1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/spa_boot.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include "zfs_prop.h"
52 #include "zfeature_common.h"
53
54 /*
55 * SPA locking
56 *
57 * There are four basic locks for managing spa_t structures:
58 *
59 * spa_namespace_lock (global mutex)
60 *
61 * This lock must be acquired to do any of the following:
62 *
63 * - Lookup a spa_t by name
64 * - Add or remove a spa_t from the namespace
65 * - Increase spa_refcount from non-zero
66 * - Check if spa_refcount is zero
67 * - Rename a spa_t
68 * - add/remove/attach/detach devices
69 * - Held for the duration of create/destroy/import/export
70 *
71 * It does not need to handle recursion. A create or destroy may
72 * reference objects (files or zvols) in other pools, but by
73 * definition they must have an existing reference, and will never need
74 * to lookup a spa_t by name.
75 *
76 * spa_refcount (per-spa refcount_t protected by mutex)
77 *
78 * This reference count keep track of any active users of the spa_t. The
79 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
80 * the refcount is never really 'zero' - opening a pool implicitly keeps
81 * some references in the DMU. Internally we check against spa_minref, but
82 * present the image of a zero/non-zero value to consumers.
83 *
84 * spa_config_lock[] (per-spa array of rwlocks)
85 *
86 * This protects the spa_t from config changes, and must be held in
87 * the following circumstances:
88 *
89 * - RW_READER to perform I/O to the spa
90 * - RW_WRITER to change the vdev config
91 *
92 * The locking order is fairly straightforward:
93 *
94 * spa_namespace_lock -> spa_refcount
95 *
96 * The namespace lock must be acquired to increase the refcount from 0
97 * or to check if it is zero.
98 *
99 * spa_refcount -> spa_config_lock[]
100 *
101 * There must be at least one valid reference on the spa_t to acquire
102 * the config lock.
103 *
104 * spa_namespace_lock -> spa_config_lock[]
105 *
106 * The namespace lock must always be taken before the config lock.
107 *
108 *
109 * The spa_namespace_lock can be acquired directly and is globally visible.
110 *
111 * The namespace is manipulated using the following functions, all of which
112 * require the spa_namespace_lock to be held.
113 *
114 * spa_lookup() Lookup a spa_t by name.
115 *
116 * spa_add() Create a new spa_t in the namespace.
117 *
118 * spa_remove() Remove a spa_t from the namespace. This also
119 * frees up any memory associated with the spa_t.
120 *
121 * spa_next() Returns the next spa_t in the system, or the
122 * first if NULL is passed.
123 *
124 * spa_evict_all() Shutdown and remove all spa_t structures in
125 * the system.
126 *
127 * spa_guid_exists() Determine whether a pool/device guid exists.
128 *
129 * The spa_refcount is manipulated using the following functions:
130 *
131 * spa_open_ref() Adds a reference to the given spa_t. Must be
132 * called with spa_namespace_lock held if the
133 * refcount is currently zero.
134 *
135 * spa_close() Remove a reference from the spa_t. This will
136 * not free the spa_t or remove it from the
137 * namespace. No locking is required.
138 *
139 * spa_refcount_zero() Returns true if the refcount is currently
140 * zero. Must be called with spa_namespace_lock
141 * held.
142 *
143 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
146 *
147 * To read the configuration, it suffices to hold one of these locks as reader.
148 * To modify the configuration, you must hold all locks as writer. To modify
149 * vdev state without altering the vdev tree's topology (e.g. online/offline),
150 * you must hold SCL_STATE and SCL_ZIO as writer.
151 *
152 * We use these distinct config locks to avoid recursive lock entry.
153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
154 * block allocations (SCL_ALLOC), which may require reading space maps
155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
156 *
157 * The spa config locks cannot be normal rwlocks because we need the
158 * ability to hand off ownership. For example, SCL_ZIO is acquired
159 * by the issuing thread and later released by an interrupt thread.
160 * They do, however, obey the usual write-wanted semantics to prevent
161 * writer (i.e. system administrator) starvation.
162 *
163 * The lock acquisition rules are as follows:
164 *
165 * SCL_CONFIG
166 * Protects changes to the vdev tree topology, such as vdev
167 * add/remove/attach/detach. Protects the dirty config list
168 * (spa_config_dirty_list) and the set of spares and l2arc devices.
169 *
170 * SCL_STATE
171 * Protects changes to pool state and vdev state, such as vdev
172 * online/offline/fault/degrade/clear. Protects the dirty state list
173 * (spa_state_dirty_list) and global pool state (spa_state).
174 *
175 * SCL_ALLOC
176 * Protects changes to metaslab groups and classes.
177 * Held as reader by metaslab_alloc() and metaslab_claim().
178 *
179 * SCL_ZIO
180 * Held by bp-level zios (those which have no io_vd upon entry)
181 * to prevent changes to the vdev tree. The bp-level zio implicitly
182 * protects all of its vdev child zios, which do not hold SCL_ZIO.
183 *
184 * SCL_FREE
185 * Protects changes to metaslab groups and classes.
186 * Held as reader by metaslab_free(). SCL_FREE is distinct from
187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
188 * blocks in zio_done() while another i/o that holds either
189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
190 *
191 * SCL_VDEV
192 * Held as reader to prevent changes to the vdev tree during trivial
193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
194 * other locks, and lower than all of them, to ensure that it's safe
195 * to acquire regardless of caller context.
196 *
197 * In addition, the following rules apply:
198 *
199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
200 * The lock ordering is SCL_CONFIG > spa_props_lock.
201 *
202 * (b) I/O operations on leaf vdevs. For any zio operation that takes
203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
204 * or zio_write_phys() -- the caller must ensure that the config cannot
205 * cannot change in the interim, and that the vdev cannot be reopened.
206 * SCL_STATE as reader suffices for both.
207 *
208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
209 *
210 * spa_vdev_enter() Acquire the namespace lock and the config lock
211 * for writing.
212 *
213 * spa_vdev_exit() Release the config lock, wait for all I/O
214 * to complete, sync the updated configs to the
215 * cache, and release the namespace lock.
216 *
217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
219 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
220 *
221 * spa_rename() is also implemented within this file since it requires
222 * manipulation of the namespace.
