Print this page
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4104 ::spa_space no longer works
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
*** 21,659 ****
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
! * Copyright (c) 2012 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zio.h>
#include <sys/space_map.h>
- static kmem_cache_t *space_seg_cache;
-
- void
- space_map_init(void)
- {
- ASSERT(space_seg_cache == NULL);
- space_seg_cache = kmem_cache_create("space_seg_cache",
- sizeof (space_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
- }
-
- void
- space_map_fini(void)
- {
- kmem_cache_destroy(space_seg_cache);
- space_seg_cache = NULL;
- }
-
/*
! * Space map routines.
! * NOTE: caller is responsible for all locking.
*/
! static int
! space_map_seg_compare(const void *x1, const void *x2)
! {
! const space_seg_t *s1 = x1;
! const space_seg_t *s2 = x2;
- if (s1->ss_start < s2->ss_start) {
- if (s1->ss_end > s2->ss_start)
- return (0);
- return (-1);
- }
- if (s1->ss_start > s2->ss_start) {
- if (s1->ss_start < s2->ss_end)
- return (0);
- return (1);
- }
- return (0);
- }
-
- void
- space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift,
- kmutex_t *lp)
- {
- bzero(sm, sizeof (*sm));
-
- cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL);
-
- avl_create(&sm->sm_root, space_map_seg_compare,
- sizeof (space_seg_t), offsetof(struct space_seg, ss_node));
-
- sm->sm_start = start;
- sm->sm_size = size;
- sm->sm_shift = shift;
- sm->sm_lock = lp;
- }
-
- void
- space_map_destroy(space_map_t *sm)
- {
- ASSERT(!sm->sm_loaded && !sm->sm_loading);
- VERIFY0(sm->sm_space);
- avl_destroy(&sm->sm_root);
- cv_destroy(&sm->sm_load_cv);
- }
-
- void
- space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
- {
- avl_index_t where;
- space_seg_t *ss_before, *ss_after, *ss;
- uint64_t end = start + size;
- int merge_before, merge_after;
-
- ASSERT(MUTEX_HELD(sm->sm_lock));
- VERIFY(!sm->sm_condensing);
- VERIFY(size != 0);
- VERIFY3U(start, >=, sm->sm_start);
- VERIFY3U(end, <=, sm->sm_start + sm->sm_size);
- VERIFY(sm->sm_space + size <= sm->sm_size);
- VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
- VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
-
- ss = space_map_find(sm, start, size, &where);
- if (ss != NULL) {
- zfs_panic_recover("zfs: allocating allocated segment"
- "(offset=%llu size=%llu)\n",
- (longlong_t)start, (longlong_t)size);
- return;
- }
-
- /* Make sure we don't overlap with either of our neighbors */
- VERIFY(ss == NULL);
-
- ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE);
- ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER);
-
- merge_before = (ss_before != NULL && ss_before->ss_end == start);
- merge_after = (ss_after != NULL && ss_after->ss_start == end);
-
- if (merge_before && merge_after) {
- avl_remove(&sm->sm_root, ss_before);
- if (sm->sm_pp_root) {
- avl_remove(sm->sm_pp_root, ss_before);
- avl_remove(sm->sm_pp_root, ss_after);
- }
- ss_after->ss_start = ss_before->ss_start;
- kmem_cache_free(space_seg_cache, ss_before);
- ss = ss_after;
- } else if (merge_before) {
- ss_before->ss_end = end;
- if (sm->sm_pp_root)
- avl_remove(sm->sm_pp_root, ss_before);
- ss = ss_before;
- } else if (merge_after) {
- ss_after->ss_start = start;
- if (sm->sm_pp_root)
- avl_remove(sm->sm_pp_root, ss_after);
- ss = ss_after;
- } else {
- ss = kmem_cache_alloc(space_seg_cache, KM_SLEEP);
