1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright (c) 2013 by Delphix. All rights reserved.
  27  */
  28 
  29 #include <sys/zfs_context.h>
  30 #include <sys/spa.h>
  31 #include <sys/dmu.h>
  32 #include <sys/dmu_tx.h>
  33 #include <sys/dnode.h>
  34 #include <sys/dsl_pool.h>
  35 #include <sys/zio.h>
  36 #include <sys/space_map.h>
  37 #include <sys/refcount.h>
  38 #include <sys/zfeature.h>
  39 
  40 /*
  41  * This value controls how the space map's block size is allowed to grow.
  42  * If the value is set to the same size as SPACE_MAP_INITIAL_BLOCKSIZE then
  43  * the space map block size will remain fixed. Setting this value to something
  44  * greater than SPACE_MAP_INITIAL_BLOCKSIZE will allow the space map to
  45  * increase its block size as needed. To maintain backwards compatibilty the
  46  * space map's block size must be a power of 2 and SPACE_MAP_INITIAL_BLOCKSIZE
  47  * or larger.
  48  */
  49 int space_map_max_blksz = (1 << 12);
  50 
  51 /*
  52  * Load the space map disk into the specified range tree. Segments of maptype
  53  * are added to the range tree, other segment types are removed.
  54  *
  55  * Note: space_map_load() will drop sm_lock across dmu_read() calls.
  56  * The caller must be OK with this.
  57  */
  58 int
  59 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
  60 {
  61         uint64_t *entry, *entry_map, *entry_map_end;
  62         uint64_t bufsize, size, offset, end, space;
  63         int error = 0;
  64 
  65         ASSERT(MUTEX_HELD(sm->sm_lock));
  66 
  67         end = space_map_length(sm);
  68         space = space_map_allocated(sm);
  69 
  70         VERIFY0(range_tree_space(rt));
  71 
  72         if (maptype == SM_FREE) {
  73                 range_tree_add(rt, sm->sm_start, sm->sm_size);
  74                 space = sm->sm_size - space;
  75         }
  76 
  77         bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
  78         entry_map = zio_buf_alloc(bufsize);
  79 
  80         mutex_exit(sm->sm_lock);
  81         if (end > bufsize) {
  82                 dmu_prefetch(sm->sm_os, space_map_object(sm), bufsize,
  83                     end - bufsize);
  84         }
  85         mutex_enter(sm->sm_lock);
  86 
  87         for (offset = 0; offset < end; offset += bufsize) {
  88                 size = MIN(end - offset, bufsize);
  89                 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
  90                 VERIFY(size != 0);
  91                 ASSERT3U(sm->sm_blksz, !=, 0);
  92 
  93                 dprintf("object=%llu  offset=%llx  size=%llx\n",
  94                     space_map_object(sm), offset, size);
  95 
  96                 mutex_exit(sm->sm_lock);
  97                 error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
  98                     entry_map, DMU_READ_PREFETCH);
  99                 mutex_enter(sm->sm_lock);
 100                 if (error != 0)
 101                         break;
 102 
 103                 entry_map_end = entry_map + (size / sizeof (uint64_t));
 104                 for (entry = entry_map; entry < entry_map_end; entry++) {
 105                         uint64_t e = *entry;
 106                         uint64_t offset, size;
 107 
 108                         if (SM_DEBUG_DECODE(e))         /* Skip debug entries */
 109                                 continue;
 110 
 111                         offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
 112                             sm->sm_start;
 113                         size = SM_RUN_DECODE(e) << sm->sm_shift;
 114 
 115                         VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
 116                         VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
 117                         VERIFY3U(offset, >=, sm->sm_start);
 118                         VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
 119                         if (SM_TYPE_DECODE(e) == maptype) {
 120                                 VERIFY3U(range_tree_space(rt) + size, <=,
 121                                     sm->sm_size);
 122                                 range_tree_add(rt, offset, size);
 123                         } else {
 124                                 range_tree_remove(rt, offset, size);
 125                         }
 126                 }
 127         }
 128 
 129         if (error == 0)
 130                 VERIFY3U(range_tree_space(rt), ==, space);
 131         else
 132                 range_tree_vacate(rt, NULL, NULL);
 133 
 134         zio_buf_free(entry_map, bufsize);
 135         return (error);
 136 }
 137 
 138 void
 139 space_map_histogram_clear(space_map_t *sm)
 140 {
 141         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 142                 return;
 143 
 144         bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
 145 }
 146 
 147 boolean_t
 148 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
 149 {
 150         /*
 151          * Verify that the in-core range tree does not have any
 152          * ranges smaller than our sm_shift size.
