1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2013 by Delphix. All rights reserved.
  25  */
  26 
  27 /*
  28  * Virtual Device Labels
  29  * ---------------------
  30  *
  31  * The vdev label serves several distinct purposes:
  32  *
  33  *      1. Uniquely identify this device as part of a ZFS pool and confirm its
  34  *         identity within the pool.
  35  *
  36  *      2. Verify that all the devices given in a configuration are present
  37  *         within the pool.
  38  *
  39  *      3. Determine the uberblock for the pool.
  40  *
  41  *      4. In case of an import operation, determine the configuration of the
  42  *         toplevel vdev of which it is a part.
  43  *
  44  *      5. If an import operation cannot find all the devices in the pool,
  45  *         provide enough information to the administrator to determine which
  46  *         devices are missing.
  47  *
  48  * It is important to note that while the kernel is responsible for writing the
  49  * label, it only consumes the information in the first three cases.  The
  50  * latter information is only consumed in userland when determining the
  51  * configuration to import a pool.
  52  *
  53  *
  54  * Label Organization
  55  * ------------------
  56  *
  57  * Before describing the contents of the label, it's important to understand how
  58  * the labels are written and updated with respect to the uberblock.
  59  *
  60  * When the pool configuration is altered, either because it was newly created
  61  * or a device was added, we want to update all the labels such that we can deal
  62  * with fatal failure at any point.  To this end, each disk has two labels which
  63  * are updated before and after the uberblock is synced.  Assuming we have
  64  * labels and an uberblock with the following transaction groups:
  65  *
  66  *              L1          UB          L2
  67  *           +------+    +------+    +------+
  68  *           |      |    |      |    |      |
  69  *           | t10  |    | t10  |    | t10  |
  70  *           |      |    |      |    |      |
  71  *           +------+    +------+    +------+
  72  *
  73  * In this stable state, the labels and the uberblock were all updated within
  74  * the same transaction group (10).  Each label is mirrored and checksummed, so
  75  * that we can detect when we fail partway through writing the label.
  76  *
  77  * In order to identify which labels are valid, the labels are written in the
  78  * following manner:
  79  *
  80  *      1. For each vdev, update 'L1' to the new label
  81  *      2. Update the uberblock
  82  *      3. For each vdev, update 'L2' to the new label
  83  *
  84  * Given arbitrary failure, we can determine the correct label to use based on
  85  * the transaction group.  If we fail after updating L1 but before updating the
  86  * UB, we will notice that L1's transaction group is greater than the uberblock,
  87  * so L2 must be valid.  If we fail after writing the uberblock but before
  88  * writing L2, we will notice that L2's transaction group is less than L1, and
  89  * therefore L1 is valid.
  90  *
  91  * Another added complexity is that not every label is updated when the config
  92  * is synced.  If we add a single device, we do not want to have to re-write
  93  * every label for every device in the pool.  This means that both L1 and L2 may
  94  * be older than the pool uberblock, because the necessary information is stored
  95  * on another vdev.
  96  *
  97  *
  98  * On-disk Format
  99  * --------------
 100  *
 101  * The vdev label consists of two distinct parts, and is wrapped within the
 102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
 103  * VTOC disk labels, but is otherwise ignored.
 104  *
 105  * The first half of the label is a packed nvlist which contains pool wide
 106  * properties, per-vdev properties, and configuration information.  It is
 107  * described in more detail below.
 108  *
 109  * The latter half of the label consists of a redundant array of uberblocks.
 110  * These uberblocks are updated whenever a transaction group is committed,
 111  * or when the configuration is updated.  When a pool is loaded, we scan each
 112  * vdev for the 'best' uberblock.
 113  *
 114  *
 115  * Configuration Information
 116  * -------------------------
 117  *
 118  * The nvlist describing the pool and vdev contains the following elements:
 119  *
 120  *      version         ZFS on-disk version
 121  *      name            Pool name
 122  *      state           Pool state
 123  *      txg             Transaction group in which this label was written
 124  *      pool_guid       Unique identifier for this pool
 125  *      vdev_tree       An nvlist describing vdev tree.
 126  *      features_for_read
 127  *                      An nvlist of the features necessary for reading the MOS.
 128  *
 129  * Each leaf device label also contains the following:
 130  *
 131  *      top_guid        Unique ID for top-level vdev in which this is contained
 132  *      guid            Unique ID for the leaf vdev
 133  *
 134  * The 'vs' configuration follows the format described in 'spa_config.c'.
 135  */
 136 
 137 #include <sys/zfs_context.h>
 138 #include <sys/spa.h>
 139 #include <sys/spa_impl.h>
 140 #include <sys/dmu.h>
 141 #include <sys/zap.h>
 142 #include <sys/vdev.h>
 143 #include <sys/vdev_impl.h>
 144 #include <sys/uberblock_impl.h>
 145 #include <sys/metaslab.h>
 146 #include <sys/zio.h>
 147 #include <sys/dsl_scan.h>
 148 #include <sys/fs/zfs.h>
 149 
 150 /*
 151  * Basic routines to read and write from a vdev label.
 152  * Used throughout the rest of this file.