- ss->ss_start = start;
- ss->ss_end = end;
- avl_insert(&sm->sm_root, ss, where);
- }
-
- if (sm->sm_pp_root)
- avl_add(sm->sm_pp_root, ss);
-
- sm->sm_space += size;
- }
-
- void
- space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
- {
- avl_index_t where;
- space_seg_t *ss, *newseg;
- uint64_t end = start + size;
- int left_over, right_over;
-
- VERIFY(!sm->sm_condensing);
- ss = space_map_find(sm, start, size, &where);
-
- /* Make sure we completely overlap with someone */
- if (ss == NULL) {
- zfs_panic_recover("zfs: freeing free segment "
- "(offset=%llu size=%llu)",
- (longlong_t)start, (longlong_t)size);
- return;
- }
- VERIFY3U(ss->ss_start, <=, start);
- VERIFY3U(ss->ss_end, >=, end);
- VERIFY(sm->sm_space - size <= sm->sm_size);
-
- left_over = (ss->ss_start != start);
- right_over = (ss->ss_end != end);
-
- if (sm->sm_pp_root)
- avl_remove(sm->sm_pp_root, ss);
-
- if (left_over && right_over) {
- newseg = kmem_cache_alloc(space_seg_cache, KM_SLEEP);
- newseg->ss_start = end;
- newseg->ss_end = ss->ss_end;
- ss->ss_end = start;
- avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER);
- if (sm->sm_pp_root)
- avl_add(sm->sm_pp_root, newseg);
- } else if (left_over) {
- ss->ss_end = start;
- } else if (right_over) {
- ss->ss_start = end;
- } else {
- avl_remove(&sm->sm_root, ss);
- kmem_cache_free(space_seg_cache, ss);
- ss = NULL;
- }
-
- if (sm->sm_pp_root && ss != NULL)
- avl_add(sm->sm_pp_root, ss);
-
- sm->sm_space -= size;
- }
-
- space_seg_t *
- space_map_find(space_map_t *sm, uint64_t start, uint64_t size,
- avl_index_t *wherep)
- {
- space_seg_t ssearch, *ss;
-
- ASSERT(MUTEX_HELD(sm->sm_lock));
- VERIFY(size != 0);
- VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
- VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
-
- ssearch.ss_start = start;
- ssearch.ss_end = start + size;
- ss = avl_find(&sm->sm_root, &ssearch, wherep);
-
- if (ss != NULL && ss->ss_start <= start && ss->ss_end >= start + size)
- return (ss);
- return (NULL);
- }
-
- boolean_t
- space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
- {
- avl_index_t where;
-
- return (space_map_find(sm, start, size, &where) != 0);
- }
-
- void
- space_map_swap(space_map_t **msrc, space_map_t **mdst)
- {
- space_map_t *sm;
-
- ASSERT(MUTEX_HELD((*msrc)->sm_lock));
- ASSERT0((*mdst)->sm_space);
- ASSERT0(avl_numnodes(&(*mdst)->sm_root));
-
- sm = *msrc;
- *msrc = *mdst;
- *mdst = sm;
- }
-
- void
- space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
- {
- space_seg_t *ss;
- void *cookie = NULL;
-
- ASSERT(MUTEX_HELD(sm->sm_lock));
-
- while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
- if (func != NULL)
- func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
- kmem_cache_free(space_seg_cache, ss);
- }
- sm->sm_space = 0;
- }
-
- void
- space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
- {
- space_seg_t *ss;
-
- ASSERT(MUTEX_HELD(sm->sm_lock));
-
- for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
- func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
- }
-
/*
! * Wait for any in-progress space_map_load() to complete.
! */
! void
! space_map_load_wait(space_map_t *sm)
! {
! ASSERT(MUTEX_HELD(sm->sm_lock));
!
! while (sm->sm_loading) {
! ASSERT(!sm->sm_loaded);
! cv_wait(&sm->sm_load_cv, sm->sm_lock);
! }
! }
!
! /*
* Note: space_map_load() will drop sm_lock across dmu_read() calls.
* The caller must be OK with this.
