1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2013 by Delphix. All rights reserved.
  25  */
  26 
  27 /*
  28  * Virtual Device Labels
  29  * ---------------------
  30  *
  31  * The vdev label serves several distinct purposes:
  32  *
  33  *      1. Uniquely identify this device as part of a ZFS pool and confirm its
  34  *         identity within the pool.
  35  *
  36  *      2. Verify that all the devices given in a configuration are present
  37  *         within the pool.
  38  *
  39  *      3. Determine the uberblock for the pool.
  40  *
  41  *      4. In case of an import operation, determine the configuration of the
  42  *         toplevel vdev of which it is a part.
  43  *
  44  *      5. If an import operation cannot find all the devices in the pool,
  45  *         provide enough information to the administrator to determine which
  46  *         devices are missing.
  47  *
  48  * It is important to note that while the kernel is responsible for writing the
  49  * label, it only consumes the information in the first three cases.  The
  50  * latter information is only consumed in userland when determining the
  51  * configuration to import a pool.
  52  *
  53  *
  54  * Label Organization
  55  * ------------------
  56  *
  57  * Before describing the contents of the label, it's important to understand how
  58  * the labels are written and updated with respect to the uberblock.
  59  *
  60  * When the pool configuration is altered, either because it was newly created
  61  * or a device was added, we want to update all the labels such that we can deal
  62  * with fatal failure at any point.  To this end, each disk has two labels which
  63  * are updated before and after the uberblock is synced.  Assuming we have
  64  * labels and an uberblock with the following transaction groups:
  65  *
  66  *              L1          UB          L2
  67  *           +------+    +------+    +------+
  68  *           |      |    |      |    |      |
  69  *           | t10  |    | t10  |    | t10  |
  70  *           |      |    |      |    |      |
  71  *           +------+    +------+    +------+
  72  *
  73  * In this stable state, the labels and the uberblock were all updated within
  74  * the same transaction group (10).  Each label is mirrored and checksummed, so
  75  * that we can detect when we fail partway through writing the label.
  76  *
  77  * In order to identify which labels are valid, the labels are written in the
  78  * following manner:
  79  *
  80  *      1. For each vdev, update 'L1' to the new label
  81  *      2. Update the uberblock
  82  *      3. For each vdev, update 'L2' to the new label
  83  *
  84  * Given arbitrary failure, we can determine the correct label to use based on
  85  * the transaction group.  If we fail after updating L1 but before updating the
  86  * UB, we will notice that L1's transaction group is greater than the uberblock,
  87  * so L2 must be valid.  If we fail after writing the uberblock but before
  88  * writing L2, we will notice that L2's transaction group is less than L1, and
  89  * therefore L1 is valid.
  90  *
  91  * Another added complexity is that not every label is updated when the config
  92  * is synced.  If we add a single device, we do not want to have to re-write
  93  * every label for every device in the pool.  This means that both L1 and L2 may
  94  * be older than the pool uberblock, because the necessary information is stored
  95  * on another vdev.
  96  *
  97  *
  98  * On-disk Format
  99  * --------------
 100  *
 101  * The vdev label consists of two distinct parts, and is wrapped within the
 102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
 103  * VTOC disk labels, but is otherwise ignored.
 104  *
 105  * The first half of the label is a packed nvlist which contains pool wide
 106  * properties, per-vdev properties, and configuration information.  It is
 107  * described in more detail below.
 108  *
 109  * The latter half of the label consists of a redundant array of uberblocks.
 110  * These uberblocks are updated whenever a transaction group is committed,
 111  * or when the configuration is updated.  When a pool is loaded, we scan each
 112  * vdev for the 'best' uberblock.
 113  *
 114  *
 115  * Configuration Information
 116  * -------------------------
 117  *
 118  * The nvlist describing the pool and vdev contains the following elements:
 119  *
 120  *      version         ZFS on-disk version
 121  *      name            Pool name
 122  *      state           Pool state
 123  *      txg             Transaction group in which this label was written
 124  *      pool_guid       Unique identifier for this pool
 125  *      vdev_tree       An nvlist describing vdev tree.
 126  *      features_for_read
 127  *                      An nvlist of the features necessary for reading the MOS.
 128  *
 129  * Each leaf device label also contains the following:
 130  *
 131  *      top_guid        Unique ID for top-level vdev in which this is contained
 132  *      guid            Unique ID for the leaf vdev
 133  *
 134  * The 'vs' configuration follows the format described in 'spa_config.c'.
 135  */
 136 
 137 #include <sys/zfs_context.h>
 138 #include <sys/spa.h>
 139 #include <sys/spa_impl.h>
 140 #include <sys/dmu.h>
 141 #include <sys/zap.h>
 142 #include <sys/vdev.h>
 143 #include <sys/vdev_impl.h>
 144 #include <sys/uberblock_impl.h>
 145 #include <sys/metaslab.h>
 146 #include <sys/zio.h>
 147 #include <sys/dsl_scan.h>
 148 #include <sys/fs/zfs.h>
 149 
 150 /*
 151  * Basic routines to read and write from a vdev label.
 152  * Used throughout the rest of this file.