 153  */
 154 uint64_t
 155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
 156 {
 157         ASSERT(offset < sizeof (vdev_label_t));
 158         ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
 159 
 160         return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
 161             0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
 162 }
 163 
 164 /*
 165  * Returns back the vdev label associated with the passed in offset.
 166  */
 167 int
 168 vdev_label_number(uint64_t psize, uint64_t offset)
 169 {
 170         int l;
 171 
 172         if (offset >= psize - VDEV_LABEL_END_SIZE) {
 173                 offset -= psize - VDEV_LABEL_END_SIZE;
 174                 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
 175         }
 176         l = offset / sizeof (vdev_label_t);
 177         return (l < VDEV_LABELS ? l : -1);
 178 }
 179 
 180 static void
 181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
 182         uint64_t size, zio_done_func_t *done, void *private, int flags)
 183 {
 184         ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
 185             SCL_STATE_ALL);
 186         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 187 
 188         zio_nowait(zio_read_phys(zio, vd,
 189             vdev_label_offset(vd->vdev_psize, l, offset),
 190             size, buf, ZIO_CHECKSUM_LABEL, done, private,
 191             ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
 192 }
 193 
 194 static void
 195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
 196         uint64_t size, zio_done_func_t *done, void *private, int flags)
 197 {
 198         ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
 199             (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
 200             (SCL_CONFIG | SCL_STATE) &&
 201             dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
 202         ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 203 
 204         zio_nowait(zio_write_phys(zio, vd,
 205             vdev_label_offset(vd->vdev_psize, l, offset),
 206             size, buf, ZIO_CHECKSUM_LABEL, done, private,
 207             ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
 208 }
 209 
 210 /*
 211  * Generate the nvlist representing this vdev's config.
 212  */
 213 nvlist_t *
 214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
 215     vdev_config_flag_t flags)
 216 {
 217         nvlist_t *nv = NULL;
 218 
 219         nv = fnvlist_alloc();
 220 
 221         fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
 222         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
 223                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
 224         fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
 225 
 226         if (vd->vdev_path != NULL)
 227                 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
 228 
 229         if (vd->vdev_devid != NULL)
 230                 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
 231 
 232         if (vd->vdev_physpath != NULL)
 233                 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 234                     vd->vdev_physpath);
 235 
 236         if (vd->vdev_fru != NULL)
 237                 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
 238 
 239         if (vd->vdev_nparity != 0) {
 240                 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
 241                     VDEV_TYPE_RAIDZ) == 0);
 242 
 243                 /*
 244                  * Make sure someone hasn't managed to sneak a fancy new vdev
 245                  * into a crufty old storage pool.
 246                  */
 247                 ASSERT(vd->vdev_nparity == 1 ||
 248                     (vd->vdev_nparity <= 2 &&
 249                     spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
 250                     (vd->vdev_nparity <= 3 &&
 251                     spa_version(spa) >= SPA_VERSION_RAIDZ3));
 252 
 253                 /*
 254                  * Note that we'll add the nparity tag even on storage pools
 255                  * that only support a single parity device -- older software
 256                  * will just ignore it.
 257                  */
 258                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
 259         }
 260 
 261         if (vd->vdev_wholedisk != -1ULL)
 262                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 263                     vd->vdev_wholedisk);
 264 
 265         if (vd->vdev_not_present)
 266                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
 267 
 268         if (vd->vdev_isspare)
 269                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
 270 
 271         if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
 272             vd == vd->vdev_top) {
 273                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 274                     vd->vdev_ms_array);
 275                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 276                     vd->vdev_ms_shift);
 277                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
 278                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
 279                     vd->vdev_asize);
 280                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
 281                 if (vd->vdev_removing)
 282                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
 283                             vd->vdev_removing);
 284         }
 285 
 286         if (vd->vdev_dtl_smo.smo_object != 0)
 287                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
 288                     vd->vdev_dtl_smo.smo_object);
 289 
 290         if (vd->vdev_crtxg)
 291                 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
 292 
 293         if (getstats) {
 294                 vdev_stat_t vs;
 295                 pool_scan_stat_t ps;
 296 
 297                 vdev_get_stats(vd, &vs);
 298                 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
 299                     (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
 300 
 301                 /* provide either current or previous scan information */
 302                 if (spa_scan_get_stats(spa, &ps) == 0) {
 303                         fnvlist_add_uint64_array(nv,
 304                             ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
 305                             sizeof (pool_scan_stat_t) / sizeof (uint64_t));
 306                 }
 307         }
 308 
 309         if (!vd->vdev_ops->vdev_op_leaf) {
 310                 nvlist_t **child;
 311                 int c, idx;
 312 
 313                 ASSERT(!vd->vdev_ishole);
 314 
 315                 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
 316                     KM_SLEEP);
 317 
 318                 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
 319                         vdev_t *cvd = vd->vdev_child[c];
 320 
 321                         /*
 322                          * If we're generating an nvlist of removing
 323                          * vdevs then skip over any device which is
 324                          * not being removed.
