1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_send.h> 31 #include <sys/dmu_impl.h> 32 #include <sys/dbuf.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/spa.h> 38 #include <sys/zio.h> 39 #include <sys/dmu_zfetch.h> 40 #include <sys/sa.h> 41 #include <sys/sa_impl.h> 42 43 /* 44 * Number of times that zfs_free_range() took the slow path while doing 45 * a zfs receive. A nonzero value indicates a potential performance problem. 46 */ 47 uint64_t zfs_free_range_recv_miss; 48 49 static void dbuf_destroy(dmu_buf_impl_t *db); 50 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 51 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 52 53 /* 54 * Global data structures and functions for the dbuf cache. 55 */ 56 static kmem_cache_t *dbuf_cache; 57 58 /* ARGSUSED */ 59 static int 60 dbuf_cons(void *vdb, void *unused, int kmflag) 61 { 62 dmu_buf_impl_t *db = vdb; 63 bzero(db, sizeof (dmu_buf_impl_t)); 64 65 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 66 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 67 refcount_create(&db->db_holds); 68 return (0); 69 } 70 71 /* ARGSUSED */ 72 static void 73 dbuf_dest(void *vdb, void *unused) 74 { 75 dmu_buf_impl_t *db = vdb; 76 mutex_destroy(&db->db_mtx); 77 cv_destroy(&db->db_changed); 78 refcount_destroy(&db->db_holds); 79 } 80 81 /* 82 * dbuf hash table routines 83 */ 84 static dbuf_hash_table_t dbuf_hash_table; 85 86 static uint64_t dbuf_hash_count; 87 88 static uint64_t 89 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 90 { 91 uintptr_t osv = (uintptr_t)os; 92 uint64_t crc = -1ULL; 93 94 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 95 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 96 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 97 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 98 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 99 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 100 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 101 102 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 103 104 return (crc); 105 } 106 107 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 108 109 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 110 ((dbuf)->db.db_object == (obj) && \ 111 (dbuf)->db_objset == (os) && \ 112 (dbuf)->db_level == (level) && \ 113 (dbuf)->db_blkid == (blkid)) 114 115 dmu_buf_impl_t * 116 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 117 { 118 dbuf_hash_table_t *h = &dbuf_hash_table; 119 objset_t *os = dn->dn_objset; 120 uint64_t obj = dn->dn_object; 121 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 122 uint64_t idx = hv & h->hash_table_mask; 123 dmu_buf_impl_t *db; 124 125 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 126 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 127 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 128 mutex_enter(&db->db_mtx); 129 if (db->db_state != DB_EVICTING) { 130 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 131 return (db); 132 } 133 mutex_exit(&db->db_mtx); 134 } 135 } 136 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 137 return (NULL); 138 } 139 140 /* 141 * Insert an entry into the hash table. If there is already an element 142 * equal to elem in the hash table, then the already existing element 143 * will be returned and the new element will not be inserted. 144 * Otherwise returns NULL. 145 */ 146 static dmu_buf_impl_t * 147 dbuf_hash_insert(dmu_buf_impl_t *db) 148 { 149 dbuf_hash_table_t *h = &dbuf_hash_table; 150 objset_t *os = db->db_objset; 151 uint64_t obj = db->db.db_object; 152 int level = db->db_level; 153 uint64_t blkid = db->db_blkid; 154 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 155 uint64_t idx = hv & h->hash_table_mask; 156 dmu_buf_impl_t *dbf; 157 158 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 159 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 160 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 161 mutex_enter(&dbf->db_mtx); 162 if (dbf->db_state != DB_EVICTING) { 163 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 164 return (dbf); 165 } 166 mutex_exit(&dbf->db_mtx); 167 } 168 } 169 170 mutex_enter(&db->db_mtx); 171 db->db_hash_next = h->hash_table[idx]; 172 h->hash_table[idx] = db; 173 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 174 atomic_add_64(&dbuf_hash_count, 1); 175 176 return (NULL); 177 } 178 179 /* 180 * Remove an entry from the hash table. This operation will 181 * fail if there are any existing holds on the db. 182 */ 183 static void 184 dbuf_hash_remove(dmu_buf_impl_t *db) 185 { 186 dbuf_hash_table_t *h = &dbuf_hash_table; 187 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 188 db->db_level, db->db_blkid); 189 uint64_t idx = hv & h->hash_table_mask; 190 dmu_buf_impl_t *dbf, **dbp; 191 192 /* 193 * We musn't hold db_mtx to maintin lock ordering: 194 * DBUF_HASH_MUTEX > db_mtx. 195 */ 196 ASSERT(refcount_is_zero(&db->db_holds)); 197 ASSERT(db->db_state == DB_EVICTING); 198 ASSERT(!MUTEX_HELD(&db->db_mtx)); 199 200 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 201 dbp = &h->hash_table[idx]; 202 while ((dbf = *dbp) != db) { 203 dbp = &dbf->db_hash_next; 204 ASSERT(dbf != NULL); 205 } 206 *dbp = db->db_hash_next; 207 db->db_hash_next = NULL; 208 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 209 atomic_add_64(&dbuf_hash_count, -1); 210 } 211 212 static arc_evict_func_t dbuf_do_evict; 213 214 static void 215 dbuf_evict_user(dmu_buf_impl_t *db) 216 { 217 ASSERT(MUTEX_HELD(&db->db_mtx)); 218 219 if (db->db_level != 0 || db->db_evict_func == NULL) 220 return; 221 222 if (db->db_user_data_ptr_ptr) 223 *db->db_user_data_ptr_ptr = db->db.db_data; 224 db->db_evict_func(&db->db, db->db_user_ptr); 225 db->db_user_ptr = NULL; 226 db->db_user_data_ptr_ptr = NULL; 227 db->db_evict_func = NULL; 228 } 229 230 boolean_t 231 dbuf_is_metadata(dmu_buf_impl_t *db) 232 { 233 if (db->db_level > 0) { 234 return (B_TRUE); 235 } else { 236 boolean_t is_metadata; 237 238 DB_DNODE_ENTER(db); 239 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 240 DB_DNODE_EXIT(db); 241 242 return (is_metadata); 243 } 244 } 245 246 void 247 dbuf_evict(dmu_buf_impl_t *db) 248 { 249 ASSERT(MUTEX_HELD(&db->db_mtx)); 250 ASSERT(db->db_buf == NULL); 251 ASSERT(db->db_data_pending == NULL); 252 253 dbuf_clear(db); 254 dbuf_destroy(db); 255 } 256 257 void 258 dbuf_init(void) 259 { 260 uint64_t hsize = 1ULL << 16; 261 dbuf_hash_table_t *h = &dbuf_hash_table; 262 int i; 263 264 /* 265 * The hash table is big enough to fill all of physical memory 266 * with an average 4K block size. The table will take up 267 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 268 */ 269 while (hsize * 4096 < physmem * PAGESIZE) 270 hsize <<= 1; 271 272 retry: 273 h->hash_table_mask = hsize - 1; 274 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 275 if (h->hash_table == NULL) { 276 /* XXX - we should really return an error instead of assert */ 277 ASSERT(hsize > (1ULL << 10)); 278 hsize >>= 1; 279 goto retry; 280 } 281 282 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 283 sizeof (dmu_buf_impl_t), 284 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 285 286 for (i = 0; i < DBUF_MUTEXES; i++) 287 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 288 } 289 290 void 291 dbuf_fini(void) 292 { 293 dbuf_hash_table_t *h = &dbuf_hash_table; 294 int i; 295 296 for (i = 0; i < DBUF_MUTEXES; i++) 297 mutex_destroy(&h->hash_mutexes[i]); 298 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 299 kmem_cache_destroy(dbuf_cache); 300 } 301 302 /* 303 * Other stuff. 304 */ 305 306 #ifdef ZFS_DEBUG 307 static void 308 dbuf_verify(dmu_buf_impl_t *db) 309 { 310 dnode_t *dn; 311 dbuf_dirty_record_t *dr; 312 313 ASSERT(MUTEX_HELD(&db->db_mtx)); 314 315 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 316 return; 317 318 ASSERT(db->db_objset != NULL); 319 DB_DNODE_ENTER(db); 320 dn = DB_DNODE(db); 321 if (dn == NULL) { 322 ASSERT(db->db_parent == NULL); 323 ASSERT(db->db_blkptr == NULL); 324 } else { 325 ASSERT3U(db->db.db_object, ==, dn->dn_object); 326 ASSERT3P(db->db_objset, ==, dn->dn_objset); 327 ASSERT3U(db->db_level, <, dn->dn_nlevels); 328 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 329 db->db_blkid == DMU_SPILL_BLKID || 330 !list_is_empty(&dn->dn_dbufs)); 331 } 332 if (db->db_blkid == DMU_BONUS_BLKID) { 333 ASSERT(dn != NULL); 334 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 335 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 336 } else if (db->db_blkid == DMU_SPILL_BLKID) { 337 ASSERT(dn != NULL); 338 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 339 ASSERT0(db->db.db_offset); 340 } else { 341 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 342 } 343 344 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 345 ASSERT(dr->dr_dbuf == db); 346 347 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 348 ASSERT(dr->dr_dbuf == db); 349 350 /* 351 * We can't assert that db_size matches dn_datablksz because it 352 * can be momentarily different when another thread is doing 353 * dnode_set_blksz(). 354 */ 355 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 356 dr = db->db_data_pending; 357 /* 358 * It should only be modified in syncing context, so 359 * make sure we only have one copy of the data. 360 */ 361 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 362 } 363 364 /* verify db->db_blkptr */ 365 if (db->db_blkptr) { 366 if (db->db_parent == dn->dn_dbuf) { 367 /* db is pointed to by the dnode */ 368 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 369 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 370 ASSERT(db->db_parent == NULL); 371 else 372 ASSERT(db->db_parent != NULL); 373 if (db->db_blkid != DMU_SPILL_BLKID) 374 ASSERT3P(db->db_blkptr, ==, 375 &dn->dn_phys->dn_blkptr[db->db_blkid]); 376 } else { 377 /* db is pointed to by an indirect block */ 378 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 379 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 380 ASSERT3U(db->db_parent->db.db_object, ==, 381 db->db.db_object); 382 /* 383 * dnode_grow_indblksz() can make this fail if we don't 384 * have the struct_rwlock. XXX indblksz no longer 385 * grows. safe to do this now? 386 */ 387 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 388 ASSERT3P(db->db_blkptr, ==, 389 ((blkptr_t *)db->db_parent->db.db_data + 390 db->db_blkid % epb)); 391 } 392 } 393 } 394 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 395 (db->db_buf == NULL || db->db_buf->b_data) && 396 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 397 db->db_state != DB_FILL && !dn->dn_free_txg) { 398 /* 399 * If the blkptr isn't set but they have nonzero data, 400 * it had better be dirty, otherwise we'll lose that 401 * data when we evict this buffer. 