnosis made on another system may not be
530 530 * valid in the current context. Local vdevs will
531 531 * remain in the faulted state.
532 532 */
533 533 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 535 &vd->vdev_faulted);
536 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 537 &vd->vdev_degraded);
538 538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 539 &vd->vdev_removed);
540 540
541 541 if (vd->vdev_faulted || vd->vdev_degraded) {
542 542 char *aux;
543 543
544 544 vd->vdev_label_aux =
545 545 VDEV_AUX_ERR_EXCEEDED;
546 546 if (nvlist_lookup_string(nv,
547 547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 548 strcmp(aux, "external") == 0)
549 549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
550 550 }
551 551 }
552 552 }
553 553
554 554 /*
555 555 * Add ourselves to the parent's list of children.
556 556 */
557 557 vdev_add_child(parent, vd);
558 558
559 559 *vdp = vd;
560 560
561 561 return (0);
562 562 }
563 563
564 564 void
565 565 vdev_free(vdev_t *vd)
566 566 {
567 567 spa_t *spa = vd->vdev_spa;
568 568
569 569 /*
570 570 * vdev_free() implies closing the vdev first. This is simpler than
571 571 * trying to ensure complicated semantics for all callers.
572 572 */
573 573 vdev_close(vd);
574 574
575 575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
577 577
578 578 /*
579 579 * Free all children.
580 580 */
581 581 for (int c = 0; c < vd->vdev_children; c++)
582 582 vdev_free(vd->vdev_child[c]);
583 583
584 584 ASSERT(vd->vdev_child == NULL);
585 585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
586 586
587 587 /*
588 588 * Discard allocation state.
589 589 */
590 590 if (vd->vdev_mg != NULL) {
591 591 vdev_metaslab_fini(vd);
592 592 metaslab_group_destroy(vd->vdev_mg);
593 593 }
594 594
595 595 ASSERT0(vd->vdev_stat.vs_space);
596 596 ASSERT0(vd->vdev_stat.vs_dspace);
597 597 ASSERT0(vd->vdev_stat.vs_alloc);
598 598
599 599 /*
600 600 * Remove this vdev from its parent's child list.
601 601 */
602 602 vdev_remove_child(vd->vdev_parent, vd);
603 603
604 604 ASSERT(vd->vdev_parent == NULL);
605 605
606 606 /*
607 607 * Clean up vdev structure.
608 608 */
609 609 vdev_queue_fini(vd);
610 610 vdev_cache_fini(vd);
611 611
612 612 if (vd->vdev_path)
613 613 spa_strfree(vd->vdev_path);
614 614 if (vd->vdev_devid)
615 615 spa_strfree(vd->vdev_devid);
616 616 if (vd->vdev_physpath)
617 617 spa_strfree(vd->vdev_physpath);
618 618 if (vd->vdev_fru)
619 619 spa_strfree(vd->vdev_fru);
620 620
621 621 if (vd->vdev_isspare)
622 622 spa_spare_remove(vd);
623 623 if (vd->vdev_isl2cache)
624 624 spa_l2cache_remove(vd);
625 625
626 626 txg_list_destroy(&vd->vdev_ms_list);
627 627 txg_list_destroy(&vd->vdev_dtl_list);
628 628
629 629 mutex_enter(&vd->vdev_dtl_lock);
630 630 for (int t = 0; t < DTL_TYPES; t++) {
631 631 space_map_unload(&vd->vdev_dtl[t]);
632 632 space_map_destroy(&vd->vdev_dtl[t]);
633 633 }
634 634 mutex_exit(&vd->vdev_dtl_lock);
635 635
636 636 mutex_destroy(&vd->vdev_dtl_lock);
637 637 mutex_destroy(&vd->vdev_stat_lock);
638 638 mutex_destroy(&vd->vdev_probe_lock);
639 639
640 640 if (vd == spa->spa_root_vdev)
641 641 spa->spa_root_vdev = NULL;
642 642
643 643 kmem_free(vd, sizeof (vdev_t));
644 644 }
645 645
646 646 /*
647 647 * Transfer top-level vdev state from svd to tvd.
648 648 */
649 649 static void
650 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
651 651 {
652 652 spa_t *spa = svd->vdev_spa;
653 653 metaslab_t *msp;
654 654 vdev_t *vd;
655 655 int t;
656 656
657 657 ASSERT(tvd == tvd->vdev_top);
658 658
659 659 tvd->vdev_ms_array = svd->vdev_ms_array;
660 660 tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 661 tvd->vdev_ms_count = svd->vdev_ms_count;
662 662
663 663 svd->vdev_ms_array = 0;
664 664 svd->vdev_ms_shift = 0;
665 665 svd->vdev_ms_count = 0;
666 666
667 667 if (tvd->vdev_mg)
668 668 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
669 669 tvd->vdev_mg = svd->vdev_mg;
670 670 tvd->vdev_ms = svd->vdev_ms;
671 671
672 672 svd->vdev_mg = NULL;
673 673 svd->vdev_ms = NULL;
674 674
675 675 if (tvd->vdev_mg != NULL)
676 676 tvd->vdev_mg->mg_vd = tvd;
677 677
678 678 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
679 679 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
680 680 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
681 681
682 682 svd->vdev_stat.vs_alloc = 0;
683 683 svd->vdev_stat.vs_space = 0;
684 684 svd->vdev_stat.vs_dspace = 0;
685 685
686 686 for (t = 0; t < TXG_SIZE; t++) {
687 687 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
688 688 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
689 689 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
690 690 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
691 691 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
692 692 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
693 693 }
694 694
695 695 if (list_link_active(&svd->vdev_config_dirty_node)) {
696 696 vdev_config_clean(svd);
697 697 vdev_config_dirty(tvd);
698 698 }
699 699
700 700 if (list_link_active(&svd->vdev_state_dirty_node)) {
701 701 vdev_state_clean(svd);
702 702 vdev_state_dirty(tvd);
703 703 }
704 704
705 705 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
706 706 svd->vdev_deflate_ratio = 0;
707 707
708 708 tvd->vdev_islog = svd->vdev_islog;
709 709 svd->vdev_islog = 0;
710 710 }
711 711
712 712 static void
713 713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
714 714 {
715 715 if (vd == NULL)
716 716 return;
717 717
718 718 vd->vdev_top = tvd;
719 719
720 720 for (int c = 0; c < vd->vdev_children; c++)
721 721 vdev_top_update(tvd, vd->vdev_child[c]);
722 722 }
723 723
724 724 /*
725 725 * Add a mirror/replacing vdev above an existing vdev.
726 726 */
727 727 vdev_t *
728 728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
729 729 {
730 730 spa_t *spa = cvd->vdev_spa;
731 731 vdev_t *pvd = cvd->vdev_parent;
732 732 vdev_t *mvd;
733 733
734 734 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
735 735
736 736 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
737 737
738 738 mvd->vdev_asize = cvd->vdev_asize;
739 739 mvd->vdev_min_asize = cvd->vdev_min_asize;
740 740 mvd->vdev_max_asize = cvd->vdev_max_asize;
741 741 mvd->vdev_ashift = cvd->vdev_ashift;
742 742 mvd->vdev_state = cvd->vdev_state;
743 743 mvd->vdev_crtxg = cvd->vdev_crtxg;
744 744
745 745 vdev_remove_child(pvd, cvd);
746 746 vdev_add_child(pvd, mvd);
747 747 cvd->vdev_id = mvd->vdev_children;
748 748 vdev_add_child(mvd, cvd);
749 749 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
750 750
751 751 if (mvd == mvd->vdev_top)
752 752 vdev_top_transfer(cvd, mvd);
753 753
754 754 return (mvd);
755 755 }
756 756
757 757 /*
758 758 * Remove a 1-way mirror/replacing vdev from the tree.
759 759 */
760 760 void
761 761 vdev_remove_parent(vdev_t *cvd)
762 762 {
763 763 vdev_t *mvd = cvd->vdev_parent;
764 764 vdev_t *pvd = mvd->vdev_parent;
765 765
766 766 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
767 767
768 768 ASSERT(mvd->vdev_children == 1);
769 769 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
770 770 mvd->vdev_ops == &vdev_replacing_ops ||
771 771 mvd->vdev_ops == &vdev_spare_ops);
772 772 cvd->vdev_ashift = mvd->vdev_ashift;
773 773
774 774 vdev_remove_child(mvd, cvd);
775 775 vdev_remove_child(pvd, mvd);
776 776
777 777 /*
778 778 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
779 779 * Otherwise, we could have detached an offline device, and when we
780 780 * go to import the pool we'll think we have two top-level vdevs,
781 781 * instead of a different version of the same top-level vdev.
782 782 */
783 783 if (mvd->vdev_top == mvd) {
784 784 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
785 785 cvd->vdev_orig_guid = cvd->vdev_guid;
786 786 cvd->vdev_guid += guid_delta;
787 787 cvd->vdev_guid_sum += guid_delta;
788 788 }
789 789 cvd->vdev_id = mvd->vdev_id;
790 790 vdev_add_child(pvd, cvd);
791 791 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
792 792
793 793 if (cvd == cvd->vdev_top)
794 794 vdev_top_transfer(mvd, cvd);
795 795
796 796 ASSERT(mvd->vdev_children == 0);
797 797 vdev_free(mvd);
798 798 }
799 799
800 800 int
801 801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
802 802 {
803 803 spa_t *spa = vd->vdev_spa;
804 804 objset_t *mos = spa->spa_meta_objset;
805 805 uint64_t m;
806 806 uint64_t oldc = vd->vdev_ms_count;
807 807 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
808 808 metaslab_t **mspp;
809 809 int error;
810 810
811 811 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
812 812
813 813 /*
814 814 * This vdev is not being allocated from yet or is a hole.
815 815 */
816 816 if (vd->vdev_ms_shift == 0)
817 817 return (0);
818 818
819 819 ASSERT(!vd->vdev_ishole);
820 820
821 821 /*
822 822 * Compute the raidz-deflation ratio. Note, we hard-code
823 823 * in 128k (1 << 17) because it is the current "typical" blocksize.
824 824 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
825 825 * or we will inconsistently account for existing bp's.
826 826 */
827 827 vd->vdev_deflate_ratio = (1 << 17) /
828 828 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
829 829
830 830 ASSERT(oldc <= newc);
831 831
832 832 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
833 833
834 834 if (oldc != 0) {
835 835 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
836 836 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
837 837 }
838 838
839 839 vd->vdev_ms = mspp;
840 840 vd->vdev_ms_count = newc;
841 841
842 842 for (m = oldc; m < newc; m++) {
843 843 space_map_obj_t smo = { 0, 0, 0 };
844 844 if (txg == 0) {
845 845 uint64_t object = 0;
846 846 error = dmu_read(mos, vd->vdev_ms_array,
847 847 m * sizeof (uint64_t), sizeof (uint64_t), &object,
848 848 DMU_READ_PREFETCH);
849 849 if (error)
850 850 return (error);
851 851 if (object != 0) {
852 852 dmu_buf_t *db;
853 853 error = dmu_bonus_hold(mos, object, FTAG, &db);
854 854 if (error)
855 855 return (error);
856 856 ASSERT3U(db->db_size, >=, sizeof (smo));
857 857 bcopy(db->db_data, &smo, sizeof (smo));
858 858 ASSERT3U(smo.smo_object, ==, object);
859 859 dmu_buf_rele(db, FTAG);
860 860 }
861 861 }
862 862 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
863 863 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
864 864 }
865 865
866 866 if (txg == 0)
867 867 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
868 868
869 869 /*
870 870 * If the vdev is being removed we don't activate
871 871 * the metaslabs since we want to ensure that no new
872 872 * allocations are performed on this device.