 325                          */
 326                         if ((flags & VDEV_CONFIG_REMOVING) &&
 327                             !cvd->vdev_removing)
 328                                 continue;
 329 
 330                         child[idx++] = vdev_config_generate(spa, cvd,
 331                             getstats, flags);
 332                 }
 333 
 334                 if (idx) {
 335                         fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 336                             child, idx);
 337                 }
 338 
 339                 for (c = 0; c < idx; c++)
 340                         nvlist_free(child[c]);
 341 
 342                 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
 343 
 344         } else {
 345                 const char *aux = NULL;
 346 
 347                 if (vd->vdev_offline && !vd->vdev_tmpoffline)
 348                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
 349                 if (vd->vdev_resilver_txg != 0)
 350                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
 351                             vd->vdev_resilver_txg);
 352                 if (vd->vdev_faulted)
 353                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
 354                 if (vd->vdev_degraded)
 355                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
 356                 if (vd->vdev_removed)
 357                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
 358                 if (vd->vdev_unspare)
 359                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
 360                 if (vd->vdev_ishole)
 361                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
 362 
 363                 switch (vd->vdev_stat.vs_aux) {
 364                 case VDEV_AUX_ERR_EXCEEDED:
 365                         aux = "err_exceeded";
 366                         break;
 367 
 368                 case VDEV_AUX_EXTERNAL:
 369                         aux = "external";
 370                         break;
 371                 }
 372 
 373                 if (aux != NULL)
 374                         fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
 375 
 376                 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
 377                         fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
 378                             vd->vdev_orig_guid);
 379                 }
 380         }
 381 
 382         return (nv);
 383 }
 384 
 385 /*
 386  * Generate a view of the top-level vdevs.  If we currently have holes
 387  * in the namespace, then generate an array which contains a list of holey
 388  * vdevs.  Additionally, add the number of top-level children that currently
 389  * exist.
 390  */
 391 void
 392 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
 393 {
 394         vdev_t *rvd = spa->spa_root_vdev;
 395         uint64_t *array;
 396         uint_t c, idx;
 397 
 398         array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
 399 
 400         for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
 401                 vdev_t *tvd = rvd->vdev_child[c];
 402 
 403                 if (tvd->vdev_ishole)
 404                         array[idx++] = c;
 405         }
 406 
 407         if (idx) {
 408                 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
 409                     array, idx) == 0);
 410         }
 411 
 412         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
 413             rvd->vdev_children) == 0);
 414 
 415         kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
 416 }
 417 
 418 /*
 419  * Returns the configuration from the label of the given vdev. For vdevs
 420  * which don't have a txg value stored on their label (i.e. spares/cache)
 421  * or have not been completely initialized (txg = 0) just return
 422  * the configuration from the first valid label we find. Otherwise,
 423  * find the most up-to-date label that does not exceed the specified
 424  * 'txg' value.
 425  */
 426 nvlist_t *
 427 vdev_label_read_config(vdev_t *vd, uint64_t txg)
 428 {
 429         spa_t *spa = vd->vdev_spa;
 430         nvlist_t *config = NULL;
 431         vdev_phys_t *vp;
 432         zio_t *zio;
 433         uint64_t best_txg = 0;
 434         int error = 0;
 435         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 436             ZIO_FLAG_SPECULATIVE;
 437 
 438         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 439 
 440         if (!vdev_readable(vd))
 441                 return (NULL);
 442 
 443         vp = zio_buf_alloc(sizeof (vdev_phys_t));
 444 
 445 retry:
 446         for (int l = 0; l < VDEV_LABELS; l++) {
 447                 nvlist_t *label = NULL;
 448 
 449                 zio = zio_root(spa, NULL, NULL, flags);
 450 
 451                 vdev_label_read(zio, vd, l, vp,
 452                     offsetof(vdev_label_t, vl_vdev_phys),
 453                     sizeof (vdev_phys_t), NULL, NULL, flags);
 454 
 455                 if (zio_wait(zio) == 0 &&
 456                     nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
 457                     &label, 0) == 0) {
 458                         uint64_t label_txg = 0;
 459 
 460                         /*
 461                          * Auxiliary vdevs won't have txg values in their
 462                          * labels and newly added vdevs may not have been
 463                          * completely initialized so just return the
 464                          * configuration from the first valid label we
 465                          * encounter.
 466                          */
 467                         error = nvlist_lookup_uint64(label,
 468                             ZPOOL_CONFIG_POOL_TXG, &label_txg);
 469                         if ((error || label_txg == 0) && !config) {
 470                                 config = label;
 471                                 break;
 472                         } else if (label_txg <= txg && label_txg > best_txg) {
 473                                 best_txg = label_txg;
 474                                 nvlist_free(config);
 475                                 config = fnvlist_dup(label);
 476                         }
 477                 }
 478 
 479                 if (label != NULL) {
 480                         nvlist_free(label);
 481                         label = NULL;
 482                 }
 483         }
 484 
 485         if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
 486                 flags |= ZIO_FLAG_TRYHARD;
 487                 goto retry;
 488         }
 489 
 490         zio_buf_free(vp, sizeof (vdev_phys_t));
 491 
 492         return (config);
 493 }
 494 
 495 /*
 496  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
 497  * in with the device guid if this spare is active elsewhere on the system.