402 */ 403 if (db->db_dirtycnt == 0) { 404 uint64_t *buf = db->db.db_data; 405 int i; 406 407 for (i = 0; i < db->db.db_size >> 3; i++) { 408 ASSERT(buf[i] == 0); 409 } 410 } 411 } 412 DB_DNODE_EXIT(db); 413 } 414 #endif 415 416 static void 417 dbuf_update_data(dmu_buf_impl_t *db) 418 { 419 ASSERT(MUTEX_HELD(&db->db_mtx)); 420 if (db->db_level == 0 && db->db_user_data_ptr_ptr) { 421 ASSERT(!refcount_is_zero(&db->db_holds)); 422 *db->db_user_data_ptr_ptr = db->db.db_data; 423 } 424 } 425 426 static void 427 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 428 { 429 ASSERT(MUTEX_HELD(&db->db_mtx)); 430 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 431 db->db_buf = buf; 432 if (buf != NULL) { 433 ASSERT(buf->b_data != NULL); 434 db->db.db_data = buf->b_data; 435 if (!arc_released(buf)) 436 arc_set_callback(buf, dbuf_do_evict, db); 437 dbuf_update_data(db); 438 } else { 439 dbuf_evict_user(db); 440 db->db.db_data = NULL; 441 if (db->db_state != DB_NOFILL) 442 db->db_state = DB_UNCACHED; 443 } 444 } 445 446 /* 447 * Loan out an arc_buf for read. Return the loaned arc_buf. 448 */ 449 arc_buf_t * 450 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 451 { 452 arc_buf_t *abuf; 453 454 mutex_enter(&db->db_mtx); 455 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 456 int blksz = db->db.db_size; 457 spa_t *spa; 458 459 mutex_exit(&db->db_mtx); 460 DB_GET_SPA(&spa, db); 461 abuf = arc_loan_buf(spa, blksz); 462 bcopy(db->db.db_data, abuf->b_data, blksz); 463 } else { 464 abuf = db->db_buf; 465 arc_loan_inuse_buf(abuf, db); 466 dbuf_set_data(db, NULL); 467 mutex_exit(&db->db_mtx); 468 } 469 return (abuf); 470 } 471 472 uint64_t 473 dbuf_whichblock(dnode_t *dn, uint64_t offset) 474 { 475 if (dn->dn_datablkshift) { 476 return (offset >> dn->dn_datablkshift); 477 } else { 478 ASSERT3U(offset, <, dn->dn_datablksz); 479 return (0); 480 } 481 } 482 483 static void 484 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 485 { 486 dmu_buf_impl_t *db = vdb; 487 488 mutex_enter(&db->db_mtx); 489 ASSERT3U(db->db_state, ==, DB_READ); 490 /* 491 * All reads are synchronous, so we must have a hold on the dbuf 492 */ 493 ASSERT(refcount_count(&db->db_holds) > 0); 494 ASSERT(db->db_buf == NULL); 495 ASSERT(db->db.db_data == NULL); 496 if (db->db_level == 0 && db->db_freed_in_flight) { 497 /* we were freed in flight; disregard any error */ 498 arc_release(buf, db); 499 bzero(buf->b_data, db->db.db_size); 500 arc_buf_freeze(buf); 501 db->db_freed_in_flight = FALSE; 502 dbuf_set_data(db, buf); 503 db->db_state = DB_CACHED; 504 } else if (zio == NULL || zio->io_error == 0) { 505 dbuf_set_data(db, buf); 506 db->db_state = DB_CACHED; 507 } else { 508 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 509 ASSERT3P(db->db_buf, ==, NULL); 510 VERIFY(arc_buf_remove_ref(buf, db)); 511 db->db_state = DB_UNCACHED; 512 } 513 cv_broadcast(&db->db_changed); 514 dbuf_rele_and_unlock(db, NULL); 515 } 516 517 static void 518 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 519 { 520 dnode_t *dn; 521 spa_t *spa; 522 zbookmark_t zb; 523 uint32_t aflags = ARC_NOWAIT; 524 525 DB_DNODE_ENTER(db); 526 dn = DB_DNODE(db); 527 ASSERT(!refcount_is_zero(&db->db_holds)); 528 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 529 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 530 ASSERT(MUTEX_HELD(&db->db_mtx)); 531 ASSERT(db->db_state == DB_UNCACHED); 532 ASSERT(db->db_buf == NULL); 533 534 if (db->db_blkid == DMU_BONUS_BLKID) { 535 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 536 537 ASSERT3U(bonuslen, <=, db->db.db_size); 538 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 539 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 540 if (bonuslen < DN_MAX_BONUSLEN) 541 bzero(db->db.db_data, DN_MAX_BONUSLEN); 542 if (bonuslen) 543 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 544 DB_DNODE_EXIT(db); 545 dbuf_update_data(db); 546 db->db_state = DB_CACHED; 547 mutex_exit(&db->db_mtx); 548 return; 549 } 550 551 /* 552 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 553 * processes the delete record and clears the bp while we are waiting 554 * for the dn_mtx (resulting in a "no" from block_freed). 555 */ 556 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 557 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 558 BP_IS_HOLE(db->db_blkptr)))) { 559 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 560 561 dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa, 562 db->db.db_size, db, type)); 563 DB_DNODE_EXIT(db); 564 bzero(db->db.db_data, db->db.db_size); 565 db->db_state = DB_CACHED; 566 *flags |= DB_RF_CACHED; 567 mutex_exit(&db->db_mtx); 568 return; 569 } 570 571 spa = dn->dn_objset->os_spa; 572 DB_DNODE_EXIT(db); 573 574 db->db_state = DB_READ; 575 mutex_exit(&db->db_mtx); 576 577 if (DBUF_IS_L2CACHEABLE(db)) 578 aflags |= ARC_L2CACHE; 579 if (DBUF_IS_L2COMPRESSIBLE(db)) 580 aflags |= ARC_L2COMPRESS; 581 582 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 583 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 584 db->db.db_object, db->db_level, db->db_blkid); 585 586 dbuf_add_ref(db, NULL); 587 588 (void) arc_read(zio, spa, db->db_blkptr, 589 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 590 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 591 &aflags, &zb); 592 if (aflags & ARC_CACHED) 593 *flags |= DB_RF_CACHED; 594 } 595 596 int 597 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 598 { 599 int err = 0; 600 int havepzio = (zio != NULL); 601 int prefetch; 602 dnode_t *dn; 603 604 /* 605 * We don't have to hold the mutex to check db_state because it 606 * can't be freed while we have a hold on the buffer. 607 */ 608 ASSERT(!refcount_is_zero(&db->db_holds)); 609 610 if (db->db_state == DB_NOFILL) 611 return (SET_ERROR(EIO)); 612 613 DB_DNODE_ENTER(db); 614 dn = DB_DNODE(db); 615 if ((flags & DB_RF_HAVESTRUCT) == 0) 616 rw_enter(&dn->dn_struct_rwlock, RW_READER); 617 618 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 619 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 620 DBUF_IS_CACHEABLE(db); 621 622 mutex_enter(&db->db_mtx); 623 if (db->db_state == DB_CACHED) { 624 mutex_exit(&db->db_mtx); 625 if (prefetch) 626 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 627 db->db.db_size, TRUE); 628 if ((flags & DB_RF_HAVESTRUCT) == 0) 629 rw_exit(&dn->dn_struct_rwlock); 630 DB_DNODE_EXIT(db); 631 } else if (db->db_state == DB_UNCACHED) { 632 spa_t *spa = dn->dn_objset->os_spa; 633 634 if (zio == NULL) 635 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 636 dbuf_read_impl(db, zio, &flags); 637 638 /* dbuf_read_impl has dropped db_mtx for us */ 639 640 if (prefetch) 641 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 642 db->db.db_size, flags & DB_RF_CACHED); 643 644 if ((flags & DB_RF_HAVESTRUCT) == 0) 645 rw_exit(&dn->dn_struct_rwlock); 646 DB_DNODE_EXIT(db); 647 648 if (!havepzio) 649 err = zio_wait(zio); 650 } else { 651 /* 652 * Another reader came in while the dbuf was in flight 653 * between UNCACHED and CACHED. Either a writer will finish 654 * writing the buffer (sending the dbuf to CACHED) or the 655 * first reader's request will reach the read_done callback 656 * and send the dbuf to CACHED. Otherwise, a failure 657 * occurred and the dbuf went to UNCACHED. 658 */ 659 mutex_exit(&db->db_mtx); 660 if (prefetch) 661 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 662 db->db.db_size, TRUE); 663 if ((flags & DB_RF_HAVESTRUCT) == 0) 664 rw_exit(&dn->dn_struct_rwlock); 665 DB_DNODE_EXIT(db); 666 667 /* Skip the wait per the caller's request. */ 668 mutex_enter(&db->db_mtx); 669 if ((flags & DB_RF_NEVERWAIT) == 0) { 670 while (db->db_state == DB_READ || 671 db->db_state == DB_FILL) { 672 ASSERT(db->db_state == DB_READ || 673 (flags & DB_RF_HAVESTRUCT) == 0); 674 cv_wait(&db->db_changed, &db->db_mtx); 675 } 676 if (db->db_state == DB_UNCACHED) 677 err = SET_ERROR(EIO); 678 } 679 mutex_exit(&db->db_mtx); 680 } 681 682 ASSERT(err || havepzio || db->db_state == DB_CACHED); 683 return (err); 684 } 685 686 static void 687 dbuf_noread(dmu_buf_impl_t *db) 688 { 689 ASSERT(!refcount_is_zero(&db->db_holds)); 690 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 691 mutex_enter(&db->db_mtx); 692 while (db->db_state == DB_READ || db->db_state == DB_FILL) 693 cv_wait(&db->db_changed, &db->db_mtx); 694 if (db->db_state == DB_UNCACHED) { 695 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 696 spa_t *spa; 697 698 ASSERT(db->db_buf == NULL); 699 ASSERT(db->db.db_data == NULL); 700 DB_GET_SPA(&spa, db); 701 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 702 db->db_state = DB_FILL; 703 } else if (db->db_state == DB_NOFILL) { 704 dbuf_set_data(db, NULL); 705 } else { 706 ASSERT3U(db->db_state, ==, DB_CACHED); 707 } 708 mutex_exit(&db->db_mtx); 709 } 710 711 /* 712 * This is our just-in-time copy function. It makes a copy of 713 * buffers, that have been modified in a previous transaction 714 * group, before we modify them in the current active group. 715 * 716 * This function is used in two places: when we are dirtying a 717 * buffer for the first time in a txg, and when we are freeing 718 * a range in a dnode that includes this buffer. 719 * 720 * Note that when we are called from dbuf_free_range() we do 721 * not put a hold on the buffer, we just traverse the active 722 * dbuf list for the dnode. 723 */ 724 static void 725 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 726 { 727 dbuf_dirty_record_t *dr = db->db_last_dirty; 728 729 ASSERT(MUTEX_HELD(&db->db_mtx)); 730 ASSERT(db->db.db_data != NULL); 731 ASSERT(db->db_level == 0); 732 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 733 734 if (dr == NULL || 735 (dr->dt.dl.dr_data != 736 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 737 return; 738 739 /* 740 * If the last dirty record for this dbuf has not yet synced 741 * and its referencing the dbuf data, either: 742 * reset the reference to point to a new copy, 743 * or (if there a no active holders) 744 * just null out the current db_data pointer. 