873 873 */
874 874 if (oldc == 0 && !vd->vdev_removing)
875 875 metaslab_group_activate(vd->vdev_mg);
876 876
877 877 if (txg == 0)
878 878 spa_config_exit(spa, SCL_ALLOC, FTAG);
879 879
880 880 return (0);
881 881 }
882 882
883 883 void
884 884 vdev_metaslab_fini(vdev_t *vd)
885 885 {
886 886 uint64_t m;
887 887 uint64_t count = vd->vdev_ms_count;
888 888
889 889 if (vd->vdev_ms != NULL) {
890 890 metaslab_group_passivate(vd->vdev_mg);
891 891 for (m = 0; m < count; m++)
892 892 if (vd->vdev_ms[m] != NULL)
893 893 metaslab_fini(vd->vdev_ms[m]);
894 894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
895 895 vd->vdev_ms = NULL;
896 896 }
897 897 }
898 898
899 899 typedef struct vdev_probe_stats {
900 900 boolean_t vps_readable;
901 901 boolean_t vps_writeable;
902 902 int vps_flags;
903 903 } vdev_probe_stats_t;
904 904
905 905 static void
906 906 vdev_probe_done(zio_t *zio)
907 907 {
908 908 spa_t *spa = zio->io_spa;
909 909 vdev_t *vd = zio->io_vd;
910 910 vdev_probe_stats_t *vps = zio->io_private;
911 911
912 912 ASSERT(vd->vdev_probe_zio != NULL);
913 913
914 914 if (zio->io_type == ZIO_TYPE_READ) {
915 915 if (zio->io_error == 0)
916 916 vps->vps_readable = 1;
917 917 if (zio->io_error == 0 && spa_writeable(spa)) {
918 918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
919 919 zio->io_offset, zio->io_size, zio->io_data,
920 920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
921 921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
922 922 } else {
923 923 zio_buf_free(zio->io_data, zio->io_size);
924 924 }
925 925 } else if (zio->io_type == ZIO_TYPE_WRITE) {
926 926 if (zio->io_error == 0)
927 927 vps->vps_writeable = 1;
928 928 zio_buf_free(zio->io_data, zio->io_size);
929 929 } else if (zio->io_type == ZIO_TYPE_NULL) {
930 930 zio_t *pio;
931 931
932 932 vd->vdev_cant_read |= !vps->vps_readable;
933 933 vd->vdev_cant_write |= !vps->vps_writeable;
934 934
935 935 if (vdev_readable(vd) &&
936 936 (vdev_writeable(vd) || !spa_writeable(spa))) {
937 937 zio->io_error = 0;
938 938 } else {
939 939 ASSERT(zio->io_error != 0);
940 940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
941 941 spa, vd, NULL, 0, 0);
942 942 zio->io_error = SET_ERROR(ENXIO);
943 943 }
944 944
945 945 mutex_enter(&vd->vdev_probe_lock);
946 946 ASSERT(vd->vdev_probe_zio == zio);
947 947 vd->vdev_probe_zio = NULL;
948 948 mutex_exit(&vd->vdev_probe_lock);
949 949
950 950 while ((pio = zio_walk_parents(zio)) != NULL)
951 951 if (!vdev_accessible(vd, pio))
952 952 pio->io_error = SET_ERROR(ENXIO);
953 953
954 954 kmem_free(vps, sizeof (*vps));
955 955 }
956 956 }
957 957
958 958 /*
959 959 * Determine whether this device is accessible.
960 960 *
961 961 * Read and write to several known locations: the pad regions of each
962 962 * vdev label but the first, which we leave alone in case it contains
963 963 * a VTOC.
964 964 */
965 965 zio_t *
966 966 vdev_probe(vdev_t *vd, zio_t *zio)
967 967 {
968 968 spa_t *spa = vd->vdev_spa;
969 969 vdev_probe_stats_t *vps = NULL;
970 970 zio_t *pio;
971 971
972 972 ASSERT(vd->vdev_ops->vdev_op_leaf);
973 973
974 974 /*
975 975 * Don't probe the probe.
976 976 */
977 977 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
978 978 return (NULL);
979 979
980 980 /*
981 981 * To prevent 'probe storms' when a device fails, we create
982 982 * just one probe i/o at a time. All zios that want to probe
983 983 * this vdev will become parents of the probe io.
984 984 */
985 985 mutex_enter(&vd->vdev_probe_lock);
986 986
987 987 if ((pio = vd->vdev_probe_zio) == NULL) {
988 988 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
989 989
990 990 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
991 991 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
992 992 ZIO_FLAG_TRYHARD;
993 993
994 994 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
995 995 /*
996 996 * vdev_cant_read and vdev_cant_write can only
997 997 * transition from TRUE to FALSE when we have the
998 998 * SCL_ZIO lock as writer; otherwise they can only
999 999 * transition from FALSE to TRUE. This ensures that
1000 1000 * any zio looking at these values can assume that
1001 1001 * failures persist for the life of the I/O. That's
1002 1002 * important because when a device has intermittent
1003 1003 * connectivity problems, we want to ensure that
1004 1004 * they're ascribed to the device (ENXIO) and not
1005 1005 * the zio (EIO).
1006 1006 *
1007 1007 * Since we hold SCL_ZIO as writer here, clear both
1008 1008 * values so the probe can reevaluate from first
1009 1009 * principles.
1010 1010 */
1011 1011 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1012 1012 vd->vdev_cant_read = B_FALSE;
1013 1013 vd->vdev_cant_write = B_FALSE;
1014 1014 }
1015 1015
1016 1016 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1017 1017 vdev_probe_done, vps,
1018 1018 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1019 1019
1020 1020 /*
1021 1021 * We can't change the vdev state in this context, so we
1022 1022 * kick off an async task to do it on our behalf.
1023 1023 */
1024 1024 if (zio != NULL) {
1025 1025 vd->vdev_probe_wanted = B_TRUE;
1026 1026 spa_async_request(spa, SPA_ASYNC_PROBE);
1027 1027 }
1028 1028 }
1029 1029
1030 1030 if (zio != NULL)
1031 1031 zio_add_child(zio, pio);
1032 1032
1033 1033 mutex_exit(&vd->vdev_probe_lock);
1034 1034
1035 1035 if (vps == NULL) {
1036 1036 ASSERT(zio != NULL);
1037 1037 return (NULL);
1038 1038 }
1039 1039
1040 1040 for (int l = 1; l < VDEV_LABELS; l++) {
1041 1041 zio_nowait(zio_read_phys(pio, vd,
1042 1042 vdev_label_offset(vd->vdev_psize, l,
1043 1043 offsetof(vdev_label_t, vl_pad2)),
1044 1044 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1045 1045 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1046 1046 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1047 1047 }
1048 1048
1049 1049 if (zio == NULL)
1050 1050 return (pio);
1051 1051
1052 1052 zio_nowait(pio);
1053 1053 return (NULL);
1054 1054 }
1055 1055
1056 1056 static void
1057 1057 vdev_open_child(void *arg)
1058 1058 {
1059 1059 vdev_t *vd = arg;
1060 1060
1061 1061 vd->vdev_open_thread = curthread;
1062 1062 vd->vdev_open_error = vdev_open(vd);
1063 1063 vd->vdev_open_thread = NULL;
1064 1064 }
1065 1065
1066 1066 boolean_t
1067 1067 vdev_uses_zvols(vdev_t *vd)
1068 1068 {
1069 1069 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1070 1070 strlen(ZVOL_DIR)) == 0)
1071 1071 return (B_TRUE);
1072 1072 for (int c = 0; c < vd->vdev_children; c++)
1073 1073 if (vdev_uses_zvols(vd->vdev_child[c]))
1074 1074 return (B_TRUE);
1075 1075 return (B_FALSE);
1076 1076 }
1077 1077
1078 1078 void
1079 1079 vdev_open_children(vdev_t *vd)
1080 1080 {
1081 1081 taskq_t *tq;
1082 1082 int children = vd->vdev_children;
1083 1083
1084 1084 /*
1085 1085 * in order to handle pools on top of zvols, do the opens
1086 1086 * in a single thread so that the same thread holds the
1087 1087 * spa_namespace_lock
1088 1088 */
1089 1089 if (vdev_uses_zvols(vd)) {
1090 1090 for (int c = 0; c < children; c++)
1091 1091 vd->vdev_child[c]->vdev_open_error =
1092 1092 vdev_open(vd->vdev_child[c]);
1093 1093 return;
1094 1094 }
1095 1095 tq = taskq_create("vdev_open", children, minclsyspri,
1096 1096 children, children, TASKQ_PREPOPULATE);
1097 1097
1098 1098 for (int c = 0; c < children; c++)
1099 1099 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1100 1100 TQ_SLEEP) != NULL);
1101 1101
1102 1102 taskq_destroy(tq);
1103 1103 }
1104 1104
1105 1105 /*
1106 1106 * Prepare a virtual device for access.
1107 1107 */
1108 1108 int
1109 1109 vdev_open(vdev_t *vd)
1110 1110 {
1111 1111 spa_t *spa = vd->vdev_spa;
1112 1112 int error;
1113 1113 uint64_t osize = 0;
1114 1114 uint64_t max_osize = 0;
1115 1115 uint64_t asize, max_asize, psize;
1116 1116 uint64_t ashift = 0;
1117 1117
1118 1118 ASSERT(vd->vdev_open_thread == curthread ||
1119 1119 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1120 1120 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1121 1121 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1122 1122 vd->vdev_state == VDEV_STATE_OFFLINE);
1123 1123
1124 1124 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1125 1125 vd->vdev_cant_read = B_FALSE;
1126 1126 vd->vdev_cant_write = B_FALSE;
1127 1127 vd->vdev_min_asize = vdev_get_min_asize(vd);
1128 1128
1129 1129 /*
1130 1130 * If this vdev is not removed, check its fault status. If it's
1131 1131 * faulted, bail out of the open.
1132 1132 */
1133 1133 if (!vd->vdev_removed && vd->vdev_faulted) {
1134 1134 ASSERT(vd->vdev_children == 0);
1135 1135 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1136 1136 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1137 1137 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1138 1138 vd->vdev_label_aux);
1139 1139 return (SET_ERROR(ENXIO));
1140 1140 } else if (vd->vdev_offline) {
1141 1141 ASSERT(vd->vdev_children == 0);
1142 1142 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1143 1143 return (SET_ERROR(ENXIO));
1144 1144 }
1145 1145
1146 1146 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1147 1147
1148 1148 /*
1149 1149 * Reset the vdev_reopening flag so that we actually close
1150 1150 * the vdev on error.
1151 1151 */
1152 1152 vd->vdev_reopening = B_FALSE;
1153 1153 if (zio_injection_enabled && error == 0)
1154 1154 error = zio_handle_device_injection(vd, NULL, ENXIO);
1155 1155
1156 1156 if (error) {
1157 1157 if (vd->vdev_removed &&
1158 1158 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1159 1159 vd->vdev_removed = B_FALSE;
1160 1160
1161 1161 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1162 1162 vd->vdev_stat.vs_aux);
1163 1163 return (error);
1164 1164 }
1165 1165
1166 1166 vd->vdev_removed = B_FALSE;
1167 1167
1168 1168 /*
1169 1169 * Recheck the faulted flag now that we have confirmed that
1170 1170 * the vdev is accessible. If we're faulted, bail.
1171 1171 */
1172 1172 if (vd->vdev_faulted) {
1173 1173 ASSERT(vd->vdev_children == 0);
1174 1174 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1175 1175 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1176 1176 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1177 1177 vd->vdev_label_aux);
1178 1178 return (SET_ERROR(ENXIO));
1179 1179 }
1180 1180
1181 1181 if (vd->vdev_degraded) {
1182 1182 ASSERT(vd->vdev_children == 0);
1183 1183 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1184 1184 VDEV_AUX_ERR_EXCEEDED);
1185 1185 } else {
1186 1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1187 1187 }
1188 1188
1189 1189 /*
1190 1190 * For hole or missing vdevs we just return success.
1191 1191 */
1192 1192 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1193 1193 return (0);
1194 1194
1195 1195 for (int c = 0; c < vd->vdev_children; c++) {
1196 1196 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1197 1197 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1198 1198 VDEV_AUX_NONE);
1199 1199 break;
1200 1200 }
1201 1201 }
1202 1202
1203 1203 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1204 1204 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1205 1205
1206 1206 if (vd->vdev_children == 0) {
1207 1207 if (osize < SPA_MINDEVSIZE) {
1208 1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1209 1209 VDEV_AUX_TOO_SMALL);
1210 1210 return (SET_ERROR(EOVERFLOW));
1211 1211 }
1212 1212 psize = osize;
1213 1213 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1214 1214 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1215 1215 VDEV_LABEL_END_SIZE);
1216 1216 } else {
1217 1217 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1218 1218 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1219 1219 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1220 1220 VDEV_AUX_TOO_SMALL);
1221 1221 return (SET_ERROR(EOVERFLOW));
1222 1222 }
1223 1223 psize = 0;
1224 1224 asize = osize;
1225 1225 max_asize = max_osize;
1226 1226 }
1227 1227
1228 1228 vd->vdev_psize = psize;
1229 1229
1230 1230 /*
1231 1231 * Make sure the allocatable size hasn't shrunk.
1232 1232 */
1233 1233 if (asize < vd->vdev_min_asize) {
1234 1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235 1235 VDEV_AUX_BAD_LABEL);
1236 1236 return (SET_ERROR(EINVAL));
1237 1237 }
1238 1238
1239 1239 if (vd->vdev_asize == 0) {
1240 1240 /*
1241 1241 * This is the first-ever open, so use the computed values.
1242 1242 * For testing purposes, a higher ashift can be requested.
1243 1243 */
1244 1244 vd->vdev_asize = asize;
1245 1245 vd->vdev_max_asize = max_asize;
1246 1246 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1247 1247 } else {
1248 1248 /*
1249 1249 * Detect if the alignment requirement has increased.
1250 1250 * We don't want to make the pool unavailable, just
1251 1251 * issue a warning instead.