*/
int
! space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype,
! space_map_obj_t *smo, objset_t *os)
{
uint64_t *entry, *entry_map, *entry_map_end;
uint64_t bufsize, size, offset, end, space;
- uint64_t mapstart = sm->sm_start;
int error = 0;
ASSERT(MUTEX_HELD(sm->sm_lock));
- ASSERT(!sm->sm_loaded);
- ASSERT(!sm->sm_loading);
! sm->sm_loading = B_TRUE;
! end = smo->smo_objsize;
! space = smo->smo_alloc;
! ASSERT(sm->sm_ops == NULL);
! VERIFY0(sm->sm_space);
if (maptype == SM_FREE) {
! space_map_add(sm, sm->sm_start, sm->sm_size);
space = sm->sm_size - space;
}
! bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT;
entry_map = zio_buf_alloc(bufsize);
mutex_exit(sm->sm_lock);
! if (end > bufsize)
! dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize);
mutex_enter(sm->sm_lock);
for (offset = 0; offset < end; offset += bufsize) {
size = MIN(end - offset, bufsize);
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
VERIFY(size != 0);
dprintf("object=%llu offset=%llx size=%llx\n",
! smo->smo_object, offset, size);
mutex_exit(sm->sm_lock);
! error = dmu_read(os, smo->smo_object, offset, size, entry_map,
! DMU_READ_PREFETCH);
mutex_enter(sm->sm_lock);
if (error != 0)
break;
entry_map_end = entry_map + (size / sizeof (uint64_t));
for (entry = entry_map; entry < entry_map_end; entry++) {
uint64_t e = *entry;
if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
continue;
! (SM_TYPE_DECODE(e) == maptype ?
! space_map_add : space_map_remove)(sm,
! (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
! SM_RUN_DECODE(e) << sm->sm_shift);
! }
! }
! if (error == 0) {
! VERIFY3U(sm->sm_space, ==, space);
!
! sm->sm_loaded = B_TRUE;
! sm->sm_ops = ops;
! if (ops != NULL)
! ops->smop_load(sm);
} else {
! space_map_vacate(sm, NULL, NULL);
}
zio_buf_free(entry_map, bufsize);
! sm->sm_loading = B_FALSE;
! cv_broadcast(&sm->sm_load_cv);
! return (error);
}
void
! space_map_unload(space_map_t *sm)
{
! ASSERT(MUTEX_HELD(sm->sm_lock));
! if (sm->sm_loaded && sm->sm_ops != NULL)
! sm->sm_ops->smop_unload(sm);
! sm->sm_loaded = B_FALSE;
! sm->sm_ops = NULL;
! space_map_vacate(sm, NULL, NULL);
! }
! uint64_t
! space_map_maxsize(space_map_t *sm)
! {
! ASSERT(sm->sm_ops != NULL);
! return (sm->sm_ops->smop_max(sm));
}
uint64_t
! space_map_alloc(space_map_t *sm, uint64_t size)
{
! uint64_t start;
! start = sm->sm_ops->smop_alloc(sm, size);
! if (start != -1ULL)
! space_map_remove(sm, start, size);
! return (start);
! }
! void
! space_map_claim(space_map_t *sm, uint64_t start, uint64_t size)
! {
! sm->sm_ops->smop_claim(sm, start, size);
! space_map_remove(sm, start, size);
}
void
! space_map_free(space_map_t *sm, uint64_t start, uint64_t size)
{
! space_map_add(sm, start, size);
! sm->sm_ops->smop_free(sm, start, size);
}
/*
! * Note: space_map_sync() will drop sm_lock across dmu_write() calls.
*/
void
! space_map_sync(space_map_t *sm, uint8_t maptype,
! space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
{
spa_t *spa = dmu_objset_spa(os);
! avl_tree_t *t = &sm->sm_root;
! space_seg_t *ss;
! uint64_t bufsize, start, size, run_len, total, sm_space, nodes;
uint64_t *entry, *entry_map, *entry_map_end;
! ASSERT(MUTEX_HELD(sm->sm_lock));
! if (sm->sm_space == 0)
return;
- dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
- smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
- maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root),
- sm->sm_space);
-
if (maptype == SM_ALLOC)
! smo->smo_alloc += sm->sm_space;
else
! smo->smo_alloc -= sm->sm_space;
! bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
! bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT);
! entry_map = zio_buf_alloc(bufsize);
! entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
entry = entry_map;
*entry++ = SM_DEBUG_ENCODE(1) |
SM_DEBUG_ACTION_ENCODE(maptype) |
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
total = 0;
! nodes = avl_numnodes(&sm->sm_root);
! sm_space = sm->sm_space;
! for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) {
! size = ss->ss_end - ss->ss_start;
! start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
! total += size;
! size >>= sm->sm_shift;
! while (size) {
run_len = MIN(size, SM_RUN_MAX);
if (entry == entry_map_end) {
! mutex_exit(sm->sm_lock);
! dmu_write(os, smo->smo_object, smo->smo_objsize,
! bufsize, entry_map, tx);
! mutex_enter(sm->sm_lock);
! smo->smo_objsize += bufsize;
entry = entry_map;
}
*entry++ = SM_OFFSET_ENCODE(start) |
SM_TYPE_ENCODE(maptype) |
SM_RUN_ENCODE(run_len);
start += run_len;
size -= run_len;
}
}
if (entry != entry_map) {
size = (entry - entry_map) * sizeof (uint64_t);
! mutex_exit(sm->sm_lock);
! dmu_write(os, smo->smo_object, smo->smo_objsize,
size, entry_map, tx);
! mutex_enter(sm->sm_lock);
! smo->smo_objsize += size;
}
/*
* Ensure that the space_map's accounting wasn't changed
* while we were in the middle of writing it out.