745 */ 746 ASSERT(dr->dr_txg >= txg - 2); 747 if (db->db_blkid == DMU_BONUS_BLKID) { 748 /* Note that the data bufs here are zio_bufs */ 749 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 750 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 751 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 752 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 753 int size = db->db.db_size; 754 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 755 spa_t *spa; 756 757 DB_GET_SPA(&spa, db); 758 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 759 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 760 } else { 761 dbuf_set_data(db, NULL); 762 } 763 } 764 765 void 766 dbuf_unoverride(dbuf_dirty_record_t *dr) 767 { 768 dmu_buf_impl_t *db = dr->dr_dbuf; 769 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 770 uint64_t txg = dr->dr_txg; 771 772 ASSERT(MUTEX_HELD(&db->db_mtx)); 773 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 774 ASSERT(db->db_level == 0); 775 776 if (db->db_blkid == DMU_BONUS_BLKID || 777 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 778 return; 779 780 ASSERT(db->db_data_pending != dr); 781 782 /* free this block */ 783 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) { 784 spa_t *spa; 785 786 DB_GET_SPA(&spa, db); 787 zio_free(spa, txg, bp); 788 } 789 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 790 dr->dt.dl.dr_nopwrite = B_FALSE; 791 792 /* 793 * Release the already-written buffer, so we leave it in 794 * a consistent dirty state. Note that all callers are 795 * modifying the buffer, so they will immediately do 796 * another (redundant) arc_release(). Therefore, leave 797 * the buf thawed to save the effort of freezing & 798 * immediately re-thawing it. 799 */ 800 arc_release(dr->dt.dl.dr_data, db); 801 } 802 803 /* 804 * Evict (if its unreferenced) or clear (if its referenced) any level-0 805 * data blocks in the free range, so that any future readers will find 806 * empty blocks. Also, if we happen across any level-1 dbufs in the 807 * range that have not already been marked dirty, mark them dirty so 808 * they stay in memory. 809 * 810 * This is a no-op if the dataset is in the middle of an incremental 811 * receive; see comment below for details. 812 */ 813 void 814 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx) 815 { 816 dmu_buf_impl_t *db, *db_next; 817 uint64_t txg = tx->tx_txg; 818 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 819 uint64_t first_l1 = start >> epbs; 820 uint64_t last_l1 = end >> epbs; 821 822 if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) { 823 end = dn->dn_maxblkid; 824 last_l1 = end >> epbs; 825 } 826 dprintf_dnode(dn, "start=%llu end=%llu\n", start, end); 827 828 mutex_enter(&dn->dn_dbufs_mtx); 829 if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) { 830 /* There can't be any dbufs in this range; no need to search. */ 831 mutex_exit(&dn->dn_dbufs_mtx); 832 return; 833 } else if (dmu_objset_is_receiving(dn->dn_objset)) { 834 /* 835 * If we are receiving, we expect there to be no dbufs in 836 * the range to be freed, because receive modifies each 837 * block at most once, and in offset order. If this is 838 * not the case, it can lead to performance problems, 839 * so note that we unexpectedly took the slow path. 840 */ 841 atomic_inc_64(&zfs_free_range_recv_miss); 842 } 843 844 for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) { 845 db_next = list_next(&dn->dn_dbufs, db); 846 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 847 848 if (db->db_level == 1 && 849 db->db_blkid >= first_l1 && db->db_blkid <= last_l1) { 850 mutex_enter(&db->db_mtx); 851 if (db->db_last_dirty && 852 db->db_last_dirty->dr_txg < txg) { 853 dbuf_add_ref(db, FTAG); 854 mutex_exit(&db->db_mtx); 855 dbuf_will_dirty(db, tx); 856 dbuf_rele(db, FTAG); 857 } else { 858 mutex_exit(&db->db_mtx); 859 } 860 } 861 862 if (db->db_level != 0) 863 continue; 864 dprintf_dbuf(db, "found buf %s\n", ""); 865 if (db->db_blkid < start || db->db_blkid > end) 866 continue; 867 868 /* found a level 0 buffer in the range */ 869 mutex_enter(&db->db_mtx); 870 if (dbuf_undirty(db, tx)) { 871 /* mutex has been dropped and dbuf destroyed */ 872 continue; 873 } 874 875 if (db->db_state == DB_UNCACHED || 876 db->db_state == DB_NOFILL || 877 db->db_state == DB_EVICTING) { 878 ASSERT(db->db.db_data == NULL); 879 mutex_exit(&db->db_mtx); 880 continue; 881 } 882 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 883 /* will be handled in dbuf_read_done or dbuf_rele */ 884 db->db_freed_in_flight = TRUE; 885 mutex_exit(&db->db_mtx); 886 continue; 887 } 888 if (refcount_count(&db->db_holds) == 0) { 889 ASSERT(db->db_buf); 890 dbuf_clear(db); 891 continue; 892 } 893 /* The dbuf is referenced */ 894 895 if (db->db_last_dirty != NULL) { 896 dbuf_dirty_record_t *dr = db->db_last_dirty; 897 898 if (dr->dr_txg == txg) { 899 /* 900 * This buffer is "in-use", re-adjust the file 901 * size to reflect that this buffer may 902 * contain new data when we sync. 903 */ 904 if (db->db_blkid != DMU_SPILL_BLKID && 905 db->db_blkid > dn->dn_maxblkid) 906 dn->dn_maxblkid = db->db_blkid; 907 dbuf_unoverride(dr); 908 } else { 909 /* 910 * This dbuf is not dirty in the open context. 911 * Either uncache it (if its not referenced in 912 * the open context) or reset its contents to 913 * empty. 914 */ 915 dbuf_fix_old_data(db, txg); 916 } 917 } 918 /* clear the contents if its cached */ 919 if (db->db_state == DB_CACHED) { 920 ASSERT(db->db.db_data != NULL); 921 arc_release(db->db_buf, db); 922 bzero(db->db.db_data, db->db.db_size); 923 arc_buf_freeze(db->db_buf); 924 } 925 926 mutex_exit(&db->db_mtx); 927 } 928 mutex_exit(&dn->dn_dbufs_mtx); 929 } 930 931 static int 932 dbuf_block_freeable(dmu_buf_impl_t *db) 933 { 934 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 935 uint64_t birth_txg = 0; 936 937 /* 938 * We don't need any locking to protect db_blkptr: 939 * If it's syncing, then db_last_dirty will be set 940 * so we'll ignore db_blkptr. 941 */ 942 ASSERT(MUTEX_HELD(&db->db_mtx)); 943 if (db->db_last_dirty) 944 birth_txg = db->db_last_dirty->dr_txg; 945 else if (db->db_blkptr) 946 birth_txg = db->db_blkptr->blk_birth; 947 948 /* 949 * If we don't exist or are in a snapshot, we can't be freed. 950 * Don't pass the bp to dsl_dataset_block_freeable() since we 951 * are holding the db_mtx lock and might deadlock if we are 952 * prefetching a dedup-ed block. 953 */ 954 if (birth_txg) 955 return (ds == NULL || 956 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 957 else 958 return (FALSE); 959 } 960 961 void 962 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 963 { 964 arc_buf_t *buf, *obuf; 965 int osize = db->db.db_size; 966 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 967 dnode_t *dn; 968 969 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 970 971 DB_DNODE_ENTER(db); 972 dn = DB_DNODE(db); 973 974 /* XXX does *this* func really need the lock? */ 975 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 976 977 /* 978 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 979 * is OK, because there can be no other references to the db 980 * when we are changing its size, so no concurrent DB_FILL can 981 * be happening. 982 */ 983 /* 984 * XXX we should be doing a dbuf_read, checking the return 985 * value and returning that up to our callers 986 */ 987 dbuf_will_dirty(db, tx); 988 989 /* create the data buffer for the new block */ 990 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 991 992 /* copy old block data to the new block */ 993 obuf = db->db_buf; 994 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 995 /* zero the remainder */ 996 if (size > osize) 997 bzero((uint8_t *)buf->b_data + osize, size - osize); 998 999 mutex_enter(&db->db_mtx); 1000 dbuf_set_data(db, buf); 1001 VERIFY(arc_buf_remove_ref(obuf, db)); 1002 db->db.db_size = size; 1003 1004 if (db->db_level == 0) { 1005 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1006 db->db_last_dirty->dt.dl.dr_data = buf; 1007 } 1008 mutex_exit(&db->db_mtx); 1009 1010 dnode_willuse_space(dn, size-osize, tx); 1011 DB_DNODE_EXIT(db); 1012 } 1013 1014 void 1015 dbuf_release_bp(dmu_buf_impl_t *db) 1016 { 1017 objset_t *os; 1018 1019 DB_GET_OBJSET(&os, db); 1020 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1021 ASSERT(arc_released(os->os_phys_buf) || 1022 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1023 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1024 1025 (void) arc_release(db->db_buf, db); 1026 } 1027 1028 dbuf_dirty_record_t * 1029 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1030 { 1031 dnode_t *dn; 1032 objset_t *os; 1033 dbuf_dirty_record_t **drp, *dr; 1034 int drop_struct_lock = FALSE; 1035 boolean_t do_free_accounting = B_FALSE; 1036 int txgoff = tx->tx_txg & TXG_MASK; 1037 1038 ASSERT(tx->tx_txg != 0); 1039 ASSERT(!refcount_is_zero(&db->db_holds)); 1040 DMU_TX_DIRTY_BUF(tx, db); 1041 1042 DB_DNODE_ENTER(db); 1043 dn = DB_DNODE(db); 1044 /* 1045 * Shouldn't dirty a regular buffer in syncing context. Private 1046 * objects may be dirtied in syncing context, but only if they 1047 * were already pre-dirtied in open context. 1048 */ 1049 ASSERT(!dmu_tx_is_syncing(tx) || 1050 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1051 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1052 dn->dn_objset->os_dsl_dataset == NULL); 1053 /* 1054 * We make this assert for private objects as well, but after we 1055 * check if we're already dirty. They are allowed to re-dirty 1056 * in syncing context. 1057 */ 1058 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1059 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1060 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1061 1062 mutex_enter(&db->db_mtx); 1063 /* 1064 * XXX make this true for indirects too? The problem is that 1065 * transactions created with dmu_tx_create_assigned() from 1066 * syncing context don't bother holding ahead. 1067 */ 1068 ASSERT(db->db_level != 0 || 1069 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1070 db->db_state == DB_NOFILL); 1071 1072 mutex_enter(&dn->dn_mtx); 1073 /* 1074 * Don't set dirtyctx to SYNC if we're just modifying this as we 1075 * initialize the objset. 