1252 1252 */
1253 1253 if (ashift > vd->vdev_top->vdev_ashift &&
1254 1254 vd->vdev_ops->vdev_op_leaf) {
1255 1255 cmn_err(CE_WARN,
1256 1256 "Disk, '%s', has a block alignment that is "
1257 1257 "larger than the pool's alignment\n",
1258 1258 vd->vdev_path);
1259 1259 }
1260 1260 vd->vdev_max_asize = max_asize;
1261 1261 }
1262 1262
1263 1263 /*
1264 1264 * If all children are healthy and the asize has increased,
1265 1265 * then we've experienced dynamic LUN growth. If automatic
1266 1266 * expansion is enabled then use the additional space.
1267 1267 */
1268 1268 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1269 1269 (vd->vdev_expanding || spa->spa_autoexpand))
1270 1270 vd->vdev_asize = asize;
1271 1271
1272 1272 vdev_set_min_asize(vd);
1273 1273
1274 1274 /*
1275 1275 * Ensure we can issue some IO before declaring the
1276 1276 * vdev open for business.
1277 1277 */
1278 1278 if (vd->vdev_ops->vdev_op_leaf &&
1279 1279 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1280 1280 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1281 1281 VDEV_AUX_ERR_EXCEEDED);
1282 1282 return (error);
1283 1283 }
1284 1284
1285 1285 /*
1286 1286 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1287 1287 * resilver. But don't do this if we are doing a reopen for a scrub,
1288 1288 * since this would just restart the scrub we are already doing.
1289 1289 */
1290 1290 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1291 1291 vdev_resilver_needed(vd, NULL, NULL))
1292 1292 spa_async_request(spa, SPA_ASYNC_RESILVER);
1293 1293
1294 1294 return (0);
1295 1295 }
1296 1296
1297 1297 /*
1298 1298 * Called once the vdevs are all opened, this routine validates the label
1299 1299 * contents. This needs to be done before vdev_load() so that we don't
1300 1300 * inadvertently do repair I/Os to the wrong device.
1301 1301 *
1302 1302 * If 'strict' is false ignore the spa guid check. This is necessary because
1303 1303 * if the machine crashed during a re-guid the new guid might have been written
1304 1304 * to all of the vdev labels, but not the cached config. The strict check
1305 1305 * will be performed when the pool is opened again using the mos config.
1306 1306 *
1307 1307 * This function will only return failure if one of the vdevs indicates that it
1308 1308 * has since been destroyed or exported. This is only possible if
1309 1309 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1310 1310 * will be updated but the function will return 0.
1311 1311 */
1312 1312 int
1313 1313 vdev_validate(vdev_t *vd, boolean_t strict)
1314 1314 {
1315 1315 spa_t *spa = vd->vdev_spa;
1316 1316 nvlist_t *label;
1317 1317 uint64_t guid = 0, top_guid;
1318 1318 uint64_t state;
1319 1319
1320 1320 for (int c = 0; c < vd->vdev_children; c++)
1321 1321 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1322 1322 return (SET_ERROR(EBADF));
1323 1323
1324 1324 /*
1325 1325 * If the device has already failed, or was marked offline, don't do
1326 1326 * any further validation. Otherwise, label I/O will fail and we will
1327 1327 * overwrite the previous state.
1328 1328 */
1329 1329 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1330 1330 uint64_t aux_guid = 0;
1331 1331 nvlist_t *nvl;
1332 1332 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1333 1333 spa_last_synced_txg(spa) : -1ULL;
1334 1334
1335 1335 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1336 1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 1337 VDEV_AUX_BAD_LABEL);
1338 1338 return (0);
1339 1339 }
1340 1340
1341 1341 /*
1342 1342 * Determine if this vdev has been split off into another
1343 1343 * pool. If so, then refuse to open it.
1344 1344 */
1345 1345 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1346 1346 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1347 1347 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1348 1348 VDEV_AUX_SPLIT_POOL);
1349 1349 nvlist_free(label);
1350 1350 return (0);
1351 1351 }
1352 1352
1353 1353 if (strict && (nvlist_lookup_uint64(label,
1354 1354 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1355 1355 guid != spa_guid(spa))) {
1356 1356 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1357 1357 VDEV_AUX_CORRUPT_DATA);
1358 1358 nvlist_free(label);
1359 1359 return (0);
1360 1360 }
1361 1361
1362 1362 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1363 1363 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1364 1364 &aux_guid) != 0)
1365 1365 aux_guid = 0;
1366 1366
1367 1367 /*
1368 1368 * If this vdev just became a top-level vdev because its
1369 1369 * sibling was detached, it will have adopted the parent's
1370 1370 * vdev guid -- but the label may or may not be on disk yet.
1371 1371 * Fortunately, either version of the label will have the
1372 1372 * same top guid, so if we're a top-level vdev, we can
1373 1373 * safely compare to that instead.
1374 1374 *
1375 1375 * If we split this vdev off instead, then we also check the
1376 1376 * original pool's guid. We don't want to consider the vdev
1377 1377 * corrupt if it is partway through a split operation.
1378 1378 */
1379 1379 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1380 1380 &guid) != 0 ||
1381 1381 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1382 1382 &top_guid) != 0 ||
1383 1383 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1384 1384 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1385 1385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1386 1386 VDEV_AUX_CORRUPT_DATA);
1387 1387 nvlist_free(label);
1388 1388 return (0);
1389 1389 }
1390 1390
1391 1391 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1392 1392 &state) != 0) {
1393 1393 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1394 1394 VDEV_AUX_CORRUPT_DATA);
1395 1395 nvlist_free(label);
1396 1396 return (0);
1397 1397 }
1398 1398
1399 1399 nvlist_free(label);
1400 1400
1401 1401 /*
1402 1402 * If this is a verbatim import, no need to check the
1403 1403 * state of the pool.
1404 1404 */
1405 1405 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1406 1406 spa_load_state(spa) == SPA_LOAD_OPEN &&
1407 1407 state != POOL_STATE_ACTIVE)
1408 1408 return (SET_ERROR(EBADF));
1409 1409
1410 1410 /*
1411 1411 * If we were able to open and validate a vdev that was
1412 1412 * previously marked permanently unavailable, clear that state
1413 1413 * now.
1414 1414 */
1415 1415 if (vd->vdev_not_present)
1416 1416 vd->vdev_not_present = 0;
1417 1417 }
1418 1418
1419 1419 return (0);
1420 1420 }
1421 1421
1422 1422 /*
1423 1423 * Close a virtual device.
1424 1424 */
1425 1425 void
1426 1426 vdev_close(vdev_t *vd)
1427 1427 {
1428 1428 spa_t *spa = vd->vdev_spa;
1429 1429 vdev_t *pvd = vd->vdev_parent;
1430 1430
1431 1431 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1432 1432
1433 1433 /*
1434 1434 * If our parent is reopening, then we are as well, unless we are
1435 1435 * going offline.
1436 1436 */
1437 1437 if (pvd != NULL && pvd->vdev_reopening)
1438 1438 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1439 1439
1440 1440 vd->vdev_ops->vdev_op_close(vd);
1441 1441
1442 1442 vdev_cache_purge(vd);
1443 1443
1444 1444 /*
1445 1445 * We record the previous state before we close it, so that if we are
1446 1446 * doing a reopen(), we don't generate FMA ereports if we notice that
1447 1447 * it's still faulted.
1448 1448 */
1449 1449 vd->vdev_prevstate = vd->vdev_state;
1450 1450
1451 1451 if (vd->vdev_offline)
1452 1452 vd->vdev_state = VDEV_STATE_OFFLINE;
1453 1453 else
1454 1454 vd->vdev_state = VDEV_STATE_CLOSED;
1455 1455 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1456 1456 }
1457 1457
1458 1458 void
1459 1459 vdev_hold(vdev_t *vd)
1460 1460 {
1461 1461 spa_t *spa = vd->vdev_spa;
1462 1462
1463 1463 ASSERT(spa_is_root(spa));
1464 1464 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1465 1465 return;
1466 1466
1467 1467 for (int c = 0; c < vd->vdev_children; c++)
1468 1468 vdev_hold(vd->vdev_child[c]);
1469 1469
1470 1470 if (vd->vdev_ops->vdev_op_leaf)
1471 1471 vd->vdev_ops->vdev_op_hold(vd);
1472 1472 }
1473 1473
1474 1474 void
1475 1475 vdev_rele(vdev_t *vd)
1476 1476 {
1477 1477 spa_t *spa = vd->vdev_spa;
1478 1478
1479 1479 ASSERT(spa_is_root(spa));
1480 1480 for (int c = 0; c < vd->vdev_children; c++)
1481 1481 vdev_rele(vd->vdev_child[c]);
1482 1482
1483 1483 if (vd->vdev_ops->vdev_op_leaf)
1484 1484 vd->vdev_ops->vdev_op_rele(vd);
1485 1485 }
1486 1486
1487 1487 /*
1488 1488 * Reopen all interior vdevs and any unopened leaves. We don't actually
1489 1489 * reopen leaf vdevs which had previously been opened as they might deadlock
1490 1490 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1491 1491 * If the leaf has never been opened then open it, as usual.
1492 1492 */
1493 1493 void
1494 1494 vdev_reopen(vdev_t *vd)
1495 1495 {
1496 1496 spa_t *spa = vd->vdev_spa;
1497 1497
1498 1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499 1499
1500 1500 /* set the reopening flag unless we're taking the vdev offline */
1501 1501 vd->vdev_reopening = !vd->vdev_offline;
1502 1502 vdev_close(vd);
1503 1503 (void) vdev_open(vd);
1504 1504
1505 1505 /*
1506 1506 * Call vdev_validate() here to make sure we have the same device.
1507 1507 * Otherwise, a device with an invalid label could be successfully
1508 1508 * opened in response to vdev_reopen().
1509 1509 */
1510 1510 if (vd->vdev_aux) {
1511 1511 (void) vdev_validate_aux(vd);
1512 1512 if (vdev_readable(vd) && vdev_writeable(vd) &&
1513 1513 vd->vdev_aux == &spa->spa_l2cache &&
1514 1514 !l2arc_vdev_present(vd))
1515 1515 l2arc_add_vdev(spa, vd);
1516 1516 } else {
1517 1517 (void) vdev_validate(vd, B_TRUE);
1518 1518 }
1519 1519
1520 1520 /*
1521 1521 * Reassess parent vdev's health.
1522 1522 */
1523 1523 vdev_propagate_state(vd);
1524 1524 }
1525 1525
1526 1526 int
1527 1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1528 1528 {
1529 1529 int error;
1530 1530
1531 1531 /*
1532 1532 * Normally, partial opens (e.g. of a mirror) are allowed.
1533 1533 * For a create, however, we want to fail the request if
1534 1534 * there are any components we can't open.
1535 1535 */
1536 1536 error = vdev_open(vd);
1537 1537
1538 1538 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1539 1539 vdev_close(vd);
1540 1540 return (error ? error : ENXIO);
1541 1541 }
1542 1542
1543 1543 /*
1544 1544 * Recursively initialize all labels.
1545 1545 */
1546 1546 if ((error = vdev_label_init(vd, txg, isreplacing ?
1547 1547 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1548 1548 vdev_close(vd);
1549 1549 return (error);
1550 1550 }
1551 1551
1552 1552 return (0);
1553 1553 }
1554 1554
1555 1555 void
1556 1556 vdev_metaslab_set_size(vdev_t *vd)
1557 1557 {
1558 1558 /*
1559 1559 * Aim for roughly 200 metaslabs per vdev.
1560 1560 */
1561 1561 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1562 1562 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1563 1563 }
1564 1564
1565 1565 void
1566 1566 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1567 1567 {
1568 1568 ASSERT(vd == vd->vdev_top);
1569 1569 ASSERT(!vd->vdev_ishole);
1570 1570 ASSERT(ISP2(flags));
1571 1571 ASSERT(spa_writeable(vd->vdev_spa));
1572 1572
1573 1573 if (flags & VDD_METASLAB)
1574 1574 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1575 1575
1576 1576 if (flags & VDD_DTL)
1577 1577 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1578 1578
1579 1579 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1580 1580 }
1581 1581
1582 1582 /*
1583 1583 * DTLs.
1584 1584 *
1585 1585 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1586 1586 * the vdev has less than perfect replication. There are four kinds of DTL:
1587 1587 *
1588 1588 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1589 1589 *
1590 1590 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1591 1591 *
1592 1592 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1593 1593 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1594 1594 * txgs that was scrubbed.
1595 1595 *
1596 1596 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1597 1597 * persistent errors or just some device being offline.
1598 1598 * Unlike the other three, the DTL_OUTAGE map is not generally
1599 1599 * maintained; it's only computed when needed, typically to
1600 1600 * determine whether a device can be detached.
1601 1601 *
1602 1602 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1603 1603 * either has the data or it doesn't.
1604 1604 *
1605 1605 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1606 1606 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1607 1607 * if any child is less than fully replicated, then so is its parent.