 498  */
 499 static boolean_t
 500 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
 501     uint64_t *spare_guid, uint64_t *l2cache_guid)
 502 {
 503         spa_t *spa = vd->vdev_spa;
 504         uint64_t state, pool_guid, device_guid, txg, spare_pool;
 505         uint64_t vdtxg = 0;
 506         nvlist_t *label;
 507 
 508         if (spare_guid)
 509                 *spare_guid = 0ULL;
 510         if (l2cache_guid)
 511                 *l2cache_guid = 0ULL;
 512 
 513         /*
 514          * Read the label, if any, and perform some basic sanity checks.
 515          */
 516         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
 517                 return (B_FALSE);
 518 
 519         (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 520             &vdtxg);
 521 
 522         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 523             &state) != 0 ||
 524             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
 525             &device_guid) != 0) {
 526                 nvlist_free(label);
 527                 return (B_FALSE);
 528         }
 529 
 530         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 531             (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
 532             &pool_guid) != 0 ||
 533             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
 534             &txg) != 0)) {
 535                 nvlist_free(label);
 536                 return (B_FALSE);
 537         }
 538 
 539         nvlist_free(label);
 540 
 541         /*
 542          * Check to see if this device indeed belongs to the pool it claims to
 543          * be a part of.  The only way this is allowed is if the device is a hot
 544          * spare (which we check for later on).
 545          */
 546         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 547             !spa_guid_exists(pool_guid, device_guid) &&
 548             !spa_spare_exists(device_guid, NULL, NULL) &&
 549             !spa_l2cache_exists(device_guid, NULL))
 550                 return (B_FALSE);
 551 
 552         /*
 553          * If the transaction group is zero, then this an initialized (but
 554          * unused) label.  This is only an error if the create transaction
 555          * on-disk is the same as the one we're using now, in which case the
 556          * user has attempted to add the same vdev multiple times in the same
 557          * transaction.
 558          */
 559         if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 560             txg == 0 && vdtxg == crtxg)
 561                 return (B_TRUE);
 562 
 563         /*
 564          * Check to see if this is a spare device.  We do an explicit check for
 565          * spa_has_spare() here because it may be on our pending list of spares
 566          * to add.  We also check if it is an l2cache device.
 567          */
 568         if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
 569             spa_has_spare(spa, device_guid)) {
 570                 if (spare_guid)
 571                         *spare_guid = device_guid;
 572 
 573                 switch (reason) {
 574                 case VDEV_LABEL_CREATE:
 575                 case VDEV_LABEL_L2CACHE:
 576                         return (B_TRUE);
 577 
 578                 case VDEV_LABEL_REPLACE:
 579                         return (!spa_has_spare(spa, device_guid) ||
 580                             spare_pool != 0ULL);
 581 
 582                 case VDEV_LABEL_SPARE:
 583                         return (spa_has_spare(spa, device_guid));
 584                 }
 585         }
 586 
 587         /*
 588          * Check to see if this is an l2cache device.
 589          */
 590         if (spa_l2cache_exists(device_guid, NULL))
 591                 return (B_TRUE);
 592 
 593         /*
 594          * We can't rely on a pool's state if it's been imported
 595          * read-only.  Instead we look to see if the pools is marked
 596          * read-only in the namespace and set the state to active.
 597          */
 598         if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
 599             spa_mode(spa) == FREAD)
 600                 state = POOL_STATE_ACTIVE;
 601 
 602         /*
 603          * If the device is marked ACTIVE, then this device is in use by another
 604          * pool on the system.
 605          */
 606         return (state == POOL_STATE_ACTIVE);
 607 }
 608 
 609 /*
 610  * Initialize a vdev label.  We check to make sure each leaf device is not in
 611  * use, and writable.  We put down an initial label which we will later
 612  * overwrite with a complete label.  Note that it's important to do this
 613  * sequentially, not in parallel, so that we catch cases of multiple use of the
 614  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
 615  * itself.
 616  */
 617 int
 618 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
 619 {
 620         spa_t *spa = vd->vdev_spa;
 621         nvlist_t *label;
 622         vdev_phys_t *vp;
 623         char *pad2;
 624         uberblock_t *ub;
 625         zio_t *zio;
 626         char *buf;
 627         size_t buflen;
 628         int error;
 629         uint64_t spare_guid, l2cache_guid;
 630         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 631 
 632         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 633 
 634         for (int c = 0; c < vd->vdev_children; c++)
 635                 if ((error = vdev_label_init(vd->vdev_child[c],
 636                     crtxg, reason)) != 0)
 637                         return (error);
 638 
 639         /* Track the creation time for this vdev */
 640         vd->vdev_crtxg = crtxg;
 641 
 642         if (!vd->vdev_ops->vdev_op_leaf)
 643                 return (0);
 644 
 645         /*
 646          * Dead vdevs cannot be initialized.
 647          */
 648         if (vdev_is_dead(vd))
 649                 return (SET_ERROR(EIO));
 650 
 651         /*
 652          * Determine if the vdev is in use.
 653          */
 654         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
 655             vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
 656                 return (SET_ERROR(EBUSY));
 657 
 658         /*
 659          * If this is a request to add or replace a spare or l2cache device
 660          * that is in use elsewhere on the system, then we must update the
 661          * guid (which was initialized to a random value) to reflect the
 662          * actual GUID (which is shared between multiple pools).