1076 */ 1077 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1078 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1079 dn->dn_dirtyctx = 1080 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1081 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1082 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1083 } 1084 mutex_exit(&dn->dn_mtx); 1085 1086 if (db->db_blkid == DMU_SPILL_BLKID) 1087 dn->dn_have_spill = B_TRUE; 1088 1089 /* 1090 * If this buffer is already dirty, we're done. 1091 */ 1092 drp = &db->db_last_dirty; 1093 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1094 db->db.db_object == DMU_META_DNODE_OBJECT); 1095 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1096 drp = &dr->dr_next; 1097 if (dr && dr->dr_txg == tx->tx_txg) { 1098 DB_DNODE_EXIT(db); 1099 1100 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1101 /* 1102 * If this buffer has already been written out, 1103 * we now need to reset its state. 1104 */ 1105 dbuf_unoverride(dr); 1106 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1107 db->db_state != DB_NOFILL) 1108 arc_buf_thaw(db->db_buf); 1109 } 1110 mutex_exit(&db->db_mtx); 1111 return (dr); 1112 } 1113 1114 /* 1115 * Only valid if not already dirty. 1116 */ 1117 ASSERT(dn->dn_object == 0 || 1118 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1119 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1120 1121 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1122 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1123 dn->dn_phys->dn_nlevels > db->db_level || 1124 dn->dn_next_nlevels[txgoff] > db->db_level || 1125 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1126 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1127 1128 /* 1129 * We should only be dirtying in syncing context if it's the 1130 * mos or we're initializing the os or it's a special object. 1131 * However, we are allowed to dirty in syncing context provided 1132 * we already dirtied it in open context. Hence we must make 1133 * this assertion only if we're not already dirty. 1134 */ 1135 os = dn->dn_objset; 1136 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1137 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1138 ASSERT(db->db.db_size != 0); 1139 1140 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1141 1142 if (db->db_blkid != DMU_BONUS_BLKID) { 1143 /* 1144 * Update the accounting. 1145 * Note: we delay "free accounting" until after we drop 1146 * the db_mtx. This keeps us from grabbing other locks 1147 * (and possibly deadlocking) in bp_get_dsize() while 1148 * also holding the db_mtx. 1149 */ 1150 dnode_willuse_space(dn, db->db.db_size, tx); 1151 do_free_accounting = dbuf_block_freeable(db); 1152 } 1153 1154 /* 1155 * If this buffer is dirty in an old transaction group we need 1156 * to make a copy of it so that the changes we make in this 1157 * transaction group won't leak out when we sync the older txg. 1158 */ 1159 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1160 if (db->db_level == 0) { 1161 void *data_old = db->db_buf; 1162 1163 if (db->db_state != DB_NOFILL) { 1164 if (db->db_blkid == DMU_BONUS_BLKID) { 1165 dbuf_fix_old_data(db, tx->tx_txg); 1166 data_old = db->db.db_data; 1167 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1168 /* 1169 * Release the data buffer from the cache so 1170 * that we can modify it without impacting 1171 * possible other users of this cached data 1172 * block. Note that indirect blocks and 1173 * private objects are not released until the 1174 * syncing state (since they are only modified 1175 * then). 1176 */ 1177 arc_release(db->db_buf, db); 1178 dbuf_fix_old_data(db, tx->tx_txg); 1179 data_old = db->db_buf; 1180 } 1181 ASSERT(data_old != NULL); 1182 } 1183 dr->dt.dl.dr_data = data_old; 1184 } else { 1185 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1186 list_create(&dr->dt.di.dr_children, 1187 sizeof (dbuf_dirty_record_t), 1188 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1189 } 1190 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1191 dr->dr_accounted = db->db.db_size; 1192 dr->dr_dbuf = db; 1193 dr->dr_txg = tx->tx_txg; 1194 dr->dr_next = *drp; 1195 *drp = dr; 1196 1197 /* 1198 * We could have been freed_in_flight between the dbuf_noread 1199 * and dbuf_dirty. We win, as though the dbuf_noread() had 1200 * happened after the free. 1201 */ 1202 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1203 db->db_blkid != DMU_SPILL_BLKID) { 1204 mutex_enter(&dn->dn_mtx); 1205 dnode_clear_range(dn, db->db_blkid, 1, tx); 1206 mutex_exit(&dn->dn_mtx); 1207 db->db_freed_in_flight = FALSE; 1208 } 1209 1210 /* 1211 * This buffer is now part of this txg 1212 */ 1213 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1214 db->db_dirtycnt += 1; 1215 ASSERT3U(db->db_dirtycnt, <=, 3); 1216 1217 mutex_exit(&db->db_mtx); 1218 1219 if (db->db_blkid == DMU_BONUS_BLKID || 1220 db->db_blkid == DMU_SPILL_BLKID) { 1221 mutex_enter(&dn->dn_mtx); 1222 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1223 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1224 mutex_exit(&dn->dn_mtx); 1225 dnode_setdirty(dn, tx); 1226 DB_DNODE_EXIT(db); 1227 return (dr); 1228 } else if (do_free_accounting) { 1229 blkptr_t *bp = db->db_blkptr; 1230 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1231 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1232 /* 1233 * This is only a guess -- if the dbuf is dirty 1234 * in a previous txg, we don't know how much 1235 * space it will use on disk yet. We should 1236 * really have the struct_rwlock to access 1237 * db_blkptr, but since this is just a guess, 1238 * it's OK if we get an odd answer. 1239 */ 1240 ddt_prefetch(os->os_spa, bp); 1241 dnode_willuse_space(dn, -willfree, tx); 1242 } 1243 1244 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1245 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1246 drop_struct_lock = TRUE; 1247 } 1248 1249 if (db->db_level == 0) { 1250 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1251 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1252 } 1253 1254 if (db->db_level+1 < dn->dn_nlevels) { 1255 dmu_buf_impl_t *parent = db->db_parent; 1256 dbuf_dirty_record_t *di; 1257 int parent_held = FALSE; 1258 1259 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1260 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1261 1262 parent = dbuf_hold_level(dn, db->db_level+1, 1263 db->db_blkid >> epbs, FTAG); 1264 ASSERT(parent != NULL); 1265 parent_held = TRUE; 1266 } 1267 if (drop_struct_lock) 1268 rw_exit(&dn->dn_struct_rwlock); 1269 ASSERT3U(db->db_level+1, ==, parent->db_level); 1270 di = dbuf_dirty(parent, tx); 1271 if (parent_held) 1272 dbuf_rele(parent, FTAG); 1273 1274 mutex_enter(&db->db_mtx); 1275 /* 1276 * Since we've dropped the mutex, it's possible that 1277 * dbuf_undirty() might have changed this out from under us. 1278 */ 1279 if (db->db_last_dirty == dr || 1280 dn->dn_object == DMU_META_DNODE_OBJECT) { 1281 mutex_enter(&di->dt.di.dr_mtx); 1282 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1283 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1284 list_insert_tail(&di->dt.di.dr_children, dr); 1285 mutex_exit(&di->dt.di.dr_mtx); 1286 dr->dr_parent = di; 1287 } 1288 mutex_exit(&db->db_mtx); 1289 } else { 1290 ASSERT(db->db_level+1 == dn->dn_nlevels); 1291 ASSERT(db->db_blkid < dn->dn_nblkptr); 1292 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1293 mutex_enter(&dn->dn_mtx); 1294 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1295 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1296 mutex_exit(&dn->dn_mtx); 1297 if (drop_struct_lock) 1298 rw_exit(&dn->dn_struct_rwlock); 1299 } 1300 1301 dnode_setdirty(dn, tx); 1302 DB_DNODE_EXIT(db); 1303 return (dr); 1304 } 1305 1306 /* 1307 * Undirty a buffer in the transaction group referenced by the given 1308 * transaction. Return whether this evicted the dbuf. 1309 */ 1310 static boolean_t 1311 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1312 { 1313 dnode_t *dn; 1314 uint64_t txg = tx->tx_txg; 1315 dbuf_dirty_record_t *dr, **drp; 1316 1317 ASSERT(txg != 0); 1318 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1319 ASSERT0(db->db_level); 1320 ASSERT(MUTEX_HELD(&db->db_mtx)); 1321 1322 /* 1323 * If this buffer is not dirty, we're done. 1324 */ 1325 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1326 if (dr->dr_txg <= txg) 1327 break; 1328 if (dr == NULL || dr->dr_txg < txg) 1329 return (B_FALSE); 1330 ASSERT(dr->dr_txg == txg); 1331 ASSERT(dr->dr_dbuf == db); 1332 1333 DB_DNODE_ENTER(db); 1334 dn = DB_DNODE(db); 1335 1336 /* 1337 * Note: This code will probably work even if there are concurrent 1338 * holders, but it is untested in that scenerio, as the ZPL and 1339 * ztest have additional locking (the range locks) that prevents 1340 * that type of concurrent access. 1341 */ 1342 ASSERT3U(refcount_count(&db->db_holds), ==, db->db_dirtycnt); 1343 1344 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1345 1346 ASSERT(db->db.db_size != 0); 1347 1348 /* 1349 * Any space we accounted for in dp_dirty_* will be cleaned up by 1350 * dsl_pool_sync(). This is relatively rare so the discrepancy 1351 * is not a big deal. 1352 */ 1353 1354 *drp = dr->dr_next; 1355 1356 /* 1357 * Note that there are three places in dbuf_dirty() 1358 * where this dirty record may be put on a list. 1359 * Make sure to do a list_remove corresponding to 1360 * every one of those list_insert calls. 