1608 1608 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1609 1609 * comprising only those txgs which appear in 'maxfaults' or more children;
1610 1610 * those are the txgs we don't have enough replication to read. For example,
1611 1611 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1612 1612 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1613 1613 * two child DTL_MISSING maps.
1614 1614 *
1615 1615 * It should be clear from the above that to compute the DTLs and outage maps
1616 1616 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1617 1617 * Therefore, that is all we keep on disk. When loading the pool, or after
1618 1618 * a configuration change, we generate all other DTLs from first principles.
1619 1619 */
1620 1620 void
1621 1621 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1622 1622 {
1623 1623 space_map_t *sm = &vd->vdev_dtl[t];
1624 1624
1625 1625 ASSERT(t < DTL_TYPES);
1626 1626 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1627 1627 ASSERT(spa_writeable(vd->vdev_spa));
1628 1628
1629 1629 mutex_enter(sm->sm_lock);
1630 1630 if (!space_map_contains(sm, txg, size))
1631 1631 space_map_add(sm, txg, size);
1632 1632 mutex_exit(sm->sm_lock);
1633 1633 }
1634 1634
1635 1635 boolean_t
1636 1636 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637 1637 {
1638 1638 space_map_t *sm = &vd->vdev_dtl[t];
1639 1639 boolean_t dirty = B_FALSE;
1640 1640
1641 1641 ASSERT(t < DTL_TYPES);
1642 1642 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1643 1643
1644 1644 mutex_enter(sm->sm_lock);
1645 1645 if (sm->sm_space != 0)
1646 1646 dirty = space_map_contains(sm, txg, size);
1647 1647 mutex_exit(sm->sm_lock);
1648 1648
1649 1649 return (dirty);
1650 1650 }
1651 1651
1652 1652 boolean_t
1653 1653 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1654 1654 {
1655 1655 space_map_t *sm = &vd->vdev_dtl[t];
1656 1656 boolean_t empty;
1657 1657
1658 1658 mutex_enter(sm->sm_lock);
1659 1659 empty = (sm->sm_space == 0);
1660 1660 mutex_exit(sm->sm_lock);
1661 1661
1662 1662 return (empty);
1663 1663 }
1664 1664
1665 1665 /*
1666 1666 * Returns the lowest txg in the DTL range.
1667 1667 */
1668 1668 static uint64_t
1669 1669 vdev_dtl_min(vdev_t *vd)
1670 1670 {
1671 1671 space_seg_t *ss;
1672 1672
1673 1673 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1674 1674 ASSERT3U(vd->vdev_dtl[DTL_MISSING].sm_space, !=, 0);
1675 1675 ASSERT0(vd->vdev_children);
1676 1676
1677 1677 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1678 1678 return (ss->ss_start - 1);
1679 1679 }
1680 1680
1681 1681 /*
1682 1682 * Returns the highest txg in the DTL.
1683 1683 */
1684 1684 static uint64_t
1685 1685 vdev_dtl_max(vdev_t *vd)
1686 1686 {
1687 1687 space_seg_t *ss;
1688 1688
1689 1689 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1690 1690 ASSERT3U(vd->vdev_dtl[DTL_MISSING].sm_space, !=, 0);
1691 1691 ASSERT0(vd->vdev_children);
1692 1692
1693 1693 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1694 1694 return (ss->ss_end);
1695 1695 }
1696 1696
1697 1697 /*
1698 1698 * Determine if a resilvering vdev should remove any DTL entries from
1699 1699 * its range. If the vdev was resilvering for the entire duration of the
1700 1700 * scan then it should excise that range from its DTLs. Otherwise, this
1701 1701 * vdev is considered partially resilvered and should leave its DTL
1702 1702 * entries intact. The comment in vdev_dtl_reassess() describes how we
1703 1703 * excise the DTLs.
1704 1704 */
1705 1705 static boolean_t
1706 1706 vdev_dtl_should_excise(vdev_t *vd)
1707 1707 {
1708 1708 spa_t *spa = vd->vdev_spa;
1709 1709 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1710 1710
1711 1711 ASSERT0(scn->scn_phys.scn_errors);
1712 1712 ASSERT0(vd->vdev_children);
1713 1713
1714 1714 if (vd->vdev_resilver_txg == 0 ||
1715 1715 vd->vdev_dtl[DTL_MISSING].sm_space == 0)
1716 1716 return (B_TRUE);
1717 1717
1718 1718 /*
1719 1719 * When a resilver is initiated the scan will assign the scn_max_txg
1720 1720 * value to the highest txg value that exists in all DTLs. If this
1721 1721 * device's max DTL is not part of this scan (i.e. it is not in
1722 1722 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1723 1723 * for excision.
1724 1724 */
1725 1725 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1726 1726 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1727 1727 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1728 1728 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1729 1729 return (B_TRUE);
1730 1730 }
1731 1731 return (B_FALSE);
1732 1732 }
1733 1733
1734 1734 /*
1735 1735 * Reassess DTLs after a config change or scrub completion.
1736 1736 */
1737 1737 void
1738 1738 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1739 1739 {
1740 1740 spa_t *spa = vd->vdev_spa;
1741 1741 avl_tree_t reftree;
1742 1742 int minref;
1743 1743
1744 1744 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1745 1745
1746 1746 for (int c = 0; c < vd->vdev_children; c++)
1747 1747 vdev_dtl_reassess(vd->vdev_child[c], txg,
1748 1748 scrub_txg, scrub_done);
1749 1749
1750 1750 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1751 1751 return;
1752 1752
1753 1753 if (vd->vdev_ops->vdev_op_leaf) {
1754 1754 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1755 1755
1756 1756 mutex_enter(&vd->vdev_dtl_lock);
1757 1757
1758 1758 /*
1759 1759 * If we've completed a scan cleanly then determine
1760 1760 * if this vdev should remove any DTLs. We only want to
1761 1761 * excise regions on vdevs that were available during
1762 1762 * the entire duration of this scan.
1763 1763 */
1764 1764 if (scrub_txg != 0 &&
1765 1765 (spa->spa_scrub_started ||
1766 1766 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1767 1767 vdev_dtl_should_excise(vd)) {
1768 1768 /*
1769 1769 * We completed a scrub up to scrub_txg. If we
1770 1770 * did it without rebooting, then the scrub dtl
1771 1771 * will be valid, so excise the old region and
1772 1772 * fold in the scrub dtl. Otherwise, leave the
1773 1773 * dtl as-is if there was an error.
1774 1774 *
1775 1775 * There's little trick here: to excise the beginning
1776 1776 * of the DTL_MISSING map, we put it into a reference
1777 1777 * tree and then add a segment with refcnt -1 that
1778 1778 * covers the range [0, scrub_txg). This means
1779 1779 * that each txg in that range has refcnt -1 or 0.
1780 1780 * We then add DTL_SCRUB with a refcnt of 2, so that
1781 1781 * entries in the range [0, scrub_txg) will have a
1782 1782 * positive refcnt -- either 1 or 2. We then convert
1783 1783 * the reference tree into the new DTL_MISSING map.
1784 1784 */
1785 1785 space_map_ref_create(&reftree);
1786 1786 space_map_ref_add_map(&reftree,
1787 1787 &vd->vdev_dtl[DTL_MISSING], 1);
1788 1788 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1789 1789 space_map_ref_add_map(&reftree,
1790 1790 &vd->vdev_dtl[DTL_SCRUB], 2);
1791 1791 space_map_ref_generate_map(&reftree,
1792 1792 &vd->vdev_dtl[DTL_MISSING], 1);
1793 1793 space_map_ref_destroy(&reftree);
1794 1794 }
1795 1795 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1796 1796 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1797 1797 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1798 1798 if (scrub_done)
1799 1799 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1800 1800 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1801 1801 if (!vdev_readable(vd))
1802 1802 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1803 1803 else
1804 1804 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1805 1805 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1806 1806
1807 1807 /*
1808 1808 * If the vdev was resilvering and no longer has any
1809 1809 * DTLs then reset its resilvering flag.
1810 1810 */
1811 1811 if (vd->vdev_resilver_txg != 0 &&
1812 1812 vd->vdev_dtl[DTL_MISSING].sm_space == 0 &&
1813 1813 vd->vdev_dtl[DTL_OUTAGE].sm_space == 0)
1814 1814 vd->vdev_resilver_txg = 0;
1815 1815
1816 1816 mutex_exit(&vd->vdev_dtl_lock);
1817 1817
1818 1818 if (txg != 0)
1819 1819 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1820 1820 return;
1821 1821 }
1822 1822
1823 1823 mutex_enter(&vd->vdev_dtl_lock);
1824 1824 for (int t = 0; t < DTL_TYPES; t++) {
1825 1825 /* account for child's outage in parent's missing map */
1826 1826 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1827 1827 if (t == DTL_SCRUB)
1828 1828 continue; /* leaf vdevs only */
1829 1829 if (t == DTL_PARTIAL)
1830 1830 minref = 1; /* i.e. non-zero */
1831 1831 else if (vd->vdev_nparity != 0)
1832 1832 minref = vd->vdev_nparity + 1; /* RAID-Z */
1833 1833 else
1834 1834 minref = vd->vdev_children; /* any kind of mirror */
1835 1835 space_map_ref_create(&reftree);
1836 1836 for (int c = 0; c < vd->vdev_children; c++) {
1837 1837 vdev_t *cvd = vd->vdev_child[c];
1838 1838 mutex_enter(&cvd->vdev_dtl_lock);
1839 1839 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1840 1840 mutex_exit(&cvd->vdev_dtl_lock);
1841 1841 }
1842 1842 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1843 1843 space_map_ref_destroy(&reftree);
1844 1844 }
1845 1845 mutex_exit(&vd->vdev_dtl_lock);
1846 1846 }
1847 1847
1848 1848 static int
1849 1849 vdev_dtl_load(vdev_t *vd)
1850 1850 {
1851 1851 spa_t *spa = vd->vdev_spa;
1852 1852 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1853 1853 objset_t *mos = spa->spa_meta_objset;
1854 1854 dmu_buf_t *db;
1855 1855 int error;
1856 1856
1857 1857 ASSERT(vd->vdev_children == 0);
1858 1858
1859 1859 if (smo->smo_object == 0)
1860 1860 return (0);
1861 1861
1862 1862 ASSERT(!vd->vdev_ishole);
1863 1863
1864 1864 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1865 1865 return (error);
1866 1866
1867 1867 ASSERT3U(db->db_size, >=, sizeof (*smo));
1868 1868 bcopy(db->db_data, smo, sizeof (*smo));
1869 1869 dmu_buf_rele(db, FTAG);
1870 1870
1871 1871 mutex_enter(&vd->vdev_dtl_lock);
1872 1872 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1873 1873 NULL, SM_ALLOC, smo, mos);
1874 1874 mutex_exit(&vd->vdev_dtl_lock);
1875 1875
1876 1876 return (error);
1877 1877 }
1878 1878
1879 1879 void
1880 1880 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1881 1881 {
1882 1882 spa_t *spa = vd->vdev_spa;
1883 1883 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1884 1884 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1885 1885 objset_t *mos = spa->spa_meta_objset;
1886 1886 space_map_t smsync;
1887 1887 kmutex_t smlock;
1888 1888 dmu_buf_t *db;
1889 1889 dmu_tx_t *tx;
1890 1890
1891 1891 ASSERT(!vd->vdev_ishole);
1892 1892
1893 1893 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1894 1894
1895 1895 if (vd->vdev_detached) {
1896 1896 if (smo->smo_object != 0) {
1897 1897 int err = dmu_object_free(mos, smo->smo_object, tx);
1898 1898 ASSERT0(err);
1899 1899 smo->smo_object = 0;
1900 1900 }
1901 1901 dmu_tx_commit(tx);
1902 1902 return;
1903 1903 }
1904 1904
1905 1905 if (smo->smo_object == 0) {
1906 1906 ASSERT(smo->smo_objsize == 0);
1907 1907 ASSERT(smo->smo_alloc == 0);
1908 1908 smo->smo_object = dmu_object_alloc(mos,
1909 1909 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1910 1910 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1911 1911 ASSERT(smo->smo_object != 0);
1912 1912 vdev_config_dirty(vd->vdev_top);
1913 1913 }
1914 1914
1915 1915 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1916 1916
1917 1917 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1918 1918 &smlock);
1919 1919
1920 1920 mutex_enter(&smlock);
1921 1921
1922 1922 mutex_enter(&vd->vdev_dtl_lock);
1923 1923 space_map_walk(sm, space_map_add, &smsync);
1924 1924 mutex_exit(&vd->vdev_dtl_lock);
1925 1925
1926 1926 space_map_truncate(smo, mos, tx);
1927 1927 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1928 1928 space_map_vacate(&smsync, NULL, NULL);
1929 1929
1930 1930 space_map_destroy(&smsync);
1931 1931
1932 1932 mutex_exit(&smlock);
1933 1933 mutex_destroy(&smlock);
1934 1934
1935 1935 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1936 1936 dmu_buf_will_dirty(db, tx);
1937 1937 ASSERT3U(db->db_size, >=, sizeof (*smo));
1938 1938 bcopy(smo, db->db_data, sizeof (*smo));
1939 1939 dmu_buf_rele(db, FTAG);
1940 1940
1941 1941 dmu_tx_commit(tx);
1942 1942 }
1943 1943
1944 1944 /*
1945 1945 * Determine whether the specified vdev can be offlined/detached/removed
1946 1946 * without losing data.