*/
! VERIFY3U(nodes, ==, avl_numnodes(&sm->sm_root));
! VERIFY3U(sm->sm_space, ==, sm_space);
! VERIFY3U(sm->sm_space, ==, total);
! zio_buf_free(entry_map, bufsize);
}
! void
! space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
{
! VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0);
! smo->smo_objsize = 0;
! smo->smo_alloc = 0;
}
! /*
! * Space map reference trees.
! *
! * A space map is a collection of integers. Every integer is either
! * in the map, or it's not. A space map reference tree generalizes
! * the idea: it allows its members to have arbitrary reference counts,
! * as opposed to the implicit reference count of 0 or 1 in a space map.
! * This representation comes in handy when computing the union or
! * intersection of multiple space maps. For example, the union of
! * N space maps is the subset of the reference tree with refcnt >= 1.
! * The intersection of N space maps is the subset with refcnt >= N.
! *
! * [It's very much like a Fourier transform. Unions and intersections
! * are hard to perform in the 'space map domain', so we convert the maps
! * into the 'reference count domain', where it's trivial, then invert.]
! *
! * vdev_dtl_reassess() uses computations of this form to determine
! * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev
! * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev
! * has an outage wherever refcnt >= vdev_children.
! */
! static int
! space_map_ref_compare(const void *x1, const void *x2)
{
! const space_ref_t *sr1 = x1;
! const space_ref_t *sr2 = x2;
! if (sr1->sr_offset < sr2->sr_offset)
! return (-1);
! if (sr1->sr_offset > sr2->sr_offset)
! return (1);
! if (sr1 < sr2)
! return (-1);
! if (sr1 > sr2)
! return (1);
return (0);
}
void
! space_map_ref_create(avl_tree_t *t)
{
! avl_create(t, space_map_ref_compare,
! sizeof (space_ref_t), offsetof(space_ref_t, sr_node));
! }
! void
! space_map_ref_destroy(avl_tree_t *t)
! {
! space_ref_t *sr;
! void *cookie = NULL;
! while ((sr = avl_destroy_nodes(t, &cookie)) != NULL)
! kmem_free(sr, sizeof (*sr));
!
! avl_destroy(t);
}
static void
! space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt)
{
! space_ref_t *sr;
! sr = kmem_alloc(sizeof (*sr), KM_SLEEP);
! sr->sr_offset = offset;
! sr->sr_refcnt = refcnt;
! avl_add(t, sr);
}
void
! space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end,
! int64_t refcnt)
{
! space_map_ref_add_node(t, start, refcnt);
! space_map_ref_add_node(t, end, -refcnt);
}
/*
! * Convert (or add) a space map into a reference tree.
*/
void
! space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt)
{
! space_seg_t *ss;
ASSERT(MUTEX_HELD(sm->sm_lock));
! for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
! space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt);
}
! /*
! * Convert a reference tree into a space map. The space map will contain
! * all members of the reference tree for which refcnt >= minref.