 153          */
 154         for (int i = 0; i < sm->sm_shift; i++) {
 155                 if (rt->rt_histogram[i] != 0)
 156                         return (B_FALSE);
 157         }
 158         return (B_TRUE);
 159 }
 160 
 161 void
 162 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
 163 {
 164         int idx = 0;
 165 
 166         ASSERT(MUTEX_HELD(rt->rt_lock));
 167         ASSERT(dmu_tx_is_syncing(tx));
 168         VERIFY3U(space_map_object(sm), !=, 0);
 169 
 170         if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
 171                 return;
 172 
 173         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 174 
 175         ASSERT(space_map_histogram_verify(sm, rt));
 176 
 177         /*
 178          * Transfer the content of the range tree histogram to the space
 179          * map histogram. The space map histogram contains 32 buckets ranging
 180          * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
 181          * however, can represent ranges from 2^0 to 2^63. Since the space
 182          * map only cares about allocatable blocks (minimum of sm_shift) we
 183          * can safely ignore all ranges in the range tree smaller than sm_shift.
 184          */
 185         for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 186 
 187                 /*
 188                  * Since the largest histogram bucket in the space map is
 189                  * 2^(32+sm_shift-1), we need to normalize the values in
 190                  * the range tree for any bucket larger than that size. For
 191                  * example given an sm_shift of 9, ranges larger than 2^40
 192                  * would get normalized as if they were 1TB ranges. Assume
 193                  * the range tree had a count of 5 in the 2^44 (16TB) bucket,
 194                  * the calculation below would normalize this to 5 * 2^4 (16).
 195                  */
 196                 ASSERT3U(i, >=, idx + sm->sm_shift);
 197                 sm->sm_phys->smp_histogram[idx] +=
 198                     rt->rt_histogram[i] << (i - idx - sm->sm_shift);
 199 
 200                 /*
 201                  * Increment the space map's index as long as we haven't
 202                  * reached the maximum bucket size. Accumulate all ranges
 203                  * larger than the max bucket size into the last bucket.
 204                  */
 205                 if (idx < SPACE_MAP_HISTOGRAM_SIZE(sm) - 1) {
 206                         ASSERT3U(idx + sm->sm_shift, ==, i);
 207                         idx++;
 208                         ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE(sm));
 209                 }
 210         }
 211 }
 212 
 213 uint64_t
 214 space_map_entries(space_map_t *sm, range_tree_t *rt)
 215 {
 216         avl_tree_t *t = &rt->rt_root;
 217         range_seg_t *rs;
 218         uint64_t size, entries;
 219 
 220         /*
 221          * All space_maps always have a debug entry so account for it here.
 222          */
 223         entries = 1;
 224 
 225         /*
 226          * Traverse the range tree and calculate the number of space map
 227          * entries that would be required to write out the range tree.
 228          */
 229         for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
 230                 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 231                 entries += howmany(size, SM_RUN_MAX);
 232         }
 233         return (entries);
 234 }
 235 
 236 void
 237 space_map_set_blocksize(space_map_t *sm, uint64_t size, dmu_tx_t *tx)
 238 {
 239         uint32_t blksz;
 240         u_longlong_t blocks;
 241 
 242         ASSERT3U(sm->sm_blksz, !=, 0);
 243         ASSERT3U(space_map_object(sm), !=, 0);
 244         ASSERT(sm->sm_dbuf != NULL);
 245         VERIFY(ISP2(space_map_max_blksz));
 246 
 247         if (sm->sm_blksz >= space_map_max_blksz)
 248                 return;
 249 
 250         /*
 251          * The object contains more than one block so we can't adjust
 252          * its size.