1947 1947 */
1948 1948 boolean_t
1949 1949 vdev_dtl_required(vdev_t *vd)
1950 1950 {
1951 1951 spa_t *spa = vd->vdev_spa;
1952 1952 vdev_t *tvd = vd->vdev_top;
1953 1953 uint8_t cant_read = vd->vdev_cant_read;
1954 1954 boolean_t required;
1955 1955
1956 1956 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1957 1957
1958 1958 if (vd == spa->spa_root_vdev || vd == tvd)
1959 1959 return (B_TRUE);
1960 1960
1961 1961 /*
1962 1962 * Temporarily mark the device as unreadable, and then determine
1963 1963 * whether this results in any DTL outages in the top-level vdev.
1964 1964 * If not, we can safely offline/detach/remove the device.
1965 1965 */
1966 1966 vd->vdev_cant_read = B_TRUE;
1967 1967 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1968 1968 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1969 1969 vd->vdev_cant_read = cant_read;
1970 1970 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1971 1971
1972 1972 if (!required && zio_injection_enabled)
1973 1973 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1974 1974
1975 1975 return (required);
1976 1976 }
1977 1977
1978 1978 /*
1979 1979 * Determine if resilver is needed, and if so the txg range.
1980 1980 */
1981 1981 boolean_t
1982 1982 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1983 1983 {
1984 1984 boolean_t needed = B_FALSE;
1985 1985 uint64_t thismin = UINT64_MAX;
1986 1986 uint64_t thismax = 0;
1987 1987
1988 1988 if (vd->vdev_children == 0) {
1989 1989 mutex_enter(&vd->vdev_dtl_lock);
1990 1990 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1991 1991 vdev_writeable(vd)) {
1992 1992
1993 1993 thismin = vdev_dtl_min(vd);
1994 1994 thismax = vdev_dtl_max(vd);
1995 1995 needed = B_TRUE;
1996 1996 }
1997 1997 mutex_exit(&vd->vdev_dtl_lock);
1998 1998 } else {
1999 1999 for (int c = 0; c < vd->vdev_children; c++) {
2000 2000 vdev_t *cvd = vd->vdev_child[c];
2001 2001 uint64_t cmin, cmax;
2002 2002
2003 2003 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2004 2004 thismin = MIN(thismin, cmin);
2005 2005 thismax = MAX(thismax, cmax);
2006 2006 needed = B_TRUE;
2007 2007 }
2008 2008 }
2009 2009 }
2010 2010
2011 2011 if (needed && minp) {
2012 2012 *minp = thismin;
2013 2013 *maxp = thismax;
2014 2014 }
2015 2015 return (needed);
2016 2016 }
2017 2017
2018 2018 void
2019 2019 vdev_load(vdev_t *vd)
2020 2020 {
2021 2021 /*
2022 2022 * Recursively load all children.
2023 2023 */
2024 2024 for (int c = 0; c < vd->vdev_children; c++)
2025 2025 vdev_load(vd->vdev_child[c]);
2026 2026
2027 2027 /*
2028 2028 * If this is a top-level vdev, initialize its metaslabs.
2029 2029 */
2030 2030 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2031 2031 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2032 2032 vdev_metaslab_init(vd, 0) != 0))
2033 2033 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2034 2034 VDEV_AUX_CORRUPT_DATA);
2035 2035
2036 2036 /*
2037 2037 * If this is a leaf vdev, load its DTL.
2038 2038 */
2039 2039 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2040 2040 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2041 2041 VDEV_AUX_CORRUPT_DATA);
2042 2042 }
2043 2043
2044 2044 /*
2045 2045 * The special vdev case is used for hot spares and l2cache devices. Its
2046 2046 * sole purpose it to set the vdev state for the associated vdev. To do this,
2047 2047 * we make sure that we can open the underlying device, then try to read the
2048 2048 * label, and make sure that the label is sane and that it hasn't been
2049 2049 * repurposed to another pool.
2050 2050 */
2051 2051 int
2052 2052 vdev_validate_aux(vdev_t *vd)
2053 2053 {
2054 2054 nvlist_t *label;
2055 2055 uint64_t guid, version;
2056 2056 uint64_t state;
2057 2057
2058 2058 if (!vdev_readable(vd))
2059 2059 return (0);
2060 2060
2061 2061 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2062 2062 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2063 2063 VDEV_AUX_CORRUPT_DATA);
2064 2064 return (-1);
2065 2065 }
2066 2066
2067 2067 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2068 2068 !SPA_VERSION_IS_SUPPORTED(version) ||
2069 2069 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2070 2070 guid != vd->vdev_guid ||
2071 2071 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2072 2072 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2073 2073 VDEV_AUX_CORRUPT_DATA);
2074 2074 nvlist_free(label);
2075 2075 return (-1);
2076 2076 }
2077 2077
2078 2078 /*
2079 2079 * We don't actually check the pool state here. If it's in fact in
2080 2080 * use by another pool, we update this fact on the fly when requested.
2081 2081 */
2082 2082 nvlist_free(label);
2083 2083 return (0);
2084 2084 }
2085 2085
2086 2086 void
2087 2087 vdev_remove(vdev_t *vd, uint64_t txg)
2088 2088 {
2089 2089 spa_t *spa = vd->vdev_spa;
2090 2090 objset_t *mos = spa->spa_meta_objset;
2091 2091 dmu_tx_t *tx;
2092 2092
2093 2093 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2094 2094
2095 2095 if (vd->vdev_dtl_smo.smo_object) {
2096 2096 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2097 2097 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2098 2098 vd->vdev_dtl_smo.smo_object = 0;
2099 2099 }
2100 2100
2101 2101 if (vd->vdev_ms != NULL) {
2102 2102 for (int m = 0; m < vd->vdev_ms_count; m++) {
2103 2103 metaslab_t *msp = vd->vdev_ms[m];
2104 2104
2105 2105 if (msp == NULL || msp->ms_smo.smo_object == 0)
2106 2106 continue;
2107 2107
2108 2108 ASSERT0(msp->ms_smo.smo_alloc);
2109 2109 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2110 2110 msp->ms_smo.smo_object = 0;
2111 2111 }
2112 2112 }
2113 2113
2114 2114 if (vd->vdev_ms_array) {
2115 2115 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2116 2116 vd->vdev_ms_array = 0;
2117 2117 vd->vdev_ms_shift = 0;
2118 2118 }
2119 2119 dmu_tx_commit(tx);
2120 2120 }
2121 2121
2122 2122 void
2123 2123 vdev_sync_done(vdev_t *vd, uint64_t txg)
2124 2124 {
2125 2125 metaslab_t *msp;
2126 2126 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2127 2127
2128 2128 ASSERT(!vd->vdev_ishole);
2129 2129
2130 2130 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2131 2131 metaslab_sync_done(msp, txg);
2132 2132
2133 2133 if (reassess)
2134 2134 metaslab_sync_reassess(vd->vdev_mg);
2135 2135 }
2136 2136
2137 2137 void
2138 2138 vdev_sync(vdev_t *vd, uint64_t txg)
2139 2139 {
2140 2140 spa_t *spa = vd->vdev_spa;
2141 2141 vdev_t *lvd;
2142 2142 metaslab_t *msp;
2143 2143 dmu_tx_t *tx;
2144 2144
2145 2145 ASSERT(!vd->vdev_ishole);
2146 2146
2147 2147 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2148 2148 ASSERT(vd == vd->vdev_top);
2149 2149 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2150 2150 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2151 2151 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2152 2152 ASSERT(vd->vdev_ms_array != 0);
2153 2153 vdev_config_dirty(vd);
2154 2154 dmu_tx_commit(tx);
2155 2155 }
2156 2156
2157 2157 /*
2158 2158 * Remove the metadata associated with this vdev once it's empty.
2159 2159 */
2160 2160 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2161 2161 vdev_remove(vd, txg);
2162 2162
2163 2163 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2164 2164 metaslab_sync(msp, txg);
2165 2165 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2166 2166 }
2167 2167
2168 2168 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2169 2169 vdev_dtl_sync(lvd, txg);
2170 2170
2171 2171 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2172 2172 }
2173 2173
2174 2174 uint64_t
2175 2175 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2176 2176 {
2177 2177 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2178 2178 }
2179 2179
2180 2180 /*
2181 2181 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2182 2182 * not be opened, and no I/O is attempted.
2183 2183 */
2184 2184 int
2185 2185 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2186 2186 {
2187 2187 vdev_t *vd, *tvd;
2188 2188
2189 2189 spa_vdev_state_enter(spa, SCL_NONE);
2190 2190
2191 2191 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2192 2192 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2193 2193
2194 2194 if (!vd->vdev_ops->vdev_op_leaf)
2195 2195 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2196 2196
2197 2197 tvd = vd->vdev_top;
2198 2198
2199 2199 /*
2200 2200 * We don't directly use the aux state here, but if we do a
2201 2201 * vdev_reopen(), we need this value to be present to remember why we
2202 2202 * were faulted.
2203 2203 */
2204 2204 vd->vdev_label_aux = aux;
2205 2205
2206 2206 /*
2207 2207 * Faulted state takes precedence over degraded.
2208 2208 */
2209 2209 vd->vdev_delayed_close = B_FALSE;
2210 2210 vd->vdev_faulted = 1ULL;
2211 2211 vd->vdev_degraded = 0ULL;
2212 2212 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2213 2213
2214 2214 /*
2215 2215 * If this device has the only valid copy of the data, then
2216 2216 * back off and simply mark the vdev as degraded instead.
2217 2217 */
2218 2218 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2219 2219 vd->vdev_degraded = 1ULL;
2220 2220 vd->vdev_faulted = 0ULL;
2221 2221
2222 2222 /*
2223 2223 * If we reopen the device and it's not dead, only then do we
2224 2224 * mark it degraded.
2225 2225 */
2226 2226 vdev_reopen(tvd);
2227 2227
2228 2228 if (vdev_readable(vd))
2229 2229 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2230 2230 }
2231 2231
2232 2232 return (spa_vdev_state_exit(spa, vd, 0));
2233 2233 }
2234 2234
2235 2235 /*
2236 2236 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2237 2237 * user that something is wrong. The vdev continues to operate as normal as far
2238 2238 * as I/O is concerned.
2239 2239 */
2240 2240 int
2241 2241 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2242 2242 {
2243 2243 vdev_t *vd;
2244 2244
2245 2245 spa_vdev_state_enter(spa, SCL_NONE);
2246 2246
2247 2247 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2248 2248 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2249 2249
2250 2250 if (!vd->vdev_ops->vdev_op_leaf)
2251 2251 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2252 2252
2253 2253 /*
2254 2254 * If the vdev is already faulted, then don't do anything.
2255 2255 */
2256 2256 if (vd->vdev_faulted || vd->vdev_degraded)
2257 2257 return (spa_vdev_state_exit(spa, NULL, 0));
2258 2258
2259 2259 vd->vdev_degraded = 1ULL;
2260 2260 if (!vdev_is_dead(vd))
2261 2261 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2262 2262 aux);
2263 2263
2264 2264 return (spa_vdev_state_exit(spa, vd, 0));
2265 2265 }
2266 2266
2267 2267 /*
2268 2268 * Online the given vdev.
2269 2269 *
2270 2270 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2271 2271 * spare device should be detached when the device finishes resilvering.
2272 2272 * Second, the online should be treated like a 'test' online case, so no FMA
2273 2273 * events are generated if the device fails to open.