 663          */
 664         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
 665             spare_guid != 0ULL) {
 666                 uint64_t guid_delta = spare_guid - vd->vdev_guid;
 667 
 668                 vd->vdev_guid += guid_delta;
 669 
 670                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 671                         pvd->vdev_guid_sum += guid_delta;
 672 
 673                 /*
 674                  * If this is a replacement, then we want to fallthrough to the
 675                  * rest of the code.  If we're adding a spare, then it's already
 676                  * labeled appropriately and we can just return.
 677                  */
 678                 if (reason == VDEV_LABEL_SPARE)
 679                         return (0);
 680                 ASSERT(reason == VDEV_LABEL_REPLACE ||
 681                     reason == VDEV_LABEL_SPLIT);
 682         }
 683 
 684         if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
 685             l2cache_guid != 0ULL) {
 686                 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
 687 
 688                 vd->vdev_guid += guid_delta;
 689 
 690                 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 691                         pvd->vdev_guid_sum += guid_delta;
 692 
 693                 /*
 694                  * If this is a replacement, then we want to fallthrough to the
 695                  * rest of the code.  If we're adding an l2cache, then it's
 696                  * already labeled appropriately and we can just return.
 697                  */
 698                 if (reason == VDEV_LABEL_L2CACHE)
 699                         return (0);
 700                 ASSERT(reason == VDEV_LABEL_REPLACE);
 701         }
 702 
 703         /*
 704          * Initialize its label.
 705          */
 706         vp = zio_buf_alloc(sizeof (vdev_phys_t));
 707         bzero(vp, sizeof (vdev_phys_t));
 708 
 709         /*
 710          * Generate a label describing the pool and our top-level vdev.
 711          * We mark it as being from txg 0 to indicate that it's not
 712          * really part of an active pool just yet.  The labels will
 713          * be written again with a meaningful txg by spa_sync().
 714          */
 715         if (reason == VDEV_LABEL_SPARE ||
 716             (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
 717                 /*
 718                  * For inactive hot spares, we generate a special label that
 719                  * identifies as a mutually shared hot spare.  We write the
 720                  * label if we are adding a hot spare, or if we are removing an
 721                  * active hot spare (in which case we want to revert the
 722                  * labels).
 723                  */
 724                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 725 
 726                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 727                     spa_version(spa)) == 0);
 728                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 729                     POOL_STATE_SPARE) == 0);
 730                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 731                     vd->vdev_guid) == 0);
 732         } else if (reason == VDEV_LABEL_L2CACHE ||
 733             (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
 734                 /*
 735                  * For level 2 ARC devices, add a special label.
 736                  */
 737                 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 738 
 739                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 740                     spa_version(spa)) == 0);
 741                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 742                     POOL_STATE_L2CACHE) == 0);
 743                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 744                     vd->vdev_guid) == 0);
 745         } else {
 746                 uint64_t txg = 0ULL;
 747 
 748                 if (reason == VDEV_LABEL_SPLIT)
 749                         txg = spa->spa_uberblock.ub_txg;
 750                 label = spa_config_generate(spa, vd, txg, B_FALSE);
 751 
 752                 /*
 753                  * Add our creation time.  This allows us to detect multiple
 754                  * vdev uses as described above, and automatically expires if we
 755                  * fail.
 756                  */
 757                 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 758                     crtxg) == 0);
 759         }
 760 
 761         buf = vp->vp_nvlist;
 762         buflen = sizeof (vp->vp_nvlist);
 763 
 764         error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
 765         if (error != 0) {
 766                 nvlist_free(label);
 767                 zio_buf_free(vp, sizeof (vdev_phys_t));
 768                 /* EFAULT means nvlist_pack ran out of room */
 769                 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
 770         }
 771 
 772         /*
 773          * Initialize uberblock template.
 774          */
 775         ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
 776         bzero(ub, VDEV_UBERBLOCK_RING);
 777         *ub = spa->spa_uberblock;
 778         ub->ub_txg = 0;
 779 
 780         /* Initialize the 2nd padding area. */
 781         pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
 782         bzero(pad2, VDEV_PAD_SIZE);
 783 
 784         /*
 785          * Write everything in parallel.
 786          */
 787 retry:
 788         zio = zio_root(spa, NULL, NULL, flags);
 789 
 790         for (int l = 0; l < VDEV_LABELS; l++) {
 791 
 792                 vdev_label_write(zio, vd, l, vp,
 793                     offsetof(vdev_label_t, vl_vdev_phys),
 794                     sizeof (vdev_phys_t), NULL, NULL, flags);
 795 
 796                 /*
 797                  * Skip the 1st padding area.
 798                  * Zero out the 2nd padding area where it might have
 799                  * left over data from previous filesystem format.