223 */
224
225 static avl_tree_t spa_namespace_avl;
226 kmutex_t spa_namespace_lock;
227 static kcondvar_t spa_namespace_cv;
228 static int spa_active_count;
229 int spa_max_replication_override = SPA_DVAS_PER_BP;
230
231 static kmutex_t spa_spare_lock;
232 static avl_tree_t spa_spare_avl;
233 static kmutex_t spa_l2cache_lock;
234 static avl_tree_t spa_l2cache_avl;
235
236 kmem_cache_t *spa_buffer_pool;
237 int spa_mode_global;
238
239 #ifdef ZFS_DEBUG
240 /* Everything except dprintf and spa is on by default in debug builds */
241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
242 #else
243 int zfs_flags = 0;
244 #endif
245
246 /*
247 * zfs_recover can be set to nonzero to attempt to recover from
248 * otherwise-fatal errors, typically caused by on-disk corruption. When
249 * set, calls to zfs_panic_recover() will turn into warning messages.
250 */
251 int zfs_recover = 0;
252
253 /*
254 * Expiration time in milliseconds. This value has two meanings. First it is
255 * used to determine when the spa_deadman() logic should fire. By default the
256 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
257 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
258 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
259 * in a system panic.
260 */
261 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
262
263 /*
264 * Check time in milliseconds. This defines the frequency at which we check
265 * for hung I/O.
266 */
267 uint64_t zfs_deadman_checktime_ms = 5000ULL;
268
269 /*
270 * Override the zfs deadman behavior via /etc/system. By default the
271 * deadman is enabled except on VMware and sparc deployments.
272 */
273 int zfs_deadman_enabled = -1;
274
275 /*
276 * The worst case is single-sector max-parity RAID-Z blocks, in which
277 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
278 * times the size; so just assume that. Add to this the fact that
279 * we can have up to 3 DVAs per bp, and one more factor of 2 because
280 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
281 * the worst case is:
282 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
283 */
284 int spa_asize_inflation = 24;
285
286 /*
287 * ==========================================================================
288 * SPA config locking
289 * ==========================================================================
290 */
291 static void
292 spa_config_lock_init(spa_t *spa)
293 {
294 for (int i = 0; i < SCL_LOCKS; i++) {
295 spa_config_lock_t *scl = &spa->spa_config_lock[i];
296 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
297 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
298 refcount_create_untracked(&scl->scl_count);
299 scl->scl_writer = NULL;
300 scl->scl_write_wanted = 0;
301 }
302 }
303
304 static void
305 spa_config_lock_destroy(spa_t *spa)
306 {
307 for (int i = 0; i < SCL_LOCKS; i++) {
308 spa_config_lock_t *scl = &spa->spa_config_lock[i];
309 mutex_destroy(&scl->scl_lock);
310 cv_destroy(&scl->scl_cv);
311 refcount_destroy(&scl->scl_count);
312 ASSERT(scl->scl_writer == NULL);
313 ASSERT(scl->scl_write_wanted == 0);
314 }
315 }
316
317 int
318 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
319 {
320 for (int i = 0; i < SCL_LOCKS; i++) {
321 spa_config_lock_t *scl = &spa->spa_config_lock[i];
322 if (!(locks & (1 << i)))
323 continue;
324 mutex_enter(&scl->scl_lock);
325 if (rw == RW_READER) {
326 if (scl->scl_writer || scl->scl_write_wanted) {
327 mutex_exit(&scl->scl_lock);
328 spa_config_exit(spa, locks ^ (1 << i), tag);
329 return (0);
330 }
331 } else {
332 ASSERT(scl->scl_writer != curthread);
333 if (!refcount_is_zero(&scl->scl_count)) {
334 mutex_exit(&scl->scl_lock);
335 spa_config_exit(spa, locks ^ (1 << i), tag);
336 return (0);
337 }
338 scl->scl_writer = curthread;
339 }
340 (void) refcount_add(&scl->scl_count, tag);
341 mutex_exit(&scl->scl_lock);
342 }
343 return (1);
344 }
345
346 void
347 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
348 {
349 int wlocks_held = 0;
350
351 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
352
353 for (int i = 0; i < SCL_LOCKS; i++) {
354 spa_config_lock_t *scl = &spa->spa_config_lock[i];
355 if (scl->scl_writer == curthread)
356 wlocks_held |= (1 << i);
357 if (!(locks & (1 << i)))
358 continue;
359 mutex_enter(&scl->scl_lock);
360 if (rw == RW_READER) {
361 while (scl->scl_writer || scl->scl_write_wanted) {
362 cv_wait(&scl->scl_cv, &scl->scl_lock);
363 }
364 } else {
365 ASSERT(scl->scl_writer != curthread);
366 while (!refcount_is_zero(&scl->scl_count)) {
367 scl->scl_write_wanted++;
368 cv_wait(&scl->scl_cv, &scl->scl_lock);
369 scl->scl_write_wanted--;
370 }
371 scl->scl_writer = curthread;
372 }
373 (void) refcount_add(&scl->scl_count, tag);
374 mutex_exit(&scl->scl_lock);
375 }
376 ASSERT(wlocks_held <= locks);
377 }
378
379 void
380 spa_config_exit(spa_t *spa, int locks, void *tag)
381 {
382 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
383 spa_config_lock_t *scl = &spa->spa_config_lock[i];
384 if (!(locks & (1 << i)))
385 continue;
386 mutex_enter(&scl->scl_lock);
387 ASSERT(!refcount_is_zero(&scl->scl_count));
388 if (refcount_remove(&scl->scl_count, tag) == 0) {
389 ASSERT(scl->scl_writer == NULL ||
390 scl->scl_writer == curthread);
391 scl->scl_writer = NULL; /* OK in either case */
392 cv_broadcast(&scl->scl_cv);
393 }
394 mutex_exit(&scl->scl_lock);
395 }
396 }
397
398 int
399 spa_config_held(spa_t *spa, int locks, krw_t rw)
400 {
401 int locks_held = 0;
402
403 for (int i = 0; i < SCL_LOCKS; i++) {
404 spa_config_lock_t *scl = &spa->spa_config_lock[i];
405 if (!(locks & (1 << i)))
406 continue;
407 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
408 (rw == RW_WRITER && scl->scl_writer == curthread))
409 locks_held |= 1 << i;
410 }
411
412 return (locks_held);
413 }
414
415 /*
416 * ==========================================================================
417 * SPA namespace functions
418 * ==========================================================================
419 */
420
421 /*
422 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
423 * Returns NULL if no matching spa_t is found.
424 */
425 spa_t *
426 spa_lookup(const char *name)
427 {
428 static spa_t search; /* spa_t is large; don't allocate on stack */
429 spa_t *spa;
430 avl_index_t where;
431 char *cp;
432
433 ASSERT(MUTEX_HELD(&spa_namespace_lock));
434
435 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
436
437 /*
438 * If it's a full dataset name, figure out the pool name and
439 * just use that.