2274 2274 */
2275 2275 int
2276 2276 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2277 2277 {
2278 2278 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2279 2279
2280 2280 spa_vdev_state_enter(spa, SCL_NONE);
2281 2281
2282 2282 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2283 2283 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2284 2284
2285 2285 if (!vd->vdev_ops->vdev_op_leaf)
2286 2286 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2287 2287
2288 2288 tvd = vd->vdev_top;
2289 2289 vd->vdev_offline = B_FALSE;
2290 2290 vd->vdev_tmpoffline = B_FALSE;
2291 2291 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2292 2292 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2293 2293
2294 2294 /* XXX - L2ARC 1.0 does not support expansion */
2295 2295 if (!vd->vdev_aux) {
2296 2296 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2297 2297 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2298 2298 }
2299 2299
2300 2300 vdev_reopen(tvd);
2301 2301 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2302 2302
2303 2303 if (!vd->vdev_aux) {
2304 2304 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2305 2305 pvd->vdev_expanding = B_FALSE;
2306 2306 }
2307 2307
2308 2308 if (newstate)
2309 2309 *newstate = vd->vdev_state;
2310 2310 if ((flags & ZFS_ONLINE_UNSPARE) &&
2311 2311 !vdev_is_dead(vd) && vd->vdev_parent &&
2312 2312 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2313 2313 vd->vdev_parent->vdev_child[0] == vd)
2314 2314 vd->vdev_unspare = B_TRUE;
2315 2315
2316 2316 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2317 2317
2318 2318 /* XXX - L2ARC 1.0 does not support expansion */
2319 2319 if (vd->vdev_aux)
2320 2320 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2321 2321 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2322 2322 }
2323 2323 return (spa_vdev_state_exit(spa, vd, 0));
2324 2324 }
2325 2325
2326 2326 static int
2327 2327 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2328 2328 {
2329 2329 vdev_t *vd, *tvd;
2330 2330 int error = 0;
2331 2331 uint64_t generation;
2332 2332 metaslab_group_t *mg;
2333 2333
2334 2334 top:
2335 2335 spa_vdev_state_enter(spa, SCL_ALLOC);
2336 2336
2337 2337 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2338 2338 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2339 2339
2340 2340 if (!vd->vdev_ops->vdev_op_leaf)
2341 2341 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2342 2342
2343 2343 tvd = vd->vdev_top;
2344 2344 mg = tvd->vdev_mg;
2345 2345 generation = spa->spa_config_generation + 1;
2346 2346
2347 2347 /*
2348 2348 * If the device isn't already offline, try to offline it.
2349 2349 */
2350 2350 if (!vd->vdev_offline) {
2351 2351 /*
2352 2352 * If this device has the only valid copy of some data,
2353 2353 * don't allow it to be offlined. Log devices are always
2354 2354 * expendable.
2355 2355 */
2356 2356 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2357 2357 vdev_dtl_required(vd))
2358 2358 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2359 2359
2360 2360 /*
2361 2361 * If the top-level is a slog and it has had allocations
2362 2362 * then proceed. We check that the vdev's metaslab group
2363 2363 * is not NULL since it's possible that we may have just
2364 2364 * added this vdev but not yet initialized its metaslabs.
2365 2365 */
2366 2366 if (tvd->vdev_islog && mg != NULL) {
2367 2367 /*
2368 2368 * Prevent any future allocations.
2369 2369 */
2370 2370 metaslab_group_passivate(mg);
2371 2371 (void) spa_vdev_state_exit(spa, vd, 0);
2372 2372
2373 2373 error = spa_offline_log(spa);
2374 2374
2375 2375 spa_vdev_state_enter(spa, SCL_ALLOC);
2376 2376
2377 2377 /*
2378 2378 * Check to see if the config has changed.
2379 2379 */
2380 2380 if (error || generation != spa->spa_config_generation) {
2381 2381 metaslab_group_activate(mg);
2382 2382 if (error)
2383 2383 return (spa_vdev_state_exit(spa,
2384 2384 vd, error));
2385 2385 (void) spa_vdev_state_exit(spa, vd, 0);
2386 2386 goto top;
2387 2387 }
2388 2388 ASSERT0(tvd->vdev_stat.vs_alloc);
2389 2389 }
2390 2390
2391 2391 /*
2392 2392 * Offline this device and reopen its top-level vdev.
2393 2393 * If the top-level vdev is a log device then just offline
2394 2394 * it. Otherwise, if this action results in the top-level
2395 2395 * vdev becoming unusable, undo it and fail the request.
2396 2396 */
2397 2397 vd->vdev_offline = B_TRUE;
2398 2398 vdev_reopen(tvd);
2399 2399
2400 2400 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2401 2401 vdev_is_dead(tvd)) {
2402 2402 vd->vdev_offline = B_FALSE;
2403 2403 vdev_reopen(tvd);
2404 2404 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2405 2405 }
2406 2406
2407 2407 /*
2408 2408 * Add the device back into the metaslab rotor so that
2409 2409 * once we online the device it's open for business.
2410 2410 */
2411 2411 if (tvd->vdev_islog && mg != NULL)
2412 2412 metaslab_group_activate(mg);
2413 2413 }
2414 2414
2415 2415 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2416 2416
2417 2417 return (spa_vdev_state_exit(spa, vd, 0));
2418 2418 }
2419 2419
2420 2420 int
2421 2421 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2422 2422 {
2423 2423 int error;
2424 2424
2425 2425 mutex_enter(&spa->spa_vdev_top_lock);
2426 2426 error = vdev_offline_locked(spa, guid, flags);
2427 2427 mutex_exit(&spa->spa_vdev_top_lock);
2428 2428
2429 2429 return (error);
2430 2430 }
2431 2431
2432 2432 /*
2433 2433 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2434 2434 * vdev_offline(), we assume the spa config is locked. We also clear all
2435 2435 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2436 2436 */
2437 2437 void
2438 2438 vdev_clear(spa_t *spa, vdev_t *vd)
2439 2439 {
2440 2440 vdev_t *rvd = spa->spa_root_vdev;
2441 2441
2442 2442 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2443 2443
2444 2444 if (vd == NULL)
2445 2445 vd = rvd;
2446 2446
2447 2447 vd->vdev_stat.vs_read_errors = 0;
2448 2448 vd->vdev_stat.vs_write_errors = 0;
2449 2449 vd->vdev_stat.vs_checksum_errors = 0;
2450 2450
2451 2451 for (int c = 0; c < vd->vdev_children; c++)
2452 2452 vdev_clear(spa, vd->vdev_child[c]);
2453 2453
2454 2454 /*
2455 2455 * If we're in the FAULTED state or have experienced failed I/O, then
2456 2456 * clear the persistent state and attempt to reopen the device. We
2457 2457 * also mark the vdev config dirty, so that the new faulted state is
2458 2458 * written out to disk.
2459 2459 */
2460 2460 if (vd->vdev_faulted || vd->vdev_degraded ||
2461 2461 !vdev_readable(vd) || !vdev_writeable(vd)) {
2462 2462
2463 2463 /*
2464 2464 * When reopening in reponse to a clear event, it may be due to
2465 2465 * a fmadm repair request. In this case, if the device is
2466 2466 * still broken, we want to still post the ereport again.
2467 2467 */
2468 2468 vd->vdev_forcefault = B_TRUE;
2469 2469
2470 2470 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2471 2471 vd->vdev_cant_read = B_FALSE;
2472 2472 vd->vdev_cant_write = B_FALSE;
2473 2473
2474 2474 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2475 2475
2476 2476 vd->vdev_forcefault = B_FALSE;
2477 2477
2478 2478 if (vd != rvd && vdev_writeable(vd->vdev_top))
2479 2479 vdev_state_dirty(vd->vdev_top);
2480 2480
2481 2481 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2482 2482 spa_async_request(spa, SPA_ASYNC_RESILVER);
2483 2483
2484 2484 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2485 2485 }
2486 2486
2487 2487 /*
2488 2488 * When clearing a FMA-diagnosed fault, we always want to
2489 2489 * unspare the device, as we assume that the original spare was
2490 2490 * done in response to the FMA fault.
2491 2491 */
2492 2492 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2493 2493 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2494 2494 vd->vdev_parent->vdev_child[0] == vd)
2495 2495 vd->vdev_unspare = B_TRUE;
2496 2496 }
2497 2497
2498 2498 boolean_t
2499 2499 vdev_is_dead(vdev_t *vd)
2500 2500 {
2501 2501 /*
2502 2502 * Holes and missing devices are always considered "dead".
2503 2503 * This simplifies the code since we don't have to check for
2504 2504 * these types of devices in the various code paths.
2505 2505 * Instead we rely on the fact that we skip over dead devices
2506 2506 * before issuing I/O to them.
2507 2507 */
2508 2508 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2509 2509 vd->vdev_ops == &vdev_missing_ops);
2510 2510 }
2511 2511
2512 2512 boolean_t
2513 2513 vdev_readable(vdev_t *vd)
2514 2514 {
2515 2515 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2516 2516 }
2517 2517
2518 2518 boolean_t
2519 2519 vdev_writeable(vdev_t *vd)
2520 2520 {
2521 2521 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2522 2522 }
2523 2523
2524 2524 boolean_t
2525 2525 vdev_allocatable(vdev_t *vd)
2526 2526 {
2527 2527 uint64_t state = vd->vdev_state;
2528 2528
2529 2529 /*
2530 2530 * We currently allow allocations from vdevs which may be in the
2531 2531 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2532 2532 * fails to reopen then we'll catch it later when we're holding
2533 2533 * the proper locks. Note that we have to get the vdev state
2534 2534 * in a local variable because although it changes atomically,
2535 2535 * we're asking two separate questions about it.
2536 2536 */
2537 2537 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2538 2538 !vd->vdev_cant_write && !vd->vdev_ishole);
2539 2539 }
2540 2540
2541 2541 boolean_t
2542 2542 vdev_accessible(vdev_t *vd, zio_t *zio)
2543 2543 {
2544 2544 ASSERT(zio->io_vd == vd);
2545 2545
2546 2546 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2547 2547 return (B_FALSE);
2548 2548
2549 2549 if (zio->io_type == ZIO_TYPE_READ)
2550 2550 return (!vd->vdev_cant_read);
2551 2551
2552 2552 if (zio->io_type == ZIO_TYPE_WRITE)
2553 2553 return (!vd->vdev_cant_write);
2554 2554
2555 2555 return (B_TRUE);
2556 2556 }
2557 2557
2558 2558 /*
2559 2559 * Get statistics for the given vdev.
2560 2560 */
2561 2561 void
2562 2562 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2563 2563 {
2564 2564 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2565 2565
2566 2566 mutex_enter(&vd->vdev_stat_lock);
2567 2567 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2568 2568 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2569 2569 vs->vs_state = vd->vdev_state;
2570 2570 vs->vs_rsize = vdev_get_min_asize(vd);
2571 2571 if (vd->vdev_ops->vdev_op_leaf)
2572 2572 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2573 2573 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2574 2574 mutex_exit(&vd->vdev_stat_lock);
2575 2575
2576 2576 /*
2577 2577 * If we're getting stats on the root vdev, aggregate the I/O counts
2578 2578 * over all top-level vdevs (i.e. the direct children of the root).
2579 2579 */
2580 2580 if (vd == rvd) {
2581 2581 for (int c = 0; c < rvd->vdev_children; c++) {
2582 2582 vdev_t *cvd = rvd->vdev_child[c];
2583 2583 vdev_stat_t *cvs = &cvd->vdev_stat;
2584 2584
2585 2585 mutex_enter(&vd->vdev_stat_lock);
2586 2586 for (int t = 0; t < ZIO_TYPES; t++) {
2587 2587 vs->vs_ops[t] += cvs->vs_ops[t];
2588 2588 vs->vs_bytes[t] += cvs->vs_bytes[t];
2589 2589 }
2590 2590 cvs->vs_scan_removing = cvd->vdev_removing;
2591 2591 mutex_exit(&vd->vdev_stat_lock);
2592 2592 }
2593 2593 }
2594 2594 }
2595 2595
2596 2596 void
2597 2597 vdev_clear_stats(vdev_t *vd)
2598 2598 {
2599 2599 mutex_enter(&vd->vdev_stat_lock);
2600 2600 vd->vdev_stat.vs_space = 0;
2601 2601 vd->vdev_stat.vs_dspace = 0;
2602 2602 vd->vdev_stat.vs_alloc = 0;
2603 2603 mutex_exit(&vd->vdev_stat_lock);
2604 2604 }
2605 2605
2606 2606 void
2607 2607 vdev_scan_stat_init(vdev_t *vd)
2608 2608 {
2609 2609 vdev_stat_t *vs = &vd->vdev_stat;
2610 2610
2611 2611 for (int c = 0; c < vd->vdev_children; c++)
2612 2612 vdev_scan_stat_init(vd->vdev_child[c]);
2613 2613
2614 2614 mutex_enter(&vd->vdev_stat_lock);
2615 2615 vs->vs_scan_processed = 0;
2616 2616 mutex_exit(&vd->vdev_stat_lock);
2617 2617 }
2618 2618
2619 2619 void
2620 2620 vdev_stat_update(zio_t *zio, uint64_t psize)
2621 2621 {
2622 2622 spa_t *spa = zio->io_spa;
2623 2623 vdev_t *rvd = spa->spa_root_vdev;
2624 2624 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2625 2625 vdev_t *pvd;
2626 2626 uint64_t txg = zio->io_txg;
2627 2627 vdev_stat_t *vs = &vd->vdev_stat;
2628 2628 zio_type_t type = zio->io_type;
2629 2629 int flags = zio->io_flags;
2630 2630
2631 2631 /*
2632 2632 * If this i/o is a gang leader, it didn't do any actual work.
2633 2633 */
2634 2634 if (zio->io_gang_tree)
2635 2635 return;
2636 2636
2637 2637 if (zio->io_error == 0) {
2638 2638 /*
2639 2639 * If this is a root i/o, don't count it -- we've already
2640 2640 * counted the top-level vdevs, and vdev_get_stats() will
2641 2641 * aggregate them when asked. This reduces contention on
2642 2642 * the root vdev_stat_lock and implicitly handles blocks
2643 2643 * that compress away to holes, for which there is no i/o.
