Print this page
4045 zfs write throttle & i/o scheduler performance work
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>

*** 44,66 **** #include <sys/bptree.h> #include <sys/zfeature.h> #include <sys/zil_impl.h> #include <sys/dsl_userhold.h> ! int zfs_no_write_throttle = 0; ! int zfs_write_limit_shift = 3; /* 1/8th of physical memory */ ! int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */ ! uint64_t zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */ ! uint64_t zfs_write_limit_max = 0; /* max data payload per txg */ ! uint64_t zfs_write_limit_inflated = 0; ! uint64_t zfs_write_limit_override = 0; ! kmutex_t zfs_write_limit_lock; ! static pgcnt_t old_physmem = 0; hrtime_t zfs_throttle_delay = MSEC2NSEC(10); hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); int dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) --- 44,138 ---- #include <sys/bptree.h> #include <sys/zfeature.h> #include <sys/zil_impl.h> #include <sys/dsl_userhold.h> ! /* ! * ZFS Write Throttle ! * ------------------ ! * ! * ZFS must limit the rate of incoming writes to the rate at which it is able ! * to sync data modifications to the backend storage. Throttling by too much ! * creates an artificial limit; throttling by too little can only be sustained ! * for short periods and would lead to highly lumpy performance. On a per-pool ! * basis, ZFS tracks the amount of modified (dirty) data. As operations change ! * data, the amount of dirty data increases; as ZFS syncs out data, the amount ! * of dirty data decreases. When the amount of dirty data exceeds a ! * predetermined threshold further modifications are blocked until the amount ! * of dirty data decreases (as data is synced out). ! * ! * The limit on dirty data is tunable, and should be adjusted according to ! * both the IO capacity and available memory of the system. The larger the ! * window, the more ZFS is able to aggregate and amortize metadata (and data) ! * changes. However, memory is a limited resource, and allowing for more dirty ! * data comes at the cost of keeping other useful data in memory (for example ! * ZFS data cached by the ARC). ! * ! * Implementation ! * ! * As buffers are modified dsl_pool_willuse_space() increments both the per- ! * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of ! * dirty space used; dsl_pool_dirty_space() decrements those values as data ! * is synced out from dsl_pool_sync(). While only the poolwide value is ! * relevant, the per-txg value is useful for debugging. The tunable ! * zfs_dirty_data_max determines the dirty space limit. Once that value is ! * exceeded, new writes are halted until space frees up. ! * ! * The zfs_dirty_data_sync tunable dictates the threshold at which we ! * ensure that there is a txg syncing (see the comment in txg.c for a full ! * description of transaction group stages). ! * ! * The IO scheduler uses both the dirty space limit and current amount of ! * dirty data as inputs. Those values affect the number of concurrent IOs ZFS ! * issues. See the comment in vdev_queue.c for details of the IO scheduler. ! * ! * The delay is also calculated based on the amount of dirty data. See the ! * comment above dmu_tx_delay() for details. ! */ ! /* ! * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, ! * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. ! */ ! uint64_t zfs_dirty_data_max; ! uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; ! int zfs_dirty_data_max_percent = 10; ! /* ! * If there is at least this much dirty data, push out a txg. ! */ ! uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; ! /* ! * Once there is this amount of dirty data, the dmu_tx_delay() will kick in ! * and delay each transaction. ! * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. ! */ ! int zfs_delay_min_dirty_percent = 60; + /* + * This controls how quickly the delay approaches infinity. + * Larger values cause it to delay less for a given amount of dirty data. + * Therefore larger values will cause there to be more dirty data for a + * given throughput. + * + * For the smoothest delay, this value should be about 1 billion divided + * by the maximum number