440 */
441 cp = strpbrk(search.spa_name, "/@");
442 if (cp != NULL)
443 *cp = '\0';
444
445 spa = avl_find(&spa_namespace_avl, &search, &where);
446
447 return (spa);
448 }
449
450 /*
451 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
452 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
453 * looking for potentially hung I/Os.
454 */
455 void
456 spa_deadman(void *arg)
457 {
458 spa_t *spa = arg;
459
460 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
461 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
462 ++spa->spa_deadman_calls);
463 if (zfs_deadman_enabled)
464 vdev_deadman(spa->spa_root_vdev);
465 }
466
467 /*
468 * Create an uninitialized spa_t with the given name. Requires
469 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
470 * exist by calling spa_lookup() first.
471 */
472 spa_t *
473 spa_add(const char *name, nvlist_t *config, const char *altroot)
474 {
475 spa_t *spa;
476 spa_config_dirent_t *dp;
477 cyc_handler_t hdlr;
478 cyc_time_t when;
479
480 ASSERT(MUTEX_HELD(&spa_namespace_lock));
481
482 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
483
484 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
485 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
486 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
487 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
488 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
489 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
490 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
491 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
492 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
493 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
494
495 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
496 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
497 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
498 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
499
500 for (int t = 0; t < TXG_SIZE; t++)
501 bplist_create(&spa->spa_free_bplist[t]);
502
503 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
504 spa->spa_state = POOL_STATE_UNINITIALIZED;
505 spa->spa_freeze_txg = UINT64_MAX;
506 spa->spa_final_txg = UINT64_MAX;
507 spa->spa_load_max_txg = UINT64_MAX;
508 spa->spa_proc = &p0;
509 spa->spa_proc_state = SPA_PROC_NONE;
510
511 hdlr.cyh_func = spa_deadman;
512 hdlr.cyh_arg = spa;
513 hdlr.cyh_level = CY_LOW_LEVEL;
514
515 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
516
517 /*
518 * This determines how often we need to check for hung I/Os after
519 * the cyclic has already fired. Since checking for hung I/Os is
520 * an expensive operation we don't want to check too frequently.
521 * Instead wait for 5 seconds before checking again.
522 */
523 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
524 when.cyt_when = CY_INFINITY;
525 mutex_enter(&cpu_lock);
526 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
527 mutex_exit(&cpu_lock);
528
529 refcount_create(&spa->spa_refcount);
530 spa_config_lock_init(spa);
531
532 avl_add(&spa_namespace_avl, spa);
533
534 /*
535 * Set the alternate root, if there is one.
536 */
537 if (altroot) {
538 spa->spa_root = spa_strdup(altroot);
539 spa_active_count++;
540 }
541
542 /*
543 * Every pool starts with the default cachefile
544 */
545 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
546 offsetof(spa_config_dirent_t, scd_link));
547
548 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
549 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
550 list_insert_head(&spa->spa_config_list, dp);
551
552 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
553 KM_SLEEP) == 0);
554
555 if (config != NULL) {
556 nvlist_t *features;
557
558 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
559 &features) == 0) {
560 VERIFY(nvlist_dup(features, &spa->spa_label_features,
561 0) == 0);
562 }
563
564 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
565 }
566
567 if (spa->spa_label_features == NULL) {
568 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
569 KM_SLEEP) == 0);
570 }
571
572 spa->spa_iokstat = kstat_create("zfs", 0, name,
573 "disk", KSTAT_TYPE_IO, 1, 0);
574 if (spa->spa_iokstat) {
575 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
576 kstat_install(spa->spa_iokstat);
577 }
578
579 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
580
581 return (spa);
582 }
583
584 /*
585 * Removes a spa_t from the namespace, freeing up any memory used. Requires
586 * spa_namespace_lock. This is called only after the spa_t has been closed and
587 * deactivated.
588 */
589 void
590 spa_remove(spa_t *spa)
591 {
592 spa_config_dirent_t *dp;
593
594 ASSERT(MUTEX_HELD(&spa_namespace_lock));
595 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
596
597 nvlist_free(spa->spa_config_splitting);
598
599 avl_remove(&spa_namespace_avl, spa);
600 cv_broadcast(&spa_namespace_cv);
601
602 if (spa->spa_root) {
603 spa_strfree(spa->spa_root);
604 spa_active_count--;
605 }
606
607 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
608 list_remove(&spa->spa_config_list, dp);
609 if (dp->scd_path != NULL)
610 spa_strfree(dp->scd_path);
611 kmem_free(dp, sizeof (spa_config_dirent_t));
612 }
613
614 list_destroy(&spa->spa_config_list);
615
616 nvlist_free(spa->spa_label_features);
617 nvlist_free(spa->spa_load_info);
618 spa_config_set(spa, NULL);
619
620 mutex_enter(&cpu_lock);
621 if (spa->spa_deadman_cycid != CYCLIC_NONE)
622 cyclic_remove(spa->spa_deadman_cycid);
623 mutex_exit(&cpu_lock);
624 spa->spa_deadman_cycid = CYCLIC_NONE;
625
626 refcount_destroy(&spa->spa_refcount);
627
628 spa_config_lock_destroy(spa);
629
630 kstat_delete(spa->spa_iokstat);
631 spa->spa_iokstat = NULL;
632
633 for (int t = 0; t < TXG_SIZE; t++)
634 bplist_destroy(&spa->spa_free_bplist[t]);
635
636 cv_destroy(&spa->spa_async_cv);
637 cv_destroy(&spa->spa_proc_cv);
638 cv_destroy(&spa->spa_scrub_io_cv);
639 cv_destroy(&spa->spa_suspend_cv);
640
641 mutex_destroy(&spa->spa_async_lock);
642 mutex_destroy(&spa->spa_errlist_lock);
643 mutex_destroy(&spa->spa_errlog_lock);
644 mutex_destroy(&spa->spa_history_lock);
645 mutex_destroy(&spa->spa_proc_lock);
646 mutex_destroy(&spa->spa_props_lock);
647 mutex_destroy(&spa->spa_scrub_lock);
648 mutex_destroy(&spa->spa_suspend_lock);
649 mutex_destroy(&spa->spa_vdev_top_lock);
650 mutex_destroy(&spa->spa_iokstat_lock);
651
652 kmem_free(spa, sizeof (spa_t));
653 }
654
655 /*
656 * Given a pool, return the next pool in the namespace, or NULL if there is
657 * none. If 'prev' is NULL, return the first pool.