 253          */
 254         if (sm->sm_phys->smp_objsize > sm->sm_blksz)
 255                 return;
 256 
 257         if (size > sm->sm_blksz) {
 258                 uint64_t newsz;
 259 
 260                 /*
 261                  * Older software versions treat space map blocks as fixed
 262                  * entities. The DMU is capable of handling different block
 263                  * sizes making it possible for us to increase the
 264                  * block size and maintain backwards compatibility. The
 265                  * caveat is that the new block sizes must be a
 266                  * power of 2 so that old software can append to the file,
 267                  * adding more blocks. The block size can grow until it
 268                  * reaches space_map_max_blksz.
 269                  */
 270                 newsz = ISP2(size) ? size : 1ULL << highbit(size);
 271                 if (newsz > space_map_max_blksz)
 272                         newsz = space_map_max_blksz;
 273 
 274                 VERIFY0(dmu_object_set_blocksize(sm->sm_os,
 275                     space_map_object(sm), newsz, 0, tx));
 276                 dmu_object_size_from_db(sm->sm_dbuf, &blksz, &blocks);
 277 
 278                 zfs_dbgmsg("txg %llu, spa %s, increasing blksz from %d to %d",
 279                     dmu_tx_get_txg(tx), spa_name(dmu_objset_spa(sm->sm_os)),
 280                     sm->sm_blksz, blksz);
 281 
 282                 VERIFY3U(newsz, ==, blksz);
 283                 VERIFY3U(sm->sm_blksz, <, blksz);
 284                 sm->sm_blksz = blksz;
 285         }
 286 }
 287 
 288 /*
 289  * Note: space_map_write() will drop sm_lock across dmu_write() calls.
 290  */
 291 void
 292 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
 293     dmu_tx_t *tx)
 294 {
 295         objset_t *os = sm->sm_os;
 296         spa_t *spa = dmu_objset_spa(os);
 297         avl_tree_t *t = &rt->rt_root;
 298         range_seg_t *rs;
 299         uint64_t size, total, rt_space, nodes;
 300         uint64_t *entry, *entry_map, *entry_map_end;
 301         uint64_t newsz, expected_entries, actual_entries = 1;
 302 
 303         ASSERT(MUTEX_HELD(rt->rt_lock));
 304         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 305         VERIFY3U(space_map_object(sm), !=, 0);
 306         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 307 
 308         /*
 309          * This field is no longer necessary since the in-core space map
 310          * now contains the object number but is maintained for backwards
 311          * compatibility.
 312          */
 313         sm->sm_phys->smp_object = sm->sm_object;
 314 
 315         if (range_tree_space(rt) == 0) {
 316                 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
 317                 return;
 318         }
 319 
 320         if (maptype == SM_ALLOC)
 321                 sm->sm_phys->smp_alloc += range_tree_space(rt);
 322         else
 323                 sm->sm_phys->smp_alloc -= range_tree_space(rt);
 324 
 325         expected_entries = space_map_entries(sm, rt);
 326 
 327         /*
 328          * Calculate the new size for the space map on-disk and see if
 329          * we can grow the block size to accommodate the new size.