 800                  */
 801                 vdev_label_write(zio, vd, l, pad2,
 802                     offsetof(vdev_label_t, vl_pad2),
 803                     VDEV_PAD_SIZE, NULL, NULL, flags);
 804 
 805                 vdev_label_write(zio, vd, l, ub,
 806                     offsetof(vdev_label_t, vl_uberblock),
 807                     VDEV_UBERBLOCK_RING, NULL, NULL, flags);
 808         }
 809 
 810         error = zio_wait(zio);
 811 
 812         if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
 813                 flags |= ZIO_FLAG_TRYHARD;
 814                 goto retry;
 815         }
 816 
 817         nvlist_free(label);
 818         zio_buf_free(pad2, VDEV_PAD_SIZE);
 819         zio_buf_free(ub, VDEV_UBERBLOCK_RING);
 820         zio_buf_free(vp, sizeof (vdev_phys_t));
 821 
 822         /*
 823          * If this vdev hasn't been previously identified as a spare, then we
 824          * mark it as such only if a) we are labeling it as a spare, or b) it
 825          * exists as a spare elsewhere in the system.  Do the same for
 826          * level 2 ARC devices.
 827          */
 828         if (error == 0 && !vd->vdev_isspare &&
 829             (reason == VDEV_LABEL_SPARE ||
 830             spa_spare_exists(vd->vdev_guid, NULL, NULL)))
 831                 spa_spare_add(vd);
 832 
 833         if (error == 0 && !vd->vdev_isl2cache &&
 834             (reason == VDEV_LABEL_L2CACHE ||
 835             spa_l2cache_exists(vd->vdev_guid, NULL)))
 836                 spa_l2cache_add(vd);
 837 
 838         return (error);
 839 }
 840 
 841 /*
 842  * ==========================================================================
 843  * uberblock load/sync
 844  * ==========================================================================
 845  */
 846 
 847 /*
 848  * Consider the following situation: txg is safely synced to disk.  We've
 849  * written the first uberblock for txg + 1, and then we lose power.  When we
 850  * come back up, we fail to see the uberblock for txg + 1 because, say,
 851  * it was on a mirrored device and the replica to which we wrote txg + 1
 852  * is now offline.  If we then make some changes and sync txg + 1, and then
 853  * the missing replica comes back, then for a few seconds we'll have two
 854  * conflicting uberblocks on disk with the same txg.  The solution is simple:
 855  * among uberblocks with equal txg, choose the one with the latest timestamp.
 856  */
 857 static int
 858 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
 859 {
 860         if (ub1->ub_txg < ub2->ub_txg)
 861                 return (-1);
 862         if (ub1->ub_txg > ub2->ub_txg)
 863                 return (1);
 864 
 865         if (ub1->ub_timestamp < ub2->ub_timestamp)
 866                 return (-1);
 867         if (ub1->ub_timestamp > ub2->ub_timestamp)
 868                 return (1);
 869 
 870         return (0);
 871 }
 872 
 873 struct ubl_cbdata {
 874         uberblock_t     *ubl_ubbest;    /* Best uberblock */
 875         vdev_t          *ubl_vd;        /* vdev associated with the above */
 876 };
 877 
 878 static void
 879 vdev_uberblock_load_done(zio_t *zio)
 880 {
 881         vdev_t *vd = zio->io_vd;
 882         spa_t *spa = zio->io_spa;
 883         zio_t *rio = zio->io_private;
 884         uberblock_t *ub = zio->io_data;
 885         struct ubl_cbdata *cbp = rio->io_private;
 886 
 887         ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
 888 
 889         if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
 890                 mutex_enter(&rio->io_lock);
 891                 if (ub->ub_txg <= spa->spa_load_max_txg &&
 892                     vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
 893                         /*
 894                          * Keep track of the vdev in which this uberblock
 895                          * was found. We will use this information later
 896                          * to obtain the config nvlist associated with
 897                          * this uberblock.
 898                          */
 899                         *cbp->ubl_ubbest = *ub;
 900                         cbp->ubl_vd = vd;
 901                 }
 902                 mutex_exit(&rio->io_lock);
 903         }
 904 
 905         zio_buf_free(zio->io_data, zio->io_size);
 906 }
 907 
 908 static void
 909 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
 910     struct ubl_cbdata *cbp)
 911 {
 912         for (int c = 0; c < vd->vdev_children; c++)
 913                 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
 914 
 915         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
 916                 for (int l = 0; l < VDEV_LABELS; l++) {
 917                         for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
 918                                 vdev_label_read(zio, vd, l,
 919                                     zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
 920                                     VDEV_UBERBLOCK_OFFSET(vd, n),
 921                                     VDEV_UBERBLOCK_SIZE(vd),
 922                                     vdev_uberblock_load_done, zio, flags);
 923                         }
 924                 }
 925         }
 926 }
 927 
 928 /*
 929  * Reads the 'best' uberblock from disk along with its associated
 930  * configuration. First, we read the uberblock array of each label of each
 931  * vdev, keeping track of the uberblock with the highest txg in each array.
 932  * Then, we read the configuration from the same vdev as the best uberblock.
 933  */
 934 void
 935 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
 936 {
 937         zio_t *zio;
 938         spa_t *spa = rvd->vdev_spa;
 939         struct ubl_cbdata cb;
 940         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 941             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
 942 
 943         ASSERT(ub);
 944         ASSERT(config);
 945 
 946         bzero(ub, sizeof (uberblock_t));
 947         *config = NULL;
 948 
 949         cb.ubl_ubbest = ub;
 950         cb.ubl_vd = NULL;
 951 
 952         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 953         zio = zio_root(spa, NULL, &cb, flags);
 954         vdev_uberblock_load_impl(zio, rvd, flags, &cb);
 955         (void) zio_wait(zio);
 956 
 957         /*
 958          * It's possible that the best uberblock was discovered on a label
 959          * that has a configuration which was written in a future txg.