of operations per second. This will smoothly + * handle between 10x and 1/10th this number. + * + * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the + * multiply in dmu_tx_delay(). + */ + uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; + + + /* + * XXX someday maybe turn these into #defines, and you have to tune it on a + * per-pool basis using zfs.conf. + */ + + hrtime_t zfs_throttle_delay = MSEC2NSEC(10); hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); int dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
*** 85,95 **** dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); dp->dp_spa = spa; dp->dp_meta_rootbp = *bp; rrw_init(&dp->dp_config_rwlock, B_TRUE); - dp->dp_write_limit = zfs_write_limit_min; txg_init(dp, txg); txg_list_create(&dp->dp_dirty_datasets, offsetof(dsl_dataset_t, ds_dirty_link)); txg_list_create(&dp->dp_dirty_zilogs, --- 157,166 ----
*** 98,107 **** --- 169,179 ---- offsetof(dsl_dir_t, dd_dirty_link)); txg_list_create(&dp->dp_sync_tasks, offsetof(dsl_sync_task_t, dst_node)); mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); + cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 1, 4, 0); return (dp);
*** 212,224 **** } void dsl_pool_close(dsl_pool_t *dp) { - /* drop our references from dsl_pool_open() */ - /* * Since we held the origin_snap from "syncing" context (which * includes pool-opening context), it actually only got a "ref" * and not a hold, so just drop that here. */ if (dp->dp_origin_snap) --- 284,296 ---- } void dsl_pool_close(dsl_pool_t *dp) { /* + * Drop our references from dsl_pool_open(). + * * Since we held the origin_snap from "syncing" context (which * includes pool-opening context), it actually only got a "ref" * and not a hold, so just drop that here. */ if (dp->dp_origin_snap)
*** 344,442 **** dsl_deadlist_t *dl = arg; dsl_deadlist_insert(dl, bp, tx); return (0); } void dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) { zio_t *zio; dmu_tx_t *tx; dsl_dir_t *dd; dsl_dataset_t *ds; objset_t *mos = dp->dp_meta_objset; - hrtime_t start, write_time; - uint64_t data_written; - int err; list_t synced_datasets; list_create(&synced_datasets, sizeof (dsl_dataset_t), offsetof(dsl_dataset_t, ds_synced_link)); - /* - * We need to copy dp_space_towrite() before doing - * dsl_sync_task_sync(), because - * dsl_dataset_snapshot_reserve_space() will increase - * dp_space_towrite but not actually write anything. - */ - data_written = dp->dp_space_towrite[txg & TXG_MASK]; - tx = dmu_tx_create_assigned(dp, txg); ! dp->dp_read_overhead = 0; ! start = gethrtime(); ! zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); ! while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { /* * We must not sync any non-MOS datasets twice, because * we may have taken a snapshot of them. However, we * may sync newly-created datasets on pass 2. */ ASSERT(!list_link_active(&ds->ds_synced_link)); list_insert_tail(&synced_datasets, ds); dsl_dataset_sync(ds, zio, tx); } ! DTRACE_PROBE(pool_sync__1setup); ! err = zio_wait(zio); ! write_time = gethrtime() - start; ! ASSERT(err == 0); ! DTRACE_PROBE(pool_sync__2rootzio); /* * After the data blocks have been written (ensured by the zio_wait() * above), update the user/group space accounting. */ ! for (ds = list_head(&synced_datasets); ds; ! ds = list_next(&synced_datasets, ds)) dmu_objset_do_userquota_updates(ds->ds_objset, tx); /* * Sync the datasets again to push out the changes due to * userspace updates. This must be done before we process the * sync tasks, so that any snapshots will have the correct * user accounting information (and we won't get confused * about which blocks are part of the snapshot). */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); ! while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { ASSERT(list_link_active(&ds->ds_synced_link)); dmu_buf_rele(ds->ds_dbuf, ds); dsl_dataset_sync(ds, zio, tx); } ! err = zio_wait(zio); /* * Now that the datasets have been completely synced, we can * clean up our in-memory structures accumulated while syncing: * * - move dead blocks from the pending deadlist to the on-disk deadlist * - release hold from