! */
void
! space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref)
{
! uint64_t start = -1ULL;
! int64_t refcnt = 0;
! space_ref_t *sr;
! ASSERT(MUTEX_HELD(sm->sm_lock));
! space_map_vacate(sm, NULL, NULL);
! for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) {
! refcnt += sr->sr_refcnt;
! if (refcnt >= minref) {
! if (start == -1ULL) {
! start = sr->sr_offset;
}
- } else {
- if (start != -1ULL) {
- uint64_t end = sr->sr_offset;
- ASSERT(start <= end);
- if (end > start)
- space_map_add(sm, start, end - start);
- start = -1ULL;
}
! }
! }
! ASSERT(refcnt == 0);
! ASSERT(start == -1ULL);
}
--- 21,607 ----
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
! * Copyright (c) 2013 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
+ #include <sys/dmu_tx.h>
+ #include <sys/dnode.h>
+ #include <sys/dsl_pool.h>
#include <sys/zio.h>
#include <sys/space_map.h>
+ #include <sys/refcount.h>
+ #include <sys/zfeature.h>
/*
! * This value controls how the space map's block size is allowed to grow.
! * If the value is set to the same size as SPACE_MAP_INITIAL_BLOCKSIZE then
! * the space map block size will remain fixed. Setting this value to something
! * greater than SPACE_MAP_INITIAL_BLOCKSIZE will allow the space map to
! * increase its block size as needed. To maintain backwards compatibilty the
! * space map's block size must be a power of 2 and SPACE_MAP_INITIAL_BLOCKSIZE
! * or larger.
*/
! int space_map_max_blksz = (1 << 12);
/*
! * Load the space map disk into the specified range tree. Segments of maptype
! * are added to the range tree, other segment types are removed.
! *
* Note: space_map_load() will drop sm_lock across dmu_read() calls.
* The caller must be OK with this.
*/
int
! space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
{
uint64_t *entry, *entry_map, *entry_map_end;
uint64_t bufsize, size, offset, end, space;
int error = 0;
ASSERT(MUTEX_HELD(sm->sm_lock));
! end = space_map_length(sm);
! space = space_map_allocated(sm);
! VERIFY0(range_tree_space(rt));
if (maptype == SM_FREE) {
! range_tree_add(rt, sm->sm_start, sm->sm_size);
space = sm->sm_size - space;
}
! bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
entry_map = zio_buf_alloc(bufsize);
mutex_exit(sm->sm_lock);
! if (end > bufsize) {
! dmu_prefetch(sm->sm_os, space_map_object(sm), bufsize,
! end - bufsize);
! }
mutex_enter(sm->sm_lock);
for (offset = 0; offset < end; offset += bufsize) {
size = MIN(end - offset, bufsize);
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
VERIFY(size != 0);
+ ASSERT3U(sm->sm_blksz, !=, 0);
dprintf("object=%llu offset=%llx size=%llx\n",
! space_map_object(sm), offset, size);
mutex_exit(sm->sm_lock);
! error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
! entry_map, DMU_READ_PREFETCH);
mutex_enter(sm->sm_lock);
if (error != 0)
break;
entry_map_end = entry_map + (size / sizeof (uint64_t));
for (entry = entry_map; entry < entry_map_end; entry++) {
uint64_t e = *entry;
+ uint64_t offset, size;
if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
continue;
! offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
! sm->sm_start;
! size = SM_RUN_DECODE(e) << sm->sm_shift;
! VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
! VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
! VERIFY3U(offset, >=, sm->sm_start);
! VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
! if (SM_TYPE_DECODE(e) == maptype) {
! VERIFY3U(range_tree_space(rt) + size, <=,
! sm->sm_size);
! range_tree_add(rt, offset, size);
} else {
! range_tree_remove(rt, offset, size);
}
+ }
+ }
+ if (error == 0)
+ VERIFY3U(range_tree_space(rt), ==, space);
+ else
+ range_tree_vacate(rt, NULL, NULL);
+
zio_buf_free(entry_map, bufsize);
+ return (error);
+ }
! void
! space_map_histogram_clear(space_map_t *sm)
! {
! if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
! return;
! bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
! }
! boolean_t
! space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
! {
! /*
! * Verify that the in-core range tree does not have any
! * ranges smaller than our sm_shift size.
! */
! for (int i = 0; i < sm->sm_shift; i++) {
! if (rt->rt_histogram[i] != 0)
! return (B_FALSE);
! }
! return (B_TRUE);
}
void
! space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
{
! int idx = 0;
! ASSERT(MUTEX_HELD(rt->rt_lock));
! ASSERT(dmu_tx_is_syncing(tx));
! VERIFY3U(space_map_object(sm), !=, 0);
! if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
! return;
! dmu_buf_will_dirty(sm->sm_dbuf, tx);
! ASSERT(space_map_histogram_verify(sm, rt));
!