 960          * Search all labels on this vdev to find the configuration that
 961          * matches the txg for our uberblock.
 962          */
 963         if (cb.ubl_vd != NULL)
 964                 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
 965         spa_config_exit(spa, SCL_ALL, FTAG);
 966 }
 967 
 968 /*
 969  * On success, increment root zio's count of good writes.
 970  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
 971  */
 972 static void
 973 vdev_uberblock_sync_done(zio_t *zio)
 974 {
 975         uint64_t *good_writes = zio->io_private;
 976 
 977         if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
 978                 atomic_add_64(good_writes, 1);
 979 }
 980 
 981 /*
 982  * Write the uberblock to all labels of all leaves of the specified vdev.
 983  */
 984 static void
 985 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
 986 {
 987         uberblock_t *ubbuf;
 988         int n;
 989 
 990         for (int c = 0; c < vd->vdev_children; c++)
 991                 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
 992 
 993         if (!vd->vdev_ops->vdev_op_leaf)
 994                 return;
 995 
 996         if (!vdev_writeable(vd))
 997                 return;
 998 
 999         n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1000 
1001         ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1002         bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1003         *ubbuf = *ub;
1004 
1005         for (int l = 0; l < VDEV_LABELS; l++)
1006                 vdev_label_write(zio, vd, l, ubbuf,
1007                     VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1008                     vdev_uberblock_sync_done, zio->io_private,
1009                     flags | ZIO_FLAG_DONT_PROPAGATE);
1010 
1011         zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1012 }
1013 
1014 /* Sync the uberblocks to all vdevs in svd[] */
1015 int
1016 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1017 {
1018         spa_t *spa = svd[0]->vdev_spa;
1019         zio_t *zio;
1020         uint64_t good_writes = 0;
1021 
1022         zio = zio_root(spa, NULL, &good_writes, flags);
1023 
1024         for (int v = 0; v < svdcount; v++)
1025                 vdev_uberblock_sync(zio, ub, svd[v], flags);
1026 
1027         (void) zio_wait(zio);
1028 
1029         /*
1030          * Flush the uberblocks to disk.  This ensures that the odd labels
1031          * are no longer needed (because the new uberblocks and the even
1032          * labels are safely on disk), so it is safe to overwrite them.
1033          */
1034         zio = zio_root(spa, NULL, NULL, flags);
1035 
1036         for (int v = 0; v < svdcount; v++)
1037                 zio_flush(zio, svd[v]);
1038 
1039         (void) zio_wait(zio);
1040 
1041         return (good_writes >= 1 ? 0 : EIO);
1042 }
1043 
1044 /*
1045  * On success, increment the count of good writes for our top-level vdev.
1046  */
1047 static void
1048 vdev_label_sync_done(zio_t *zio)
1049 {
1050         uint64_t *good_writes = zio->io_private;
1051 
1052         if (zio->io_error == 0)
1053                 atomic_add_64(good_writes, 1);
1054 }
1055 
1056 /*
1057  * If there weren't enough good writes, indicate failure to the parent.
1058  */
1059 static void
1060 vdev_label_sync_top_done(zio_t *zio)
1061 {
1062         uint64_t *good_writes = zio->io_private;
1063 
1064         if (*good_writes == 0)
1065                 zio->io_error = SET_ERROR(EIO);
1066 
1067         kmem_free(good_writes, sizeof (uint64_t));
1068 }
1069 
1070 /*
1071  * We ignore errors for log and cache devices, simply free the private data.
1072  */
1073 static void
1074 vdev_label_sync_ignore_done(zio_t *zio)
1075 {
1076         kmem_free(zio->io_private, sizeof (uint64_t));
1077 }
1078 
1079 /*
1080  * Write all even or odd labels to all leaves of the specified vdev.
1081  */
1082 static void
1083 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1084 {
1085         nvlist_t *label;
1086         vdev_phys_t *vp;
1087         char *buf;
1088         size_t buflen;
1089 
1090         for (int c = 0; c < vd->vdev_children; c++)
1091                 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1092 
1093         if (!vd->vdev_ops->vdev_op_leaf)
1094                 return;
1095 
1096         if (!vdev_writeable(vd))
1097                 return;
1098 
1099         /*
1100          * Generate a label describing the top-level config to which we belong.
1101          */
1102         label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1103 
1104         vp = zio_buf_alloc(sizeof (vdev_phys_t));
1105         bzero(vp, sizeof (vdev_phys_t));
1106 
1107         buf = vp->vp_nvlist;
1108         buflen = sizeof (vp->vp_nvlist);
1109 
1110         if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1111                 for (; l < VDEV_LABELS; l += 2) {
1112                         vdev_label_write(zio, vd, l, vp,
1113                             offsetof(vdev_label_t, vl_vdev_phys),
1114                             sizeof (vdev_phys_t),
1115                             vdev_label_sync_done, zio->io_private,
1116                             flags | ZIO_FLAG_DONT_PROPAGATE);
1117                 }
1118         }
1119 
1120         zio_buf_free(vp, sizeof (vdev_phys_t));
1121         nvlist_free(label);
1122 }
1123 
1124 int
1125 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1126 {
1127         list_t *dl = &spa->spa_config_dirty_list;
1128         vdev_t *vd;
1129         zio_t *zio;
1130         int error;
1131 
1132         /*
1133          * Write the new labels to disk.