658 */
659 spa_t *
660 spa_next(spa_t *prev)
661 {
662 ASSERT(MUTEX_HELD(&spa_namespace_lock));
663
664 if (prev)
665 return (AVL_NEXT(&spa_namespace_avl, prev));
666 else
667 return (avl_first(&spa_namespace_avl));
668 }
669
670 /*
671 * ==========================================================================
672 * SPA refcount functions
673 * ==========================================================================
674 */
675
676 /*
677 * Add a reference to the given spa_t. Must have at least one reference, or
678 * have the namespace lock held.
679 */
680 void
681 spa_open_ref(spa_t *spa, void *tag)
682 {
683 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
684 MUTEX_HELD(&spa_namespace_lock));
685 (void) refcount_add(&spa->spa_refcount, tag);
686 }
687
688 /*
689 * Remove a reference to the given spa_t. Must have at least one reference, or
690 * have the namespace lock held.
691 */
692 void
693 spa_close(spa_t *spa, void *tag)
694 {
695 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
696 MUTEX_HELD(&spa_namespace_lock));
697 (void) refcount_remove(&spa->spa_refcount, tag);
698 }
699
700 /*
701 * Check to see if the spa refcount is zero. Must be called with
702 * spa_namespace_lock held. We really compare against spa_minref, which is the
703 * number of references acquired when opening a pool
704 */
705 boolean_t
706 spa_refcount_zero(spa_t *spa)
707 {
708 ASSERT(MUTEX_HELD(&spa_namespace_lock));
709
710 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
711 }
712
713 /*
714 * ==========================================================================
715 * SPA spare and l2cache tracking
716 * ==========================================================================
717 */
718
719 /*
720 * Hot spares and cache devices are tracked using the same code below,
721 * for 'auxiliary' devices.
722 */
723
724 typedef struct spa_aux {
725 uint64_t aux_guid;
726 uint64_t aux_pool;
727 avl_node_t aux_avl;
728 int aux_count;
729 } spa_aux_t;
730
731 static int
732 spa_aux_compare(const void *a, const void *b)
733 {
734 const spa_aux_t *sa = a;
735 const spa_aux_t *sb = b;
736
737 if (sa->aux_guid < sb->aux_guid)
738 return (-1);
739 else if (sa->aux_guid > sb->aux_guid)
740 return (1);
741 else
742 return (0);
743 }
744
745 void
746 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
747 {
748 avl_index_t where;
749 spa_aux_t search;
750 spa_aux_t *aux;
751
752 search.aux_guid = vd->vdev_guid;
753 if ((aux = avl_find(avl, &search, &where)) != NULL) {
754 aux->aux_count++;
755 } else {
756 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
757 aux->aux_guid = vd->vdev_guid;
758 aux->aux_count = 1;
759 avl_insert(avl, aux, where);
760 }
761 }
762
763 void
764 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
765 {
766 spa_aux_t search;
767 spa_aux_t *aux;
768 avl_index_t where;
769
770 search.aux_guid = vd->vdev_guid;
771 aux = avl_find(avl, &search, &where);
772
773 ASSERT(aux != NULL);
774
775 if (--aux->aux_count == 0) {
776 avl_remove(avl, aux);
777 kmem_free(aux, sizeof (spa_aux_t));
778 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
779 aux->aux_pool = 0ULL;
780 }
781 }
782
783 boolean_t
784 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
785 {
786 spa_aux_t search, *found;
787
788 search.aux_guid = guid;
789 found = avl_find(avl, &search, NULL);
790
791 if (pool) {
792 if (found)
793 *pool = found->aux_pool;
794 else
795 *pool = 0ULL;
796 }
797
798 if (refcnt) {
799 if (found)
800 *refcnt = found->aux_count;
801 else
802 *refcnt = 0;
803 }
804
805 return (found != NULL);
806 }
807
808 void
809 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
810 {
811 spa_aux_t search, *found;
812 avl_index_t where;
813
814 search.aux_guid = vd->vdev_guid;
815 found = avl_find(avl, &search, &where);
816 ASSERT(found != NULL);
817 ASSERT(found->aux_pool == 0ULL);
818
819 found->aux_pool = spa_guid(vd->vdev_spa);
820 }
821
822 /*
823 * Spares are tracked globally due to the following constraints:
824 *
825 * - A spare may be part of multiple pools.
826 * - A spare may be added to a pool even if it's actively in use within
827 * another pool.
828 * - A spare in use in any pool can only be the source of a replacement if
829 * the target is a spare in the same pool.
830 *
831 * We keep track of all spares on the system through the use of a reference
832 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
833 * spare, then we bump the reference count in the AVL tree. In addition, we set
834 * the 'vdev_isspare' member to indicate that the device is a spare (active or
835 * inactive). When a spare is made active (used to replace a device in the
836 * pool), we also keep track of which pool its been made a part of.
837 *
838 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
839 * called under the spa_namespace lock as part of vdev reconfiguration. The
840 * separate spare lock exists for the status query path, which does not need to
841 * be completely consistent with respect to other vdev configuration changes.
842 */
843
844 static int
845 spa_spare_compare(const void *a, const void *b)
846 {
847 return (spa_aux_compare(a, b));
848 }
849
850 void
851 spa_spare_add(vdev_t *vd)
852 {
853 mutex_enter(&spa_spare_lock);
854 ASSERT(!vd->vdev_isspare);
855 spa_aux_add(vd, &spa_spare_avl);
856 vd->vdev_isspare = B_TRUE;
857 mutex_exit(&spa_spare_lock);
858 }
859
860 void
861 spa_spare_remove(vdev_t *vd)
862 {
863 mutex_enter(&spa_spare_lock);
864 ASSERT(vd->vdev_isspare);
865 spa_aux_remove(vd, &spa_spare_avl);
866 vd->vdev_isspare = B_FALSE;
867 mutex_exit(&spa_spare_lock);
868 }
869
870 boolean_t
871 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
872 {
873 boolean_t found;
874
875 mutex_enter(&spa_spare_lock);
876 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
877 mutex_exit(&spa_spare_lock);
878
879 return (found);
880 }
881
882 void
883 spa_spare_activate(vdev_t *vd)
884 {
885 mutex_enter(&spa_spare_lock);
886 ASSERT(vd->vdev_isspare);
887 spa_aux_activate(vd, &spa_spare_avl);
888 mutex_exit(&spa_spare_lock);
889 }
890
891 /*
892 * Level 2 ARC devices are tracked globally for the same reasons as spares.