2644 2644 * (Holes never create vdev children, so all the counters
2645 2645 * remain zero, which is what we want.)
2646 2646 *
2647 2647 * Note: this only applies to successful i/o (io_error == 0)
2648 2648 * because unlike i/o counts, errors are not additive.
2649 2649 * When reading a ditto block, for example, failure of
2650 2650 * one top-level vdev does not imply a root-level error.
2651 2651 */
2652 2652 if (vd == rvd)
2653 2653 return;
2654 2654
2655 2655 ASSERT(vd == zio->io_vd);
2656 2656
2657 2657 if (flags & ZIO_FLAG_IO_BYPASS)
2658 2658 return;
2659 2659
2660 2660 mutex_enter(&vd->vdev_stat_lock);
2661 2661
2662 2662 if (flags & ZIO_FLAG_IO_REPAIR) {
2663 2663 if (flags & ZIO_FLAG_SCAN_THREAD) {
2664 2664 dsl_scan_phys_t *scn_phys =
2665 2665 &spa->spa_dsl_pool->dp_scan->scn_phys;
2666 2666 uint64_t *processed = &scn_phys->scn_processed;
2667 2667
2668 2668 /* XXX cleanup? */
2669 2669 if (vd->vdev_ops->vdev_op_leaf)
2670 2670 atomic_add_64(processed, psize);
2671 2671 vs->vs_scan_processed += psize;
2672 2672 }
2673 2673
2674 2674 if (flags & ZIO_FLAG_SELF_HEAL)
2675 2675 vs->vs_self_healed += psize;
2676 2676 }
2677 2677
2678 2678 vs->vs_ops[type]++;
2679 2679 vs->vs_bytes[type] += psize;
2680 2680
2681 2681 mutex_exit(&vd->vdev_stat_lock);
2682 2682 return;
2683 2683 }
2684 2684
2685 2685 if (flags & ZIO_FLAG_SPECULATIVE)
2686 2686 return;
2687 2687
2688 2688 /*
2689 2689 * If this is an I/O error that is going to be retried, then ignore the
2690 2690 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2691 2691 * hard errors, when in reality they can happen for any number of
2692 2692 * innocuous reasons (bus resets, MPxIO link failure, etc).
2693 2693 */
2694 2694 if (zio->io_error == EIO &&
2695 2695 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2696 2696 return;
2697 2697
2698 2698 /*
2699 2699 * Intent logs writes won't propagate their error to the root
2700 2700 * I/O so don't mark these types of failures as pool-level
2701 2701 * errors.
2702 2702 */
2703 2703 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2704 2704 return;
2705 2705
2706 2706 mutex_enter(&vd->vdev_stat_lock);
2707 2707 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2708 2708 if (zio->io_error == ECKSUM)
2709 2709 vs->vs_checksum_errors++;
2710 2710 else
2711 2711 vs->vs_read_errors++;
2712 2712 }
2713 2713 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2714 2714 vs->vs_write_errors++;
2715 2715 mutex_exit(&vd->vdev_stat_lock);
2716 2716
2717 2717 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2718 2718 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2719 2719 (flags & ZIO_FLAG_SCAN_THREAD) ||
2720 2720 spa->spa_claiming)) {
2721 2721 /*
2722 2722 * This is either a normal write (not a repair), or it's
2723 2723 * a repair induced by the scrub thread, or it's a repair
2724 2724 * made by zil_claim() during spa_load() in the first txg.
2725 2725 * In the normal case, we commit the DTL change in the same
2726 2726 * txg as the block was born. In the scrub-induced repair
2727 2727 * case, we know that scrubs run in first-pass syncing context,
2728 2728 * so we commit the DTL change in spa_syncing_txg(spa).
2729 2729 * In the zil_claim() case, we commit in spa_first_txg(spa).
2730 2730 *
2731 2731 * We currently do not make DTL entries for failed spontaneous
2732 2732 * self-healing writes triggered by normal (non-scrubbing)
2733 2733 * reads, because we have no transactional context in which to
2734 2734 * do so -- and it's not clear that it'd be desirable anyway.
2735 2735 */
2736 2736 if (vd->vdev_ops->vdev_op_leaf) {
2737 2737 uint64_t commit_txg = txg;
2738 2738 if (flags & ZIO_FLAG_SCAN_THREAD) {
2739 2739 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2740 2740 ASSERT(spa_sync_pass(spa) == 1);
2741 2741 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2742 2742 commit_txg = spa_syncing_txg(spa);
2743 2743 } else if (spa->spa_claiming) {
2744 2744 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2745 2745 commit_txg = spa_first_txg(spa);
2746 2746 }
2747 2747 ASSERT(commit_txg >= spa_syncing_txg(spa));
2748 2748 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2749 2749 return;
2750 2750 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2751 2751 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2752 2752 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2753 2753 }
2754 2754 if (vd != rvd)
2755 2755 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2756 2756 }
2757 2757 }
2758 2758
2759 2759 /*
2760 2760 * Update the in-core space usage stats for this vdev, its metaslab class,
2761 2761 * and the root vdev.
2762 2762 */
2763 2763 void
2764 2764 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2765 2765 int64_t space_delta)
2766 2766 {
2767 2767 int64_t dspace_delta = space_delta;
2768 2768 spa_t *spa = vd->vdev_spa;
2769 2769 vdev_t *rvd = spa->spa_root_vdev;
2770 2770 metaslab_group_t *mg = vd->vdev_mg;
2771 2771 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2772 2772
2773 2773 ASSERT(vd == vd->vdev_top);
2774 2774
2775 2775 /*
2776 2776 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2777 2777 * factor. We must calculate this here and not at the root vdev
2778 2778 * because the root vdev's psize-to-asize is simply the max of its
2779 2779 * childrens', thus not accurate enough for us.
2780 2780 */
2781 2781 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2782 2782 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2783 2783 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2784 2784 vd->vdev_deflate_ratio;
2785 2785
2786 2786 mutex_enter(&vd->vdev_stat_lock);
2787 2787 vd->vdev_stat.vs_alloc += alloc_delta;
2788 2788 vd->vdev_stat.vs_space += space_delta;
2789 2789 vd->vdev_stat.vs_dspace += dspace_delta;
2790 2790 mutex_exit(&vd->vdev_stat_lock);
2791 2791
2792 2792 if (mc == spa_normal_class(spa)) {
2793 2793 mutex_enter(&rvd->vdev_stat_lock);
2794 2794 rvd->vdev_stat.vs_alloc += alloc_delta;
2795 2795 rvd->vdev_stat.vs_space += space_delta;
2796 2796 rvd->vdev_stat.vs_dspace += dspace_delta;
2797 2797 mutex_exit(&rvd->vdev_stat_lock);
2798 2798 }
2799 2799
2800 2800 if (mc != NULL) {
2801 2801 ASSERT(rvd == vd->vdev_parent);
2802 2802 ASSERT(vd->vdev_ms_count != 0);
2803 2803
2804 2804 metaslab_class_space_update(mc,
2805 2805 alloc_delta, defer_delta, space_delta, dspace_delta);
2806 2806 }
2807 2807 }
2808 2808
2809 2809 /*
2810 2810 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2811 2811 * so that it will be written out next time the vdev configuration is synced.
2812 2812 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2813 2813 */
2814 2814 void
2815 2815 vdev_config_dirty(vdev_t *vd)
2816 2816 {
2817 2817 spa_t *spa = vd->vdev_spa;
2818 2818 vdev_t *rvd = spa->spa_root_vdev;
2819 2819 int c;
2820 2820
2821 2821 ASSERT(spa_writeable(spa));
2822 2822
2823 2823 /*
2824 2824 * If this is an aux vdev (as with l2cache and spare devices), then we
2825 2825 * update the vdev config manually and set the sync flag.
2826 2826 */
2827 2827 if (vd->vdev_aux != NULL) {
2828 2828 spa_aux_vdev_t *sav = vd->vdev_aux;
2829 2829 nvlist_t **aux;
2830 2830 uint_t naux;
2831 2831
2832 2832 for (c = 0; c < sav->sav_count; c++) {
2833 2833 if (sav->sav_vdevs[c] == vd)
2834 2834 break;
2835 2835 }
2836 2836
2837 2837 if (c == sav->sav_count) {
2838 2838 /*
2839 2839 * We're being removed. There's nothing more to do.
2840 2840 */
2841 2841 ASSERT(sav->sav_sync == B_TRUE);
2842 2842 return;
2843 2843 }
2844 2844
2845 2845 sav->sav_sync = B_TRUE;
2846 2846
2847 2847 if (nvlist_lookup_nvlist_array(sav->sav_config,
2848 2848 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2849 2849 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2850 2850 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2851 2851 }
2852 2852
2853 2853 ASSERT(c < naux);
2854 2854
2855 2855 /*
2856 2856 * Setting the nvlist in the middle if the array is a little
2857 2857 * sketchy, but it will work.
2858 2858 */
2859 2859 nvlist_free(aux[c]);
2860 2860 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2861 2861
2862 2862 return;
2863 2863 }
2864 2864
2865 2865 /*
2866 2866 * The dirty list is protected by the SCL_CONFIG lock. The caller
2867 2867 * must either hold SCL_CONFIG as writer, or must be the sync thread
2868 2868 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2869 2869 * so this is sufficient to ensure mutual exclusion.
2870 2870 */
2871 2871 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2872 2872 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2873 2873 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2874 2874
2875 2875 if (vd == rvd) {
2876 2876 for (c = 0; c < rvd->vdev_children; c++)
2877 2877 vdev_config_dirty(rvd->vdev_child[c]);
2878 2878 } else {
2879 2879 ASSERT(vd == vd->vdev_top);
2880 2880
2881 2881 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2882 2882 !vd->vdev_ishole)
2883 2883 list_insert_head(&spa->spa_config_dirty_list, vd);
2884 2884 }
2885 2885 }
2886 2886
2887 2887 void
2888 2888 vdev_config_clean(vdev_t *vd)
2889 2889 {
2890 2890 spa_t *spa = vd->vdev_spa;
2891 2891
2892 2892 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2893 2893 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2894 2894 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2895 2895
2896 2896 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2897 2897 list_remove(&spa->spa_config_dirty_list, vd);
2898 2898 }
2899 2899
2900 2900 /*
2901 2901 * Mark a top-level vdev's state as dirty, so that the next pass of
2902 2902 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2903 2903 * the state changes from larger config changes because they require
2904 2904 * much less locking, and are often needed for administrative actions.
2905 2905 */
2906 2906 void
2907 2907 vdev_state_dirty(vdev_t *vd)
2908 2908 {
2909 2909 spa_t *spa = vd->vdev_spa;
2910 2910
2911 2911 ASSERT(spa_writeable(spa));
2912 2912 ASSERT(vd == vd->vdev_top);
2913 2913
2914 2914 /*
2915 2915 * The state list is protected by the SCL_STATE lock. The caller
2916 2916 * must either hold SCL_STATE as writer, or must be the sync thread
2917 2917 * (which holds SCL_STATE as reader). There's only one sync thread,
2918 2918 * so this is sufficient to ensure mutual exclusion.
2919 2919 */
2920 2920 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2921 2921 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2922 2922 spa_config_held(spa, SCL_STATE, RW_READER)));
2923 2923
2924 2924 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2925 2925 list_insert_head(&spa->spa_state_dirty_list, vd);
2926 2926 }
2927 2927
2928 2928 void
2929 2929 vdev_state_clean(vdev_t *vd)
2930 2930 {
2931 2931 spa_t *spa = vd->vdev_spa;
2932 2932
2933 2933 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2934 2934 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2935 2935 spa_config_held(spa, SCL_STATE, RW_READER)));
2936 2936
2937 2937 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2938 2938 list_remove(&spa->spa_state_dirty_list, vd);
2939 2939 }
2940 2940
2941 2941 /*
2942 2942 * Propagate vdev state up from children to parent.
2943 2943 */
2944 2944 void
2945 2945 vdev_propagate_state(vdev_t *vd)
2946 2946 {
2947 2947 spa_t *spa = vd->vdev_spa;
2948 2948 vdev_t *rvd = spa->spa_root_vdev;
2949 2949 int degraded = 0, faulted = 0;
2950 2950 int corrupted = 0;
2951 2951 vdev_t *child;
2952 2952
2953 2953 if (vd->vdev_children > 0) {
2954 2954 for (int c = 0; c < vd->vdev_children; c++) {
2955 2955 child = vd->vdev_child[c];
2956 2956
2957 2957 /*
2958 2958 * Don't factor holes into the decision.