 330          */
 331         newsz = sm->sm_phys->smp_objsize + expected_entries * sizeof (uint64_t);
 332         space_map_set_blocksize(sm, newsz, tx);
 333 
 334         entry_map = zio_buf_alloc(sm->sm_blksz);
 335         entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
 336         entry = entry_map;
 337 
 338         *entry++ = SM_DEBUG_ENCODE(1) |
 339             SM_DEBUG_ACTION_ENCODE(maptype) |
 340             SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
 341             SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
 342 
 343         total = 0;
 344         nodes = avl_numnodes(&rt->rt_root);
 345         rt_space = range_tree_space(rt);
 346         for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
 347                 uint64_t start;
 348 
 349                 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 350                 start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
 351 
 352                 total += size << sm->sm_shift;
 353 
 354                 while (size != 0) {
 355                         uint64_t run_len;
 356 
 357                         run_len = MIN(size, SM_RUN_MAX);
 358 
 359                         if (entry == entry_map_end) {
 360                                 mutex_exit(rt->rt_lock);
 361                                 dmu_write(os, space_map_object(sm),
 362                                     sm->sm_phys->smp_objsize, sm->sm_blksz,
 363                                     entry_map, tx);
 364                                 mutex_enter(rt->rt_lock);
 365                                 sm->sm_phys->smp_objsize += sm->sm_blksz;
 366                                 entry = entry_map;
 367                         }
 368 
 369                         *entry++ = SM_OFFSET_ENCODE(start) |
 370                             SM_TYPE_ENCODE(maptype) |
 371                             SM_RUN_ENCODE(run_len);
 372 
 373                         start += run_len;
 374                         size -= run_len;
 375                         actual_entries++;
 376                 }
 377         }
 378 
 379         if (entry != entry_map) {
 380                 size = (entry - entry_map) * sizeof (uint64_t);
 381                 mutex_exit(rt->rt_lock);
 382                 dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
 383                     size, entry_map, tx);
 384                 mutex_enter(rt->rt_lock);
 385                 sm->sm_phys->smp_objsize += size;
 386         }
 387         ASSERT3U(expected_entries, ==, actual_entries);
 388 
 389         /*
 390          * Ensure that the space_map's accounting wasn't changed
 391          * while we were in the middle of writing it out.
 392          */
 393         VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
 394         VERIFY3U(range_tree_space(rt), ==, rt_space);
 395         VERIFY3U(range_tree_space(rt), ==, total);
 396 
 397         zio_buf_free(entry_map, sm->sm_blksz);
 398 }
 399 
 400 static int
 401 space_map_open_impl(space_map_t *sm)
 402 {
 403         int error;
 404         u_longlong_t blocks;
 405 
 406         error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
 407         if (error)
 408                 return (error);
 409 
 410         dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
 411         sm->sm_phys = sm->sm_dbuf->db_data;
 412         return (0);
 413 }
 414 
 415 int
 416 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
 417     uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
 418 {
 419         space_map_t *sm;
 420         int error;
 421 
 422         ASSERT(*smp == NULL);
 423         ASSERT(os != NULL);
 424         ASSERT(object != 0);
 425 
 426         sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
 427 
 428         sm->sm_start = start;
 429         sm->sm_size = size;
 430         sm->sm_shift = shift;
 431         sm->sm_lock = lp;
 432         sm->sm_os = os;
 433         sm->sm_object = object;
 434 
 435         error = space_map_open_impl(sm);
 436         if (error != 0) {
 437                 space_map_close(sm);
 438                 return (error);
 439         }
 440 
 441         *smp = sm;
 442 
 443         return (0);
 444 }
 445 
 446 void
 447 space_map_close(space_map_t *sm)
 448 {
 449         if (sm == NULL)
 450                 return;
 451 
 452         if (sm->sm_dbuf != NULL)
 453                 dmu_buf_rele(sm->sm_dbuf, sm);
 454         sm->sm_dbuf = NULL;
 455         sm->sm_phys = NULL;
 456 
 457         kmem_free(sm, sizeof (*sm));
 458 }
 459 
 460 static void
 461 space_map_reallocate(space_map_t *sm, dmu_tx_t *tx)
 462 {
 463         ASSERT(dmu_tx_is_syncing(tx));
 464 
 465         space_map_free(sm, tx);
 466         dmu_buf_rele(sm->sm_dbuf, sm);
 467 
 468         sm->sm_object = space_map_alloc(sm->sm_os, tx);
 469         VERIFY0(space_map_open_impl(sm));
 470 }
 471 
 472 void
 473 space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
 474 {
 475         objset_t *os = sm->sm_os;
 476         spa_t *spa = dmu_objset_spa(os);
 477         zfeature_info_t *space_map_histogram =
 478             &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM];
 479         dmu_object_info_t doi;
 480         int bonuslen;
 481 
 482         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
 483         ASSERT(dmu_tx_is_syncing(tx));
 484 
 485         VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
 486         dmu_object_info_from_db(sm->sm_dbuf, &doi);
 487 
 488         if (spa_feature_is_enabled(spa, space_map_histogram)) {
 489                 bonuslen = sizeof (space_map_phys_t);
 490                 ASSERT3U(bonuslen, <=, dmu_bonus_max());
 491         } else {
 492                 bonuslen = SPACE_MAP_SIZE_V0;
 493         }
 494 
 495         if (bonuslen != doi.doi_bonus_size ||
 496             doi.doi_data_block_size != SPACE_MAP_INITIAL_BLOCKSIZE) {
 497                 zfs_dbgmsg("txg %llu, spa %s, reallocating: "
 498                     "old bonus %u, old blocksz %u", dmu_tx_get_txg(tx),
 499                     spa_name(spa), doi.doi_bonus_size, doi.doi_data_block_size);
 500                 space_map_reallocate(sm, tx);
 501                 VERIFY3U(sm->sm_blksz, ==, SPACE_MAP_INITIAL_BLOCKSIZE);
 502         }
 503 
 504         dmu_buf_will_dirty(sm->sm_dbuf, tx);
 505         sm->sm_phys->smp_objsize = 0;
 506         sm->sm_phys->smp_alloc = 0;
 507 }
 508 
 509 /*
 510  * Update the in-core space_map allocation and length values.