 153  */
 154 uint64_t
 155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
 156 {
 157         ASSERT(offset < sizeof (vdev_label_t));
 158         ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
 159 
 160         return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
 161             0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
 162 }
 163 
 164 /*
 165  * Returns back the vdev label associated with the passed in offset.
 166  */
 167 int
 168 vdev_label_number(uint64_t psize, uint64_t offset)
 169 {
 170         int l;
 171 
 172         if (offset >= psize - VDEV_LABEL_END_SIZE) {
 173                 offset -= psize - VDEV_LABEL_END_SIZE;
 174                 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
 175         }
 176         l = offset / sizeof (vdev_label_t);
 177         return (l < VDEV_LABELS ? l : -1);
 178 }
 179 
 180 static void
 181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
 182         uint64_t size, zio_done_func_t *done, void *private, int flags)
 183 {
 184         ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
 185             SCL_STATE_ALL);
 186         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 187 
 188         zio_nowait(zio_read_phys(zio, vd,
 189             vdev_label_offset(vd->vdev_psize, l, offset),
 190             size, buf, ZIO_CHECKSUM_LABEL, done, private,
 191             ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
 192 }
 193 
 194 static void
 195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
 196         uint64_t size, zio_done_func_t *done, void *private, int flags)
 197 {
 198         ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
 199             (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
 200             (SCL_CONFIG | SCL_STATE) &&
 201             dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
 202         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 203 
 204         zio_nowait(zio_write_phys(zio, vd,
 205             vdev_label_offset(vd->vdev_psize, l, offset),
 206             size, buf, ZIO_CHECKSUM_LABEL, done, private,
 207             ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
 208 }
 209 
 210 /*
 211  * Generate the nvlist representing this vdev's config.
 212  */
 213 nvlist_t *
 214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
 215     vdev_config_flag_t flags)
 216 {
 217         nvlist_t *nv = NULL;
 218 
 219         nv = fnvlist_alloc();
 220 
 221         fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
 222         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
 223                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
 224         fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
 225 
 226         if (vd->vdev_path != NULL)
 227                 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
 228 
 229         if (vd->vdev_devid != NULL)
 230                 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
 231 
 232         if (vd->vdev_physpath != NULL)
 233                 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 234                     vd->vdev_physpath);
 235 
 236         if (vd->vdev_fru != NULL)
 237                 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
 238 
 239         if (vd->vdev_nparity != 0) {
 240                 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
 241                     VDEV_TYPE_RAIDZ) == 0);
 242 
 243                 /*
 244                  * Make sure someone hasn't managed to sneak a fancy new vdev
 245                  * into a crufty old storage pool.
 246                  */
 247                 ASSERT(vd->vdev_nparity == 1 ||
 248                     (vd->vdev_nparity <= 2 &&
 249                     spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
 250                     (vd->vdev_nparity <= 3 &&
 251                     spa_version(spa) >= SPA_VERSION_RAIDZ3));
 252 
 253                 /*
 254                  * Note that we'll add the nparity tag even on storage pools
 255                  * that only support a single parity device -- older software
 256                  * will just ignore it.
 257                  */
 258                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
 259         }
 260 
 261         if (vd->vdev_wholedisk != -1ULL)
 262                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 263                     vd->vdev_wholedisk);
 264 
 265         if (vd->vdev_not_present)
 266                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
 267 
 268         if (vd->vdev_isspare)
 269                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
 270 
 271         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
 272             vd == vd->vdev_top) {
 273                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 274                     vd->vdev_ms_array);
 275                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 276                     vd->vdev_ms_shift);
 277                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
 278                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
 279                     vd->vdev_asize);
 280                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
 281                 if (vd->vdev_removing)
 282                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
 283                             vd->vdev_removing);
 284         }
 285 
 286         if (vd->vdev_dtl_sm != NULL) {
 287                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
 288                     space_map_object(vd->vdev_dtl_sm));
 289         }
 290 
 291         if (vd->vdev_crtxg)
 292                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
 293 
 294         if (getstats) {
 295                 vdev_stat_t vs;
 296                 pool_scan_stat_t ps;
 297 
 298                 vdev_get_stats(vd, &vs);
 299                 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
 300                     (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
 301 
 302                 /* provide either current or previous scan information */
 303                 if (spa_scan_get_stats(spa, &ps) == 0) {
 304                         fnvlist_add_uint64_array(nv,
 305                             ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
 306                             sizeof (pool_scan_stat_t) / sizeof (uint64_t));
 307                 }
 308         }
 309 
 310         if (!vd->vdev_ops->vdev_op_leaf) {
 311                 nvlist_t **child;
 312                 int c, idx;
 313 
 314                 ASSERT(!vd->vdev_ishole);
 315 
 316                 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
 317                     KM_SLEEP);
 318 
 319                 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
 320                         vdev_t *cvd = vd->vdev_child[c];
 321 
 322                         /*
 323                          * If we're generating an nvlist of removing
 324                          * vdevs then skip over any device which is
 325                          * not being removed.