893 * Cache devices currently only support one pool per cache device, and so
894 * for these devices the aux reference count is currently unused beyond 1.
895 */
896
897 static int
898 spa_l2cache_compare(const void *a, const void *b)
899 {
900 return (spa_aux_compare(a, b));
901 }
902
903 void
904 spa_l2cache_add(vdev_t *vd)
905 {
906 mutex_enter(&spa_l2cache_lock);
907 ASSERT(!vd->vdev_isl2cache);
908 spa_aux_add(vd, &spa_l2cache_avl);
909 vd->vdev_isl2cache = B_TRUE;
910 mutex_exit(&spa_l2cache_lock);
911 }
912
913 void
914 spa_l2cache_remove(vdev_t *vd)
915 {
916 mutex_enter(&spa_l2cache_lock);
917 ASSERT(vd->vdev_isl2cache);
918 spa_aux_remove(vd, &spa_l2cache_avl);
919 vd->vdev_isl2cache = B_FALSE;
920 mutex_exit(&spa_l2cache_lock);
921 }
922
923 boolean_t
924 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
925 {
926 boolean_t found;
927
928 mutex_enter(&spa_l2cache_lock);
929 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
930 mutex_exit(&spa_l2cache_lock);
931
932 return (found);
933 }
934
935 void
936 spa_l2cache_activate(vdev_t *vd)
937 {
938 mutex_enter(&spa_l2cache_lock);
939 ASSERT(vd->vdev_isl2cache);
940 spa_aux_activate(vd, &spa_l2cache_avl);
941 mutex_exit(&spa_l2cache_lock);
942 }
943
944 /*
945 * ==========================================================================
946 * SPA vdev locking
947 * ==========================================================================
948 */
949
950 /*
951 * Lock the given spa_t for the purpose of adding or removing a vdev.
952 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
953 * It returns the next transaction group for the spa_t.
954 */
955 uint64_t
956 spa_vdev_enter(spa_t *spa)
957 {
958 mutex_enter(&spa->spa_vdev_top_lock);
959 mutex_enter(&spa_namespace_lock);
960 return (spa_vdev_config_enter(spa));
961 }
962
963 /*
964 * Internal implementation for spa_vdev_enter(). Used when a vdev
965 * operation requires multiple syncs (i.e. removing a device) while
966 * keeping the spa_namespace_lock held.
967 */
968 uint64_t
969 spa_vdev_config_enter(spa_t *spa)
970 {
971 ASSERT(MUTEX_HELD(&spa_namespace_lock));
972
973 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
974
975 return (spa_last_synced_txg(spa) + 1);
976 }
977
978 /*
979 * Used in combination with spa_vdev_config_enter() to allow the syncing
980 * of multiple transactions without releasing the spa_namespace_lock.
981 */
982 void
983 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
984 {
985 ASSERT(MUTEX_HELD(&spa_namespace_lock));
986
987 int config_changed = B_FALSE;
988
989 ASSERT(txg > spa_last_synced_txg(spa));
990
991 spa->spa_pending_vdev = NULL;
992
993 /*
994 * Reassess the DTLs.
995 */
996 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
997
998 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
999 config_changed = B_TRUE;
1000 spa->spa_config_generation++;
1001 }
1002
1003 /*
1004 * Verify the metaslab classes.
1005 */
1006 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1007 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1008
1009 spa_config_exit(spa, SCL_ALL, spa);
1010
1011 /*
1012 * Panic the system if the specified tag requires it. This
1013 * is useful for ensuring that configurations are updated
1014 * transactionally.
1015 */
1016 if (zio_injection_enabled)
1017 zio_handle_panic_injection(spa, tag, 0);
1018
1019 /*
1020 * Note: this txg_wait_synced() is important because it ensures
1021 * that there won't be more than one config change per txg.
1022 * This allows us to use the txg as the generation number.
1023 */
1024 if (error == 0)
1025 txg_wait_synced(spa->spa_dsl_pool, txg);
1026
1027 if (vd != NULL) {
1028 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
1029 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1030 vdev_free(vd);
1031 spa_config_exit(spa, SCL_ALL, spa);
1032 }
1033
1034 /*
1035 * If the config changed, update the config cache.
1036 */
1037 if (config_changed)
1038 spa_config_sync(spa, B_FALSE, B_TRUE);
1039 }
1040
1041 /*
1042 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1043 * locking of spa_vdev_enter(), we also want make sure the transactions have
1044 * synced to disk, and then update the global configuration cache with the new
1045 * information.
1046 */
1047 int
1048 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1049 {
1050 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1051 mutex_exit(&spa_namespace_lock);
1052 mutex_exit(&spa->spa_vdev_top_lock);
1053
1054 return (error);
1055 }
1056
1057 /*
1058 * Lock the given spa_t for the purpose of changing vdev state.
1059 */
1060 void
1061 spa_vdev_state_enter(spa_t *spa, int oplocks)
1062 {
1063 int locks = SCL_STATE_ALL | oplocks;
1064
1065 /*
1066 * Root pools may need to read of the underlying devfs filesystem
1067 * when opening up a vdev. Unfortunately if we're holding the
1068 * SCL_ZIO lock it will result in a deadlock when we try to issue
1069 * the read from the root filesystem. Instead we "prefetch"
1070 * the associated vnodes that we need prior to opening the
1071 * underlying devices and cache them so that we can prevent
1072 * any I/O when we are doing the actual open.
1073 */
1074 if (spa_is_root(spa)) {
1075 int low = locks & ~(SCL_ZIO - 1);
1076 int high = locks & ~low;
1077
1078 spa_config_enter(spa, high, spa, RW_WRITER);
1079 vdev_hold(spa->spa_root_vdev);
1080 spa_config_enter(spa, low, spa, RW_WRITER);
1081 } else {
1082 spa_config_enter(spa, locks, spa, RW_WRITER);
1083 }
1084 spa->spa_vdev_locks = locks;
1085 }
1086
1087 int
1088 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1089 {
1090 boolean_t config_changed = B_FALSE;
1091
1092 if (vd != NULL || error == 0)
1093 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1094 0, 0, B_FALSE);
1095
1096 if (vd != NULL) {
1097 vdev_state_dirty(vd->vdev_top);
1098 config_changed = B_TRUE;
1099 spa->spa_config_generation++;
1100 }
1101
1102 if (spa_is_root(spa))
1103 vdev_rele(spa->spa_root_vdev);
1104
1105 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1106 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1107
1108 /*
1109 * If anything changed, wait for it to sync. This ensures that,
1110 * from the system administrator's perspective, zpool(1M) commands
1111 * are synchronous. This is important for things like zpool offline:
1112 * when the command completes, you expect no further I/O from ZFS.