1361 */ 1362 if (dr->dr_parent) { 1363 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1364 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1365 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1366 } else if (db->db_blkid == DMU_SPILL_BLKID || 1367 db->db_level+1 == dn->dn_nlevels) { 1368 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1369 mutex_enter(&dn->dn_mtx); 1370 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1371 mutex_exit(&dn->dn_mtx); 1372 } 1373 DB_DNODE_EXIT(db); 1374 1375 if (db->db_state != DB_NOFILL) { 1376 dbuf_unoverride(dr); 1377 1378 ASSERT(db->db_buf != NULL); 1379 ASSERT(dr->dt.dl.dr_data != NULL); 1380 if (dr->dt.dl.dr_data != db->db_buf) 1381 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1382 } 1383 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1384 1385 ASSERT(db->db_dirtycnt > 0); 1386 db->db_dirtycnt -= 1; 1387 1388 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1389 arc_buf_t *buf = db->db_buf; 1390 1391 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1392 dbuf_set_data(db, NULL); 1393 VERIFY(arc_buf_remove_ref(buf, db)); 1394 dbuf_evict(db); 1395 return (B_TRUE); 1396 } 1397 1398 return (B_FALSE); 1399 } 1400 1401 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1402 void 1403 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1404 { 1405 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1406 1407 ASSERT(tx->tx_txg != 0); 1408 ASSERT(!refcount_is_zero(&db->db_holds)); 1409 1410 DB_DNODE_ENTER(db); 1411 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1412 rf |= DB_RF_HAVESTRUCT; 1413 DB_DNODE_EXIT(db); 1414 (void) dbuf_read(db, NULL, rf); 1415 (void) dbuf_dirty(db, tx); 1416 } 1417 1418 void 1419 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1420 { 1421 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1422 1423 db->db_state = DB_NOFILL; 1424 1425 dmu_buf_will_fill(db_fake, tx); 1426 } 1427 1428 void 1429 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1430 { 1431 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1432 1433 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1434 ASSERT(tx->tx_txg != 0); 1435 ASSERT(db->db_level == 0); 1436 ASSERT(!refcount_is_zero(&db->db_holds)); 1437 1438 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1439 dmu_tx_private_ok(tx)); 1440 1441 dbuf_noread(db); 1442 (void) dbuf_dirty(db, tx); 1443 } 1444 1445 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1446 /* ARGSUSED */ 1447 void 1448 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1449 { 1450 mutex_enter(&db->db_mtx); 1451 DBUF_VERIFY(db); 1452 1453 if (db->db_state == DB_FILL) { 1454 if (db->db_level == 0 && db->db_freed_in_flight) { 1455 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1456 /* we were freed while filling */ 1457 /* XXX dbuf_undirty? */ 1458 bzero(db->db.db_data, db->db.db_size); 1459 db->db_freed_in_flight = FALSE; 1460 } 1461 db->db_state = DB_CACHED; 1462 cv_broadcast(&db->db_changed); 1463 } 1464 mutex_exit(&db->db_mtx); 1465 } 1466 1467 /* 1468 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1469 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1470 */ 1471 void 1472 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1473 { 1474 ASSERT(!refcount_is_zero(&db->db_holds)); 1475 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1476 ASSERT(db->db_level == 0); 1477 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1478 ASSERT(buf != NULL); 1479 ASSERT(arc_buf_size(buf) == db->db.db_size); 1480 ASSERT(tx->tx_txg != 0); 1481 1482 arc_return_buf(buf, db); 1483 ASSERT(arc_released(buf)); 1484 1485 mutex_enter(&db->db_mtx); 1486 1487 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1488 cv_wait(&db->db_changed, &db->db_mtx); 1489 1490 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1491 1492 if (db->db_state == DB_CACHED && 1493 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1494 mutex_exit(&db->db_mtx); 1495 (void) dbuf_dirty(db, tx); 1496 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1497 VERIFY(arc_buf_remove_ref(buf, db)); 1498 xuio_stat_wbuf_copied(); 1499 return; 1500 } 1501 1502 xuio_stat_wbuf_nocopy(); 1503 if (db->db_state == DB_CACHED) { 1504 dbuf_dirty_record_t *dr = db->db_last_dirty; 1505 1506 ASSERT(db->db_buf != NULL); 1507 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1508 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1509 if (!arc_released(db->db_buf)) { 1510 ASSERT(dr->dt.dl.dr_override_state == 1511 DR_OVERRIDDEN); 1512 arc_release(db->db_buf, db); 1513 } 1514 dr->dt.dl.dr_data = buf; 1515 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1516 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1517 arc_release(db->db_buf, db); 1518 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1519 } 1520 db->db_buf = NULL; 1521 } 1522 ASSERT(db->db_buf == NULL); 1523 dbuf_set_data(db, buf); 1524 db->db_state = DB_FILL; 1525 mutex_exit(&db->db_mtx); 1526 (void) dbuf_dirty(db, tx); 1527 dbuf_fill_done(db, tx); 1528 } 1529 1530 /* 1531 * "Clear" the contents of this dbuf. This will mark the dbuf 1532 * EVICTING and clear *most* of its references. Unfortunately, 1533 * when we are not holding the dn_dbufs_mtx, we can't clear the 1534 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1535 * in this case. For callers from the DMU we will usually see: 1536 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1537 * For the arc callback, we will usually see: 1538 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1539 * Sometimes, though, we will get a mix of these two: 1540 * DMU: dbuf_clear()->arc_buf_evict() 1541 * ARC: dbuf_do_evict()->dbuf_destroy() 1542 */ 1543 void 1544 dbuf_clear(dmu_buf_impl_t *db) 1545 { 1546 dnode_t *dn; 1547 dmu_buf_impl_t *parent = db->db_parent; 1548 dmu_buf_impl_t *dndb; 1549 int dbuf_gone = FALSE; 1550 1551 ASSERT(MUTEX_HELD(&db->db_mtx)); 1552 ASSERT(refcount_is_zero(&db->db_holds)); 1553 1554 dbuf_evict_user(db); 1555 1556 if (db->db_state == DB_CACHED) { 1557 ASSERT(db->db.db_data != NULL); 1558 if (db->db_blkid == DMU_BONUS_BLKID) { 1559 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1560 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1561 } 1562 db->db.db_data = NULL; 1563 db->db_state = DB_UNCACHED; 1564 } 1565 1566 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1567 ASSERT(db->db_data_pending == NULL); 1568 1569 db->db_state = DB_EVICTING; 1570 db->db_blkptr = NULL; 1571 1572 DB_DNODE_ENTER(db); 1573 dn = DB_DNODE(db); 1574 dndb = dn->dn_dbuf; 1575 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1576 list_remove(&dn->dn_dbufs, db); 1577 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1578 membar_producer(); 1579 DB_DNODE_EXIT(db); 1580 /* 1581 * Decrementing the dbuf count means that the hold corresponding 1582 * to the removed dbuf is no longer discounted in dnode_move(), 1583 * so the dnode cannot be moved until after we release the hold. 1584 * The membar_producer() ensures visibility of the decremented 1585 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1586 * release any lock. 1587 */ 1588 dnode_rele(dn, db); 1589 db->db_dnode_handle = NULL; 1590 } else { 1591 DB_DNODE_EXIT(db); 1592 } 1593 1594 if (db->db_buf) 1595 dbuf_gone = arc_buf_evict(db->db_buf); 1596 1597 if (!dbuf_gone) 1598 mutex_exit(&db->db_mtx); 1599 1600 /* 1601 * If this dbuf is referenced from an indirect dbuf, 1602 * decrement the ref count on the indirect dbuf. 1603 */ 1604 if (parent && parent != dndb) 1605 dbuf_rele(parent, db); 1606 } 1607 1608 static int 1609 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1610 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1611 { 1612 int nlevels, epbs; 1613 1614 *parentp = NULL; 1615 *bpp = NULL; 1616 1617 ASSERT(blkid != DMU_BONUS_BLKID); 1618 1619 if (blkid == DMU_SPILL_BLKID) { 1620 mutex_enter(&dn->dn_mtx); 1621 if (dn->dn_have_spill && 1622 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1623 *bpp = &dn->dn_phys->dn_spill; 1624 else 1625 *bpp = NULL; 1626 dbuf_add_ref(dn->dn_dbuf, NULL); 1627 *parentp = dn->dn_dbuf; 1628 mutex_exit(&dn->dn_mtx); 1629 return (0); 1630 } 1631 1632 if (dn->dn_phys->dn_nlevels == 0) 1633 nlevels = 1; 1634 else 1635 nlevels = dn->dn_phys->dn_nlevels; 1636 1637 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1638 1639 ASSERT3U(level * epbs, <, 64); 1640 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1641 if (level >= nlevels || 1642 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1643 /* the buffer has no parent yet */ 1644 return (SET_ERROR(ENOENT)); 1645 } else if (level < nlevels-1) { 1646 /* this block is referenced from an indirect block */ 1647 int err = dbuf_hold_impl(dn, level+1, 1648 blkid >> epbs, fail_sparse, NULL, parentp); 1649 if (err) 1650 return (err); 1651 err = dbuf_read(*parentp, NULL, 1652 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1653 if (err) { 1654 dbuf_rele(*parentp, NULL); 1655 *parentp = NULL; 1656 return (err); 1657 } 1658 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1659 (blkid & ((1ULL << epbs) - 1)); 1660 return (0); 1661 } else { 1662 /* the block is referenced from the dnode */ 1663 ASSERT3U(level, ==, nlevels-1); 1664 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1665 blkid < dn->dn_phys->dn_nblkptr); 1666 if (dn->dn_dbuf) { 1667 dbuf_add_ref(dn->dn_dbuf, NULL); 1668 *parentp = dn->dn_dbuf; 1669 } 1670 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1671 return (0); 1672 } 1673 } 1674 1675 static dmu_buf_impl_t * 1676 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1677 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1678 { 1679 objset_t *os = dn->dn_objset; 1680 dmu_buf_impl_t *db, *odb; 1681 1682 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1683 ASSERT(dn->dn_type != DMU_OT_NONE); 1684 1685 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1686 1687 db->db_objset = os; 1688 db->db.db_object = dn->dn_object; 1689 db->db_level = level; 1690 db->db_blkid = blkid; 1691 db->db_last_dirty = NULL; 1692 db->db_dirtycnt = 0; 1693 db->db_dnode_handle = dn->dn_handle; 1694 db->db_parent = parent; 1695 db->db_blkptr = blkptr; 1696 1697 db->db_user_ptr = NULL; 1698 db->db_user_data_ptr_ptr = NULL; 1699 db->db_evict_func = NULL; 1700 db->db_immediate_evict = 0; 1701 db->db_freed_in_flight = 0; 1702 1703 if (blkid == DMU_BONUS_BLKID) { 1704 ASSERT3P(parent, ==, dn->dn_dbuf); 1705 db->db.db_size = DN_MAX_BONUSLEN - 1706 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1707 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1708 db->db.db_offset = DMU_BONUS_BLKID; 1709 db->db_state = DB_UNCACHED; 1710 /* the bonus dbuf is not placed in the hash table */ 1711 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1712 return (db); 1713 } else if (blkid == DMU_SPILL_BLKID) { 1714 db->db.db_size = (blkptr != NULL) ? 