 326                          */
 327                         if ((flags & VDEV_CONFIG_REMOVING) &&
 328                             !cvd->vdev_removing)
 329                                 continue;
 330 
 331                         child[idx++] = vdev_config_generate(spa, cvd,
 332                             getstats, flags);
 333                 }
 334 
 335                 if (idx) {
 336                         fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 337                             child, idx);
 338                 }
 339 
 340                 for (c = 0; c < idx; c++)
 341                         nvlist_free(child[c]);
 342 
 343                 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
 344 
 345         } else {
 346                 const char *aux = NULL;
 347 
 348                 if (vd->vdev_offline && !vd->vdev_tmpoffline)
 349                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
 350                 if (vd->vdev_resilver_txg != 0)
 351                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
 352                             vd->vdev_resilver_txg);
 353                 if (vd->vdev_faulted)
 354                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
 355                 if (vd->vdev_degraded)
 356                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
 357                 if (vd->vdev_removed)
 358                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
 359                 if (vd->vdev_unspare)
 360                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
 361                 if (vd->vdev_ishole)
 362                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
 363 
 364                 switch (vd->vdev_stat.vs_aux) {
 365                 case VDEV_AUX_ERR_EXCEEDED:
 366                         aux = "err_exceeded";
 367                         break;
 368 
 369                 case VDEV_AUX_EXTERNAL:
 370                         aux = "external";
 371                         break;
 372                 }
 373 
 374                 if (aux != NULL)
 375                         fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
 376 
 377                 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
 378                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
 379                             vd->vdev_orig_guid);
 380                 }
 381         }
 382 
 383         return (nv);
 384 }
 385 
 386 /*
 387  * Generate a view of the top-level vdevs.  If we currently have holes
 388  * in the namespace, then generate an array which contains a list of holey
 389  * vdevs.  Additionally, add the number of top-level children that currently
 390  * exist.
 391  */
 392 void
 393 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
 394 {
 395         vdev_t *rvd = spa->spa_root_vdev;
 396         uint64_t *array;
 397         uint_t c, idx;
 398 
 399         array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
 400 
 401         for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
 402                 vdev_t *tvd = rvd->vdev_child[c];
 403 
 404                 if (tvd->vdev_ishole)
 405                         array[idx++] = c;
 406         }
 407 
 408         if (idx) {
 409                 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
 410                     array, idx) == 0);
 411         }
 412 
 413         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
 414             rvd->vdev_children) == 0);
 415 
 416         kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
 417 }
 418 
 419 /*
 420  * Returns the configuration from the label of the given vdev. For vdevs
 421  * which don't have a txg value stored on their label (i.e. spares/cache)
 422  * or have not been completely initialized (txg = 0) just return
 423  * the configuration from the first valid label we find. Otherwise,
 424  * find the most up-to-date label that does not exceed the specified
 425  * 'txg' value.
 426  */
 427 nvlist_t *
 428 vdev_label_read_config(vdev_t *vd, uint64_t txg)
 429 {
 430         spa_t *spa = vd->vdev_spa;
 431         nvlist_t *config = NULL;
 432         vdev_phys_t *vp;
 433         zio_t *zio;
 434         uint64_t best_txg = 0;
 435         int error = 0;
 436         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 437             ZIO_FLAG_SPECULATIVE;
 438 
 439         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 440 
 441         if (!vdev_readable(vd))
 442                 return (NULL);
 443 
 444         vp = zio_buf_alloc(sizeof (vdev_phys_t));
 445 
 446 retry:
 447         for (int l = 0; l < VDEV_LABELS; l++) {
 448                 nvlist_t *label = NULL;
 449 
 450                 zio = zio_root(spa, NULL, NULL, flags);
 451 
 452                 vdev_label_read(zio, vd, l, vp,
 453                     offsetof(vdev_label_t, vl_vdev_phys),
 454                     sizeof (vdev_phys_t), NULL, NULL, flags);
 455 
 456                 if (zio_wait(zio) == 0 &&
 457                     nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
 458                     &label, 0) == 0) {
 459                         uint64_t label_txg = 0;
 460 
 461                         /*
 462                          * Auxiliary vdevs won't have txg values in their
 463                          * labels and newly added vdevs may not have been
 464                          * completely initialized so just return the
 465                          * configuration from the first valid label we
 466                          * encounter.
 467                          */
 468                         error = nvlist_lookup_uint64(label,
 469                             ZPOOL_CONFIG_POOL_TXG, &label_txg);
 470                         if ((error || label_txg == 0) && !config) {
 471                                 config = label;
 472                                 break;
 473                         } else if (label_txg <= txg && label_txg > best_txg) {
 474                                 best_txg = label_txg;
 475                                 nvlist_free(config);
 476                                 config = fnvlist_dup(label);
 477                         }
 478                 }
 479 
 480                 if (label != NULL) {
 481                         nvlist_free(label);
 482                         label = NULL;
 483                 }
 484         }
 485 
 486         if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
 487                 flags |= ZIO_FLAG_TRYHARD;
 488                 goto retry;
 489         }
 490 
 491         zio_buf_free(vp, sizeof (vdev_phys_t));
 492 
 493         return (config);
 494 }
 495 
 496 /*
 497  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
 498  * in with the device guid if this spare is active elsewhere on the system.