1113 */
1114 if (vd != NULL)
1115 txg_wait_synced(spa->spa_dsl_pool, 0);
1116
1117 /*
1118 * If the config changed, update the config cache.
1119 */
1120 if (config_changed) {
1121 mutex_enter(&spa_namespace_lock);
1122 spa_config_sync(spa, B_FALSE, B_TRUE);
1123 mutex_exit(&spa_namespace_lock);
1124 }
1125
1126 return (error);
1127 }
1128
1129 /*
1130 * ==========================================================================
1131 * Miscellaneous functions
1132 * ==========================================================================
1133 */
1134
1135 void
1136 spa_activate_mos_feature(spa_t *spa, const char *feature)
1137 {
1138 (void) nvlist_add_boolean(spa->spa_label_features, feature);
1139 vdev_config_dirty(spa->spa_root_vdev);
1140 }
1141
1142 void
1143 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1144 {
1145 (void) nvlist_remove_all(spa->spa_label_features, feature);
1146 vdev_config_dirty(spa->spa_root_vdev);
1147 }
1148
1149 /*
1150 * Rename a spa_t.
1151 */
1152 int
1153 spa_rename(const char *name, const char *newname)
1154 {
1155 spa_t *spa;
1156 int err;
1157
1158 /*
1159 * Lookup the spa_t and grab the config lock for writing. We need to
1160 * actually open the pool so that we can sync out the necessary labels.
1161 * It's OK to call spa_open() with the namespace lock held because we
1162 * allow recursive calls for other reasons.
1163 */
1164 mutex_enter(&spa_namespace_lock);
1165 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1166 mutex_exit(&spa_namespace_lock);
1167 return (err);
1168 }
1169
1170 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1171
1172 avl_remove(&spa_namespace_avl, spa);
1173 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1174 avl_add(&spa_namespace_avl, spa);
1175
1176 /*
1177 * Sync all labels to disk with the new names by marking the root vdev
1178 * dirty and waiting for it to sync. It will pick up the new pool name
1179 * during the sync.
1180 */
1181 vdev_config_dirty(spa->spa_root_vdev);
1182
1183 spa_config_exit(spa, SCL_ALL, FTAG);
1184
1185 txg_wait_synced(spa->spa_dsl_pool, 0);
1186
1187 /*
1188 * Sync the updated config cache.
1189 */
1190 spa_config_sync(spa, B_FALSE, B_TRUE);
1191
1192 spa_close(spa, FTAG);
1193
1194 mutex_exit(&spa_namespace_lock);
1195
1196 return (0);
1197 }
1198
1199 /*
1200 * Return the spa_t associated with given pool_guid, if it exists. If
1201 * device_guid is non-zero, determine whether the pool exists *and* contains
1202 * a device with the specified device_guid.
1203 */
1204 spa_t *
1205 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1206 {
1207 spa_t *spa;
1208 avl_tree_t *t = &spa_namespace_avl;
1209
1210 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1211
1212 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1213 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1214 continue;
1215 if (spa->spa_root_vdev == NULL)
1216 continue;
1217 if (spa_guid(spa) == pool_guid) {
1218 if (device_guid == 0)
1219 break;
1220
1221 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1222 device_guid) != NULL)
1223 break;
1224
1225 /*
1226 * Check any devices we may be in the process of adding.
1227 */
1228 if (spa->spa_pending_vdev) {
1229 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1230 device_guid) != NULL)
1231 break;
1232 }
1233 }
1234 }
1235
1236 return (spa);
1237 }
1238
1239 /*
1240 * Determine whether a pool with the given pool_guid exists.
1241 */
1242 boolean_t
1243 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1244 {
1245 return (spa_by_guid(pool_guid, device_guid) != NULL);
1246 }
1247
1248 char *
1249 spa_strdup(const char *s)
1250 {
1251 size_t len;
1252 char *new;
1253
1254 len = strlen(s);
1255 new = kmem_alloc(len + 1, KM_SLEEP);
1256 bcopy(s, new, len);
1257 new[len] = '\0';
1258
1259 return (new);
1260 }
1261
1262 void
1263 spa_strfree(char *s)
1264 {
1265 kmem_free(s, strlen(s) + 1);
1266 }
1267
1268 uint64_t
1269 spa_get_random(uint64_t range)
1270 {
1271 uint64_t r;
1272
1273 ASSERT(range != 0);
1274
1275 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1276
1277 return (r % range);
1278 }
1279
1280 uint64_t
1281 spa_generate_guid(spa_t *spa)
1282 {
1283 uint64_t guid = spa_get_random(-1ULL);
1284
1285 if (spa != NULL) {
1286 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1287 guid = spa_get_random(-1ULL);
1288 } else {
1289 while (guid == 0 || spa_guid_exists(guid, 0))
1290 guid = spa_get_random(-1ULL);
1291 }
1292
1293 return (guid);
1294 }
1295
1296 void
1297 sprintf_blkptr(char *buf, const blkptr_t *bp)
1298 {
1299 char type[256];
1300 char *checksum = NULL;
1301 char *compress = NULL;
1302
1303 if (bp != NULL) {
1304 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1305 dmu_object_byteswap_t bswap =
1306 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1307 (void) snprintf(type, sizeof (type), "bswap %s %s",
1308 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1309 "metadata" : "data",
1310 dmu_ot_byteswap[bswap].ob_name);
1311 } else {
1312 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1313 sizeof (type));
1314 }
1315 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1316 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1317 }
1318
1319 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1320 }
1321
1322 void
1323 spa_freeze(spa_t *spa)
1324 {
1325 uint64_t freeze_txg = 0;
1326
1327 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1328 if (spa->spa_freeze_txg == UINT64_MAX) {
1329 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1330 spa->spa_freeze_txg = freeze_txg;
1331 }
1332 spa_config_exit(spa, SCL_ALL, FTAG);
1333 if (freeze_txg != 0)
1334 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1335 }
1336
1337 void
1338 zfs_panic_recover(const char *fmt, ...)