! /*
! * Transfer the content of the range tree histogram to the space
! * map histogram. The space map histogram contains 32 buckets ranging
! * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
! * however, can represent ranges from 2^0 to 2^63. Since the space
! * map only cares about allocatable blocks (minimum of sm_shift) we
! * can safely ignore all ranges in the range tree smaller than sm_shift.
! */
! for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
!
! /*
! * Since the largest histogram bucket in the space map is
! * 2^(32+sm_shift-1), we need to normalize the values in
! * the range tree for any bucket larger than that size. For
! * example given an sm_shift of 9, ranges larger than 2^40
! * would get normalized as if they were 1TB ranges. Assume
! * the range tree had a count of 5 in the 2^44 (16TB) bucket,
! * the calculation below would normalize this to 5 * 2^4 (16).
! */
! ASSERT3U(i, >=, idx + sm->sm_shift);
! sm->sm_phys->smp_histogram[idx] +=
! rt->rt_histogram[i] << (i - idx - sm->sm_shift);
!
! /*
! * Increment the space map's index as long as we haven't
! * reached the maximum bucket size. Accumulate all ranges
! * larger than the max bucket size into the last bucket.
! */
! if (idx < SPACE_MAP_HISTOGRAM_SIZE(sm) - 1) {
! ASSERT3U(idx + sm->sm_shift, ==, i);
! idx++;
! ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE(sm));
! }
! }
}
uint64_t
! space_map_entries(space_map_t *sm, range_tree_t *rt)
{
! avl_tree_t *t = &rt->rt_root;
! range_seg_t *rs;
! uint64_t size, entries;
! /*
! * All space_maps always have a debug entry so account for it here.
! */
! entries = 1;
! /*
! * Traverse the range tree and calculate the number of space map
! * entries that would be required to write out the range tree.
! */
! for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
! size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
! entries += howmany(size, SM_RUN_MAX);
! }
! return (entries);
}
void
! space_map_set_blocksize(space_map_t *sm, uint64_t size, dmu_tx_t *tx)
{
! uint32_t blksz;
! u_longlong_t blocks;
!
! ASSERT3U(sm->sm_blksz, !=, 0);
! ASSERT3U(space_map_object(sm), !=, 0);
! ASSERT(sm->sm_dbuf != NULL);
! VERIFY(ISP2(space_map_max_blksz));
!
! if (sm->sm_blksz >= space_map_max_blksz)
! return;
!
! /*
! * The object contains more than one block so we can't adjust
! * its size.
! */
! if (sm->sm_phys->smp_objsize > sm->sm_blksz)
! return;
!
! if (size > sm->sm_blksz) {
! uint64_t newsz;
!
! /*
! * Older software versions treat space map blocks as fixed
! * entities. The DMU is capable of handling different block
! * sizes making it possible for us to increase the
! * block size and maintain backwards compatibility. The
! * caveat is that the new block sizes must be a
! * power of 2 so that old software can append to the file,
! * adding more blocks. The block size can grow until it
! * reaches space_map_max_blksz.
! */
! newsz = ISP2(size) ? size : 1ULL << highbit(size);
! if (newsz > space_map_max_blksz)
! newsz = space_map_max_blksz;
!
! VERIFY0(dmu_object_set_blocksize(sm->sm_os,
! space_map_object(sm), newsz, 0, tx));
! dmu_object_size_from_db(sm->sm_dbuf, &blksz, &blocks);
!
! zfs_dbgmsg("txg %llu, spa %s, increasing blksz from %d to %d",
! dmu_tx_get_txg(tx), spa_name(dmu_objset_spa(sm->sm_os)),
! sm->sm_blksz, blksz);
!
! VERIFY3U(newsz, ==, blksz);
! VERIFY3U(sm->sm_blksz, <, blksz);
! sm->sm_blksz = blksz;
! }
}
/*
! * Note: space_map_write() will drop sm_lock across dmu_write() calls.