 499  */
 500 static boolean_t
 501 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
 502     uint64_t *spare_guid, uint64_t *l2cache_guid)
 503 {
 504         spa_t *spa = vd->vdev_spa;
 505         uint64_t state, pool_guid, device_guid, txg, spare_pool;
 506         uint64_t vdtxg = 0;
 507         nvlist_t *label;
 508 
 509         if (spare_guid)
 510                 *spare_guid = 0ULL;
 511         if (l2cache_guid)
 512                 *l2cache_guid = 0ULL;
 513 
 514         /*
 515          * Read the label, if any, and perform some basic sanity checks.
 516          */
 517         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
 518                 return (B_FALSE);
 519 
 520         (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 521             &vdtxg);
 522 
 523         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 524             &state) != 0 ||
 525             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
 526             &device_guid) != 0) {
 527                 nvlist_free(label);
 528                 return (B_FALSE);
 529         }
 530 
 531         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 532             (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
 533             &pool_guid) != 0 ||
 534             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
 535             &txg) != 0)) {
 536                 nvlist_free(label);
 537                 return (B_FALSE);
 538         }
 539 
 540         nvlist_free(label);
 541 
 542         /*
 543          * Check to see if this device indeed belongs to the pool it claims to
 544          * be a part of.  The only way this is allowed is if the device is a hot
 545          * spare (which we check for later on).
 546          */
 547         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 548             !spa_guid_exists(pool_guid, device_guid) &&
 549             !spa_spare_exists(device_guid, NULL, NULL) &&
 550             !spa_l2cache_exists(device_guid, NULL))
 551                 return (B_FALSE);
 552 
 553         /*
 554          * If the transaction group is zero, then this an initialized (but
 555          * unused) label.  This is only an error if the create transaction
 556          * on-disk is the same as the one we're using now, in which case the
 557          * user has attempted to add the same vdev multiple times in the same
 558          * transaction.
 559          */
 560         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 561             txg == 0 && vdtxg == crtxg)
 562                 return (B_TRUE);
 563 
 564         /*
 565          * Check to see if this is a spare device.  We do an explicit check for
 566          * spa_has_spare() here because it may be on our pending list of spares
 567          * to add.  We also check if it is an l2cache device.
 568          */
 569         if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
 570             spa_has_spare(spa, device_guid)) {
 571                 if (spare_guid)
 572                         *spare_guid = device_guid;
 573 
 574                 switch (reason) {
 575                 case VDEV_LABEL_CREATE:
 576                 case VDEV_LABEL_L2CACHE:
 577                         return (B_TRUE);
 578 
 579                 case VDEV_LABEL_REPLACE:
 580                         return (!spa_has_spare(spa, device_guid) ||
 581                             spare_pool != 0ULL);
 582 
 583                 case VDEV_LABEL_SPARE:
 584                         return (spa_has_spare(spa, device_guid));
 585                 }
 586         }
 587 
 588         /*
 589          * Check to see if this is an l2cache device.
 590          */
 591         if (spa_l2cache_exists(device_guid, NULL))
 592                 return (B_TRUE);
 593 
 594         /*
 595          * We can't rely on a pool's state if it's been imported
 596          * read-only.  Instead we look to see if the pools is marked
 597          * read-only in the namespace and set the state to active.
 598          */
 599         if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
 600             spa_mode(spa) == FREAD)
 601                 state = POOL_STATE_ACTIVE;
 602 
 603         /*
 604          * If the device is marked ACTIVE, then this device is in use by another
 605          * pool on the system.
 606          */
 607         return (state == POOL_STATE_ACTIVE);
 608 }
 609 
 610 /*
 611  * Initialize a vdev label.  We check to make sure each leaf device is not in
 612  * use, and writable.  We put down an initial label which we will later
 613  * overwrite with a complete label.  Note that it's important to do this
 614  * sequentially, not in parallel, so that we catch cases of multiple use of the
 615  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
 616  * itself.
 617  */
 618 int
 619 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
 620 {
 621         spa_t *spa = vd->vdev_spa;
 622         nvlist_t *label;
 623         vdev_phys_t *vp;
 624         char *pad2;
 625         uberblock_t *ub;
 626         zio_t *zio;
 627         char *buf;
 628         size_t buflen;
 629         int error;
 630         uint64_t spare_guid, l2cache_guid;
 631         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 632 
 633         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 634 
 635         for (int c = 0; c < vd->vdev_children; c++)
 636                 if ((error = vdev_label_init(vd->vdev_child[c],
 637                     crtxg, reason)) != 0)
 638                         return (error);
 639 
 640         /* Track the creation time for this vdev */
 641         vd->vdev_crtxg = crtxg;
 642 
 643         if (!vd->vdev_ops->vdev_op_leaf)
 644                 return (0);
 645 
 646         /*
 647          * Dead vdevs cannot be initialized.
 648          */
 649         if (vdev_is_dead(vd))
 650                 return (SET_ERROR(EIO));
 651 
 652         /*
 653          * Determine if the vdev is in use.
 654          */
 655         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
 656             vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
 657                 return (SET_ERROR(EBUSY));
 658 
 659         /*
 660          * If this is a request to add or replace a spare or l2cache device
 661          * that is in use elsewhere on the system, then we must update the
 662          * guid (which was initialized to a random value) to reflect the
 663          * actual GUID (which is shared between multiple pools).