1134          */
1135         zio = zio_root(spa, NULL, NULL, flags);
1136 
1137         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1138                 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1139                     KM_SLEEP);
1140 
1141                 ASSERT(!vd->vdev_ishole);
1142 
1143                 zio_t *vio = zio_null(zio, spa, NULL,
1144                     (vd->vdev_islog || vd->vdev_aux != NULL) ?
1145                     vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1146                     good_writes, flags);
1147                 vdev_label_sync(vio, vd, l, txg, flags);
1148                 zio_nowait(vio);
1149         }
1150 
1151         error = zio_wait(zio);
1152 
1153         /*
1154          * Flush the new labels to disk.
1155          */
1156         zio = zio_root(spa, NULL, NULL, flags);
1157 
1158         for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1159                 zio_flush(zio, vd);
1160 
1161         (void) zio_wait(zio);
1162 
1163         return (error);
1164 }
1165 
1166 /*
1167  * Sync the uberblock and any changes to the vdev configuration.
1168  *
1169  * The order of operations is carefully crafted to ensure that
1170  * if the system panics or loses power at any time, the state on disk
1171  * is still transactionally consistent.  The in-line comments below
1172  * describe the failure semantics at each stage.
1173  *
1174  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1175  * at any time, you can just call it again, and it will resume its work.
1176  */
1177 int
1178 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1179 {
1180         spa_t *spa = svd[0]->vdev_spa;
1181         uberblock_t *ub = &spa->spa_uberblock;
1182         vdev_t *vd;
1183         zio_t *zio;
1184         int error;
1185         int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1186 
1187         /*
1188          * Normally, we don't want to try too hard to write every label and
1189          * uberblock.  If there is a flaky disk, we don't want the rest of the
1190          * sync process to block while we retry.  But if we can't write a
1191          * single label out, we should retry with ZIO_FLAG_TRYHARD before
1192          * bailing out and declaring the pool faulted.
1193          */
1194         if (tryhard)
1195                 flags |= ZIO_FLAG_TRYHARD;
1196 
1197         ASSERT(ub->ub_txg <= txg);
1198 
1199         /*
1200          * If this isn't a resync due to I/O errors,
1201          * and nothing changed in this transaction group,
1202          * and the vdev configuration hasn't changed,
1203          * then there's nothing to do.
1204          */
1205         if (ub->ub_txg < txg &&
1206             uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1207             list_is_empty(&spa->spa_config_dirty_list))
1208                 return (0);
1209 
1210         if (txg > spa_freeze_txg(spa))
1211                 return (0);
1212 
1213         ASSERT(txg <= spa->spa_final_txg);
1214 
1215         /*
1216          * Flush the write cache of every disk that's been written to
1217          * in this transaction group.  This ensures that all blocks
1218          * written in this txg will be committed to stable storage
1219          * before any uberblock that references them.
1220          */
1221         zio = zio_root(spa, NULL, NULL, flags);
1222 
1223         for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1224             vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1225                 zio_flush(zio, vd);
1226 
1227         (void) zio_wait(zio);
1228 
1229         /*
1230          * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1231          * system dies in the middle of this process, that's OK: all of the
1232          * even labels that made it to disk will be newer than any uberblock,
1233          * and will therefore be considered invalid.  The odd labels (L1, L3),
1234          * which have not yet been touched, will still be valid.  We flush
1235          * the new labels to disk to ensure that all even-label updates
1236          * are committed to stable storage before the uberblock update.
1237          */
1238         if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1239                 return (error);
1240 
1241         /*
1242          * Sync the uberblocks to all vdevs in svd[].
1243          * If the system dies in the middle of this step, there are two cases
1244          * to consider, and the on-disk state is consistent either way:
1245          *
1246          * (1)  If none of the new uberblocks made it to disk, then the
1247          *      previous uberblock will be the newest, and the odd labels
1248          *      (which had not yet been touched) will be valid with respect
1249          *      to that uberblock.
1250          *
1251          * (2)  If one or more new uberblocks made it to disk, then they
1252          *      will be the newest, and the even labels (which had all
1253          *      been successfully committed) will be valid with respect
1254          *      to the new uberblocks.
1255          */
1256         if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1257                 return (error);
1258 
1259         /*
1260          * Sync out odd labels for every dirty vdev.  If the system dies
1261          * in the middle of this process, the even labels and the new
1262          * uberblocks will suffice to open the pool.  The next time
1263          * the pool is opened, the first thing we'll do -- before any
1264          * user data is modified -- is mark every vdev dirty so that
1265          * all labels will be brought up to date.  We flush the new labels
1266          * to disk to ensure that all odd-label updates are committed to
1267          * stable storage before the next transaction group begins.
1268          */
1269         return (vdev_label_sync_list(spa, 1, txg, flags));
1270 }