*/
void
! space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
! dmu_tx_t *tx)
{
+ objset_t *os = sm->sm_os;
spa_t *spa = dmu_objset_spa(os);
! avl_tree_t *t = &rt->rt_root;
! range_seg_t *rs;
! uint64_t size, total, rt_space, nodes;
uint64_t *entry, *entry_map, *entry_map_end;
+ uint64_t newsz, expected_entries, actual_entries = 1;
! ASSERT(MUTEX_HELD(rt->rt_lock));
! ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
! VERIFY3U(space_map_object(sm), !=, 0);
! dmu_buf_will_dirty(sm->sm_dbuf, tx);
! /*
! * This field is no longer necessary since the in-core space map
! * now contains the object number but is maintained for backwards
! * compatibility.
! */
! sm->sm_phys->smp_object = sm->sm_object;
!
! if (range_tree_space(rt) == 0) {
! VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
return;
+ }
if (maptype == SM_ALLOC)
! sm->sm_phys->smp_alloc += range_tree_space(rt);
else
! sm->sm_phys->smp_alloc -= range_tree_space(rt);
! expected_entries = space_map_entries(sm, rt);
!
! /*
! * Calculate the new size for the space map on-disk and see if
! * we can grow the block size to accommodate the new size.
! */
! newsz = sm->sm_phys->smp_objsize + expected_entries * sizeof (uint64_t);
! space_map_set_blocksize(sm, newsz, tx);
!
! entry_map = zio_buf_alloc(sm->sm_blksz);
! entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
entry = entry_map;
*entry++ = SM_DEBUG_ENCODE(1) |
SM_DEBUG_ACTION_ENCODE(maptype) |
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
total = 0;
! nodes = avl_numnodes(&rt->rt_root);
! rt_space = range_tree_space(rt);
! for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
! uint64_t start;
! size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
! start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
! total += size << sm->sm_shift;
!
! while (size != 0) {
! uint64_t run_len;
!
run_len = MIN(size, SM_RUN_MAX);
if (entry == entry_map_end) {
! mutex_exit(rt->rt_lock);
! dmu_write(os, space_map_object(sm),
! sm->sm_phys->smp_objsize, sm->sm_blksz,
! entry_map, tx);
! mutex_enter(rt->rt_lock);
! sm->sm_phys->smp_objsize += sm->sm_blksz;
entry = entry_map;
}
*entry++ = SM_OFFSET_ENCODE(start) |
SM_TYPE_ENCODE(maptype) |
SM_RUN_ENCODE(run_len);
start += run_len;
size -= run_len;
+ actual_entries++;
}
}
if (entry != entry_map) {
size = (entry - entry_map) * sizeof (uint64_t);
! mutex_exit(rt->rt_lock);
! dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
size, entry_map, tx);
! mutex_enter(rt->rt_lock);
! sm->sm_phys->smp_objsize += size;
}
+ ASSERT3U(expected_entries, ==, actual_entries);
/*
* Ensure that the space_map's accounting wasn't changed
* while we were in the middle of writing it out.
*/
! VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
! VERIFY3U(range_tree_space(rt), ==, rt_space);
! VERIFY3U(range_tree_space(rt), ==, total);
! zio_buf_free(entry_map, sm->sm_blksz);
}
! static int
! space_map_open_impl(space_map_t *sm)
{
! int error;
! u_longlong_t blocks;
! error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
! if (error)
! return (error);
!
! dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
! sm->sm_phys = sm->sm_dbuf->db_data;
! return (0);
}
! int
! space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
! uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
{
! space_map_t *sm;
! int error;
! ASSERT(*smp == NULL);
! ASSERT(os != NULL);
! ASSERT(object != 0);
! sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
+ sm->sm_start = start;
+ sm->sm_size = size;
+ sm->sm_shift = shift;
+ sm->sm_lock = lp;
+ sm->sm_os = os;
+ sm->sm_object = object;
+
+ error = space_map_open_impl(sm);
+ if (error != 0) {
+ space_map_close(sm);
+ return (error);
+ }
+
+ *smp = sm;
+
return (0);
}
void
! space_map_close(space_map_t *sm)
{
! if (sm == NULL)
! return;
! if (sm->sm_dbuf != NULL)
! dmu_buf_rele(sm->sm_dbuf, sm);
! sm->sm_dbuf = NULL;
! sm->sm_phys = NULL;
! kmem_free(sm, sizeof (*sm));
}
static void
! space_map_reallocate(space_map_t *sm, dmu_tx_t *tx)
{
! ASSERT(dmu_tx_is_syncing(tx));
! space_map_free(sm, tx);
! dmu_buf_rele(sm->sm_dbuf, sm);
! sm->sm_object = space_map_alloc(sm->sm_os, tx);
! VERIFY0(space_map_open_impl(sm));
}
void
! space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
{
! objset_t *os = sm->sm_os;
! spa_t *spa = dmu_objset_spa(os);
! zfeature_info_t *space_map_histogram =
! &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM];
! dmu_object_info_t doi;
! int bonuslen;
!
! ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
! ASSERT(dmu_tx_is_syncing(tx));
!
! VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
! dmu_object_info_from_db(sm->sm_dbuf, &doi);
!
! if (spa_feature_is_enabled(spa, space_map_histogram)) {
! bonuslen = sizeof (space_map_phys_t);
! ASSERT3U(bonuslen, <=, dmu_bonus_max());
! } else {
! bonuslen = SPACE_MAP_SIZE_V0;
! }
!
! if (bonuslen != doi.doi_bonus_size ||
! doi.doi_data_block_size != SPACE_MAP_INITIAL_BLOCKSIZE) {
! zfs_dbgmsg("txg %llu, spa %s, reallocating: "
! "old bonus %u, old blocksz %u", dmu_tx_get_txg(tx),
! spa_name(spa), doi.doi_bonus_size, doi.doi_data_block_size);
! space_map_reallocate(sm, tx);
! VERIFY3U(sm->sm_blksz, ==, SPACE_MAP_INITIAL_BLOCKSIZE);
! }
!
! dmu_buf_will_dirty(sm->sm_dbuf, tx);
! sm->sm_phys->smp_objsize = 0;
! sm->sm_phys->smp_alloc = 0;
}
/*
! * Update the in-core space_map allocation and length values.
*/
void
! space_map_update(space_map_t *sm)
{
! if (sm == NULL)
! return;
ASSERT(MUTEX_HELD(sm->sm_lock));
! sm->sm_alloc = sm->sm_phys->smp_alloc;
! sm->sm_length = sm->sm_phys->smp_objsize;
}
! uint64_t
! space_map_alloc(objset_t *os, dmu_tx_t *tx)
! {
! spa_t *spa = dmu_objset_spa(os);
! zfeature_info_t *space_map_histogram =
! &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM];
! uint64_t object;
! int bonuslen;
!
! if (spa_feature_is_enabled(spa, space_map_histogram)) {
! spa_feature_incr(spa, space_map_histogram, tx);
! bonuslen = sizeof (space_map_phys_t);
! ASSERT3U(bonuslen, <=, dmu_bonus_max());
! } else {
! bonuslen = SPACE_MAP_SIZE_V0;
! }
!
! object = dmu_object_alloc(os,
! DMU_OT_SPACE_MAP, SPACE_MAP_INITIAL_BLOCKSIZE,
! DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
!
! return (object);
! }
!
void
! space_map_free(space_map_t *sm, dmu_tx_t *tx)
{
! spa_t *spa;
! zfeature_info_t *space_map_histogram =
! &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM];
! if (sm == NULL)
! return;
! spa = dmu_objset_spa(sm->sm_os);
! if (spa_feature_is_enabled(spa, space_map_histogram)) {
! dmu_object_info_t doi;
! dmu_object_info_from_db(sm->sm_dbuf, &doi);
! if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
! VERIFY(spa_feature_is_active(spa, space_map_histogram));
! spa_feature_decr(spa, space_map_histogram, tx);
}
}
!
! VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
! sm->sm_object = 0;
! }
!
! uint64_t
! space_map_object(space_map_t *sm)
! {
! return (sm != NULL ? sm->sm_object : 0);
! }
!
! /*
! * Returns the already synced, on-disk allocated space.
! */
! uint64_t
! space_map_allocated(space_map_t *sm)
! {
! return (sm != NULL ? sm->sm_alloc : 0);
! }
!
! /*
! * Returns the already synced, on-disk length;
! */
! uint64_t
! space_map_length(space_map_t *sm)
! {
! return (sm != NULL ? sm->sm_length : 0);
! }
!
! /*
! * Returns the allocated space that is currently syncing.
! */
! int64_t
! space_map_alloc_delta(space_map_t *sm)
! {
! if (sm == NULL)
! return (0);
! ASSERT(sm->sm_dbuf != NULL);
! return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
}