 664          */
 665         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
 666             spare_guid != 0ULL) {
 667                 uint64_t guid_delta = spare_guid - vd->vdev_guid;
 668 
 669                 vd->vdev_guid += guid_delta;
 670 
 671                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 672                         pvd->vdev_guid_sum += guid_delta;
 673 
 674                 /*
 675                  * If this is a replacement, then we want to fallthrough to the
 676                  * rest of the code.  If we're adding a spare, then it's already
 677                  * labeled appropriately and we can just return.
 678                  */
 679                 if (reason == VDEV_LABEL_SPARE)
 680                         return (0);
 681                 ASSERT(reason == VDEV_LABEL_REPLACE ||
 682                     reason == VDEV_LABEL_SPLIT);
 683         }
 684 
 685         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
 686             l2cache_guid != 0ULL) {
 687                 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
 688 
 689                 vd->vdev_guid += guid_delta;
 690 
 691                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 692                         pvd->vdev_guid_sum += guid_delta;
 693 
 694                 /*
 695                  * If this is a replacement, then we want to fallthrough to the
 696                  * rest of the code.  If we're adding an l2cache, then it's
 697                  * already labeled appropriately and we can just return.
 698                  */
 699                 if (reason == VDEV_LABEL_L2CACHE)
 700                         return (0);
 701                 ASSERT(reason == VDEV_LABEL_REPLACE);
 702         }
 703 
 704         /*
 705          * Initialize its label.
 706          */
 707         vp = zio_buf_alloc(sizeof (vdev_phys_t));
 708         bzero(vp, sizeof (vdev_phys_t));
 709 
 710         /*
 711          * Generate a label describing the pool and our top-level vdev.
 712          * We mark it as being from txg 0 to indicate that it's not
 713          * really part of an active pool just yet.  The labels will
 714          * be written again with a meaningful txg by spa_sync().
 715          */
 716         if (reason == VDEV_LABEL_SPARE ||
 717             (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
 718                 /*
 719                  * For inactive hot spares, we generate a special label that
 720                  * identifies as a mutually shared hot spare.  We write the
 721                  * label if we are adding a hot spare, or if we are removing an
 722                  * active hot spare (in which case we want to revert the
 723                  * labels).
 724                  */
 725                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 726 
 727                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 728                     spa_version(spa)) == 0);
 729                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 730                     POOL_STATE_SPARE) == 0);
 731                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 732                     vd->vdev_guid) == 0);
 733         } else if (reason == VDEV_LABEL_L2CACHE ||
 734             (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
 735                 /*
 736                  * For level 2 ARC devices, add a special label.
 737                  */
 738                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 739 
 740                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 741                     spa_version(spa)) == 0);
 742                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 743                     POOL_STATE_L2CACHE) == 0);
 744                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 745                     vd->vdev_guid) == 0);
 746         } else {
 747                 uint64_t txg = 0ULL;
 748 
 749                 if (reason == VDEV_LABEL_SPLIT)
 750                         txg = spa->spa_uberblock.ub_txg;
 751                 label = spa_config_generate(spa, vd, txg, B_FALSE);
 752 
 753                 /*
 754                  * Add our creation time.  This allows us to detect multiple
 755                  * vdev uses as described above, and automatically expires if we
 756                  * fail.
 757                  */
 758                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 759                     crtxg) == 0);
 760         }
 761 
 762         buf = vp->vp_nvlist;
 763         buflen = sizeof (vp->vp_nvlist);
 764 
 765         error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
 766         if (error != 0) {
 767                 nvlist_free(label);
 768                 zio_buf_free(vp, sizeof (vdev_phys_t));
 769                 /* EFAULT means nvlist_pack ran out of room */
 770                 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
 771         }
 772 
 773         /*
 774          * Initialize uberblock template.
 775          */
 776         ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
 777         bzero(ub, VDEV_UBERBLOCK_RING);
 778         *ub = spa->spa_uberblock;
 779         ub->ub_txg = 0;
 780 
 781         /* Initialize the 2nd padding area. */
 782         pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
 783         bzero(pad2, VDEV_PAD_SIZE);
 784 
 785         /*
 786          * Write everything in parallel.
 787          */
 788 retry:
 789         zio = zio_root(spa, NULL, NULL, flags);
 790 
 791         for (int l = 0; l < VDEV_LABELS; l++) {
 792 
 793                 vdev_label_write(zio, vd, l, vp,
 794                     offsetof(vdev_label_t, vl_vdev_phys),
 795                     sizeof (vdev_phys_t), NULL, NULL, flags);
 796 
 797                 /*
 798                  * Skip the 1st padding area.
 799                  * Zero out the 2nd padding area where it might have
 800                  * left over data from previous filesystem format.