1339 {
1340 va_list adx;
1341
1342 va_start(adx, fmt);
1343 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1344 va_end(adx);
1345 }
1346
1347 /*
1348 * This is a stripped-down version of strtoull, suitable only for converting
1349 * lowercase hexadecimal numbers that don't overflow.
1350 */
1351 uint64_t
1352 strtonum(const char *str, char **nptr)
1353 {
1354 uint64_t val = 0;
1355 char c;
1356 int digit;
1357
1358 while ((c = *str) != '\0') {
1359 if (c >= '0' && c <= '9')
1360 digit = c - '0';
1361 else if (c >= 'a' && c <= 'f')
1362 digit = 10 + c - 'a';
1363 else
1364 break;
1365
1366 val *= 16;
1367 val += digit;
1368
1369 str++;
1370 }
1371
1372 if (nptr)
1373 *nptr = (char *)str;
1374
1375 return (val);
1376 }
1377
1378 /*
1379 * ==========================================================================
1380 * Accessor functions
1381 * ==========================================================================
1382 */
1383
1384 boolean_t
1385 spa_shutting_down(spa_t *spa)
1386 {
1387 return (spa->spa_async_suspended);
1388 }
1389
1390 dsl_pool_t *
1391 spa_get_dsl(spa_t *spa)
1392 {
1393 return (spa->spa_dsl_pool);
1394 }
1395
1396 boolean_t
1397 spa_is_initializing(spa_t *spa)
1398 {
1399 return (spa->spa_is_initializing);
1400 }
1401
1402 blkptr_t *
1403 spa_get_rootblkptr(spa_t *spa)
1404 {
1405 return (&spa->spa_ubsync.ub_rootbp);
1406 }
1407
1408 void
1409 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1410 {
1411 spa->spa_uberblock.ub_rootbp = *bp;
1412 }
1413
1414 void
1415 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1416 {
1417 if (spa->spa_root == NULL)
1418 buf[0] = '\0';
1419 else
1420 (void) strncpy(buf, spa->spa_root, buflen);
1421 }
1422
1423 int
1424 spa_sync_pass(spa_t *spa)
1425 {
1426 return (spa->spa_sync_pass);
1427 }
1428
1429 char *
1430 spa_name(spa_t *spa)
1431 {
1432 return (spa->spa_name);
1433 }
1434
1435 uint64_t
1436 spa_guid(spa_t *spa)
1437 {
1438 dsl_pool_t *dp = spa_get_dsl(spa);
1439 uint64_t guid;
1440
1441 /*
1442 * If we fail to parse the config during spa_load(), we can go through
1443 * the error path (which posts an ereport) and end up here with no root
1444 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1445 * this case.
1446 */
1447 if (spa->spa_root_vdev == NULL)
1448 return (spa->spa_config_guid);
1449
1450 guid = spa->spa_last_synced_guid != 0 ?
1451 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1452
1453 /*
1454 * Return the most recently synced out guid unless we're
1455 * in syncing context.
1456 */
1457 if (dp && dsl_pool_sync_context(dp))
1458 return (spa->spa_root_vdev->vdev_guid);
1459 else
1460 return (guid);
1461 }
1462
1463 uint64_t
1464 spa_load_guid(spa_t *spa)
1465 {
1466 /*
1467 * This is a GUID that exists solely as a reference for the
1468 * purposes of the arc. It is generated at load time, and
1469 * is never written to persistent storage.
1470 */
1471 return (spa->spa_load_guid);
1472 }
1473
1474 uint64_t
1475 spa_last_synced_txg(spa_t *spa)
1476 {
1477 return (spa->spa_ubsync.ub_txg);
1478 }
1479
1480 uint64_t
1481 spa_first_txg(spa_t *spa)
1482 {
1483 return (spa->spa_first_txg);
1484 }
1485
1486 uint64_t
1487 spa_syncing_txg(spa_t *spa)
1488 {
1489 return (spa->spa_syncing_txg);
1490 }
1491
1492 pool_state_t
1493 spa_state(spa_t *spa)
1494 {
1495 return (spa->spa_state);
1496 }
1497
1498 spa_load_state_t
1499 spa_load_state(spa_t *spa)
1500 {
1501 return (spa->spa_load_state);
1502 }
1503
1504 uint64_t
1505 spa_freeze_txg(spa_t *spa)
1506 {
1507 return (spa->spa_freeze_txg);
1508 }
1509
1510 /* ARGSUSED */
1511 uint64_t
1512 spa_get_asize(spa_t *spa, uint64_t lsize)
1513 {
1514 return (lsize * spa_asize_inflation);
1515 }
1516
1517 uint64_t
1518 spa_get_dspace(spa_t *spa)
1519 {
1520 return (spa->spa_dspace);
1521 }
1522
1523 void
1524 spa_update_dspace(spa_t *spa)
1525 {
1526 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1527 ddt_get_dedup_dspace(spa);
1528 }
1529
1530 /*
1531 * Return the failure mode that has been set to this pool. The default
1532 * behavior will be to block all I/Os when a complete failure occurs.
1533 */
1534 uint8_t
1535 spa_get_failmode(spa_t *spa)
1536 {
1537 return (spa->spa_failmode);
1538 }
1539
1540 boolean_t
1541 spa_suspended(spa_t *spa)
1542 {
1543 return (spa->spa_suspended);
1544 }
1545
1546 uint64_t
1547 spa_version(spa_t *spa)
1548 {
1549 return (spa->spa_ubsync.ub_version);
1550 }
1551
1552 boolean_t
1553 spa_deflate(spa_t *spa)
1554 {
1555 return (spa->spa_deflate);
1556 }
1557
1558 metaslab_class_t *
1559 spa_normal_class(spa_t *spa)
1560 {
1561 return (spa->spa_normal_class);
1562 }
1563
1564 metaslab_class_t *
1565 spa_log_class(spa_t *spa)
1566 {
1567 return (spa->spa_log_class);
1568 }
1569
1570 int
1571 spa_max_replication(spa_t *spa)
1572 {
1573 /*
1574 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1575 * handle BPs with more than one DVA allocated. Set our max
1576 * replication level accordingly.