dsl_dataset_dirty() */ ! while (ds = list_remove_head(&synced_datasets)) { objset_t *os = ds->ds_objset; bplist_iterate(&ds->ds_pending_deadlist, deadlist_enqueue_cb, &ds->ds_deadlist, tx); ASSERT(!dmu_objset_is_dirty(os, txg)); dmu_buf_rele(ds->ds_dbuf, ds); } ! ! start = gethrtime(); ! while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) dsl_dir_sync(dd, tx); ! write_time += gethrtime() - start; /* * The MOS's space is accounted for in the pool/$MOS * (dp_mos_dir). We can't modify the mos while we're syncing * it, so we remember the deltas and apply them here. --- 416,534 ---- dsl_deadlist_t *dl = arg; dsl_deadlist_insert(dl, bp, tx); return (0); } + static void + dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) + { + zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); + dmu_objset_sync(dp->dp_meta_objset, zio, tx); + VERIFY0(zio_wait(zio)); + dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); + spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); + } + + static void + dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) + { + ASSERT(MUTEX_HELD(&dp->dp_lock)); + + if (delta < 0) + ASSERT3U(-delta, <=, dp->dp_dirty_total); + + dp->dp_dirty_total += delta; + + /* + * Note: we signal even when increasing dp_dirty_total. + * This ensures forward progress -- each thread wakes the next waiter. + */ + if (dp->dp_dirty_total <= zfs_dirty_data_max) + cv_signal(&dp->dp_spaceavail_cv); + } + void dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) { zio_t *zio; dmu_tx_t *tx; dsl_dir_t *dd; dsl_dataset_t *ds; objset_t *mos = dp->dp_meta_objset; list_t synced_datasets; list_create(&synced_datasets, sizeof (dsl_dataset_t), offsetof(dsl_dataset_t, ds_synced_link)); tx = dmu_tx_create_assigned(dp, txg); ! /* ! * Write out all dirty blocks of dirty datasets. ! */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); ! while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { /* * We must not sync any non-MOS datasets twice, because * we may have taken a snapshot of them. However, we * may sync newly-created datasets on pass 2. */ ASSERT(!list_link_active(&ds->ds_synced_link)); list_insert_tail(&synced_datasets, ds); dsl_dataset_sync(ds, zio, tx); } ! VERIFY0(zio_wait(zio)); ! /* ! * We have written all of the accounted dirty data, so our ! * dp_space_towrite should now be zero. However, some seldom-used ! * code paths do not adhere to this (e.g. dbuf_undirty(), also ! * rounding error in dbuf_write_physdone). ! * Shore up the accounting of any dirtied space now. ! */ ! dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); /* * After the data blocks have been written (ensured by the zio_wait() * above), update the user/group space accounting. */ ! for (ds = list_head(&synced_datasets); ds != NULL; ! ds = list_next(&synced_datasets, ds)) { dmu_objset_do_userquota_updates(ds->ds_objset, tx); + } /* * Sync the datasets again to push out the changes due to * userspace updates. This must be done before we process the * sync tasks, so that any snapshots will have the correct * user accounting information (and we won't get confused * about which blocks are part of the snapshot). */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); ! while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { ASSERT(list_link_active(&ds->ds_synced_link)); dmu_buf_rele(ds->ds_dbuf, ds); dsl_dataset_sync(ds, zio, tx); } ! VERIFY0(zio_wait(zio)); /* * Now that the datasets have been completely synced, we can * clean up our in-memory structures accumulated while syncing: * * - move dead blocks from the pending deadlist to the on-disk deadlist * - release hold from dsl_dataset_dirty() */ ! while ((ds = list_remove_head(&synced_datasets)) != NULL) { objset_t *os = ds->ds_objset; bplist_iterate(&ds->ds_pending_deadlist, deadlist_enqueue_cb, &ds->ds_deadlist, tx); ASSERT(!dmu_objset_is_dirty(os, txg)); dmu_buf_rele(ds->ds_dbuf, ds); } ! while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { dsl_dir_sync(dd, tx); ! } /* * The MOS's space is accounted for in the pool/$MOS * (dp_mos_dir). We can't modify the mos while we're syncing * it, so we remember the deltas and apply them here.