 801                  */
 802                 vdev_label_write(zio, vd, l, pad2,
 803                     offsetof(vdev_label_t, vl_pad2),
 804                     VDEV_PAD_SIZE, NULL, NULL, flags);
 805 
 806                 vdev_label_write(zio, vd, l, ub,
 807                     offsetof(vdev_label_t, vl_uberblock),
 808                     VDEV_UBERBLOCK_RING, NULL, NULL, flags);
 809         }
 810 
 811         error = zio_wait(zio);
 812 
 813         if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
 814                 flags |= ZIO_FLAG_TRYHARD;
 815                 goto retry;
 816         }
 817 
 818         nvlist_free(label);
 819         zio_buf_free(pad2, VDEV_PAD_SIZE);
 820         zio_buf_free(ub, VDEV_UBERBLOCK_RING);
 821         zio_buf_free(vp, sizeof (vdev_phys_t));
 822 
 823         /*
 824          * If this vdev hasn't been previously identified as a spare, then we
 825          * mark it as such only if a) we are labeling it as a spare, or b) it
 826          * exists as a spare elsewhere in the system.  Do the same for
 827          * level 2 ARC devices.
 828          */
 829         if (error == 0 && !vd->vdev_isspare &&
 830             (reason == VDEV_LABEL_SPARE ||
 831             spa_spare_exists(vd->vdev_guid, NULL, NULL)))
 832                 spa_spare_add(vd);
 833 
 834         if (error == 0 && !vd->vdev_isl2cache &&
 835             (reason == VDEV_LABEL_L2CACHE ||
 836             spa_l2cache_exists(vd->vdev_guid, NULL)))
 837                 spa_l2cache_add(vd);
 838 
 839         return (error);
 840 }
 841 
 842 /*
 843  * ==========================================================================
 844  * uberblock load/sync
 845  * ==========================================================================
 846  */
 847 
 848 /*
 849  * Consider the following situation: txg is safely synced to disk.  We've
 850  * written the first uberblock for txg + 1, and then we lose power.  When we
 851  * come back up, we fail to see the uberblock for txg + 1 because, say,
 852  * it was on a mirrored device and the replica to which we wrote txg + 1
 853  * is now offline.  If we then make some changes and sync txg + 1, and then
 854  * the missing replica comes back, then for a few seconds we'll have two
 855  * conflicting uberblocks on disk with the same txg.  The solution is simple:
 856  * among uberblocks with equal txg, choose the one with the latest timestamp.
 857  */
 858 static int
 859 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
 860 {
 861         if (ub1->ub_txg < ub2->ub_txg)
 862                 return (-1);
 863         if (ub1->ub_txg > ub2->ub_txg)
 864                 return (1);
 865 
 866         if (ub1->ub_timestamp < ub2->ub_timestamp)
 867                 return (-1);
 868         if (ub1->ub_timestamp > ub2->ub_timestamp)
 869                 return (1);
 870 
 871         return (0);
 872 }
 873 
 874 struct ubl_cbdata {
 875         uberblock_t     *ubl_ubbest;    /* Best uberblock */
 876         vdev_t          *ubl_vd;        /* vdev associated with the above */
 877 };
 878 
 879 static void
 880 vdev_uberblock_load_done(zio_t *zio)
 881 {
 882         vdev_t *vd = zio->io_vd;
 883         spa_t *spa = zio->io_spa;
 884         zio_t *rio = zio->io_private;
 885         uberblock_t *ub = zio->io_data;
 886         struct ubl_cbdata *cbp = rio->io_private;
 887 
 888         ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
 889 
 890         if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
 891                 mutex_enter(&rio->io_lock);
 892                 if (ub->ub_txg <= spa->spa_load_max_txg &&
 893                     vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
 894                         /*
 895                          * Keep track of the vdev in which this uberblock
 896                          * was found. We will use this information later
 897                          * to obtain the config nvlist associated with
 898                          * this uberblock.
 899                          */
 900                         *cbp->ubl_ubbest = *ub;
 901                         cbp->ubl_vd = vd;
 902                 }
 903                 mutex_exit(&rio->io_lock);
 904         }
 905 
 906         zio_buf_free(zio->io_data, zio->io_size);
 907 }
 908 
 909 static void
 910 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
 911     struct ubl_cbdata *cbp)
 912 {
 913         for (int c = 0; c < vd->vdev_children; c++)
 914                 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
 915 
 916         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
 917                 for (int l = 0; l < VDEV_LABELS; l++) {
 918                         for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
 919                                 vdev_label_read(zio, vd, l,
 920                                     zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
 921                                     VDEV_UBERBLOCK_OFFSET(vd, n),
 922                                     VDEV_UBERBLOCK_SIZE(vd),
 923                                     vdev_uberblock_load_done, zio, flags);
 924                         }
 925                 }
 926         }
 927 }
 928 
 929 /*
 930  * Reads the 'best' uberblock from disk along with its associated
 931  * configuration. First, we read the uberblock array of each label of each
 932  * vdev, keeping track of the uberblock with the highest txg in each array.
 933  * Then, we read the configuration from the same vdev as the best uberblock.
 934  */
 935 void
 936 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
 937 {
 938         zio_t *zio;
 939         spa_t *spa = rvd->vdev_spa;
 940         struct ubl_cbdata cb;
 941         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 942             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
 943 
 944         ASSERT(ub);
 945         ASSERT(config);
 946 
 947         bzero(ub, sizeof (uberblock_t));
 948         *config = NULL;
 949 
 950         cb.ubl_ubbest = ub;
 951         cb.ubl_vd = NULL;
 952 
 953         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 954         zio = zio_root(spa, NULL, &cb, flags);
 955         vdev_uberblock_load_impl(zio, rvd, flags, &cb);
 956         (void) zio_wait(zio);
 957 
 958         /*
 959          * It's possible that the best uberblock was discovered on a label
 960          * that has a configuration which was written in a future txg.