1577 */
1578 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1579 return (1);
1580 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1581 }
1582
1583 int
1584 spa_prev_software_version(spa_t *spa)
1585 {
1586 return (spa->spa_prev_software_version);
1587 }
1588
1589 uint64_t
1590 spa_deadman_synctime(spa_t *spa)
1591 {
1592 return (spa->spa_deadman_synctime);
1593 }
1594
1595 uint64_t
1596 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1597 {
1598 uint64_t asize = DVA_GET_ASIZE(dva);
1599 uint64_t dsize = asize;
1600
1601 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1602
1603 if (asize != 0 && spa->spa_deflate) {
1604 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1605 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1606 }
1607
1608 return (dsize);
1609 }
1610
1611 uint64_t
1612 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1613 {
1614 uint64_t dsize = 0;
1615
1616 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1617 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1618
1619 return (dsize);
1620 }
1621
1622 uint64_t
1623 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1624 {
1625 uint64_t dsize = 0;
1626
1627 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1628
1629 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1630 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1631
1632 spa_config_exit(spa, SCL_VDEV, FTAG);
1633
1634 return (dsize);
1635 }
1636
1637 /*
1638 * ==========================================================================
1639 * Initialization and Termination
1640 * ==========================================================================
1641 */
1642
1643 static int
1644 spa_name_compare(const void *a1, const void *a2)
1645 {
1646 const spa_t *s1 = a1;
1647 const spa_t *s2 = a2;
1648 int s;
1649
1650 s = strcmp(s1->spa_name, s2->spa_name);
1651 if (s > 0)
1652 return (1);
1653 if (s < 0)
1654 return (-1);
1655 return (0);
1656 }
1657
1658 int
1659 spa_busy(void)
1660 {
1661 return (spa_active_count);
1662 }
1663
1664 void
1665 spa_boot_init()
1666 {
1667 spa_config_load();
1668 }
1669
1670 void
1671 spa_init(int mode)
1672 {
1673 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1674 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1675 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1676 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1677
1678 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1679 offsetof(spa_t, spa_avl));
1680
1681 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1682 offsetof(spa_aux_t, aux_avl));
1683
1684 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1685 offsetof(spa_aux_t, aux_avl));
1686
1687 spa_mode_global = mode;
1688
1689 #ifdef _KERNEL
1690 spa_arch_init();
1691 #else
1692 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1693 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1694 if (arc_procfd == -1) {
1695 perror("could not enable watchpoints: "
1696 "opening /proc/self/ctl failed: ");
1697 } else {
1698 arc_watch = B_TRUE;
1699 }
1700 }
1701 #endif
1702
1703 refcount_init();
1704 unique_init();
1705 space_map_init();
1706 zio_init();
1707 dmu_init();
1708 zil_init();
1709 vdev_cache_stat_init();
1710 zfs_prop_init();
1711 zpool_prop_init();
1712 zpool_feature_init();
1713 spa_config_load();
1714 l2arc_start();
1715 }
1716
1717 void
1718 spa_fini(void)
1719 {
1720 l2arc_stop();
1721
1722 spa_evict_all();
1723
1724 vdev_cache_stat_fini();
1725 zil_fini();
1726 dmu_fini();
1727 zio_fini();
1728 space_map_fini();
1729 unique_fini();
1730 refcount_fini();
1731
1732 avl_destroy(&spa_namespace_avl);
1733 avl_destroy(&spa_spare_avl);
1734 avl_destroy(&spa_l2cache_avl);
1735
1736 cv_destroy(&spa_namespace_cv);
1737 mutex_destroy(&spa_namespace_lock);
1738 mutex_destroy(&spa_spare_lock);
1739 mutex_destroy(&spa_l2cache_lock);
1740 }
1741
1742 /*
1743 * Return whether this pool has slogs. No locking needed.
1744 * It's not a problem if the wrong answer is returned as it's only for
1745 * performance and not correctness
1746 */
1747 boolean_t
1748 spa_has_slogs(spa_t *spa)
1749 {
1750 return (spa->spa_log_class->mc_rotor != NULL);
1751 }
1752
1753 spa_log_state_t
1754 spa_get_log_state(spa_t *spa)
1755 {
1756 return (spa->spa_log_state);
1757 }
1758
1759 void
1760 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1761 {
1762 spa->spa_log_state = state;
1763 }
1764
1765 boolean_t
1766 spa_is_root(spa_t *spa)
1767 {
1768 return (spa->spa_is_root);
1769 }
1770
1771 boolean_t
1772 spa_writeable(spa_t *spa)
1773 {
1774 return (!!(spa->spa_mode & FWRITE));
1775 }
1776
1777 int
1778 spa_mode(spa_t *spa)
1779 {
1780 return (spa->spa_mode);
1781 }
1782
1783 uint64_t
1784 spa_bootfs(spa_t *spa)
1785 {
1786 return (spa->spa_bootfs);
1787 }
1788
1789 uint64_t
1790 spa_delegation(spa_t *spa)
1791 {
1792 return (spa->spa_delegation);
1793 }
1794
1795 objset_t *
1796 spa_meta_objset(spa_t *spa)
1797 {
1798 return (spa->spa_meta_objset);
1799 }
1800
1801 enum zio_checksum
1802 spa_dedup_checksum(spa_t *spa)
1803 {
1804 return (spa->spa_dedup_checksum);
1805 }
1806
1807 /*
1808 * Reset pool scan stat per scan pass (or reboot).
1809 */
1810 void
1811 spa_scan_stat_init(spa_t *spa)
1812 {
1813 /* data not stored on disk */
1814 spa->spa_scan_pass_start = gethrestime_sec();
1815 spa->spa_scan_pass_exam = 0;
1816 vdev_scan_stat_init(spa->spa_root_vdev);
1817 }
1818
1819 /*
1820 * Get scan stats for zpool status reports
1821 */
1822 int
1823 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1824 {
1825 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1826
1827 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1828 return (SET_ERROR(ENOENT));
1829 bzero(ps, sizeof (pool_scan_stat_t));
1830
1831 /* data stored on disk */
1832 ps->pss_func = scn->scn_phys.scn_func;
1833 ps->pss_start_time = scn->scn_phys.scn_start_time;
1834 ps->pss_end_time = scn->scn_phys.scn_end_time;
1835 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1836 ps->pss_examined = scn->scn_phys.scn_examined;
1837 ps->pss_to_process = scn->scn_phys.scn_to_process;
1838 ps->pss_processed = scn->scn_phys.scn_processed;
1839 ps->pss_errors = scn->scn_phys.scn_errors;
1840 ps->pss_state = scn->scn_phys.scn_state;
1841
1842 /* data not stored on disk */
1843 ps->pss_pass_start = spa->spa_scan_pass_start;
1844 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1845
1846 return (0);
1847 }
1848
1849 boolean_t
1850 spa_debug_enabled(spa_t *spa)
1851 {
1852 return (spa->spa_debug);
1853 }