*** 450,473 **** dp->dp_mos_used_delta = 0; dp->dp_mos_compressed_delta = 0; dp->dp_mos_uncompressed_delta = 0; } - start = gethrtime(); if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { ! zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); ! dmu_objset_sync(mos, zio, tx); ! err = zio_wait(zio); ! ASSERT(err == 0); ! dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); ! spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); } - write_time += gethrtime() - start; - DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time, - hrtime_t, dp->dp_read_overhead); - write_time -= dp->dp_read_overhead; /* * If we modify a dataset in the same txg that we want to destroy it, * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. * dsl_dir_destroy_check() will fail if there are unexpected holds. --- 542,555 ---- dp->dp_mos_used_delta = 0; dp->dp_mos_compressed_delta = 0; dp->dp_mos_uncompressed_delta = 0; } if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { ! dsl_pool_sync_mos(dp, tx); } /* * If we modify a dataset in the same txg that we want to destroy it, * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. * dsl_dir_destroy_check() will fail if there are unexpected holds.
*** 474,549 **** * Therefore, we want to sync the MOS (thus syncing the dd_dbuf * and clearing the hold on it) before we process the sync_tasks. * The MOS data dirtied by the sync_tasks will be synced on the next * pass. */ - DTRACE_PROBE(pool_sync__3task); if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { dsl_sync_task_t *dst; /* * No more sync tasks should have been added while we * were syncing. */ ! ASSERT(spa_sync_pass(dp->dp_spa) == 1); ! while (dst = txg_list_remove(&dp->dp_sync_tasks, txg)) dsl_sync_task_sync(dst, tx); } dmu_tx_commit(tx); ! dp->dp_space_towrite[txg & TXG_MASK] = 0; ! ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0); ! ! /* ! * If the write limit max has not been explicitly set, set it ! * to a fraction of available physical memory (default 1/8th). ! * Note that we must inflate the limit because the spa ! * inflates write sizes to account for data replication. ! * Check this each sync phase to catch changing memory size. ! */ ! if (physmem != old_physmem && zfs_write_limit_shift) { ! mutex_enter(&zfs_write_limit_lock); ! old_physmem = physmem; ! zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; ! zfs_write_limit_inflated = MAX(zfs_write_limit_min, ! spa_get_asize(dp->dp_spa, zfs_write_limit_max)); ! mutex_exit(&zfs_write_limit_lock); ! } ! ! /* ! * Attempt to keep the sync time consistent by adjusting the ! * amount of write traffic allowed into each transaction group. ! * Weight the throughput calculation towards the current value: ! * thru = 3/4 old_thru + 1/4 new_thru ! * ! * Note: write_time is in nanosecs while dp_throughput is expressed in ! * bytes per millisecond. ! */ ! ASSERT(zfs_write_limit_min > 0); ! if (data_written > zfs_write_limit_min / 8 && ! write_time > MSEC2NSEC(1)) { ! uint64_t throughput = data_written / NSEC2MSEC(write_time); ! ! if (dp->dp_throughput) ! dp->dp_throughput = throughput / 4 + ! 3 * dp->dp_throughput / 4; ! else ! dp->dp_throughput = throughput; ! dp->dp_write_limit = MIN(zfs_write_limit_inflated, ! MAX(zfs_write_limit_min, ! dp->dp_throughput * zfs_txg_synctime_ms)); ! } } void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) { zilog_t *zilog; - dsl_dataset_t *ds; while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { ! ds = dmu_objset_ds(zilog->zl_os); zil_clean(zilog, txg); ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); dmu_buf_rele(ds->ds_dbuf, zilog); } ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); --- 556,588 ---- * Therefore, we want to sync the MOS (thus syncing the dd_dbuf * and clearing the hold on it) before we process the sync_tasks. * The MOS data dirtied by the sync_tasks will be synced on the next * pass. */ if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { dsl_sync_task_t *dst; /* * No more sync tasks should have been added while we * were syncing. */ ! ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); ! while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) dsl_sync_task_sync(dst, tx); } dmu_tx_commit(tx); ! DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); } void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) { zilog_t *zilog; while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { ! dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); zil_clean(zilog, txg); ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); dmu_buf_rele(ds->ds_dbuf, zilog); } ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
*** 581,666 **** resv >>= 1; return (space - resv); } ! int ! dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx) { ! uint64_t reserved = 0; ! uint64_t write_limit = (zfs_write_limit_override ? ! zfs_write_limit_override : dp->dp_write_limit); ! if (zfs_no_write_throttle) { ! atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], ! space); ! return (0); ! } ! ! /* ! * Check to see if we have exceeded the maximum allowed IO for ! * this transaction group. We can do this without locks since ! * a little slop here is ok. Note that we do the reserved check ! * with only half the requested reserve: this is because the ! * reserve requests are worst-case, and we really don't want to ! * throttle based off of worst-case estimates. ! */ ! if (write_limit > 0) { ! reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK] ! + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2; ! ! if (reserved && reserved > write_limit) ! return (SET_ERROR(ERESTART)); ! } ! ! atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space); ! ! /* ! * If this transaction group is over 7/8ths capacity, delay ! * the caller 1 clock tick. This will slow down the "fill" ! * rate until the sync process can catch up with us. ! */ ! if (reserved && reserved > (write_limit - (write_limit >> 3))) { ! txg_delay(dp, tx->tx_txg, zfs_throttle_delay, ! zfs_throttle_resolution); ! } ! ! return (0); } void ! dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) { ! ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space); ! atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space); ! } ! ! void ! dsl_pool_memory_pressure(dsl_pool_t *dp) ! { ! uint64_t space_inuse = 0; ! int i; ! ! if (dp->dp_write_limit == zfs_write_limit_min) ! return; ! ! for (i = 0; i < TXG_SIZE; i++) { ! space_inuse += dp->dp_space_towrite[i]; ! space_inuse += dp->dp_tempreserved[i]; } - dp->dp_write_limit = MAX(zfs_write_limit_min, - MIN(dp->dp_write_limit, space_inuse / 4)); } void ! dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) ! { ! if (space > 0) { mutex_enter(&dp->dp_lock); ! dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space; ! mutex_exit(&dp->dp_lock); } } /* ARGSUSED */ static int upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) --- 620,670 ---- resv >>= 1; return (space - resv); } ! boolean_t ! dsl_pool_need_dirty_delay(dsl_pool_t *dp) { ! uint64_t delay_min_bytes = ! zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; ! boolean_t rv; ! mutex_enter(&dp->dp_lock); ! if (dp->dp_dirty_total > zfs_dirty_data_sync) ! txg_kick(dp); ! rv = (dp->dp_dirty_total > delay_min_bytes); ! mutex_exit(&dp->dp_lock); ! return (rv); } void ! dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) { ! if (space > 0) { ! mutex_enter(&dp->dp_lock); ! dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; ! dsl_pool_dirty_delta(dp, space); ! mutex_exit(&dp->dp_lock); } } void ! dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) { ! ASSERT3S(space, >=, 0); ! if (space == 0) ! return; mutex_enter(&dp->dp_lock); ! if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { ! /* XXX writing something we didn't dirty? */ ! space = dp->dp_dirty_pertxg[txg & TXG_MASK]; } + ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); + dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; + ASSERT3U(dp->dp_dirty_total, >=, space); + dsl_pool_dirty_delta(dp, -space); + mutex_exit(&dp->dp_lock); } /* ARGSUSED */ static int upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)