 961          * Search all labels on this vdev to find the configuration that
 962          * matches the txg for our uberblock.
 963          */
 964         if (cb.ubl_vd != NULL)
 965                 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
 966         spa_config_exit(spa, SCL_ALL, FTAG);
 967 }
 968 
 969 /*
 970  * On success, increment root zio's count of good writes.
 971  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
 972  */
 973 static void
 974 vdev_uberblock_sync_done(zio_t *zio)
 975 {
 976         uint64_t *good_writes = zio->io_private;
 977 
 978         if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
 979                 atomic_add_64(good_writes, 1);
 980 }
 981 
 982 /*
 983  * Write the uberblock to all labels of all leaves of the specified vdev.
 984  */
 985 static void
 986 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
 987 {
 988         uberblock_t *ubbuf;
 989         int n;
 990 
 991         for (int c = 0; c < vd->vdev_children; c++)
 992                 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
 993 
 994         if (!vd->vdev_ops->vdev_op_leaf)
 995                 return;
 996 
 997         if (!vdev_writeable(vd))
 998                 return;
 999 
1000         n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1001 
1002         ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1003         bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1004         *ubbuf = *ub;
1005 
1006         for (int l = 0; l < VDEV_LABELS; l++)
1007                 vdev_label_write(zio, vd, l, ubbuf,
1008                     VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1009                     vdev_uberblock_sync_done, zio->io_private,
1010                     flags | ZIO_FLAG_DONT_PROPAGATE);
1011 
1012         zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1013 }
1014 
1015 /* Sync the uberblocks to all vdevs in svd[] */
1016 int
1017 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1018 {
1019         spa_t *spa = svd[0]->vdev_spa;
1020         zio_t *zio;
1021         uint64_t good_writes = 0;
1022 
1023         zio = zio_root(spa, NULL, &good_writes, flags);
1024 
1025         for (int v = 0; v < svdcount; v++)
1026                 vdev_uberblock_sync(zio, ub, svd[v], flags);
1027 
1028         (void) zio_wait(zio);
1029 
1030         /*
1031          * Flush the uberblocks to disk.  This ensures that the odd labels
1032          * are no longer needed (because the new uberblocks and the even
1033          * labels are safely on disk), so it is safe to overwrite them.
1034          */
1035         zio = zio_root(spa, NULL, NULL, flags);
1036 
1037         for (int v = 0; v < svdcount; v++)
1038                 zio_flush(zio, svd[v]);
1039 
1040         (void) zio_wait(zio);
1041 
1042         return (good_writes >= 1 ? 0 : EIO);
1043 }
1044 
1045 /*
1046  * On success, increment the count of good writes for our top-level vdev.
1047  */
1048 static void
1049 vdev_label_sync_done(zio_t *zio)
1050 {
1051         uint64_t *good_writes = zio->io_private;
1052 
1053         if (zio->io_error == 0)
1054                 atomic_add_64(good_writes, 1);
1055 }
1056 
1057 /*
1058  * If there weren't enough good writes, indicate failure to the parent.
1059  */
1060 static void
1061 vdev_label_sync_top_done(zio_t *zio)
1062 {
1063         uint64_t *good_writes = zio->io_private;
1064 
1065         if (*good_writes == 0)
1066                 zio->io_error = SET_ERROR(EIO);
1067 
1068         kmem_free(good_writes, sizeof (uint64_t));
1069 }
1070 
1071 /*
1072  * We ignore errors for log and cache devices, simply free the private data.
1073  */
1074 static void
1075 vdev_label_sync_ignore_done(zio_t *zio)
1076 {
1077         kmem_free(zio->io_private, sizeof (uint64_t));
1078 }
1079 
1080 /*
1081  * Write all even or odd labels to all leaves of the specified vdev.
1082  */
1083 static void
1084 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1085 {
1086         nvlist_t *label;
1087         vdev_phys_t *vp;
1088         char *buf;
1089         size_t buflen;
1090 
1091         for (int c = 0; c < vd->vdev_children; c++)
1092                 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1093 
1094         if (!vd->vdev_ops->vdev_op_leaf)
1095                 return;
1096 
1097         if (!vdev_writeable(vd))
1098                 return;
1099 
1100         /*
1101          * Generate a label describing the top-level config to which we belong.
1102          */
1103         label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1104 
1105         vp = zio_buf_alloc(sizeof (vdev_phys_t));
1106         bzero(vp, sizeof (vdev_phys_t));
1107 
1108         buf = vp->vp_nvlist;
1109         buflen = sizeof (vp->vp_nvlist);
1110 
1111         if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1112                 for (; l < VDEV_LABELS; l += 2) {
1113                         vdev_label_write(zio, vd, l, vp,
1114                             offsetof(vdev_label_t, vl_vdev_phys),
1115                             sizeof (vdev_phys_t),
1116                             vdev_label_sync_done, zio->io_private,
1117                             flags | ZIO_FLAG_DONT_PROPAGATE);
1118                 }
1119         }
1120 
1121         zio_buf_free(vp, sizeof (vdev_phys_t));
1122         nvlist_free(label);
1123 }
1124 
1125 int
1126 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1127 {
1128         list_t *dl = &spa->spa_config_dirty_list;
1129         vdev_t *vd;
1130         zio_t *zio;
1131         int error;
1132 
1133         /*
1134          * Write the new labels to disk.