 511  */
 512 void
 513 space_map_update(space_map_t *sm)
 514 {
 515         if (sm == NULL)
 516                 return;
 517 
 518         ASSERT(MUTEX_HELD(sm->sm_lock));
 519 
 520         sm->sm_alloc = sm->sm_phys->smp_alloc;
 521         sm->sm_length = sm->sm_phys->smp_objsize;
 522 }
 523 
 524 uint64_t
 525 space_map_alloc(objset_t *os, dmu_tx_t *tx)
 526 {
 527         spa_t *spa = dmu_objset_spa(os);
 528         zfeature_info_t *space_map_histogram =
 529             &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM];
 530         uint64_t object;
 531         int bonuslen;
 532 
 533         if (spa_feature_is_enabled(spa, space_map_histogram)) {
 534                 spa_feature_incr(spa, space_map_histogram, tx);
 535                 bonuslen = sizeof (space_map_phys_t);
 536                 ASSERT3U(bonuslen, <=, dmu_bonus_max());
 537         } else {
 538                 bonuslen = SPACE_MAP_SIZE_V0;
 539         }
 540 
 541         object = dmu_object_alloc(os,
 542             DMU_OT_SPACE_MAP, SPACE_MAP_INITIAL_BLOCKSIZE,
 543             DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
 544 
 545         return (object);
 546 }
 547 
 548 void
 549 space_map_free(space_map_t *sm, dmu_tx_t *tx)
 550 {
 551         spa_t *spa;
 552         zfeature_info_t *space_map_histogram =
 553             &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM];
 554 
 555         if (sm == NULL)
 556                 return;
 557 
 558         spa = dmu_objset_spa(sm->sm_os);
 559         if (spa_feature_is_enabled(spa, space_map_histogram)) {
 560                 dmu_object_info_t doi;
 561 
 562                 dmu_object_info_from_db(sm->sm_dbuf, &doi);
 563                 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
 564                         VERIFY(spa_feature_is_active(spa, space_map_histogram));
 565                         spa_feature_decr(spa, space_map_histogram, tx);
 566                 }
 567         }
 568 
 569         VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
 570         sm->sm_object = 0;
 571 }
 572 
 573 uint64_t
 574 space_map_object(space_map_t *sm)
 575 {
 576         return (sm != NULL ? sm->sm_object : 0);
 577 }
 578 
 579 /*
 580  * Returns the already synced, on-disk allocated space.
 581  */
 582 uint64_t
 583 space_map_allocated(space_map_t *sm)
 584 {
 585         return (sm != NULL ? sm->sm_alloc : 0);
 586 }
 587 
 588 /*
 589  * Returns the already synced, on-disk length;
 590  */
 591 uint64_t
 592 space_map_length(space_map_t *sm)
 593 {
 594         return (sm != NULL ? sm->sm_length : 0);
 595 }
 596 
 597 /*
 598  * Returns the allocated space that is currently syncing.
 599  */
 600 int64_t
 601 space_map_alloc_delta(space_map_t *sm)
 602 {
 603         if (sm == NULL)
 604                 return (0);
 605         ASSERT(sm->sm_dbuf != NULL);
 606         return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
 607 }