1715 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1716 db->db.db_offset = 0; 1717 } else { 1718 int blocksize = 1719 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 1720 db->db.db_size = blocksize; 1721 db->db.db_offset = db->db_blkid * blocksize; 1722 } 1723 1724 /* 1725 * Hold the dn_dbufs_mtx while we get the new dbuf 1726 * in the hash table *and* added to the dbufs list. 1727 * This prevents a possible deadlock with someone 1728 * trying to look up this dbuf before its added to the 1729 * dn_dbufs list. 1730 */ 1731 mutex_enter(&dn->dn_dbufs_mtx); 1732 db->db_state = DB_EVICTING; 1733 if ((odb = dbuf_hash_insert(db)) != NULL) { 1734 /* someone else inserted it first */ 1735 kmem_cache_free(dbuf_cache, db); 1736 mutex_exit(&dn->dn_dbufs_mtx); 1737 return (odb); 1738 } 1739 list_insert_head(&dn->dn_dbufs, db); 1740 if (db->db_level == 0 && db->db_blkid >= 1741 dn->dn_unlisted_l0_blkid) 1742 dn->dn_unlisted_l0_blkid = db->db_blkid + 1; 1743 db->db_state = DB_UNCACHED; 1744 mutex_exit(&dn->dn_dbufs_mtx); 1745 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1746 1747 if (parent && parent != dn->dn_dbuf) 1748 dbuf_add_ref(parent, db); 1749 1750 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1751 refcount_count(&dn->dn_holds) > 0); 1752 (void) refcount_add(&dn->dn_holds, db); 1753 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 1754 1755 dprintf_dbuf(db, "db=%p\n", db); 1756 1757 return (db); 1758 } 1759 1760 static int 1761 dbuf_do_evict(void *private) 1762 { 1763 arc_buf_t *buf = private; 1764 dmu_buf_impl_t *db = buf->b_private; 1765 1766 if (!MUTEX_HELD(&db->db_mtx)) 1767 mutex_enter(&db->db_mtx); 1768 1769 ASSERT(refcount_is_zero(&db->db_holds)); 1770 1771 if (db->db_state != DB_EVICTING) { 1772 ASSERT(db->db_state == DB_CACHED); 1773 DBUF_VERIFY(db); 1774 db->db_buf = NULL; 1775 dbuf_evict(db); 1776 } else { 1777 mutex_exit(&db->db_mtx); 1778 dbuf_destroy(db); 1779 } 1780 return (0); 1781 } 1782 1783 static void 1784 dbuf_destroy(dmu_buf_impl_t *db) 1785 { 1786 ASSERT(refcount_is_zero(&db->db_holds)); 1787 1788 if (db->db_blkid != DMU_BONUS_BLKID) { 1789 /* 1790 * If this dbuf is still on the dn_dbufs list, 1791 * remove it from that list. 1792 */ 1793 if (db->db_dnode_handle != NULL) { 1794 dnode_t *dn; 1795 1796 DB_DNODE_ENTER(db); 1797 dn = DB_DNODE(db); 1798 mutex_enter(&dn->dn_dbufs_mtx); 1799 list_remove(&dn->dn_dbufs, db); 1800 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1801 mutex_exit(&dn->dn_dbufs_mtx); 1802 DB_DNODE_EXIT(db); 1803 /* 1804 * Decrementing the dbuf count means that the hold 1805 * corresponding to the removed dbuf is no longer 1806 * discounted in dnode_move(), so the dnode cannot be 1807 * moved until after we release the hold. 1808 */ 1809 dnode_rele(dn, db); 1810 db->db_dnode_handle = NULL; 1811 } 1812 dbuf_hash_remove(db); 1813 } 1814 db->db_parent = NULL; 1815 db->db_buf = NULL; 1816 1817 ASSERT(!list_link_active(&db->db_link)); 1818 ASSERT(db->db.db_data == NULL); 1819 ASSERT(db->db_hash_next == NULL); 1820 ASSERT(db->db_blkptr == NULL); 1821 ASSERT(db->db_data_pending == NULL); 1822 1823 kmem_cache_free(dbuf_cache, db); 1824 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1825 } 1826 1827 void 1828 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio) 1829 { 1830 dmu_buf_impl_t *db = NULL; 1831 blkptr_t *bp = NULL; 1832 1833 ASSERT(blkid != DMU_BONUS_BLKID); 1834 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1835 1836 if (dnode_block_freed(dn, blkid)) 1837 return; 1838 1839 /* dbuf_find() returns with db_mtx held */ 1840 if (db = dbuf_find(dn, 0, blkid)) { 1841 /* 1842 * This dbuf is already in the cache. We assume that 1843 * it is already CACHED, or else about to be either 1844 * read or filled. 1845 */ 1846 mutex_exit(&db->db_mtx); 1847 return; 1848 } 1849 1850 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1851 if (bp && !BP_IS_HOLE(bp)) { 1852 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 1853 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1854 zbookmark_t zb; 1855 1856 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1857 dn->dn_object, 0, blkid); 1858 1859 (void) arc_read(NULL, dn->dn_objset->os_spa, 1860 bp, NULL, NULL, prio, 1861 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1862 &aflags, &zb); 1863 } 1864 if (db) 1865 dbuf_rele(db, NULL); 1866 } 1867 } 1868 1869 /* 1870 * Returns with db_holds incremented, and db_mtx not held. 1871 * Note: dn_struct_rwlock must be held. 1872 */ 1873 int 1874 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1875 void *tag, dmu_buf_impl_t **dbp) 1876 { 1877 dmu_buf_impl_t *db, *parent = NULL; 1878 1879 ASSERT(blkid != DMU_BONUS_BLKID); 1880 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1881 ASSERT3U(dn->dn_nlevels, >, level); 1882 1883 *dbp = NULL; 1884 top: 1885 /* dbuf_find() returns with db_mtx held */ 1886 db = dbuf_find(dn, level, blkid); 1887 1888 if (db == NULL) { 1889 blkptr_t *bp = NULL; 1890 int err; 1891 1892 ASSERT3P(parent, ==, NULL); 1893 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1894 if (fail_sparse) { 1895 if (err == 0 && bp && BP_IS_HOLE(bp)) 1896 err = SET_ERROR(ENOENT); 1897 if (err) { 1898 if (parent) 1899 dbuf_rele(parent, NULL); 1900 return (err); 1901 } 1902 } 1903 if (err && err != ENOENT) 1904 return (err); 1905 db = dbuf_create(dn, level, blkid, parent, bp); 1906 } 1907 1908 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1909 arc_buf_add_ref(db->db_buf, db); 1910 if (db->db_buf->b_data == NULL) { 1911 dbuf_clear(db); 1912 if (parent) { 1913 dbuf_rele(parent, NULL); 1914 parent = NULL; 1915 } 1916 goto top; 1917 } 1918 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1919 } 1920 1921 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1922 1923 /* 1924 * If this buffer is currently syncing out, and we are are 1925 * still referencing it from db_data, we need to make a copy 1926 * of it in case we decide we want to dirty it again in this txg. 1927 */ 1928 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1929 dn->dn_object != DMU_META_DNODE_OBJECT && 1930 db->db_state == DB_CACHED && db->db_data_pending) { 1931 dbuf_dirty_record_t *dr = db->db_data_pending; 1932 1933 if (dr->dt.dl.dr_data == db->db_buf) { 1934 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1935 1936 dbuf_set_data(db, 1937 arc_buf_alloc(dn->dn_objset->os_spa, 1938 db->db.db_size, db, type)); 1939 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 1940 db->db.db_size); 1941 } 1942 } 1943 1944 (void) refcount_add(&db->db_holds, tag); 1945 dbuf_update_data(db); 1946 DBUF_VERIFY(db); 1947 mutex_exit(&db->db_mtx); 1948 1949 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1950 if (parent) 1951 dbuf_rele(parent, NULL); 1952 1953 ASSERT3P(DB_DNODE(db), ==, dn); 1954 ASSERT3U(db->db_blkid, ==, blkid); 1955 ASSERT3U(db->db_level, ==, level); 1956 *dbp = db; 1957 1958 return (0); 1959 } 1960 1961 dmu_buf_impl_t * 1962 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1963 { 1964 dmu_buf_impl_t *db; 1965 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1966 return (err ? NULL : db); 1967 } 1968 1969 dmu_buf_impl_t * 1970 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1971 { 1972 dmu_buf_impl_t *db; 1973 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1974 return (err ? NULL : db); 1975 } 1976 1977 void 1978 dbuf_create_bonus(dnode_t *dn) 1979 { 1980 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1981 1982 ASSERT(dn->dn_bonus == NULL); 1983 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 1984 } 1985 1986 int 1987 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 1988 { 1989 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1990 dnode_t *dn; 1991 1992 if (db->db_blkid != DMU_SPILL_BLKID) 1993 return (SET_ERROR(ENOTSUP)); 1994 if (blksz == 0) 1995 blksz = SPA_MINBLOCKSIZE; 1996 if (blksz > SPA_MAXBLOCKSIZE) 1997 blksz = SPA_MAXBLOCKSIZE; 1998 else 1999 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2000 2001 DB_DNODE_ENTER(db); 2002 dn = DB_DNODE(db); 2003 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2004 dbuf_new_size(db, blksz, tx); 2005 rw_exit(&dn->dn_struct_rwlock); 2006 DB_DNODE_EXIT(db); 2007 2008 return (0); 2009 } 2010 2011 void 2012 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2013 { 2014 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2015 } 2016 2017 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2018 void 2019 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2020 { 2021 int64_t holds = refcount_add(&db->db_holds, tag); 2022 ASSERT(holds > 1); 2023 } 2024 2025 /* 2026 * If you call dbuf_rele() you had better not be referencing the dnode handle 2027 * unless you have some other direct or indirect hold on the dnode. (An indirect 2028 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2029 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2030 * dnode's parent dbuf evicting its dnode handles. 2031 */ 2032 #pragma weak dmu_buf_rele = dbuf_rele 2033 void 2034 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2035 { 2036 mutex_enter(&db->db_mtx); 2037 dbuf_rele_and_unlock(db, tag); 2038 } 2039 2040 /* 2041 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2042 * db_dirtycnt and db_holds to be updated atomically. 2043 */ 2044 void 2045 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2046 { 2047 int64_t holds; 2048 2049 ASSERT(MUTEX_HELD(&db->db_mtx)); 2050 DBUF_VERIFY(db); 2051 2052 /* 2053 * Remove the reference to the dbuf before removing its hold on the 2054 * dnode so we can guarantee in dnode_move() that a referenced bonus 2055 * buffer has a corresponding dnode hold. 2056 */ 2057 holds = refcount_remove(&db->db_holds, tag); 2058 ASSERT(holds >= 0); 2059 2060 /* 2061 * We can't freeze indirects if there is a possibility that they 2062 * may be modified in the current syncing context. 2063 */ 2064 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2065 arc_buf_freeze(db->db_buf); 2066 2067 if (holds == db->db_dirtycnt && 2068 db->db_level == 0 && db->db_immediate_evict) 2069 dbuf_evict_user(db); 2070 2071 if (holds == 0) { 2072 if (db->db_blkid == DMU_BONUS_BLKID) { 2073 mutex_exit(&db->db_mtx); 2074 2075 /* 2076 * If the dnode moves here, we cannot cross this barrier 2077 * until the move completes. 2078 */ 2079 DB_DNODE_ENTER(db); 2080 (void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count); 2081 DB_DNODE_EXIT(db); 2082 /* 2083 * The bonus buffer's dnode hold is no longer discounted 2084 * in dnode_move(). The dnode cannot move until after 2085 * the dnode_rele(). 2086 */ 2087 dnode_rele(DB_DNODE(db), db); 2088 } else if (db->db_buf == NULL) { 2089 /* 2090 * This is a special case: we never associated this 2091 * dbuf with any data allocated from the ARC. 2092 */ 2093 ASSERT(db->db_state == DB_UNCACHED || 2094 db->db_state == DB_NOFILL); 2095 dbuf_evict(db); 2096 } else if (arc_released(db->db_buf)) { 2097 arc_buf_t *buf = db->db_buf; 2098 /* 2099 * This dbuf has anonymous data associated with it. 2100 */ 2101 dbuf_set_data(db, NULL); 2102 VERIFY(arc_buf_remove_ref(buf, db)); 2103 dbuf_evict(db); 2104 } else { 2105 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2106 2107 /* 2108 * A dbuf will be eligible for eviction if either the 2109 * 'primarycache' property is set or a duplicate 2110 * copy of this buffer is already cached in the arc. 2111 * 2112 * In the case of the 'primarycache' a buffer 2113 * is considered for eviction if it matches the 2114 * criteria set in the property. 2115 * 2116 * To decide if our buffer is considered a 2117 * duplicate, we must call into the arc to determine 2118 * if multiple buffers are referencing the same 2119 * block on-disk. If so, then we simply evict 2120 * ourselves. 2121 */ 2122 if (!DBUF_IS_CACHEABLE(db) || 2123 arc_buf_eviction_needed(db->db_buf)) 2124 dbuf_clear(db); 2125 else 2126 mutex_exit(&db->db_mtx); 2127 } 2128 } else { 2129 mutex_exit(&db->db_mtx); 2130 } 2131 } 2132 2133 #pragma weak dmu_buf_refcount = dbuf_refcount 2134 uint64_t 2135 dbuf_refcount(dmu_buf_impl_t *db) 2136 { 2137 return (refcount_count(&db->db_holds)); 2138 } 2139 2140 void * 2141 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2142 dmu_buf_evict_func_t *evict_func) 2143 { 2144 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2145 user_data_ptr_ptr, evict_func)); 2146 } 2147 2148 void * 2149 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2150 dmu_buf_evict_func_t *evict_func) 2151 { 2152 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2153 2154 db->db_immediate_evict = TRUE; 2155 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2156 user_data_ptr_ptr, evict_func)); 2157 } 2158 2159 void * 2160 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 2161 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 2162 { 2163 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2164 ASSERT(db->db_level == 0); 2165 2166 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 2167 2168 mutex_enter(&db->db_mtx); 2169 2170 if (db->db_user_ptr == old_user_ptr) { 2171 db->db_user_ptr = user_ptr; 2172 db->db_user_data_ptr_ptr = user_data_ptr_ptr; 2173 db->db_evict_func = evict_func; 2174 2175 dbuf_update_data(db); 2176 } else { 2177 old_user_ptr = db->db_user_ptr; 2178 } 2179 2180 mutex_exit(&db->db_mtx); 2181 return (old_user_ptr); 2182 } 2183 2184 void * 2185 dmu_buf_get_user(dmu_buf_t *db_fake) 2186 { 2187 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2188 ASSERT(!refcount_is_zero(&db->db_holds)); 2189 2190 return (db->db_user_ptr); 2191 } 2192 2193 boolean_t 2194 dmu_buf_freeable(dmu_buf_t *dbuf) 2195 { 2196 boolean_t res = B_FALSE; 2197 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2198 2199 if (db->db_blkptr) 2200 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2201 db->db_blkptr, db->db_blkptr->blk_birth); 2202 2203 return (res); 2204 } 2205 2206 blkptr_t * 2207 dmu_buf_get_blkptr(dmu_buf_t *db) 2208 { 2209 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2210 return (dbi->db_blkptr); 2211 } 2212 2213 static void 2214 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2215 { 2216 /* ASSERT(dmu_tx_is_syncing(tx) */ 2217 ASSERT(MUTEX_HELD(&db->db_mtx)); 2218 2219 if (db->db_blkptr != NULL) 2220 return; 2221 2222 if (db->db_blkid == DMU_SPILL_BLKID) { 2223 db->db_blkptr = &dn->dn_phys->dn_spill; 2224 BP_ZERO(db->db_blkptr); 2225 return; 2226 } 2227 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2228 /* 2229 * This buffer was allocated at a time when there was 2230 * no available blkptrs from the dnode, or it was 2231 * inappropriate to hook it in (i.e., nlevels mis-match). 2232 */ 2233 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2234 ASSERT(db->db_parent == NULL); 2235 db->db_parent = dn->dn_dbuf; 2236 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2237 DBUF_VERIFY(db); 2238 } else { 2239 dmu_buf_impl_t *parent = db->db_parent; 2240 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2241 2242 ASSERT(dn->dn_phys->dn_nlevels > 1); 2243 if (parent == NULL) { 2244 mutex_exit(&db->db_mtx); 2245 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2246 (void) dbuf_hold_impl(dn, db->db_level+1, 2247 db->db_blkid >> epbs, FALSE, db, &parent); 2248 rw_exit(&dn->dn_struct_rwlock); 2249 mutex_enter(&db->db_mtx); 2250 db->db_parent = parent; 2251 } 2252 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2253 (db->db_blkid & ((1ULL << epbs) - 1)); 2254 DBUF_VERIFY(db); 2255 } 2256 } 2257 2258 static void 2259 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2260 { 2261 dmu_buf_impl_t *db = dr->dr_dbuf; 2262 dnode_t *dn; 2263 zio_t *zio; 2264 2265 ASSERT(dmu_tx_is_syncing(tx)); 2266 2267 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2268 2269 mutex_enter(&db->db_mtx); 2270 2271 ASSERT(db->db_level > 0); 2272 DBUF_VERIFY(db); 2273 2274 /* Read the block if it hasn't been read yet. */ 2275 if (db->db_buf == NULL) { 2276 mutex_exit(&db->db_mtx); 2277 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2278 mutex_enter(&db->db_mtx); 2279 } 2280 ASSERT3U(db->db_state, ==, DB_CACHED); 2281 ASSERT(db->db_buf != NULL); 2282 2283 DB_DNODE_ENTER(db); 2284 dn = DB_DNODE(db); 2285 /* Indirect block size must match what the dnode thinks it is. */ 2286 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2287 dbuf_check_blkptr(dn, db); 2288 DB_DNODE_EXIT(db); 2289 2290 /* Provide the pending dirty record to child dbufs */ 2291 db->db_data_pending = dr; 2292 2293 mutex_exit(&db->db_mtx); 2294 dbuf_write(dr, db->db_buf, tx); 2295 2296 zio = dr->dr_zio; 2297 mutex_enter(&dr->dt.di.dr_mtx); 2298 dbuf_sync_list(&dr->dt.di.dr_children, tx); 2299 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2300 mutex_exit(&dr->dt.di.dr_mtx); 2301 zio_nowait(zio); 2302 } 2303 2304 static void 2305 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2306 { 2307 arc_buf_t **datap = &dr->dt.dl.dr_data; 2308 dmu_buf_impl_t *db = dr->dr_dbuf; 2309 dnode_t *dn; 2310 objset_t *os; 2311 uint64_t txg = tx->tx_txg; 2312 2313 ASSERT(dmu_tx_is_syncing(tx)); 2314 2315 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2316 2317 mutex_enter(&db->db_mtx); 2318 /* 2319 * To be synced, we must be dirtied. But we 2320 * might have been freed after the dirty. 2321 */ 2322 if (db->db_state == DB_UNCACHED) { 2323 /* This buffer has been freed since it was dirtied */ 2324 ASSERT(db->db.db_data == NULL); 2325 } else if (db->db_state == DB_FILL) { 2326 /* This buffer was freed and is now being re-filled */ 2327 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2328 } else { 2329 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2330 } 2331 DBUF_VERIFY(db); 2332 2333 DB_DNODE_ENTER(db); 2334 dn = DB_DNODE(db); 2335 2336 if (db->db_blkid == DMU_SPILL_BLKID) { 2337 mutex_enter(&dn->dn_mtx); 2338 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2339 mutex_exit(&dn->dn_mtx); 2340 } 2341 2342 /* 2343 * If this is a bonus buffer, simply copy the bonus data into the 2344 * dnode. It will be written out when the dnode is synced (and it 2345 * will be synced, since it must have been dirty for dbuf_sync to 2346 * be called). 2347 */ 2348 if (db->db_blkid == DMU_BONUS_BLKID) { 2349 dbuf_dirty_record_t **drp; 2350 2351 ASSERT(*datap != NULL); 2352 ASSERT0(db->db_level); 2353 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2354 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2355 DB_DNODE_EXIT(db); 2356 2357 if (*datap != db->db.db_data) { 2358 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2359 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2360 } 2361 db->db_data_pending = NULL; 2362 drp = &db->db_last_dirty; 2363 while (*drp != dr) 2364 drp = &(*drp)->dr_next; 2365 ASSERT(dr->dr_next == NULL); 2366 ASSERT(dr->dr_dbuf == db); 2367 *drp = dr->dr_next; 2368 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2369 ASSERT(db->db_dirtycnt > 0); 2370 db->db_dirtycnt -= 1; 2371 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2372 return; 2373 } 2374 2375 os = dn->dn_objset; 2376 2377 /* 2378 * This function may have dropped the db_mtx lock allowing a dmu_sync 2379 * operation to sneak in. As a result, we need to ensure that we 2380 * don't check the dr_override_state until we have returned from 2381 * dbuf_check_blkptr. 2382 */ 2383 dbuf_check_blkptr(dn, db); 2384 2385 /* 2386 * If this buffer is in the middle of an immediate write, 2387 * wait for the synchronous IO to complete. 2388 */ 2389 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2390 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2391 cv_wait(&db->db_changed, &db->db_mtx); 2392 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2393 } 2394 2395 if (db->db_state != DB_NOFILL && 2396 dn->dn_object != DMU_META_DNODE_OBJECT && 2397 refcount_count(&db->db_holds) > 1 && 2398 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2399 *datap == db->db_buf) { 2400 /* 2401 * If this buffer is currently "in use" (i.e., there 2402 * are active holds and db_data still references it), 2403 * then make a copy before we start the write so that 2404 * any modifications from the open txg will not leak 2405 * into this write. 2406 * 2407 * NOTE: this copy does not need to be made for 2408 * objects only modified in the syncing context (e.g. 2409 * DNONE_DNODE blocks). 2410 */ 2411 int blksz = arc_buf_size(*datap); 2412 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2413 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2414 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2415 } 2416 db->db_data_pending = dr; 2417 2418 mutex_exit(&db->db_mtx); 2419 2420 dbuf_write(dr, *datap, tx); 2421 2422 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2423 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2424 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2425 DB_DNODE_EXIT(db); 2426 } else { 2427 /* 2428 * Although zio_nowait() does not "wait for an IO", it does 2429 * initiate the IO. If this is an empty write it seems plausible 2430 * that the IO could actually be completed before the nowait 2431 * returns. We need to DB_DNODE_EXIT() first in case 2432 * zio_nowait() invalidates the dbuf. 2433 */ 2434 DB_DNODE_EXIT(db); 2435 zio_nowait(dr->dr_zio); 2436 } 2437 } 2438 2439 void 2440 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2441 { 2442 dbuf_dirty_record_t *dr; 2443 2444 while (dr = list_head(list)) { 2445 if (dr->dr_zio != NULL) { 2446 /* 2447 * If we find an already initialized zio then we 2448 * are processing the meta-dnode, and we have finished. 2449 * The dbufs for all dnodes are put back on the list 2450 * during processing, so that we can zio_wait() 2451 * these IOs after initiating all child IOs. 2452 */ 2453 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2454 DMU_META_DNODE_OBJECT); 2455 break; 2456 } 2457 list_remove(list, dr); 2458 if (dr->dr_dbuf->db_level > 0) 2459 dbuf_sync_indirect(dr, tx); 2460 else 2461 dbuf_sync_leaf(dr, tx); 2462 } 2463 } 2464 2465 /* ARGSUSED */ 2466 static void 2467 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2468 { 2469 dmu_buf_impl_t *db = vdb; 2470 dnode_t *dn; 2471 blkptr_t *bp = zio->io_bp; 2472 blkptr_t *bp_orig = &zio->io_bp_orig; 2473 spa_t *spa = zio->io_spa; 2474 int64_t delta; 2475 uint64_t fill = 0; 2476 int i; 2477 2478 ASSERT(db->db_blkptr == bp); 2479 2480 DB_DNODE_ENTER(db); 2481 dn = DB_DNODE(db); 2482 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2483 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2484 zio->io_prev_space_delta = delta; 2485 2486 if (BP_IS_HOLE(bp)) { 2487 ASSERT(bp->blk_fill == 0); 2488 DB_DNODE_EXIT(db); 2489 return; 2490 } 2491 2492 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2493 BP_GET_TYPE(bp) == dn->dn_type) || 2494 (db->db_blkid == DMU_SPILL_BLKID && 2495 BP_GET_TYPE(bp) == dn->dn_bonustype)); 2496 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2497 2498 mutex_enter(&db->db_mtx); 2499 2500 #ifdef ZFS_DEBUG 2501 if (db->db_blkid == DMU_SPILL_BLKID) { 2502 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2503 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2504 db->db_blkptr == &dn->dn_phys->dn_spill); 2505 } 2506 #endif 2507 2508 if (db->db_level == 0) { 2509 mutex_enter(&dn->dn_mtx); 2510 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2511 db->db_blkid != DMU_SPILL_BLKID) 2512 dn->dn_phys->dn_maxblkid = db->db_blkid; 2513 mutex_exit(&dn->dn_mtx); 2514 2515 if (dn->dn_type == DMU_OT_DNODE) { 2516 dnode_phys_t *dnp = db->db.db_data; 2517 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2518 i--, dnp++) { 2519 if (dnp->dn_type != DMU_OT_NONE) 2520 fill++; 2521 } 2522 } else { 2523 fill = 1; 2524 } 2525 } else { 2526 blkptr_t *ibp = db->db.db_data; 2527 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2528 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2529 if (BP_IS_HOLE(ibp)) 2530 continue; 2531 fill += ibp->blk_fill; 2532 } 2533 } 2534 DB_DNODE_EXIT(db); 2535 2536 bp->blk_fill = fill; 2537 2538 mutex_exit(&db->db_mtx); 2539 } 2540 2541 /* 2542 * The SPA will call this callback several times for each zio - once 2543 * for every physical child i/o (zio->io_phys_children times). This 2544 * allows the DMU to monitor the progress of each logical i/o. For example, 2545 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 2546 * block. There may be a long delay before all copies/fragments are completed, 2547 * so this callback allows us to retire dirty space gradually, as the physical 2548 * i/os complete. 2549 */ 2550 /* ARGSUSED */ 2551 static void 2552 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 2553 { 2554 dmu_buf_impl_t *db = arg; 2555 objset_t *os = db->db_objset; 2556 dsl_pool_t *dp = dmu_objset_pool(os); 2557 dbuf_dirty_record_t *dr; 2558 int delta = 0; 2559 2560 dr = db->db_data_pending; 2561 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 2562 2563 /* 2564 * The callback will be called io_phys_children times. Retire one 2565 * portion of our dirty space each time we are called. Any rounding 2566 * error will be cleaned up by dsl_pool_sync()'s call to 2567 * dsl_pool_undirty_space(). 2568 */ 2569 delta = dr->dr_accounted / zio->io_phys_children; 2570 dsl_pool_undirty_space(dp, delta, zio->io_txg); 2571 } 2572 2573 /* ARGSUSED */ 2574 static void 2575 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2576 { 2577 dmu_buf_impl_t *db = vdb; 2578 blkptr_t *bp = zio->io_bp; 2579 blkptr_t *bp_orig = &zio->io_bp_orig; 2580 uint64_t txg = zio->io_txg; 2581 dbuf_dirty_record_t **drp, *dr; 2582 2583 ASSERT0(zio->io_error); 2584 ASSERT(db->db_blkptr == bp); 2585 2586 /* 2587 * For nopwrites and rewrites we ensure that the bp matches our 2588 * original and bypass all the accounting. 2589 */ 2590 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2591 ASSERT(BP_EQUAL(bp, bp_orig)); 2592 } else { 2593 objset_t *os; 2594 dsl_dataset_t *ds; 2595 dmu_tx_t *tx; 2596 2597 DB_GET_OBJSET(&os, db); 2598 ds = os->os_dsl_dataset; 2599 tx = os->os_synctx; 2600 2601 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2602 dsl_dataset_block_born(ds, bp, tx); 2603 } 2604 2605 mutex_enter(&db->db_mtx); 2606 2607 DBUF_VERIFY(db); 2608 2609 drp = &db->db_last_dirty; 2610 while ((dr = *drp) != db->db_data_pending) 2611 drp = &dr->dr_next; 2612 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2613 ASSERT(dr->dr_txg == txg); 2614 ASSERT(dr->dr_dbuf == db); 2615 ASSERT(dr->dr_next == NULL); 2616 *drp = dr->dr_next; 2617 2618 #ifdef ZFS_DEBUG 2619 if (db->db_blkid == DMU_SPILL_BLKID) { 2620 dnode_t *dn; 2621 2622 DB_DNODE_ENTER(db); 2623 dn = DB_DNODE(db); 2624 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2625 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2626 db->db_blkptr == &dn->dn_phys->dn_spill); 2627 DB_DNODE_EXIT(db); 2628 } 2629 #endif 2630 2631 if (db->db_level == 0) { 2632 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2633 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2634 if (db->db_state != DB_NOFILL) { 2635 if (dr->dt.dl.dr_data != db->db_buf) 2636 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 2637 db)); 2638 else if (!arc_released(db->db_buf)) 2639 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2640 } 2641 } else { 2642 dnode_t *dn; 2643 2644 DB_DNODE_ENTER(db); 2645 dn = DB_DNODE(db); 2646 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2647 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2648 if (!BP_IS_HOLE(db->db_blkptr)) { 2649 int epbs = 2650 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2651 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2652 db->db.db_size); 2653 ASSERT3U(dn->dn_phys->dn_maxblkid 2654 >> (db->db_level * epbs), >=, db->db_blkid); 2655 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2656 } 2657 DB_DNODE_EXIT(db); 2658 mutex_destroy(&dr->dt.di.dr_mtx); 2659 list_destroy(&dr->dt.di.dr_children); 2660 } 2661 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2662 2663 cv_broadcast(&db->db_changed); 2664 ASSERT(db->db_dirtycnt > 0); 2665 db->db_dirtycnt -= 1; 2666 db->db_data_pending = NULL; 2667 2668 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2669 } 2670 2671 static void 2672 dbuf_write_nofill_ready(zio_t *zio) 2673 { 2674 dbuf_write_ready(zio, NULL, zio->io_private); 2675 } 2676 2677 static void 2678 dbuf_write_nofill_done(zio_t *zio) 2679 { 2680 dbuf_write_done(zio, NULL, zio->io_private); 2681 } 2682 2683 static void 2684 dbuf_write_override_ready(zio_t *zio) 2685 { 2686 dbuf_dirty_record_t *dr = zio->io_private; 2687 dmu_buf_impl_t *db = dr->dr_dbuf; 2688 2689 dbuf_write_ready(zio, NULL, db); 2690 } 2691 2692 static void 2693 dbuf_write_override_done(zio_t *zio) 2694 { 2695 dbuf_dirty_record_t *dr = zio->io_private; 2696 dmu_buf_impl_t *db = dr->dr_dbuf; 2697 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 2698 2699 mutex_enter(&db->db_mtx); 2700 if (!BP_EQUAL(zio->io_bp, obp)) { 2701 if (!BP_IS_HOLE(obp)) 2702 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 2703 arc_release(dr->dt.dl.dr_data, db); 2704 } 2705 mutex_exit(&db->db_mtx); 2706 2707 dbuf_write_done(zio, NULL, db); 2708 } 2709 2710 /* Issue I/O to commit a dirty buffer to disk. */ 2711 static void 2712 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 2713 { 2714 dmu_buf_impl_t *db = dr->dr_dbuf; 2715 dnode_t *dn; 2716 objset_t *os; 2717 dmu_buf_impl_t *parent = db->db_parent; 2718 uint64_t txg = tx->tx_txg; 2719 zbookmark_t zb; 2720 zio_prop_t zp; 2721 zio_t *zio; 2722 int wp_flag = 0; 2723 2724 DB_DNODE_ENTER(db); 2725 dn = DB_DNODE(db); 2726 os = dn->dn_objset; 2727 2728 if (db->db_state != DB_NOFILL) { 2729 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 2730 /* 2731 * Private object buffers are released here rather 2732 * than in dbuf_dirty() since they are only modified 2733 * in the syncing context and we don't want the 2734 * overhead of making multiple copies of the data. 2735 */ 2736 if (BP_IS_HOLE(db->db_blkptr)) { 2737 arc_buf_thaw(data); 2738 } else { 2739 dbuf_release_bp(db); 2740 } 2741 } 2742 } 2743 2744 if (parent != dn->dn_dbuf) { 2745 /* Our parent is an indirect block. */ 2746 /* We have a dirty parent that has been scheduled for write. */ 2747 ASSERT(parent && parent->db_data_pending); 2748 /* Our parent's buffer is one level closer to the dnode. */ 2749 ASSERT(db->db_level == parent->db_level-1); 2750 /* 2751 * We're about to modify our parent's db_data by modifying 2752 * our block pointer, so the parent must be released. 2753 */ 2754 ASSERT(arc_released(parent->db_buf)); 2755 zio = parent->db_data_pending->dr_zio; 2756 } else { 2757 /* Our parent is the dnode itself. */ 2758 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 2759 db->db_blkid != DMU_SPILL_BLKID) || 2760 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 2761 if (db->db_blkid != DMU_SPILL_BLKID) 2762 ASSERT3P(db->db_blkptr, ==, 2763 &dn->dn_phys->dn_blkptr[db->db_blkid]); 2764 zio = dn->dn_zio; 2765 } 2766 2767 ASSERT(db->db_level == 0 || data == db->db_buf); 2768 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 2769 ASSERT(zio); 2770 2771 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 2772 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 2773 db->db.db_object, db->db_level, db->db_blkid); 2774 2775 if (db->db_blkid == DMU_SPILL_BLKID) 2776 wp_flag = WP_SPILL; 2777 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 2778 2779 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 2780 DB_DNODE_EXIT(db); 2781 2782 if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2783 ASSERT(db->db_state != DB_NOFILL); 2784 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2785 db->db_blkptr, data->b_data, arc_buf_size(data), &zp, 2786 dbuf_write_override_ready, NULL, dbuf_write_override_done, 2787 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2788 mutex_enter(&db->db_mtx); 2789 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 2790 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 2791 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 2792 mutex_exit(&db->db_mtx); 2793 } else if (db->db_state == DB_NOFILL) { 2794 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF); 2795 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2796 db->db_blkptr, NULL, db->db.db_size, &zp, 2797 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db, 2798 ZIO_PRIORITY_ASYNC_WRITE, 2799 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 2800 } else { 2801 ASSERT(arc_released(data)); 2802 dr->dr_zio = arc_write(zio, os->os_spa, txg, 2803 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), 2804 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready, 2805 dbuf_write_physdone, dbuf_write_done, db, 2806 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2807 } 2808 }