1135          */
1136         zio = zio_root(spa, NULL, NULL, flags);
1137 
1138         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1139                 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1140                     KM_SLEEP);
1141 
1142                 ASSERT(!vd->vdev_ishole);
1143 
1144                 zio_t *vio = zio_null(zio, spa, NULL,
1145                     (vd->vdev_islog || vd->vdev_aux != NULL) ?
1146                     vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1147                     good_writes, flags);
1148                 vdev_label_sync(vio, vd, l, txg, flags);
1149                 zio_nowait(vio);
1150         }
1151 
1152         error = zio_wait(zio);
1153 
1154         /*
1155          * Flush the new labels to disk.
1156          */
1157         zio = zio_root(spa, NULL, NULL, flags);
1158 
1159         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1160                 zio_flush(zio, vd);
1161 
1162         (void) zio_wait(zio);
1163 
1164         return (error);
1165 }
1166 
1167 /*
1168  * Sync the uberblock and any changes to the vdev configuration.
1169  *
1170  * The order of operations is carefully crafted to ensure that
1171  * if the system panics or loses power at any time, the state on disk
1172  * is still transactionally consistent.  The in-line comments below
1173  * describe the failure semantics at each stage.
1174  *
1175  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1176  * at any time, you can just call it again, and it will resume its work.
1177  */
1178 int
1179 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1180 {
1181         spa_t *spa = svd[0]->vdev_spa;
1182         uberblock_t *ub = &spa->spa_uberblock;
1183         vdev_t *vd;
1184         zio_t *zio;
1185         int error;
1186         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1187 
1188         /*
1189          * Normally, we don't want to try too hard to write every label and
1190          * uberblock.  If there is a flaky disk, we don't want the rest of the
1191          * sync process to block while we retry.  But if we can't write a
1192          * single label out, we should retry with ZIO_FLAG_TRYHARD before
1193          * bailing out and declaring the pool faulted.
1194          */
1195         if (tryhard)
1196                 flags |= ZIO_FLAG_TRYHARD;
1197 
1198         ASSERT(ub->ub_txg <= txg);
1199 
1200         /*
1201          * If this isn't a resync due to I/O errors,
1202          * and nothing changed in this transaction group,
1203          * and the vdev configuration hasn't changed,
1204          * then there's nothing to do.
1205          */
1206         if (ub->ub_txg < txg &&
1207             uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1208             list_is_empty(&spa->spa_config_dirty_list))
1209                 return (0);
1210 
1211         if (txg > spa_freeze_txg(spa))
1212                 return (0);
1213 
1214         ASSERT(txg <= spa->spa_final_txg);
1215 
1216         /*
1217          * Flush the write cache of every disk that's been written to
1218          * in this transaction group.  This ensures that all blocks
1219          * written in this txg will be committed to stable storage
1220          * before any uberblock that references them.
1221          */
1222         zio = zio_root(spa, NULL, NULL, flags);
1223 
1224         for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1225             vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1226                 zio_flush(zio, vd);
1227 
1228         (void) zio_wait(zio);
1229 
1230         /*
1231          * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1232          * system dies in the middle of this process, that's OK: all of the
1233          * even labels that made it to disk will be newer than any uberblock,
1234          * and will therefore be considered invalid.  The odd labels (L1, L3),
1235          * which have not yet been touched, will still be valid.  We flush
1236          * the new labels to disk to ensure that all even-label updates
1237          * are committed to stable storage before the uberblock update.
1238          */
1239         if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1240                 return (error);
1241 
1242         /*
1243          * Sync the uberblocks to all vdevs in svd[].
1244          * If the system dies in the middle of this step, there are two cases
1245          * to consider, and the on-disk state is consistent either way:
1246          *
1247          * (1)  If none of the new uberblocks made it to disk, then the
1248          *      previous uberblock will be the newest, and the odd labels
1249          *      (which had not yet been touched) will be valid with respect
1250          *      to that uberblock.
1251          *
1252          * (2)  If one or more new uberblocks made it to disk, then they
1253          *      will be the newest, and the even labels (which had all
1254          *      been successfully committed) will be valid with respect
1255          *      to the new uberblocks.
1256          */
1257         if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1258                 return (error);
1259 
1260         /*
1261          * Sync out odd labels for every dirty vdev.  If the system dies
1262          * in the middle of this process, the even labels and the new
1263          * uberblocks will suffice to open the pool.  The next time
1264          * the pool is opened, the first thing we'll do -- before any
1265          * user data is modified -- is mark every vdev dirty so that
1266          * all labels will be brought up to date.  We flush the new labels
1267          * to disk to ensure that all odd-label updates are committed to
1268          * stable storage before the next transaction group begins.
1269          */
1270         return (vdev_label_sync_list(spa, 1, txg, flags));
1271 }