2959 2959 */
2960 2960 if (child->vdev_ishole)
2961 2961 continue;
2962 2962
2963 2963 if (!vdev_readable(child) ||
2964 2964 (!vdev_writeable(child) && spa_writeable(spa))) {
2965 2965 /*
2966 2966 * Root special: if there is a top-level log
2967 2967 * device, treat the root vdev as if it were
2968 2968 * degraded.
2969 2969 */
2970 2970 if (child->vdev_islog && vd == rvd)
2971 2971 degraded++;
2972 2972 else
2973 2973 faulted++;
2974 2974 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2975 2975 degraded++;
2976 2976 }
2977 2977
2978 2978 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2979 2979 corrupted++;
2980 2980 }
2981 2981
2982 2982 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2983 2983
2984 2984 /*
2985 2985 * Root special: if there is a top-level vdev that cannot be
2986 2986 * opened due to corrupted metadata, then propagate the root
2987 2987 * vdev's aux state as 'corrupt' rather than 'insufficient
2988 2988 * replicas'.
2989 2989 */
2990 2990 if (corrupted && vd == rvd &&
2991 2991 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2992 2992 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2993 2993 VDEV_AUX_CORRUPT_DATA);
2994 2994 }
2995 2995
2996 2996 if (vd->vdev_parent)
2997 2997 vdev_propagate_state(vd->vdev_parent);
2998 2998 }
2999 2999
3000 3000 /*
3001 3001 * Set a vdev's state. If this is during an open, we don't update the parent
3002 3002 * state, because we're in the process of opening children depth-first.
3003 3003 * Otherwise, we propagate the change to the parent.
3004 3004 *
3005 3005 * If this routine places a device in a faulted state, an appropriate ereport is
3006 3006 * generated.
3007 3007 */
3008 3008 void
3009 3009 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3010 3010 {
3011 3011 uint64_t save_state;
3012 3012 spa_t *spa = vd->vdev_spa;
3013 3013
3014 3014 if (state == vd->vdev_state) {
3015 3015 vd->vdev_stat.vs_aux = aux;
3016 3016 return;
3017 3017 }
3018 3018
3019 3019 save_state = vd->vdev_state;
3020 3020
3021 3021 vd->vdev_state = state;
3022 3022 vd->vdev_stat.vs_aux = aux;
3023 3023
3024 3024 /*
3025 3025 * If we are setting the vdev state to anything but an open state, then
3026 3026 * always close the underlying device unless the device has requested
3027 3027 * a delayed close (i.e. we're about to remove or fault the device).
3028 3028 * Otherwise, we keep accessible but invalid devices open forever.
3029 3029 * We don't call vdev_close() itself, because that implies some extra
3030 3030 * checks (offline, etc) that we don't want here. This is limited to
3031 3031 * leaf devices, because otherwise closing the device will affect other
3032 3032 * children.
3033 3033 */
3034 3034 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3035 3035 vd->vdev_ops->vdev_op_leaf)
3036 3036 vd->vdev_ops->vdev_op_close(vd);
3037 3037
3038 3038 /*
3039 3039 * If we have brought this vdev back into service, we need
3040 3040 * to notify fmd so that it can gracefully repair any outstanding
3041 3041 * cases due to a missing device. We do this in all cases, even those
3042 3042 * that probably don't correlate to a repaired fault. This is sure to
3043 3043 * catch all cases, and we let the zfs-retire agent sort it out. If
3044 3044 * this is a transient state it's OK, as the retire agent will
3045 3045 * double-check the state of the vdev before repairing it.
3046 3046 */
3047 3047 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3048 3048 vd->vdev_prevstate != state)
3049 3049 zfs_post_state_change(spa, vd);
3050 3050
3051 3051 if (vd->vdev_removed &&
3052 3052 state == VDEV_STATE_CANT_OPEN &&
3053 3053 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3054 3054 /*
3055 3055 * If the previous state is set to VDEV_STATE_REMOVED, then this
3056 3056 * device was previously marked removed and someone attempted to
3057 3057 * reopen it. If this failed due to a nonexistent device, then
3058 3058 * keep the device in the REMOVED state. We also let this be if
3059 3059 * it is one of our special test online cases, which is only
3060 3060 * attempting to online the device and shouldn't generate an FMA
3061 3061 * fault.
3062 3062 */
3063 3063 vd->vdev_state = VDEV_STATE_REMOVED;
3064 3064 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3065 3065 } else if (state == VDEV_STATE_REMOVED) {
3066 3066 vd->vdev_removed = B_TRUE;
3067 3067 } else if (state == VDEV_STATE_CANT_OPEN) {
3068 3068 /*
3069 3069 * If we fail to open a vdev during an import or recovery, we
3070 3070 * mark it as "not available", which signifies that it was
3071 3071 * never there to begin with. Failure to open such a device
3072 3072 * is not considered an error.
3073 3073 */
3074 3074 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3075 3075 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3076 3076 vd->vdev_ops->vdev_op_leaf)
3077 3077 vd->vdev_not_present = 1;
3078 3078
3079 3079 /*
3080 3080 * Post the appropriate ereport. If the 'prevstate' field is
3081 3081 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3082 3082 * that this is part of a vdev_reopen(). In this case, we don't
3083 3083 * want to post the ereport if the device was already in the
3084 3084 * CANT_OPEN state beforehand.
3085 3085 *
3086 3086 * If the 'checkremove' flag is set, then this is an attempt to
3087 3087 * online the device in response to an insertion event. If we
3088 3088 * hit this case, then we have detected an insertion event for a
3089 3089 * faulted or offline device that wasn't in the removed state.
3090 3090 * In this scenario, we don't post an ereport because we are
3091 3091 * about to replace the device, or attempt an online with
3092 3092 * vdev_forcefault, which will generate the fault for us.
3093 3093 */
3094 3094 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3095 3095 !vd->vdev_not_present && !vd->vdev_checkremove &&
3096 3096 vd != spa->spa_root_vdev) {
3097 3097 const char *class;
3098 3098
3099 3099 switch (aux) {
3100 3100 case VDEV_AUX_OPEN_FAILED:
3101 3101 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3102 3102 break;
3103 3103 case VDEV_AUX_CORRUPT_DATA:
3104 3104 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3105 3105 break;
3106 3106 case VDEV_AUX_NO_REPLICAS:
3107 3107 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3108 3108 break;
3109 3109 case VDEV_AUX_BAD_GUID_SUM:
3110 3110 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3111 3111 break;
3112 3112 case VDEV_AUX_TOO_SMALL:
3113 3113 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3114 3114 break;
3115 3115 case VDEV_AUX_BAD_LABEL:
3116 3116 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3117 3117 break;
3118 3118 default:
3119 3119 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3120 3120 }
3121 3121
3122 3122 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3123 3123 }
3124 3124
3125 3125 /* Erase any notion of persistent removed state */
3126 3126 vd->vdev_removed = B_FALSE;
3127 3127 } else {
3128 3128 vd->vdev_removed = B_FALSE;
3129 3129 }
3130 3130
3131 3131 if (!isopen && vd->vdev_parent)
3132 3132 vdev_propagate_state(vd->vdev_parent);
3133 3133 }
3134 3134
3135 3135 /*
3136 3136 * Check the vdev configuration to ensure that it's capable of supporting
3137 3137 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3138 3138 * In addition, only a single top-level vdev is allowed and none of the leaves
3139 3139 * can be wholedisks.
3140 3140 */
3141 3141 boolean_t
3142 3142 vdev_is_bootable(vdev_t *vd)
3143 3143 {
3144 3144 if (!vd->vdev_ops->vdev_op_leaf) {
3145 3145 char *vdev_type = vd->vdev_ops->vdev_op_type;
3146 3146
3147 3147 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3148 3148 vd->vdev_children > 1) {
3149 3149 return (B_FALSE);
3150 3150 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3151 3151 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3152 3152 return (B_FALSE);
3153 3153 }
3154 3154 } else if (vd->vdev_wholedisk == 1) {
3155 3155 return (B_FALSE);
3156 3156 }
3157 3157
3158 3158 for (int c = 0; c < vd->vdev_children; c++) {
3159 3159 if (!vdev_is_bootable(vd->vdev_child[c]))
3160 3160 return (B_FALSE);
3161 3161 }
3162 3162 return (B_TRUE);
3163 3163 }
3164 3164
3165 3165 /*
3166 3166 * Load the state from the original vdev tree (ovd) which
3167 3167 * we've retrieved from the MOS config object. If the original
3168 3168 * vdev was offline or faulted then we transfer that state to the
3169 3169 * device in the current vdev tree (nvd).
3170 3170 */
3171 3171 void
3172 3172 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3173 3173 {
3174 3174 spa_t *spa = nvd->vdev_spa;
3175 3175
3176 3176 ASSERT(nvd->vdev_top->vdev_islog);
3177 3177 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3178 3178 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3179 3179
3180 3180 for (int c = 0; c < nvd->vdev_children; c++)
3181 3181 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3182 3182
3183 3183 if (nvd->vdev_ops->vdev_op_leaf) {
3184 3184 /*
3185 3185 * Restore the persistent vdev state
3186 3186 */
3187 3187 nvd->vdev_offline = ovd->vdev_offline;
3188 3188 nvd->vdev_faulted = ovd->vdev_faulted;
3189 3189 nvd->vdev_degraded = ovd->vdev_degraded;
3190 3190 nvd->vdev_removed = ovd->vdev_removed;
3191 3191 }
3192 3192 }
3193 3193
3194 3194 /*
3195 3195 * Determine if a log device has valid content. If the vdev was
3196 3196 * removed or faulted in the MOS config then we know that
3197 3197 * the content on the log device has already been written to the pool.
3198 3198 */
3199 3199 boolean_t
3200 3200 vdev_log_state_valid(vdev_t *vd)
3201 3201 {
3202 3202 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3203 3203 !vd->vdev_removed)
3204 3204 return (B_TRUE);
3205 3205
3206 3206 for (int c = 0; c < vd->vdev_children; c++)
3207 3207 if (vdev_log_state_valid(vd->vdev_child[c]))
3208 3208 return (B_TRUE);
3209 3209
3210 3210 return (B_FALSE);
3211 3211 }
3212 3212
3213 3213 /*
3214 3214 * Expand a vdev if possible.
3215 3215 */
3216 3216 void
3217 3217 vdev_expand(vdev_t *vd, uint64_t txg)
3218 3218 {
3219 3219 ASSERT(vd->vdev_top == vd);
3220 3220 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3221 3221
3222 3222 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3223 3223 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3224 3224 vdev_config_dirty(vd);
3225 3225 }
3226 3226 }
3227 3227
3228 3228 /*
3229 3229 * Split a vdev.
3230 3230 */
3231 3231 void
3232 3232 vdev_split(vdev_t *vd)
3233 3233 {
3234 3234 vdev_t *cvd, *pvd = vd->vdev_parent;
3235 3235
3236 3236 vdev_remove_child(pvd, vd);
3237 3237 vdev_compact_children(pvd);
3238 3238
3239 3239 cvd = pvd->vdev_child[0];
3240 3240 if (pvd->vdev_children == 1) {
3241 3241 vdev_remove_parent(cvd);
3242 3242 cvd->vdev_splitting = B_TRUE;
3243 3243 }
3244 3244 vdev_propagate_state(cvd);
3245 3245 }
3246 3246
3247 3247 void
3248 3248 vdev_deadman(vdev_t *vd)
3249 3249 {
↓ open down ↓ |
3249 lines elided |
↑ open up ↑ |
3250 3250 for (int c = 0; c < vd->vdev_children; c++) {
3251 3251 vdev_t *cvd = vd->vdev_child[c];
3252 3252
3253 3253 vdev_deadman(cvd);
3254 3254 }
3255 3255
3256 3256 if (vd->vdev_ops->vdev_op_leaf) {
3257 3257 vdev_queue_t *vq = &vd->vdev_queue;
3258 3258
3259 3259 mutex_enter(&vq->vq_lock);
3260 - if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3260 + if (avl_numnodes(&vq->vq_active_tree) > 0) {
3261 3261 spa_t *spa = vd->vdev_spa;
3262 3262 zio_t *fio;
3263 3263 uint64_t delta;
3264 3264
3265 3265 /*
3266 3266 * Look at the head of all the pending queues,
3267 3267 * if any I/O has been outstanding for longer than
3268 3268 * the spa_deadman_synctime we panic the system.
3269 3269 */
3270 - fio = avl_first(&vq->vq_pending_tree);
3270 + fio = avl_first(&vq->vq_active_tree);
3271 3271 delta = gethrtime() - fio->io_timestamp;
3272 3272 if (delta > spa_deadman_synctime(spa)) {
3273 3273 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3274 3274 "delta %lluns, last io %lluns",
3275 3275 fio->io_timestamp, delta,
3276 3276 vq->vq_io_complete_ts);
3277 3277 fm_panic("I/O to pool '%s' appears to be "
3278 3278 "hung.", spa_name(spa));
3279 3279 }
3280 3280 }
3281 3281 mutex_exit(&vq->vq_lock);
3282 3282 }
3283 3283 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX